

Introduction to pcDuino

Lifeng Zhao and Jingfeng Liu

Content

Introduction .. 1

Chapter 1 Hardware and Software Introductions of pcDuino ... 2

Required Accessories ... 4

pcDuino board I/O interface description .. 6

Ubuntu .. 7

Ubuntu in NAND flash ... 7

How to install Ubuntu using microSD cards .. 8

Burn the kernel in Linux PC ... 10

Burn the kernel in MAC OS PC ... 11

How to install Ubuntu using LiveSuit .. 13

Ubuntu in bootable microSD card ... 13

Backup NAND to a SD card, and boot from SD card .. 17

Android .. 26

Android in NAND flash .. 26

How to install Android using microSD card ... 27

How to install Android using LiveSuit .. 30

Use pcDuino as an mini PC platform ... 31

pcDuino and Ubuntu ... 31

pcDuino and Android .. 32

Chapter 2 Introduction of Ubuntu for pcDuino .. 33

pcDuino Ubuntu File Directory Structure ... 33

Linux Commands ... 35

Using USB WiFi Dongle ... 38

Using USB Sound Card with Audio Input/output .. 42

Use 3G Cellular USB Dongle (Huawei E303s) .. 43

Use Bluetooth USB Dongle .. 45

Chapter 3 C Language and Arduino type IDE for pcDuino ... 48

Toolchain of the Arduino library .. 48

Command line style ... 48

Arduino library and samples ... 62

UART .. 62

ADC .. 66

PWM.. 68

GPIO .. 71

I2C ... 72

SPI .. 74

Arduino IDE ... 77

Chapter 4 Introduction of Python on pcDuino ... 86

Chapter 5 SimpleCV and OpenCV on pcDuino .. 90

SimpleCV ... 90

OpenCV ... 93

Chapter 6 Cloud 9 on pcDuino .. 101

Chapter 7 Use Arduino Uno with pcDuino ... 108

Simple Experiment: Blink .. 108

ArduBlock .. 109

Chapter 8 Sratch on pcDuino .. 114

Appendix How to build kernel for

pcDuino ..116

 1

Introduction

Recently, there is a wave of open hardware movement that begins with Arduino, which is a

simple AVR microprocessor (MCU) but powered by simple GUI and the complete open hardware

ecosystem. More recently, there is a trend toward ARM powered mini PC, which is represented

by Raspberry Pi, and more lately Beagle Board. Early this year, LinkSprite released a powerful mini

PC platform that combines the benefit of an ARM based mini PC and Arduino ecosystem: pcDuino,

which represents pc + Arduino. pcDuino is pin to pin compatible with Arduino so that existing

Arduino shields can be installed on pcDuino with a simple translation board (T-board). By being

compatible with Arduino ecosystem, pcDuino is a platform that bridges the power of open

software linux and the power of open hardware.

In this book, we are going to introduce how to get started with pcDuino. First, we will introduce

the hardware and software features of pcDuino.

You can always check pcduino.com, SFE learning center.

The following topics will be discussed in this book:

 Hardware and software introductions of pcDuino

 Introduction of Ubuntu for pcDuino

 C Language and Arduino type IDE on pcDuino

 Introduction of python on pcDuino

 SimpleCV and openCV on pcDuino

 Could9 on pcDuino

 Scratch on pcDUino

 A complete project: Rover, a WiFi video surveillance remote control robot

 Introduction of Android on pcDuino

 2

Chapter 1 Hardware and Software Introductions of pcDuino

pcDuino is a high performance, cost effective mini PC platform that runs PC like OS such

as Ubuntu Linux. It outputs its screen to HDMI enabled TV or monitor via the built in HDMI

interface. It is specially targeted for the fast growing demands from the open source

community. The platform could run full blown PC like OS with easy to use tool chain and

compatible with the popular Arduino ecosystem such as Arduino Shields and open source

projects etc. It can also run Android 4.0 ICS.

The hardware specification of pcDuino is as follows:

Items Details

CPU AllWinner A10 SoC, 1GHz ARM Cortex A8

GPU OpenGL ES2.0, OpenVG 1.1 Mali 400 core

DRAM 1GB

Onboard Storage 2GB Flash

Micro-SD card slot for up to 32GB

Video Output HDMI

OS Linux3.0 + Ubuntu12.04

Android ICS 4.0

Extension Interface Arduino Headers

Network interface USB WiFi extension (not included)

Ethernet 10/100Mbps

 3

Power 5V, 2A

The following are top and bottom views of pcDuino:

pcDuino targets two markets primarily, i.e., the Raspberry Pi mini PC market and

Arduino market as open-source electronics prototyping platform. With pcDuino, user

could do lots of fun stuff including but not limited to the follows:

 Learn or teach programming

 Work with hardware part

 Use Internet browser or Office from Ubuntu

 4

 Learn Ubuntu linux

 Create media center with XBMC

 Play game

 DIY projects

Required Accessories

Micro-USB port power adaptor (5V, 2000mA). Note: Pay attention to the micro USB cable

used. This USB cable must be able to carry large current as large as 2A. We have seen

lots of issues related to usage of weak USB cable.

A monitor/Display with HDMI port

HDMI cable

 5

If you don’t have a HDMI monitor, you can use HDMI to DVI cable to connect to a DVI

monitor or a HDMI to VGA cable to connect to a VGA monitor.

USB keyboard (must)

USB Hub and USB mouse (optional but strongly recommended)

Some Dupont wires to connect pcDuino with test devices

Micro-SD card and its card reader. Recommended to have two 2GB or above cards, one

for kernel upgrade, and the other one for Ubuntu upgrade.

Note:

 Before using pcDuino, connect pcDuino with the devices correctly:

USB host port => USB hub => keyboard & mouse

HDMI port => HDMI cable => HDMI display

 6

pcDuino board I/O interface description

The detailed schematics can be downloaded from:

https://s3.amazonaws.com/pcduino/Hardware/PC+Duino_V01-20130128.pdf

Here is the list of I/O interfaces on pcDuino board.

1. 14 digital pins for GPIO: GPIO max out current is 4mA.

2. One UART RX, one UART TX

3. Two PWM pins, support up to 24MHz.

4. Six ADC pins, ADC 0 and ADC 1 are 6 bits resolution, while the rest are 10 bits

resolution.

5. Four SPI pins

6. Two I2C pins

It supports onnecting any Arduino shield with pcDuino via any of the above I/O interfaces.

It allows using pcDuino with the same code used in Arduino.

https://s3.amazonaws.com/pcduino/Hardware/PC+Duino_V01-20130128.pdf

 7

Software

pcDuino supports both Ubuntu Linux and Android 4.0 ICS. When the book is written, the

latest release version of Ubuntu for pcDuino is 20130531.

Ubuntu

The factory default installation is Ubuntu in NAND flash. Ubuntu can boot from either

NAND flash or a bootable microSD card.

Ubuntu in NAND flash

If we want to reinstall Ubuntu or update Ubuntu in NAND flash, there are two options:

 8

 Install Ubuntu using microSD cards.

 Install Ubuntu using through USB port using Livesuit.

In the following we are going to introduce each one.

How to install Ubuntu using microSD cards:

The installation process involves two steps:

1) Install Linux kernel (use microSD card #1) and

 2) Install Ubuntu file system (use microSD card #2 or a USB flash drive, which

needs to be formatted as FAT).

The microSD card should be 2GB minimal.

In every pcDuino ubuntu release, there are two versions of kernel image. One is

for Phonexcard tool that is used to create microSD card #1 (This is the same file that is

used by Livesuit, which will be discussed later). The other is for Win32DiskImager

(windows) or dd (under linux) that is used to create microSD card #1.

Phonexcard can be downloaded from

 https://s3.amazonaws.com/pcduino/Tools/PhoenixCardV306_20120302.rar

 9

Win32DiskImager can be downloaded from:

 https://s3.amazonaws.com/pcduino/Tools/win32diskimager-v0.7-binary.zip

 or

 http://sourceforge.net/projects/win32diskimager

http://sourceforge.net/projects/win32diskimager

 10

Burn the kernel in Linux PC

a) Insert the micro-SD card to Linux PC or pcDuino, the card will be mounted automatically. To

continue, un-mount all the partitions on the card. For example,

If the SD has two partitions:

$ sudo umount /dev/mmcblk0p1

$ sudo umount /dev/mmcblk0p2

b) Then burn the downloaded and unzipped image file

(a10_kernel_disk32imager_20130403.img) to the micro-SD card with the following

command:

 $ sudo dd if=/udisk/a10_kernel_disk32imager_20130403.img of=/dev/mmcblk0

bs=1M

$ sudo sync

The of=/dev/mmcblk0 points to the micro-SD card.

Cautions: Don’t use “of=/dev/xxx” to point to your hard disk. It will destroy the contents in

your hard disk.

Now the micro-SD card is ready for use to burn the OS image to internal flash.

c) Burn the OS image to internal flash from micro-SD card

i. Plug the micro-SD card to the pcDuino, power on the board, and then wait for one minute

ii. Eject the TF card and reset the device. If you see the RX LED stays on, and the TX LED is

blinking, the kernel is updated successfully

 11

Burn the kernel in MAC OS PC

a) Open the terminal in MacOS, insert the micro-SD card, the card will be mounted

automatically. To continue, un-mount all the partitions on the card. For example,

If the SD has two partitions:

$ sudo umount /dev/disk1s1

$ sudo umount /dev/disk1s2

If the SD card is failed to umount, you can use the following script to force umount:

$ sudo diskutil umount force /dev/disk1s1

$ sudo diskutil umount force /dev/disk1s2

b) Then burn the downloaded and unzipped image file

(a10_kernel_disk32imager_20130403.img) to the micro-SD card with the following

command:

 $ sudo dd if=/udisk/a10_kernel_disk32imager_20130403.img of=/dev/disk1

bs=1m

The of=/dev/disk1 points to the micro-SD card. After this command is complete, your Mac PC

will pop up the message “can’t identify the SD card” that indicates the file system in your

card is unknown to Mac PC now.

Cautions: Don’t use “of=/dev/xxx” to point to your hard disk. It will destroy the contents in

your hard disk.

Now the micro-SD card is ready for use to burn the OS image to internal flash.

 12

c) Burn the OS image to internal flash from micro-SD card

i. Plug the micro-SD card to the pcDuino, power on the board, and then wait for one minute

ii. Eject the TF card and reset the device. If you see the RX LED stays on, and the TX LED is

blinking, the kernel is updated successfully

After we create microSD card #1, insert microSD #1 into the SD slot, and power cycle the

board. When the board starts to burn image file from SD card to flash, the TX LED will

blink slowly. Wait for about one minute, if the kernel is updated successfully, the LEDs will

be off.

Now, we are ready to flash Ubuntu file system to NAND flash. In every pcDUino Ubuntu

release, there is a file ball named Ubuntu, this is Ubuntu file system. Download the Ubuntu

file, and unzip it to get two files like these:

- Update.sh: shell script for Ubuntu update

- Ubuntu_xxx.img: image file for Ubuntu

Copy the two files to micro SD #2 or a USB flash drive, which must be formatted as FAT.

Power cycle pcDuino, you will see booting information on the screen, and plug in micro

SD #2 or USB flash drive when the message showing that it is looking for a disk

containing Ubuntu file system. The screen will shows “It will take about 10 minutes to

finish…”. Please wait patiently and the screen will prompt that it finished updating. When

that is done, remove the microSD card, and power cycle pcDuino.

Tips:

The microSD card #1 is specially created to allow it to be recognized by the ROMBOOT of

the board. To avoid the unexpected update of pcDuino, we can use the PhoenixCard to

restore it to normal and clean card

 13

i. Plug your micro-SD card to your PC, run “PhoenixCard.exe”.

ii. Select the micro-SD card in the disk scroll window, and choose “Format to Normal” to

restore the card.

How to install Ubuntu using LiveSuit:

LiveSuit is a free tool which can upgrade firmware by USB device. To use this tool, you must install

two USB drivers. You can download the tool and drivers and read the user manual from:

https://s3.amazonaws.com/pcduino/Tools/Livesuit.rar

Note: LiveSuit is not very stable on Windows Vista or Windows 7, and it does not work well on 64

bits CPU. So this tool is not recommended.

Ubuntu in bootable microSD card:

In every pcDUino Ubuntu release, there is a file named SD bootable image. This file is

intended to create a bootable microSD card, so we can put all of our application and data

on the SD card instead of the space-limited NAND flash.

Steps:

1. Download the bootable microSD card image.

2. Unzip it and get xxx.img

https://s3.amazonaws.com/pcduino/Tools/Livesuit.rar

 14

3. Burn the unzipped image file above to the micro-SD card with win32diskimager or

dd in Linux PC or pcDuino

4. Plug the micro-SD card into pcDuino and power cycle pcDuino.

5. Ubuntu will be up running.

By default, the file system only uses 2GB. If you have a more space on your SD card, it is

not used by default.

We are going to use a script to expand the file system to the whole SD card.

$wget

https://s3.amazonaws.com/pcduino/SampleCode/System/expandFS/expand

_sdcard_rootfs.sh

$sudo bash ./expand_sdcard_rootfs.sh

 15

After the expansion, we reboot pcDuino by:

$sudo reboot

After reboot, we run:

 $sudo resize2fs /dev/mmcblk0p2

 16

Check the storage space again using

 17

 $df -h

Backup NAND to a SD card, and boot from SD card

pcDuino has an onboard NAND of 2GB. When we are doing heavy duty project

development, we can easily eat up all the space. When that happens, we need a way to

move all the program and data from NAND to a SD of larger capacity and make that SD

bootable.

The key function we are going to use is:

make_mmc_boot “Clone system from nand to mmc card”

This function will copy the entire content in NAND to a SD card. This is equivalent

to flash an mmc-boot image. The benefit is that users still keep their own program/data.

When the space of NAND is not enough, we can use the SD card to replace the system

in NAND.

When the book is written, the latest image release is 20130531. In the original image

20130513, the above mentioned function is not there in board-config. We need to do an

update in board-config to make it available.

There are two ways to run board-config. One is to run that after reset. The other is to run it

in terminal.

In the following, we are going to use the second approach. We type:

 18

$sudo board-config.sh

Next, we are going to choose ‘Update’:

 19

Then we choose ‘config’:

After that, pcDuino will check for update:

Press ‘Y’, and after the update is down, exit and re-run:

 20

$sudo board-config.sh

The option “make_mmc_boot” will display in the menu:

Plug in a SD card (in our case, a card of 16GB) to the SD slot, and press “ENTER”:

 21

It takes some time to backup:

After a long wait, we will get the following message:

 22

We reboot pcDuino, and check the storage space using:

$df –h

 23

In the above figure, we can see that although the SD card is of capacity 16GB, it only

shows up as 2GB.

We are going to use a script to expand the file system to the whole SD card.

$wget

https://s3.amazonaws.com/pcduino/SampleCode/System/expandFS/expand

_sdcard_rootfs.sh

$sudo bash ./expand_sdcard_rootfs.sh

 24

After the expansion, we reboot pcDuino by:

$sudo reboot

After reboot, we run:

 sudo resize2fs /dev/mmcblk0p2

 25

Check the storage space again using

 26

 $df -h

We can see that we get a full access to the SD card.

Android

The factory default installation is Ubuntu in NAND flash.

Android in NAND flash:

If we want to reinstall Android or update Android in NAND flash, there are two options:

 Install Ubuntu using microSD cards.

 Install Ubuntu using through USB port using Livesuit.

In the following we are going to introduce each one.

 27

How to install Android using microSD card:

1. Download the Android operating system for pcDuino

The download link is:

http://www.pcduino.com/?page_id=14

Find the link for Android image, download it and get one file with .img extension.

Phonexcard can be downloaded from

 https://s3.amazonaws.com/pcduino/Tools/PhoenixCardV306_20120302.rar

2. Write pcDuino Android image to micro-SD card

(a) Plug your micro-SD card to your PC, run “PhoenixCard.exe”. You will see something like this:

 28

(b) Choose the Android image file pcduino_Android_ xxx.img that you’ve downloaded and write

it to the micro-SD card

 29

After a few minutes, the micro-SD card is ready to use.

3. Burn the OS image to internal flash from micro-SD card

a) Plug the micro-SD card to the pcDuino and then power on the board. Wait for about four

minutes

b) Eject the micro-SD card and reset the device

* We have a catch in step (a). We don't have any LED to indicate when the boot image is burned

completely unless you connect the hyperterminal to pcDuino, so please wait for four minutes

patiently. Moreover, please eject the TF card before resetting the device. Otherwise, it will start

to burn the OS image again if the TF card is inserted.

4. Restore the micro-SD card created

The micro-SD card is specially created to allow it to be recognized by the ROMBOOT of the board.

To avoid the unexpected update of the Android OS, use the PhoenixCard to restore it to normal

and clean card

iii. Plug your micro-SD card to your PC, run “PhoenixCard.exe”.

 30

iv. Select the micro-SD card in the disk scroll window, and choose “Format to Normal” to

restore the card.

How to install Android using LiveSuit:

LiveSuit is a free tool which can upgrade firmware by USB device. To use this tool, you must install

two USB drivers. You can download the tool and drivers and read the user manual from:

https://s3.amazonaws.com/pcduino/Tools/Livesuit.rar

Note: LiveSuit is not very stable on Windows Vista or Windows 7, and it does not work well on 64

bits CPU. So this tool is not recommended.

https://s3.amazonaws.com/pcduino/Tools/Livesuit.rar

 31

Use pcDuino as an mini PC platform

1) pcDuino and Ubuntu

pcDuino & Ubuntu support customized Ubuntu linux 12.04 that is specially optimized for running

on ARM cortex platform with limited DRAM and NAND flash support. The device could be

operated with the USB mouse and keyboard. The supported application list consists of the

follows:

Items Details

Terminal Use build in “LXTerminal” application from desktop

 Launch terminal application, run standard linux commands or vi

editor etc.

 Launch C/C++ compile (use gcc), assembly and execution

File browser Use build in File Manager from desktop

 Used for typical file management

Internet browser Use chromium web browser from desktop

 Support HTML5

Office Use Document Viewer from desktop for PDF file view

 Use Gnumeric from desktop for Excel file view and edit

 Use AbiWord from desktop for Word file view and edit

Movie player Use MPlayer from desktop

 Could playback audio, video and image

Servers VNC server

 SSH

Development Arduino IDE for pcDuino

 32

Note:

The root user and password are “ubuntu”.

2) pcDuino and Android

pcDuino board supports customized android 4.0 that is specially optimized for HD-TV output

display devices. The device could be operated with the USB mouse and keyboard. The supported

application list consists of but not limited the follows:

Items Details

File browser Use build in File Manager

 Used for typical file management

Internet browser Use web browser from desktop or Google Search widget

 Support HTML5

Calendar Google Calendar

Gmail Visit Gmail accounts

People Google contacts apps

App Store Use Google “play store” to download third-party apps

Music Android built-in music player

Movie player Built-in Super-HD Player to play local movies

 33

Chapter 2 Introduction of Ubuntu for pcDuino

pcDuino Ubuntu File Directory Structure

Ubuntu adheres to the Filesystem Hierarchy Standard for directory and file naming. This standard

allows users and software programs to predict the location of files and directories. The root level

directory is represented simply by the slash /. At the root level, all Ubuntu systems include these

directories:

Directory Content

bin Essential command binaries

boot Static files of the boot loader

dev Device files

etc Host-specific system configuration

home User home directories

lib Essential shared libraries and kernel modules

media Contains mount points for replaceable media

mnt Mount point for mounting a file system temporarily

proc Virtual directory for system information (2.4 and 2.6 kernels)

root Home directory for the root user

sbin Essential system binaries

sys Virtual directory for system information (2.6 kernels)

 34

Directory Content

tmp Temporary files

usr Secondary hierarchy

var Variable data

srv Data for services provided by the system

opt Add-on application software packages

The following is a list of important considerations regarding directories and partitions. Note

that disk usage varies widely given system configuration and specific usage patterns. The

recommendations here are general guidelines and provide a starting point for partitioning.

 The root partition / must always physically

contain /etc, /bin, /sbin, /lib and /dev, otherwise you won't be able to boot.

Typically 150–250MB is needed for the root partition.

 /usr: contains all user programs (/usr/bin), libraries (/usr/lib),

documentation (/usr/share/doc), etc. This is the part of the file system that generally

takes up most space. You should provide at least 500MB of disk space. This amount

should be increased depending on the number and type of packages you plan to install.

A standard Ubuntu desktop requires a minimum of 1.5GB here. A generous workstation

or server installation should allow 4–6GB.

 /var: variable data like news articles, e-mails, web sites, databases, the

packaging system cache, etc. will be placed under this directory. The size of this directory

depends greatly on the usage of your system, but for most people will be dictated by the

package management tool's overhead. If you are going to do a full installation of just

about everything Ubuntu has to offer, all in one session, setting aside 2 or 3 GB of space

for /var should be sufficient. If you are going to install in pieces (that is to say, install

services and utilities, followed by text stuff, then X, ...), you can get away with 300–500

MB. If hard drive space is at a premium and you don't plan on doing major system

updates, you can get by with as little as 30 or 40 MB.

 /tmp: temporary data created by programs will most likely go in this directory.

40–100MB should usually be enough. Some applications — including archive

manipulators, CD/DVD authoring tools, and multimedia software — may use/tmp to

 35

temporarily store image files. If you plan to use such applications, you should adjust the

space available in /tmpaccordingly.

 /home: every user will put his personal data into a subdirectory of this directory. Its

size depends on how many users will be using the system and what files are to be stored

in their directories. Depending on your planned usage you should reserve about 100MB

for each user, but adapt this value to your needs. Reserve a lot more space if you plan to

save a lot of multimedia files (pictures, MP3, movies) in your home directory.

Linux Commands

We briefly discuss some of the frequently used commands used in Ubuntu.

Changing Directory

The command for changing directory is cd.

You can go to the top of your file system by typing cd /. Any directory change starting with /

will be relative to the top directory in the file system. Typing cd folder/subfolder, etc.

will change directory relative to were you are now in the filesystem (the working directory), so,

for example, if you are in the home directory, and you type cd arduino you will go into the

directory home/arduino, but if you had instead typed cd /arduino, Linux would have tried

to put you in an arduino directory at the top level of the file system (similar to C:\arduino on

windows), which on most systems won't exist.

Listing Files in a directory:

To do this, type ls.

This function 'lists' all the files in a directory. Adding -a to the command (ls -a) will also show

any hidden files in that directory. Adding -l (ls -l) will show the file's permissions, type,

owner and the date it was created/edited.

Change User

On the Ubuntu system, we can use command ‘su’ to switch to root user mode. As many

 36

commands require root privilege, we can add ‘su’ to the beginning of the command.

root is the super user (administrator) on Linux. Sudo is the command which allows other users

to issue a command as the super user. sudo = "super user do". Operations that a normal user

aren't normally allowed to do can be done using sudo. The word is just a mash of super-do and

pseudo. USE SUDO WITH CAUTION! Sudo can be used to do a lot of damage to your system,

and there is often a reason your normal account isn't allowed to perform a certain

action. suro rm -rf /* would completely delete everything in the filesystem, destroying

the system.

Install Software Package

Apt-get is the package or software manager on Debian/Ubuntu linux. Install is the operation for

apt-get to perform and the name of the package follows the keyword or action of install.

Multiple package names can be put on the line following install.

Compress and Uncompress Install Software Package

Tar is a very popular file format in Linux to zipped files. The biggest advantage is that it can uses

little CPU resources to zip files. It is only a packing utility, and it is not responsible for compression.

The compression is done by gzip and bzip2. Now let’s use file format *.tar, *.tar.gz, and *.tar.bz2

as examples:

If we want to compress and pack the directory ‘test’ under /var/tmp to the current directory,

$ tar -cvf test.tar test

The above command only packs directories and files, and doesn’t do compression.

$ tar -zcvf test.tar.gz test

The above command packs directories and files, and then compresses the pack using gzip.

 37

$ tar -jcvf test.tar.bz2 test

The above command packs directories and files, and then compresses the pack using bzip2.

The following command compares the size of different resulting files:

$ ll test.tar*

-rw-r--r-- 1 Lee mock 10240 01-18 17:05 test.tar

-rw-r--r-- 1 Lee mock 357 01-18 17:06 test.tar.bz2

-rw-r--r-- 1 Lee mock 327 01-18 17:05 test.tar.gz

How to uncompress the files:

$ tar -xvf test.tar

$ tar -xvf test.tar.gz

$ tar -jxvf test.tar.bz2

How to Uninstall / Delete / Remove Package

To uninstall package, we can use ‘dpkg –list’ to list all the installed software packages. Once found

out the installed packages, we can use ‘sudo apt-get --purge remove” command followed by the

package name to remove a certain package. For example:

$sudo apt-get --purge remove lighttpd

A recommended text editor

Nano is a handy text editor that is more handy to use compared to vi. To install it, run “$sudo

apt-get install nano”.

How to check kernel version

The following command is used to find out the version of kernel:

 38

ubuntu@ubuntu:~$ cat /proc/version

Find CPU Information /Speed

You use the following command to display all information about the CPU:

ubuntu@ubuntu:~$ cat /proc/cpuinfo

How to check storage space left

To check space left, type:

$df -h

Using USB WiFi Dongle:

The recommended USB WiFi Dongle for pcDuino is RT5370.

When the USB WiFi dongle is inserted, we can check if the hardware is working or not by using:

$lsusb

The following is what we get when the WiFi dongle is inserted.

 39

Open the “Network Connections” utility, under the “Preferences” submenu in the system menu.

Under the “Wireless” tab, click the “Add” button.

 40

You can put whatever you like in the “Connection name” field, but you’ll need to have the SSID of

the network you want to connect to in the SSID field. Mode should default to “Infrastructure”,

which is correct for most networks, and the bottom four fields can be ignored.

 41

In the “Wireless Security” tab, you can set the network security options for your network. We

won’t attempt to cover this, because it’s too big a topic; the fields should be pretty similar to

those on other devices, so copy the settings from something else if necessary.

 42

Using USB Sound Card with Audio Input/output

The USB sound card we are using can be found at:

http://linksprite.com/wiki/index.php5?title=USB_Sound_Card_with_Audio_Input/Output

The USB sound driver is included in pcDuino’s ubuntu kernel.

To install the applications, please use:

$sudo apt-get install audacity

http://linksprite.com/wiki/index.php5?title=USB_Sound_Card_with_Audio_Input/Output

 43

$sudo apt-get install pulseaudio pavucontrol

The following is the screen shot of Audacity. We can record and listen to sound.

Use 3G Cellular USB Dongle (Huawei E303s)

We go through the steps to use 3G cellular USB dongle (Huawei E303s) with pcDuino.

 44

Install the necessary software modules:

 usb_modeswitch libusb-compat libusb-1.0.0 usb-modeswitch-data

Libusb-1.0.0 can be installed using:

$sudo apt-get install libusb-1.0.0

We also need:

$sudo apt-get install libusb-dev

ubuntu@ubuntu:~/Downloads/usb-modeswitch-1.2.6$ sudo make install

sed 's_!/usr/bin/tclsh_!'"/usr/bin/tclsh"'_' < usb_modeswitch.tcl >

usb_modeswitch_dispatcher

install -D --mode=755 usb_modeswitch /usr/sbin/usb_modeswitch

install -D --mode=755 usb_modeswitch.sh /lib/udev/usb_modeswitch

install -D --mode=644 usb_modeswitch.conf /etc/usb_modeswitch.conf

install -D --mode=644 usb_modeswitch.1 /usr/share/man/man1/usb_modeswitch.1

install -D --mode=755 usb_modeswitch_dispatcher /usr/sbin/usb_modeswitch_dispatcher

install -d /var/lib/usb_modeswitch

ubuntu@ubuntu:~/Downloads/usb-modeswitch-data-20130610$ sudo make install

install -d /usr/share/usb_modeswitch

install -d /etc/usb_modeswitch.d

install -D --mode=644 40-usb_modeswitch.rules /lib/udev/rules.d/40-usb_modeswitch.rules

install --mode=644 -t /usr/share/usb_modeswitch ./usb_modeswitch.d/*

 45

Use Bluetooth USB Dongle

We cover how to use Bluetooth USB dongle on pcDuino. In this tutorial, the Bluetooth USB

dongle we used is the one from CuteDigi.

First, we need to install the following software module:

#sudo apt-get install gnome-bluetooth

Plug in Bluetooth USB dongle, and check the USB device:

Run ‘bluetooth-sendto’ in the terminal:

 46

Select the file that needs to be sent:

Scan for destination Bluetooth device, and select the device:

Now we can send file to the target device:

 47

 48

Chapter 3 C Language and Arduino type IDE for pcDuino

There are two flavors to use C langue on pcDuino, one is to use command line ‘make’ style. The

other one is to use Arduino style IDE. The Arduino IDE is included in version 20130531.

Toolchain of the Arduino library

The source code could be compiled with GCC tool chain. The GCC is pre-installed on the board.

You could enter gcc in Ubuntu terminal under any directory.

Cautious: you may need a bridge board to work with 5V Arduino Shield

All IO on the pcDuino board are 3.3V IO.

If the Arduino shield needs 5V input or 5V output, you need a bridge board for pcDuino.

Otherwise, you may damage your pcDuino board if you directly connect your shield with the

pcDuino.

Command line style

The quickest way to get going with Arduino sketches is to start with the samples so you have

a ‘template’ to guide you.

For parts of this guide to work, you’re pcDuino needs to be connected to the internet and

 49

you also need a terminal session running on the pcDuino.

Setup (one time)

If not already done, set up git. Do this using the command:

ubuntu@ubuntu:~$ sudo apt-get install git

Make sure you’re in your home folder by typing

ubuntu@ubuntu:~$ cd

ubuntu@ubuntu:~$ pwd

/home/Ubuntu

Now download the distribution from github by typing

ubuntu@ubuntu:~$ git clone https://github.com/pcduino/c_enviroment

Cloning into 'c_enviroment'...

remote: Counting objects: 250, done.

remote: Compressing objects: 100% (166/166), done.

remote: Total 250 (delta 87), reused 232 (delta 69)

Receiving objects: 100% (250/250), 302.59 KiB | 78 KiB/s, done.

Resolving deltas: 100% (87/87), done.

You should now have a folder called c_enviroment. You can check by typing ls：

 50

ubuntu@ubuntu:~$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos arduino

c_enviroment sa

Initial Look Around

Change into the c_envoroment folder:

ubuntu@ubuntu:~$ cd c_enviroment

ubuntu@ubuntu:~/c_enviroment$ ls

Makefile hardware libraries output sample

 51

Now run make to make the libraries and the examples with the following command:

ubuntu@ubuntu:~/c_enviroment$ make

You should see a series of compile commands occurring without errors with the last line

being:

make[1]: Leaving directory `/home/ubuntu/c_enviroment/sample'

The resulting binary files are found in the output/test folder

ubuntu@ubuntu:~/c_enviroment$ cd output/test

ubuntu@ubuntu:~/c_enviroment/output/test$ ll

total 660

drwxrwxr-x 2 ubuntu ubuntu 4096 Apr 27 06:59 ./

drwxrwxr-x 3 ubuntu ubuntu 4096 Apr 27 06:49 ../

-rwxrwxr-x 1 ubuntu ubuntu 13868 Apr 27 06:58 adc_test*

-rwxrwxr-x 1 ubuntu ubuntu 28284 Apr 27 06:58 adxl345_test*

-rwxrwxr-x 1 ubuntu ubuntu 14209 Apr 27 06:58 interrupt_test*

-rwxrwxr-x 1 ubuntu ubuntu 13726 Apr 27 06:58 io_test*

-rwxrwxr-x 1 ubuntu ubuntu 13712 Apr 27 06:59 linker_button_test*

-rwxrwxr-x 1 ubuntu ubuntu 13907 Apr 27 06:59 linker_buzzer_test*

-rwxrwxr-x 1 ubuntu ubuntu 13689 Apr 27 06:59 linker_hall_sensor_test*

-rwxrwxr-x 1 ubuntu ubuntu 13760 Apr 27 06:59 linker_joystick_test*

-rwxrwxr-x 1 ubuntu ubuntu 13769 Apr 27 06:59 linker_led_bar_test*

-rwxrwxr-x 1 ubuntu ubuntu 13690 Apr 27 06:59 linker_led_test*

-rwxrwxr-x 1 ubuntu ubuntu 14290 Apr 27 06:59 linker_light_sensor_test*

 52

-rwxrwxr-x 1 ubuntu ubuntu 13696 Apr 27 06:59 linker_magnetic_sensor_test*

-rwxrwxr-x 1 ubuntu ubuntu 14175 Apr 27 06:59 linker_potentiometer_test*

-rwxrwxr-x 1 ubuntu ubuntu 13658 Apr 27 06:59 linker_relay_test*

-rwxrwxr-x 1 ubuntu ubuntu 28530 Apr 27 06:59 linker_rtc_test*

-rwxrwxr-x 1 ubuntu ubuntu 14136 Apr 27 06:59 linker_sound_sensor_test*

-rwxrwxr-x 1 ubuntu ubuntu 13832 Apr 27 06:59 linker_temperature_sensor_test*

-rwxrwxr-x 1 ubuntu ubuntu 13714 Apr 27 06:59 linker_tilt_test*

-rwxrwxr-x 1 ubuntu ubuntu 13689 Apr 27 06:59 linker_touch_sensor_test*

-rwxrwxr-x 1 ubuntu ubuntu 40523 Apr 27 06:58 liquidcrystal_i2c*

-rwxrwxr-x 1 ubuntu ubuntu 40523 Apr 27 06:58 liquidcrystal_spi*

-rwxrwxr-x 1 ubuntu ubuntu 38242 Apr 27 06:59 pn532_readAllMemoryBlocks*

-rwxrwxr-x 1 ubuntu ubuntu 38238 Apr 27 06:59 pn532readMifareMemory*

-rwxrwxr-x 1 ubuntu ubuntu 38240 Apr 27 06:59 pn532readMifareTargetID*

-rwxrwxr-x 1 ubuntu ubuntu 38263 Apr 27 06:59 pn532writeMifareMemory*

-rwxrwxr-x 1 ubuntu ubuntu 13842 Apr 27 06:58 pwm_test*

-rwxrwxr-x 1 ubuntu ubuntu 32336 Apr 27 06:58 serial_test*

-rwxrwxr-x 1 ubuntu ubuntu 14449 Apr 27 06:58 spi_test*

-rwxrwxr-x 1 ubuntu ubuntu 18822 Apr 27 06:59 tone_test*

The source for each one is in the sample folder.

ubuntu@ubuntu:~/c_enviroment/output/test$ cd ../../sample

ubuntu@ubuntu:~/c_enviroment/sample$ ll

total 148

drwxrwxr-x 2 ubuntu ubuntu 4096 Apr 27 06:49 ./

 53

drwxr-xr-x 7 ubuntu ubuntu 4096 Apr 27 06:58 ../

-rw-rw-r-- 1 ubuntu ubuntu 1368 Apr 27 06:49 Makefile

-rw-rw-r-- 1 ubuntu ubuntu 467 Apr 27 06:49 adc_test.c

-rw-rw-r-- 1 ubuntu ubuntu 6589 Apr 27 06:49 adx.c

-rw-rw-r-- 1 ubuntu ubuntu 5416 Apr 27 06:49 adxl345_test.c

-rw-rw-r-- 1 ubuntu ubuntu 92 Apr 27 06:49 core.h

-rw-rw-r-- 1 ubuntu ubuntu 830 Apr 27 06:49 interrupt_test.c

-rw-rw-r-- 1 ubuntu ubuntu 781 Apr 27 06:49 io_test.c

-rw-rw-r-- 1 ubuntu ubuntu 430 Apr 27 06:49 linker_button_test.c

-rw-rw-r-- 1 ubuntu ubuntu 1420 Apr 27 06:49 linker_buzzer_test.c

-rw-rw-r-- 1 ubuntu ubuntu 390 Apr 27 06:49 linker_hall_sensor_test.c

-rw-rw-r-- 1 ubuntu ubuntu 327 Apr 27 06:49 linker_joystick_test.c

-rw-rw-r-- 1 ubuntu ubuntu 2202 Apr 27 06:49 linker_led_bar_test.c

-rw-rw-r-- 1 ubuntu ubuntu 613 Apr 27 06:49 linker_led_test.c

-rw-rw-r-- 1 ubuntu ubuntu 1197 Apr 27 06:49 linker_light_sensor_test.c

-rw-rw-r-- 1 ubuntu ubuntu 404 Apr 27 06:49 linker_magnetic_sensor_test.c

-rw-rw-r-- 1 ubuntu ubuntu 647 Apr 27 06:49 linker_potentiometer_test.c

-rw-rw-r-- 1 ubuntu ubuntu 331 Apr 27 06:49 linker_relay_test.c

-rw-rw-r-- 1 ubuntu ubuntu 2505 Apr 27 06:49 linker_rtc_test.c

-rw-rw-r-- 1 ubuntu ubuntu 646 Apr 27 06:49 linker_sound_sensor_test.c

-rw-rw-r-- 1 ubuntu ubuntu 1145 Apr 27 06:49 linker_temperature_sensor_test.c

-rw-rw-r-- 1 ubuntu ubuntu 405 Apr 27 06:49 linker_tilt_test.c

-rw-rw-r-- 1 ubuntu ubuntu 389 Apr 27 06:49 linker_touch_sensor_test.c

-rw-rw-r-- 1 ubuntu ubuntu 797 Apr 27 06:49 liquidcrystal_i2c.c

-rw-rw-r-- 1 ubuntu ubuntu 831 Apr 27 06:49 liquidcrystal_spi.c

 54

-rw-rw-r-- 1 ubuntu ubuntu 2002 Apr 27 06:49 pitches.h

-rw-rw-r-- 1 ubuntu ubuntu 3149 Apr 27 06:49 pn532_readAllMemoryBlocks.c

-rw-rw-r-- 1 ubuntu ubuntu 1690 Apr 27 06:49 pn532readMifareMemory.c

-rw-rw-r-- 1 ubuntu ubuntu 1117 Apr 27 06:49 pn532readMifareTargetID.c

-rw-rw-r-- 1 ubuntu ubuntu 2326 Apr 27 06:49 pn532writeMifareMemory.c

-rw-rw-r-- 1 ubuntu ubuntu 498 Apr 27 06:49 pwm_test.c

-rw-rw-r-- 1 ubuntu ubuntu 2079 Apr 27 06:49 serial_test.c

-rw-rw-r-- 1 ubuntu ubuntu 785 Apr 27 06:49 spi_test.c

To view the contents of a sample sketch, (this example we’ll look at the contents of

linker_led_test.c) type:

ubuntu@ubuntu:~/c_enviroment/sample$ cat linker_led_test.c

/*

* LED test program

*/

#include <core.h>

int led_pin = 1;

void setup()

{

if(argc != 2){

goto _help;

}

led_pin = atoi(argv[1]);

 55

if((led_pin < 0) || (led_pin > 13)){

goto _help;

}

pinMode(led_pin, OUTPUT);

return;

_help:

printf("Usage %s LED_PIN_NUM(0-13)n", argv[0]);

exit(-1);

}

void loop()

{

digitalWrite(led_pin, HIGH); // set the LED on

delay(1000); // wait for a second

digitalWrite(led_pin, LOW); // set the LED off

delay(1000); // wait for a second

}

Editing an Existing Sketch

You will probably want to change some of these samples as an initial play so will need a text

editor. We tend to use nano, but you may already have a favourite. If not, install nano by

typing:

ubuntu@ubuntu:~/c_enviroment/sample$ sudo apt-get install nano

 56

You should see nano being downloaded and installed.

Let’s use the same sketch as the example, type:

ubuntu@ubuntu:~/c_enviroment/sample$ nano linker_led_test.c

You should see something like:

One thing you may notice with this sketch, it compiles to the command line. This example

shows how you can pass parameters to the sketch when calling it from the command line.

This is optional as you will see in some of the other sketches, but does add some benefit to

writing sketches to run on the pcDuino.

 57

Creating Your Own Sketch

Now lets create our own sketch and work out how to compile it so it runs. It will be a button

on pin 7 that when pressed, turns on an LED on pin 8.

While in the sample folder, type:

ubuntu@ubuntu:~/c_enviroment/sample$ nano button_led.c

An empty nano screen should appear.

Copy and paste the following code into it. (Remember to paste in nano at the cursor, just

right click the mouse button).

#include <core.h> // Required first line to run on pcDuino

int ledPin = 8;

int buttonPin = 7;

// variables will change:

int buttonState = 0; // variable for reading the pushbutton status

void setup() {

// initialize the LED pin as an output:

pinMode(ledPin, OUTPUT);

// initialize the pushbutton pin as an input:

pinMode(buttonPin, INPUT);

}

 58

void loop(){

// read the state of the pushbutton value:

buttonState = digitalRead(buttonPin);

// check if the pushbutton is pressed.

// if it is, the buttonState is HIGH:

if (buttonState == HIGH) {

// turn LED on:

digitalWrite(ledPin, HIGH);

}

else {

// turn LED off:

digitalWrite(ledPin, LOW);

}

}

Modify the Makefile and Compile

Now we need to add this new sketch to the Makefile in the samples folder. Open the

Makefile with nano (or your favorite text editor).

ubuntu@ubuntu:~/c_enviroment/sample$ nano Makefile

You will see a section that lists all the OBJS something like:

 59

OBJS = io_test adc_test pwm_test spi_test adxl345_test serial_test

liquidcrystal_i2c liquidcrystal_spi interrupt_test tone_test

OBJS += linker_led_test linker_potentiometer_test linker_tilt_test

linker_light_sensor_test linker_button_test

OBJS += linker_touch_sensor_test linker_magnetic_sensor_test

linker_temperature_sensor_test linker_joystick_test

OBJS += linker_rtc_test linker_sound_sensor_test linker_buzzer_test

linker_hall_sensor_test linker_led_bar_test linker_relay_test

OBJS += pn532_readAllMemoryBlocks pn532readMifareMemory pn532readMifareTargetID

pn532writeMifareMemory

We’re going to add a line to the end of this with the name of the scketch we just created:

OBJS += button_led

Note, we don’t put the .c on the end.

Save the file and exit nano using <CTRL>X with a y and <enter>.

We now run make by typing:

ubuntu@ubuntu:~/c_enviroment/sample$ make

You should see a whole bunch of text with the end being:

button_led.c -o ../output/test/button_led ../libarduino.a

 60

If all went well, you can go to the output/test folder and find your executable you have

created:

ubuntu@ubuntu:~/c_enviroment/sample$ cd ../output/test/

ubuntu@ubuntu:~/c_enviroment/output/test$ ll

total 676

drwxrwxr-x 2 ubuntu ubuntu 4096 Apr 27 07:51 ./

drwxrwxr-x 3 ubuntu ubuntu 4096 Apr 27 06:49 ../

-rwxrwxr-x 1 ubuntu ubuntu 13868 Apr 27 07:51 adc_test*

-rwxrwxr-x 1 ubuntu ubuntu 28284 Apr 27 07:51 adxl345_test*

-rwxrwxr-x 1 ubuntu ubuntu 13668 Apr 27 07:51 button_led*

…..(not showing rest of listing here)

Run Your Sketch

To run it, once you have wired up a switch and led to the right pins, type:

ubuntu@ubuntu:~/c_enviroment/output/test$./button_led

To stop the program, <Ctrl>C

A Quick Re-Cap

 Add #include <core.h> to the top of your sketch.

 61

 Create your sketch in the samples folder (if your familiar with linux, makefiles, and

compiling code, you could set up your own)

 Add the filename to the Makefile in the samples folder in the OBJS section without the .c

 Run make

 Run the executable from the output/test folder.

 You can introduce command line arguments into your sketch to make it more transportable.

 62

Arduino library and samples

UART

Reference:

Please refer to the Serial class from Arduino (http://arduino.cc/en/Reference/Serial).

Func t i ons

 if (Serial)

 available()

 begin()

 end()

 find()

 findUntil()

 flush()

 parseFloat()

 parseInt()

 peek()

 print()

 println()

 read()

 readBytes()

 readBytesUntil()

 setTimeout()

 write()

 serialEvent()

UART Rx and Tx pins are shared with GPIO 0 and 1. Thus, if you are using UART, please don’t call

pinMode to change function mode of GPIO 0 and 1.

Currently, the supported baud rates are: 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600

and 115200 Hz.

http://arduino.cc/en/Reference/Serial
http://arduino.cc/en/Serial/IfSerial
http://arduino.cc/en/Serial/Available
http://arduino.cc/en/Serial/Begin
http://arduino.cc/en/Serial/End
http://arduino.cc/en/Serial/Find
http://arduino.cc/en/Serial/FindUntil
http://arduino.cc/en/Serial/Flush
http://arduino.cc/en/Serial/ParseFloat
http://arduino.cc/en/Serial/ParseInt
http://arduino.cc/en/Serial/Peek
http://arduino.cc/en/Serial/Print
http://arduino.cc/en/Serial/Println
http://arduino.cc/en/Serial/Read
http://arduino.cc/en/Serial/ReadBytes
http://arduino.cc/en/Serial/ReadBytesUntil
http://arduino.cc/en/Serial/SetTimeout
http://arduino.cc/en/Serial/Write
http://arduino.cc/en/Reference/SerialEvent

 63

Sample

Accept the typing from the terminal, then print out the input in the second line. Both read and

write operations are via UART interfaces.

Setup

Plugin USB-to-serial cable to PC USB port and install usb_to_serial driver to PC

Check the windows computer device manager for com port device.

Run a terminal tool like “sercureCRT”, and configure the serial port parameters to 115200 8N1.

 64

Then you can type on the terminal and see the output prints.

If you use Linux PC, you could use minicom tool for this sample.

Sample code

void setup() {

 //Initialize serial with baudrate setting, the default config is SERIAL_8N1

 int rate = 115200;

 Serial.begin(rate);

//you will see the string on the terminal

Serial.println("Serial begin: ");

}

void loop() {

//if you type the character in the terminal, available() will return the size you typed

 if (Serial.available() > 0) {

 // read the incoming byte:

 65

 char thisByte = Serial.read();

 //print it on the terminal with DEC format

 Serial.print("I received: ");

 Serial.println(thisByte, DEC);

 }

 delay(200);

}

 66

ADC

Arduino functions

analogReference()

pcDuino has the internal reference voltage. For ADC0 and ADC1, the reference is 2V, for ADC2~5,

the refernece is 3.3V. Thus, this function doesn’t change the reference voltage which is different

from original Arduino board.

analogRead()

ADC0 and ADC1 are 6-bit ADC, the return value is from 0 ~ 63, ranging from 0V to 2V.

ADC2~ADC5 are 12-bit ADC, the return value is from 0 ~ 4095, means from 0V to 3.3V.

Notes：

1. If you want to measure the high voltage, you can purchase the bridge board for pcDuino, it

can measure max 5V input.

2. For ADC0 and ADC1, though this function will return in 4us, the actual conversion rate is

250Hz. So if the input voltage changed, it can be detected in 4ms. For ADC2~ADC5, this

function will return in 35us, the return value is the actual value measured.

Sample

Measure thedry battery’s voltage

Setup

Connect the battery’s N to any GND and P to the ADC1

http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/AnalogRead

 67

Sample Code

Read the value of ADC

Int adc_id = 0;

void setup() {

//argv[1] store the adc id that will be measured.

//if no args, default adc_id is 0

 if (argc == 2)

 adc_id = atoi(argv[1]);

}

void loop() {

// get adc value

 int value = analogRead(adc_id);

//delay some time in loop

 delayMicroseconds(100000);

}

 68

PWM

Reference

analogWrite()

- with value 0 to set the PWM IO to low level.

Notes:

1. PWM1 and PWM2 are hardware PWMs. They are set to 520Hz with 256 duty cycle level by

default. PWM1/3/4/5 are 5Hz with 10 duty cycle level by default. Thus, the actual duty level is

value*10/256. PWM1/3/4/5 are simulated by GPIO in software, so they couldn’t set high frequency.

If you need simulate high frequency and accurate PWM with software GPIO, the CPU will be in

very high use.

2. The six PWM pins are shared with GPIO, and PWM4/PWM5 pins are also shared with SPI IO. So

if you are using PWM, don’t call pinMode() or SPI function to specific IO.

Functions not implemented

tone()

noTone()

tone function can generate a square wave with the setting frequency and duration.

You can’t use tone function to play the ringtones as Arduino does, because pcDuino’s tone

function can work under just several frequency setting. We will improve this in future release.

An extend function will be provided for those who needs higher or lower frequency PWM. So far,

we couldn’t support 256 duty cycle level in every frequency. Assume the max duty cycle in this

frequency is max_level, the actual level will be level * max_level/256. This function is also useful

for tone() function.

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/Tone
http://arduino.cc/en/Reference/NoTone

 69

PWM1/3/4/5 will be improved in future release. The ultimate goal is to provide 500Hz support with

256 duty cycle.

Sample

Use PWM to control buzzer to make sound in different frequency

Setup

A buzzer connect to PWM1

Sample code

int pwm_id = 1;

int duty_level = 128;

void setup() {

 //set the default freq (#define default_freq 0)

//PWM0/3/4/5, default_freq is 5Hz, and PWM1/2 is 520Hz

 if (argc > 1)

 pwm_id = atoi(argv[1]);

if (argc > 2) //duty level can be 0 ~ 256

 duty_level = argv[2];

 70

//start the PWM

 analogWrite(pwm_id, duty_level);

}

void loop() {

//delay in loop

 delay(10);

}

 71

GPIO

Reference functions

pinMode()

digitalRead()

digitalWrite()

pulseIn()

Sample

Turn on or off LED by pressing and releasing the button connected to the GPIO

Setup

Connect the shield to the GPIO1 and connect the LED to GPIO5

Sample code

int led_pin = 5;

http://arduino.cc/en/Reference/PinMode
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PulseIn

 72

int btn_pin = 1;

void setup() {

 if (argc == 3) {

 btn_pin = atoi(argv[1]);

 led_pin = atoi(argv[2]);

}

//set the gpio to input or output mode

 pinMode(led_pin, OUTPUT);

 pinMode(btn_pin, INPUT);

}

void loop() {

//press btn_pin to turn on LED

 int value = digitalRead(btn_pin);

 if (value == HIGH) { // button pressed

 digitalWrite(led_pin, HIGH); // turn on LED

 } else { // button released

 digitalWrite(led_pin, LOW); // turn off LED

 }

 delay(100);

}

I2C

Reference function

 73

Please refer to the Wire class (http://arduino.cc/en/Reference/Wire)

Func t i ons

 begin()

 requestFrom()

 beginTransmission()

 endTransmission()

 write()

 available()

 read()

 onReceive()

 onRequest()

pcDuino I2C is set 200KHz, 7-bit version, master only by default

Future improvements:

Function will be provided to users to allow them to configure the I2C frequency. And we will also

support 10-bit mode.

Sample

Read the X, Y and Z coordinates for triple axis via I2C interface

Setup

Connect the I2C port of Triple-Axis with pcDuino

http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/WireBegin
http://arduino.cc/en/Reference/WireRequestFrom
http://arduino.cc/en/Reference/WireBeginTransmission
http://arduino.cc/en/Reference/WireEndTransmission
http://arduino.cc/en/Reference/WireWrite
http://arduino.cc/en/Reference/WireAvailable
http://arduino.cc/en/Reference/WireRead
http://arduino.cc/en/Reference/WireOnReceive
http://arduino.cc/en/Reference/WireOnRequest

 74

SPI

Reference functions

Please refer to the SPI class. (http://arduino.cc/en/Reference/SPI)

Func t i ons

 begin()

 end()

 setBitOrder()

 setClockDivider()

 setDataMode()

 transfer()

pcDuino SPI only works in master mode. The max speed is 12MHz. Clock divider can be

2/4/8/16/32/64/128.

Note that calling the setClockDivider() function just saves the setting of clock divider but without

the real clock change. It works when the transfer function called.

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPIBegin
http://arduino.cc/en/Reference/SPIEnd
http://arduino.cc/en/Reference/SPISetBitOrder
http://arduino.cc/en/Reference/SPISetClockDivider
http://arduino.cc/en/Reference/SPISetDataMode
http://arduino.cc/en/Reference/SPITransfer

 75

Sample

To read an SPI flash ID of M25P16

Setup

GND ---------- GND

V3.3 ---------- 3.3V

DO ---------- SPI_MISO

DI ---------- SPI_MOSI

CS ---------- SPI_CS

CLK --------- SPI_CLK

Sample code

int ReadSpiflashID(void) {

 char CMD_RDID = 0x9f;

 char id[3];

 int flashid = 0;

 memset(id, 0x0, sizeof(id));

 76

 id[0] = SPI.transfer(CMD_RDID, SPI_CONTINUE);

 id[1] = SPI.transfer(0x00, SPI_CONTINUE);

 id[2] = SPI.transfer(0x00, SPI_LAST);

//MSB first

 flashid = id[0] << 8;

 flashid |= id[1];

 flashid = flashid << 8;

 flashid |= id[2];

 return flashid;

}

void setup() {

 // initialize SPI:

 SPI.begin();

}

void loop() {

 //MSB first

 printf("spi flash id = 0x%x\n", ReadSpiflashID());

 delay(2000);

}

 77

Arduino IDE

pcDuino Image 20130531 has Arduino IDE built-in.

We added a new board type ‘pcDuino’. By default, the board type is pcDuino.

 78

 79

Now let’s look at one example. We will use Linker kit button module and Linker kit LED module to

implement a simple function: when the button got pressed, and LED will turn on.

The code is shown below:

/*

* Linker kit button and LED test

*/

#include <core.h>

int led_pin = 2;

int button_pin =1;

void setup()

 80

{

 pinMode(led_pin, OUTPUT);

 pinMode(button_pin, INPUT);

 return;

}

void loop()

{

 if(digitalRead(button_pin)== HIGH)

 digitalWrite(led_pin, HIGH); // set the LED on

 else

 digitalWrite(led_pin, LOW); // set the LED off

}

Launch the Arduino IDE for pcDuino, and click File->New.

 81

Copy and paste the sample code into the new window:

 82

Save file as the following and name the file as linker_button_led.

 83

Select the board type as pcDuino:

 84

Click the upload button. A new window will pop up, and the code is running.

Hardware wise, the Linker button module is plugged to D1 and Linker LED module is plugged

to D2. When the button is not pressed, the LED is off.

 85

 86

Chapter 4 Introduction of Python on pcDuino

Python is a programming language that lets you work more quickly and integrate your systems

more effectively. You can learn to use Python and see almost immediate gains in productivity and

lower maintenance costs.

Python is pre-installed in the pcDuino Ubuntu image released after 20130531.

The sample python code can be downloaded from:

https://github.com/pcduino/python-pcduino

ubuntu@ubuntu:~$ git clone https://github.com/pcduino/python-pcduino

Cloning into 'python-pcduino'...

remote: Counting objects: 81, done.

remote: Compressing objects: 100% (43/43), done.

remote: Total 81 (delta 30), reused 76 (delta 30)

Unpacking objects: 100% (81/81), done.

ubuntu@ubuntu:~$

https://github.com/pcduino/python-pcduino

 87

Let’s look around, and what’s inside:

ubuntu@ubuntu:~/python-pcduino$ ls -R

.:

README.md Samples pcduino setup.py

./Samples:

blink_led

./Samples/blink_led:

blink_led.py gpio

./Samples/blink_led/gpio:

__init__.py __init__.pyc

./pcduino:

__init__.py adc.py exceptions.py gpio.py pinmap.py pwm.py

Let’s look at the sample project blink_led. We install Linker kit LED module on D2 on Linker based shield.

 88

The python code is shown below:

ubuntu@ubuntu:~/python-pcduino/Samples/blink_led$ more blink_led.py

#!/usr/bin/env python

blink_led.py

gpio test code for pcduino (http://www.pcduino.com)

import gpio

import time

led_pin = "gpio2"

def delay(ms):

 time.sleep(1.0*ms/1000)

 89

def setup():

 gpio.pinMode(led_pin, gpio.OUTPUT)

def loop():

 while(1):

 gpio.digitalWrite(led_pin, gpio.HIGH)

 delay(200)

 gpio.digitalWrite(led_pin, gpio.LOW)

 delay(100)

def main():

 setup()

 loop()

main()

To execute the code, we run the following command:

ubuntu@ubuntu:~/python-pcduino/Samples/blink_led$ python blink_led.py

We can observe Linker LED module blinking.

 90

Chapter 5 SimpleCV and OpenCV on pcDuino

pcDuino has the computational power to run computer vision applications, and enable many

projects that are impossible with Arduino. In this chapter, we are going to look at simple projects

with SimpleCV and OpenCV.

SimpleCV

Before we start, we need to make sure we have a UVC compatible USB camera handy.

Follow the following steps to install simpleCV:

$sudo apt-get install ipython python-opencv python-scipy python-numpy

python-setuptools python-pip

$sudo pip install https://github.com/ingenuitas/SimpleCV/zipball/master

$sudo apt-get install python-pygame

$sudo apt-get install python-imaging

We launch simpleCV by typing “$ simpleCV”. simpleCV is an interactive shell, and we can type the

commands here:

ubuntu@ubuntu:~$ simplecv

 91

+---+

SimpleCV 1.3.0 [interactive shell] - http://simplecv.org

+---+

Commands:

"exit()" or press "Ctrl+ D" to exit the shell

"clear" to clear the shell screen

"tutorial" to begin the SimpleCV interactive tutorial

"example" gives a list of examples you can run

"forums" will launch a web browser for the help forums

"walkthrough" will launch a web browser with a walkthrough

Usage:

dot complete works to show library

for example: Image().save("/tmp/test.jpg") will dot complete

just by touching TAB after typing Image().

Documentation:

help(Image), ?Image, Image?, or Image()? all do the same

"docs" will launch webbrowser showing documentation

SimpleCV:1> cam=Camera()

VIDIOC_QUERYMENU: Invalid argument

VIDIOC_QUERYMENU: Invalid argument

VIDIOC_QUERYMENU: Invalid argument

VIDIOC_QUERYMENU: Invalid argument

 92

VIDIOC_QUERYMENU: Invalid argument

VIDIOC_QUERYMENU: Invalid argument

VIDIOC_QUERYMENU: Invalid argument

SimpleCV:2> img=cam.getImage()

SimpleCV:3> img.show()

SimpleCV:5:

The following is a screenshot:

 93

OpenCV

OpenCV is an open source computer vision package based on Python. In this post, we are going

to detail the steps to install OpenCV on pcDuino. Two examples are given, one is used to capture

an image through the USB camera, the other is to use OpenCV to to face recognition.

Installation Steps:

$ sudo apt-get -y install build-essential cmake cmake-qt-gui pkg-config libpng12-0

libpng12-dev libpng++-dev libpng3 libpnglite-dev zlib1g-dbg zlib1g zlib1g-dev pngtools

libtiff4-dev libtiff4 libtiffxx0c2 libtiff-tools

$sudo apt-get -y install libjpeg8 libjpeg8-dev libjpeg8-dbg libjpeg-progs ffmpeg

libavcodec-dev libavcodec53 libavformat53 libavformat-dev libgstreamer0.10-0-dbg

libgstreamer0.10-0 libgstreamer0.10-dev libxine1-ffmpeg libxine-dev libxine1-bin

libunicap2 libunicap2-dev libdc1394-22-dev libdc1394-22 libdc1394-utils swig libv4l-0

libv4l-dev python-numpy libpython2.6 python2.6-dev libgtk2.0-dev pkg-config

$sudo apt-get install libopencv-dev python-opencv

$sudo apt-get install python-dev

$sudo ln -s /usr/lib/arm-linux-gnueabihf/libjpeg.so /usr/lib

$sudo ln -s /usr/lib/arm-linux-gnueabihf/libfreetype.so /usr/lib

$sudo ln -s /usr/lib/arm-linux-gnueabihf/libz.so /usr/lib

 94

$sudo easy_install PIL

$sudo pip install -v PIL

Example 1: Capture Image using OpenCV

#!/Users/brent/.virtualenvs/lumber/bin/python

import cv

cv.NamedWindow("w1", cv.CV_WINDOW_AUTOSIZE)

camera_index = 0

capture = cv.CaptureFromCAM(camera_index)

gx = gy = 1

grayscale = blur = canny = False

def repeat():

 global capture #declare as globals since we are assigning to them now

 global camera_index

 global gx, gy, grayscale, canny, blur

 frame = cv.QueryFrame(capture)

 # import pdb; pdb.set_trace()

 95

 if grayscale:

 gray = cv.CreateImage(cv.GetSize(frame), frame.depth, 1)

 cv.CvtColor(frame, gray, cv.CV_RGB2GRAY)

 frame = gray

 if blur:

 g = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, frame.channels)

 cv.Smooth(frame, g, cv.CV_GAUSSIAN, gx, gy)

 frame = g

 if grayscale and canny:

 c = cv.CreateImage(cv.GetSize(frame), frame.depth, frame.channels)

 cv.Canny(frame, c, 10, 100, 3)

 frame = c

 cv.ShowImage("w1", frame)

 c = cv.WaitKey(10)

 if c==ord('='): #in "n" key is pressed while the popup window is in focus

 gx += 2

 gy += 2

 elif c == ord('-'):

 gx = max(1, gx-2)

 gy = max(1, gy-2)

 elif c == ord('x'):

 gx += 2

 96

 elif c == ord('X'):

 gx = max(1, gx-2)

 elif c == ord('q'):

 exit(0)

 elif c == ord('b'):

 blur = not blur

 elif c == ord('g'):

 grayscale = not grayscale

 elif c == ord('c'):

 canny = not canny

while True:

repeat()

Example 2: Face Recognition

Input Image:

 97

Download the above image and save as “opencv_in.jpg”

Output Image:

 98

#!/usr/bin/env python

#coding=utf-8

import os

from PIL import Image, ImageDraw

import cv

def detect_object(image):

 grayscale = cv.CreateImage((image.width, image.height), 8, 1)

 cv.CvtColor(image, grayscale, cv.CV_BGR2GRAY)

 cascade =

cv.Load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt_tree.xml

")

 99

 rect = cv.HaarDetectObjects(grayscale, cascade, cv.CreateMemStorage(), 1.1,

2,

 cv.CV_HAAR_DO_CANNY_PRUNING, (20,20))

 result = []

 for r in rect:

 result.append((r[0][0], r[0][1], r[0][0]+r[0][2], r[0][1]+r[0][3]))

 return result

def process(infile):

 image = cv.LoadImage(infile);

 if image:

 faces = detect_object(image)

 im = Image.open(infile)

 path = os.path.abspath(infile)

 save_path = os.path.splitext(path)[0]+"_face"

 try:

 os.mkdir(save_path)

 except:

 pass

 if faces:

 draw = ImageDraw.Draw(im)

 count = 0

 100

 for f in faces:

 count += 1

 draw.rectangle(f, outline=(255, 0, 0))

 a = im.crop(f)

 file_name = os.path.join(save_path,str(count)+".jpg")

 # print file_name

 a.save(file_name)

 drow_save_path = os.path.join(save_path,"out.jpg")

 im.save(drow_save_path, "JPEG", quality=80)

 else:

 print "Error: cannot detect faces on %s" % infile

if __name__ == "__main__":

process("./opencv_in.jpg")

Download and save the above code to “ test_face.py”.

Run “python test_face.py” to execute.

 101

Chapter 6 Cloud 9 on pcDuino

Cloud9 IDE (http://www.c9.io) is an online development environment for Javascript and

Node.js applications as well as HTML, CSS, PHP, Java, Ruby and 23 other languages.

We recommend that Cloud 9 IDE run on a SD card with capacity larger than 4GB. Please

refer to chapter 2 on how to migrate program/data from NAND to a SD card.

Install required packages

$ sudo apt-get install git libssl-dev python-software-properties

Build nodejs (required by cloud9 IDE)

$ git clone git://github.com/joyent/node.git

$ cd node

$ git checkout v0.8.22

$ make

$ sudo make install

After nodejs installed, you can delete the source to save space.

Build cloud9 IDE

http://www.c9.io/

 102

$ git clone https://github.com/ajaxorg/cloud9.git

$ cd cloud9/

$ npm install

Run cloud9 on pcDuino

$./bin/cloud9.sh -l 0.0.0.0

If you are going to run on pcDuino, use the Chrome browser on pcDuino, and point to

http://127.0.0.1:3131.

If you are going to run on a PC or other device, use the Chrome browser on pcDuino, and

point to http://board-ip-address:3131. The ip address of pcDuino can be found by using:

$ ifconfig

Run js test code on cloud9 IDE

It’s very easy to run js code from cloud9.

Just write the code (example blink_led.js), then press button “RUN” on menu bar.

Run on pcDuino:

http://127.0.0.1:3131/
http://board-ip-address:3131/

 103

Run on PC:

The following is the example code:

 104

blink_led.js:

/**

* blink_led.js, simple node.js test code for pcduino (http://www.pcduino.com)

* base on the source code from https://github.com/jheising/node.pcduino.git

*/

var fs = require('fs');

var led_pin;

var INPUT = 0;

var OUTPUT = 1;

var LOW = 0;

var HIGH = 1;

function digitalWrite(pin, value)

{

fs.writeFileSync("/sys/devices/virtual/misc/gpio/mode/gpio" + pin, String(value));

}

function pinMode(pin, mode)

{

fs.writeFileSync("/sys/devices/virtual/misc/gpio/mode/gpio" + pin, String(mode));

}

function delay(ms)

{

 105

var start = new Date().getTime();

for (var i = 0; i < 1e7; i++)

 if ((new Date().getTime() - start) > ms) break;

}

function setup()

{

led_pin = 18;

pinMode(led_pin, OUTPUT);

}

function loop()

{

digitalWrite(led_pin, HIGH);

delay(1000);

digitalWrite(led_pin, LOW);

delay(1000);

}

function main()

{

setup();

while(1)

{

loop();

}

}

 106

main();

Run C/C++ program on cloud9 IDE

Running C/C++ is almost the same as running a program from terminal.

Write your code first (example 00.pcDuino/blink_led.c).

Run the following commands from command input box (at the bottom of cloud9 IDE):

cd 00.pcDuino/

g++ blink_led.c -larduino -I/usr/include/pcduino -o blink_led

./blink_led

The following is the example code:

blink_led.c

#include

int led_pin=18;

void setup()

{

pinMode(led_pin, OUTPUT);

}

 107

void loop()

{

digitalWrite(led_pin, HIGH);

delay(100);

digitalWrite(led_pin, LOW);

delay(100);

}

 108

Chapter 7 Use Arduino Uno with pcDuino

Theoretically speaking, we don’ need to use Arduino Uno with pcDuino as pcDuino has all

interface that can be offered by Arduino Uno. In the pcDuino ubuntu released after

20130531, there is Arduino IDE already embedded.

Simple Experiment: Blink

Take an Aduino Uno and plug to any available USB host port on pcDunino. The whole

setup is shown below:

 109

Launch Arduino IDE and open the sample code “Blink”:

Click upload button, we can observe that the code is being uploaded to Arduino Uno, and

the LED on Arduino starts to blink when it is done uploading.

ArduBlock

ArduBlock is designed to make it easy to get start with programming Arduino and we

believe that electronic brick is more suitable for starter than breadboard or protoboard

 110

approach. LinkSprite has a full set of Linker kit, which can help teach programming with

Arduino.

We can launch ArduBlock by navigating the menu Tools->ArduoBlock.

 111

We can create a program by picking the elements in the left column to the work space in

right column:

 112

Save the program to a file named ‘test’. The experiment setup is shown below:

 113

LED module is connected to GPIO 13, and the touch sensor module is connected to GPIO

1.

Click ‘Upload’ to flash the program to Arduino Uno. We can see the LEDs on Arduino Uno

blinking very fast, and after the uploading is done, we can press touch sensor to turn

on/off the LED.

 114

Chapter 8 Sratch on pcDuino

Sratch (http://scratch.mit.edu/) is a programming language for everyone. Create

interactive stories, games, music and art – and share them online.

pcDuino team developed a customized version of Scratch for pcDuino. The GPIO, PWM

and ADC pins can be accessed directly from Scratch panel.

Compared to the original version of Scratch, the following features are added:

 Add support of hardware PWM, and ADC. The ADC is to read the voltage in units of

mV.

 Add support of GPIO support.

 Modify the UI.

 Add support of Chinese language.

 The install of scratch can be done using “apt-get install”.

The following are the installation steps:

1.$sudo apt-get update

2. If there is previous version of scratch installed, please remove “squeak-plugins-scratch”

by:

 115

$sudo apt-get remove squeak-plugins-scratch

3. Install scratch by:

$sudo apt-get install pcduino-scratch

The GUI is as following:

 116

Appendix How to build kernel for pcDuino

The commands discussed below are on a regular X86 PC.

1. Download kernel source files from Github.

1. $ git clone https://github.com/pcduino/kernel.git

Note:

 This step only downloads the build environment.

 There are some submodules from https://github.com/linux-sunxi/.

 Source files of submodules will be downloaded when running “make” under

kernel/ directory for the first time

 (or if the submodules have not been downloaded before when running

“make”)

2. Install required software and toolchain on PC for cross-compile

On x86 ubuntu, install the following packages using apt-get:

1. $ sudo apt-get install build-essential git u-boot-tools texinfo texlive

ccache zlib1g-dev gawk

2. $ sudo apt-get install bison flex gettext uuid-dev ia32-libs

Download the recommended linaro toolchain(choose the “arm hf crosscompiler for

Linux”):

https://launchpad.net/linaro-toolchain-binaries/+download

1. $ tar jzxf gcc-linaro-arm-linux-gnueabihf-xxx_linux.tar.bz2 -C

your-path

 117

2. $ export

PATH=$PATH:your-path/gcc-linaro-arm-linux-gnueabihf-xxx_linux/bin/

3. Build Kernel Image

Run “make” under kernel/ directory (Do not compile the source file under

kernel/linux-sunxi directory).

1. $ cd kernel/

2. $ make

If no error occurs, a livesuitable image and a HW_pack will be in the output folder:

 pcduino_a10_hwpack_YYYYMMDD.tar.xz (includes uboot for mmc-boot,

kernel, and driver modules).

 pcduino_a10_kernel_livesuit_YYYYMMDD.img (kernel image update by

livesuit)

Note:

 For the first time, it will download the required source code from

https://github.com/linux-sunxi/.

 For each time run “make”, it will apply the patch for pcduino.

 The patch for pcduino is located at kernel/patch/ directory.

 All the object files generated by compile tools saved in kernel/build directory.

 Compile kernel under kernel/linux-sunxi directory will make the build

environment “dirty”.

 If your have done it before. clean up by running “make mrproper” under

kernel/linux-sunxi.

 118

4. Update pcDuino with your new kernel

The following commands should be run on pcDuino.

If you only want to update kernel and modules (not desktop like ubuntu), just unpack

hwpack file, and replace files on board:

a) update kernel for nand-boot board

1. $ tar xvf pcduino_a10_hwpack_YYYYMMDD.tar.xz -C /tmp

2. $ sudo mount /dev/nanda /boot

3. $ sudo cp /tmp/kernel/* /boot -f

4. $ sudo mv /lib/modules/3.4.29+ /lib/modules/3.4.29_old

5. $ sudo cp /tmp/rootfs/lib/modules/3.4.29+ /lib/modules/ -ar

6. $ sudo sync

7. $ sudo umount /boot/

8. $ sudo reboot

b) update kernel for mmc-boot board

1. $ tar xvf pcduino_a10_hwpack_YYYYMMDD.tar.xz -C /tmp

2. $ sudo mount /dev/mmcblk0p1 /boot

3. $ sudo cp /tmp/kernel/* /boot -f

4. $ sudo mv /lib/modules/3.4.29+ /lib/modules/3.4.29_old

5. $ sudo cp /tmp/rootfs/lib/modules/3.4.29+ /lib/modules/ -ar

6. $ sudo sync

7. $ sudo umount /boot/

8. $ sudo reboot

Note:

 Hardwarelibs are closed source modules now, you can copy those modules

from /lib/modules/3.4.29_old:

 119

 $ sudo cp /lib/modules/3.4.29+_old/kernel/drivers/hardwarelib/

/lib/modules/3.4.29+/kernel/drivers/ -ar

5. Customize your kernel

You can change or add drivers for your own. Before compile, save all the source code you

changed/added under kernel/patch dir. (this step can be done by running

“./make_kernel_patch.sh” under kernel/patch/linux-sunxi)

files under kernel/linux-sunxi may will be over written by the patch.

If you want to change kernel config file (add/remove some drivers), there is something

different.

Customize kernel config by running “make menuconfig”, then save it to patch directory

and re-build kernel.

1. $ cd kernel/build/sun4i_defconfig-linux/

2. $ make menuconfig ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf-

3. $ mv .config ./../patch/linux-sunxi/arch/arm/configs/sun4i_defconfig

-f

Follow step 3) to re-build kernel and step 4) to update pcDuino with your new kernel.

