
 P +1 403.932.4620 F +1 403.932.6521

ANT Message Protocol
and Usage

D00000652 Rev 4.1

2 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Copyright Information and Usage Notice

This information disclosed herein is the exclusive property of Dynastream Innovations Inc. No part of this

publication may be reproduced or transmitted in any form or by any means including electronic storage,

reproduction, execution or transmission without the prior written consent of Dynastream Innovations Inc.

The recipient of this document by its retention and use agrees to respect the copyright of the information

contained herein.

The information contained in this document is subject to change without notice and should not be

construed as a commitment by Dynastream Innovations Inc. unless such commitment is expressly give n in

a covering document.

The Dynastream Innovations Inc. ANT Products described by the information in this document are not

designed, intended, or authorized for use as components in systems intended for surgical implant into the

body, or other applications intended to support or sustain life, or for any other application in which the

failure of the Dynastream product could create a situation where personal injury or death may occur. If

you use the Products for such unintended and unauthorized applications , you do so at your own risk and

you shall indemnify and hold Dynastream and its officers, employees, subsidiaries, affiliates, and

distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended

or unauthorized use, even if such claim alleges that Dynastream was negligent regarding the design or

manufacture of the Product.

©2009, 2010 Dynastream Innovations Inc. All Rights Reserved.

 3 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Table of Contents
1 Introduction ... 4
2 The ANT Product Family .. 5
3 Network topologies ... 6
4 ANT Nodes .. 8
5 ANT Channels ... 9

5.1 Channel Communication .. 9
5.2 Channel Configuration ... 10

5.2.1 Channel Type .. 10
5.2.2 RF Frequency .. 12
5.2.3 Channel ID .. 12
5.2.4 Channel Period .. 13
5.2.5 Network .. 14
5.2.6 Example Channel Configuration .. 15

5.3 Establishing a channel ... 16
5.4 ANT Data Types .. 17

5.4.1 Broadcast Data .. 17
5.4.2 Acknowledged Data ... 18
5.4.3 Burst Data ... 18

5.5 Independent Channels .. 19
5.6 Shared Channels ... 20
5.7 Continuous Scanning Mode ... 21

6 Device Pairing .. 23
6.1 Pairing Example .. 24
6.2 Inclusion/Exclusion Lists .. 25
6.3 Proximity Search ... 25

7 ANT Interface ... 27
7.1 Message Structure .. 27

7.1.1 Extended Messages Format.. 27
7.2 Host MCU Serial Interface – Physical Layer .. 28
7.3 Host PC Serial Interface .. 28

8 Example ANT Network Implementation .. 29
8.1 Implementation using Independent Channels ... 30

8.1.1 Channel between Node B and Node A .. 32
8.1.2 Channel between Node C and Node A .. 33
8.1.3 Channel between Node D and Node A .. 34

8.2 Implementation using Shared Channels ... 34
9 Appendix A – ANT Message Details .. 39

9.1 ANT Messages .. 39
9.1.1 Config Messages.. 39
9.1.2 Control Messages .. 39
9.1.3 Notifications .. 39
9.1.4 Data Messages .. 39
9.1.5 Channel Event/Response Messages .. 39
9.1.6 Requested Response Messages .. 39
9.1.7 Test Mode ... 39

9.2 ANT Message Structure - Notes ... 39
9.3 ANT Message Summary .. 40
9.4 ANT Product Capabilities ... 43

9.4.1 Interface ... 43
9.4.2 Events .. 45

9.5 ANT Message Details... 46
9.5.1 ANT Constants .. 46
9.5.2 Configuration Messages ... 46
9.5.3 Notifications .. 57
9.5.4 Control Messages .. 57
9.5.5 Data Messages .. 59
9.5.6 Channel Response / Event Messages .. 73
9.5.7 Requested Response Messages .. 76
9.5.8 Test Mode ... 79
9.5.9 Extended Data Messages ... 80
9.5.10 PC Functional Interface Configuration ... 85

4 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

1 Introduction

ANT™ is a practical wireless sensor network protocol running in the 2.4 GHz ISM band. Designed for ultra-

low power, ease of use, efficiency and scalability , ANT easily handles peer-to-peer, star, tree and fixed

mesh topologies. ANT provides reliable data communications, flexible and adaptive network operation and

cross-talk immunity. ANT protocol stack is extremely compact, requiring minimal microcontroller resources

and considerably reducing system costs.

ANT provides carefree handling of the Physical, Network and Transport OSI layers. In addition, it

incorporates key low-level security features that form the foundation for user-defined sophisticated

network security implementations. ANT ensures adequate user control while considerably lightening

computational burden in providing a simple yet effective wireless networking solution.

Figure 1-1. OSI Layer model of ANT

The interface between ANT and the Host application has been designed with the utmost simplicity in mind

such that ANT can be easily and quickly implemented into new devices and applications. The

encapsulation of the wireless protocol complexity within the ANT chipset vastly reduces the burden on the

application host controller, allowing a low-cost 4-bit or 8-bit Microcontroller (MCU) to establish and

maintain complex wireless networks. Data transfers can be scheduled in a deterministic or ad -hoc fashion.

A burst mode allows for the efficient transfer of large amounts of stored data to and from a PC o r other

computing device.

A typical ANT-enabled device consists of an application host MCU interfaced with an ANT module , chipset

or chip. The host MCU establishes and maintains a communication session to other remote ANT -enabled

devices by means of a simple, bidirectional, serial message protocol. This document details the protocol

and provides examples of how to use ANT for wireless networking.

Application / Presentation
Layers

Higher Level Security

Network / Transport &
Low Level Security

Data Link Layer

Physical Layer
}Implemented

by ANT

}User Defined

 5 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

2 The ANT Product Family

ANT technology has been incorporated into a family of products that allows a particular implementation to

be scaled to suit the needs of the application and the vision of the product designer.

ANT technology is available in the following formats:

ANT Single Chip & Chipset

Intended for integration onto the customer‟s PCB and interfaced with a host MCU.

1. Nordic Semiconductor nRF24AP2 chip family (-1ch, -8ch and –USB) – second generation of the

ANT implementation integrated into a single-chip RF protocol and IC.

2. Nordic Semiconductor nRF24AP1 – first generation, complete ANT implementation integrated into

a single-chip RF protocol and transceiver Integrated Circuit (IC).

3. AT3 chipset family – two-chip ANT solution that combines an ANT-protocol MCU with a Nordic

Semiconductor RF IC (nRF24L01+ or nRF24L01).

ANT Module

The ANT modules are certified or certification ready PCB modules incorporating an ANT chip or chipset

and can be mounted onto existing PCB, allowing for immediate product integration with minimal effort.

ANT USB Stick

The ANT USB Stick provides a bridge between an ANT network and a PC. ANT USB stick comes with

royalty-free drivers which can be redistributed with ANT.

ANT Development Kit

Development Kits are available to provide a timely and efficient path to ANT integration for both the

embedded and PC environments. The embedded environment offers easy integration with custom

hardware. The PC environment provides USB interconnection along with drivers and sample applications.

ANT PC Interface Software

A royalty-free PC software library provides an interface to the ANT USB Stick and ANT Development Kit,

and is readily integrated with a customer‟s PC application.

6 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

3 Network topologies

The ANT protocol has been designed from the ground up to support a large range of s calable network

topologies. It can be as simple as a 2-node unidirectional connection between a transmitting peripheral

device and a receiver, or as complex as a multi -transceiver system with full point-to-multipoint

communication capabilities.

Figure 3-1. Example ANT Networks

1 12

2 11

3 10

4 9

5 8

6 7

M

PEER

TO

PEER

STAR

PRACTICAL MESH

SHARED

BI-DIRECTIONAL

8 7 6

9

10

11

12

13

14 15 16

5

4

3

2

1

SCANNING MODE

ANT-FS

(Secure Authenticated)

1 12

2 11

3 10

4 9

? 8

6 7

M

AD-HOC

AUTO

SHARED

1 12

2 11

3 10

4 9

5 8

6 7

M

SHARED

UNI-DIRECTIONAL

n

Bidirectional

Acknowledged

BROADCAST

SHARED CLUSTER
Sensor

Hub

Relay

 7 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

For the purpose of illustration, a simple example follows to demonstrate the basic concept of ANT

channels (Figure 3-2).

Figure 3-2. A Simple ANT Network

ANT usage and configuration is channel-based. Each ANT node (represented by a circle) can connect to

other ANT nodes via dedicated channels. Each channel generally connects two nodes together; however a

single channel can in fact connect multiple nodes.

Each channel has, as a minimum, a single master and single slave participant. The master acts as the

primary transmitter, and the slave acts as the primary receiver. In Figure 3-2, large arrows indicate the

primary data flow from master to slave, with small arrows indicating reverse message flow (e.g. Channel

B, C). A channel with a single arrow (e.g. Channel A) is used to represent a one-way link, which supports

the use of lower-power transmit-only nodes. Note that an ANT node can act as both a slave (e.g. Hub1

channel A, B) and a master (e.g. Hub1 channel C) simultaneously.

The following table describes the master / slave status of each of the channels shown in Figure 3-2

Channel Master Slave

Channel A Sensor1 (TX-Only) Hub1 (RX)

Channel B Sensor2 (TX) Hub1 (RX)

Channel C Hub1 (TX) Hub2 (RX)

Sensor 1

Sensor 2

Hub 1 Hub 2

Channel A

Channel B

Channel C

8 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

4 ANT Nodes

Each node in an ANT network consists of an ANT protocol engine and a host controller (MCU). The ANT

engine encapsulates the complexity of establishing and maintaining ANT connections and channel

operation within its firmware. The host controller is thus free to handle the particulars of an application

with only a limited burden in initiating ANT communications to other nodes, which it does via a simple

serial interface between host and ANT engine, as shown in the following diagram.

Figure 4-1. Contents of an ANT node

Host MCU

Ant Engine

 Node

 Node

Serial

Interface

 9 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

5 ANT Channels

In this section, further details are presented about the ANT protocol‟s most fundamental building block:

the channel. As previously discussed, a channel must be established to connect two nodes together.

Figure 5-1. Channel communication between two ANT nodes

A channel consists of:

 A master (e.g. Node1)

 A slave (e.g. Node2)

5.1 Channel Communication

The ANT data types determine the type of communication that will occur between the two nodes of an

ANT channel. There are three data types: broadcast, acknowledged and burst message transfers. Each

time the host application sends a data message to ANT for transmission, it specifies the data type along

with the message data. Details on the host->ANT serial interface and messaging will be described in later

sections.

The overall communication has two levels – one governs the direction (master to slave or vice versa) and

the second specifies the type. They are described in detail in the following sections.

Data messages are transferred between nodes in one of two directions:

1. Forward Direction (Master -> Slave)

2. Reverse Direction (Slave -> Master)

 Host2

 Ant2

Host1

 Ant1

Node1 Node2

Node1 Node2

Channel A

Channel A

Master Slave

10 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Messages are transmitted in the forward direction at the designated channel period (Tch). In other words,

once the channel is opened, a master device will always transmit a message on each channel timeslot as

shown in Figure 5-2. The slave may optionally send data back to the master in the reverse direction.

Figure 5-2. Channel communication showing forward and reverse directions. Not to scale.

There are three basic data types supported in both forward and reverse directions: broadcast,

acknowledged and burst. These are described in section 5.3.

5.2 Channel Configuration

In order for two ANT devices to communicate, they require a common channel configuration that includes

information related to the operating parameters of a channel. The following information is required to

define a channel configuration.

 Channel Type (section 5.2.1)

 Optional Extended Assignment (section 5.2.1.4)

 RF Frequency (section 5.2.2)

 Channel ID

 Transmission Type (section 5.2.3.1)

 Device Type (section 5.2.3.2)

 Device Number (section (5.2.3.3)

 Channel Period (section 5.2.4)

 Network (section 5.2.5)

Although the configuration of a specific channel can remain constant throughout its connection, most

parameters may be changed while the channel is open. Also, it should be noted that a master can

maintain multiple channels that differ in terms of channel configuration parameters.

Further information on which channel parameters must be set prior to opening a channel, may or may not

be changed during an open channel, and resulting implications, can be found in Section 5.3.

5.2.1 Channel Type

Channel type specifies the type of communication that will occur on the channel. It is an 8 -bit field with

certain acceptable values in the range of 0 to 255. The channel type must be specified prior to opening

and establishing a channel. Some common channel types are given below.

MASTER

SLAVE

Tch TchTch

time

time

Forward
Direction

Reverse
DirectionChannel Timeslot

(Always) (Optional)

 11 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Value Description

0x00 Bidirectional Slave Channel

0x10 Bidirectional Master Channel

0x20 Shared Bidirectional Slave Channel

0x40 Slave Receive Only Channel

5.2.1.1 Bidirectional Channel

For a bidirectional channel type, data can flow in both the forward and reverse directions. The primary

direction data flow is determined by the mode specified. For example, if a node establishes a bidirectional

slave channel type, it will primarily receive but can still transmit in the reverse direction. Similarly, the

master node will primarily transmit data in the forward direction but can also receive in the reverse

direction. Please refer to Sections 5.1 for more information on the concept of forward and reverse data

flow.

5.2.1.2 Shared Bidirectional Channel

Shared channels expand on the basic bidirectional channel types. Shared channels can be used where a

single ANT node must receive, and possib ly process, data from many nodes. In this scenario, multiple

nodes will share a single independent channel to communicate with the central node. An example of a

shared channel network is provided in Figure 3-1. See section 5.5 and 5.6 for more information regarding

independent and shared channels respectively.

5.2.1.3 Transmit/Receive Only Channel

Transmit and receive only channel types can only send data in the forward direction. In other words, the

master cannot receive data from any slave and similarly, for the receive only channel, the slave cannot

send data. As such, this channel type can only use the broadcast data type (described in section 5.3) and

should not be used if the application requires any form of confirmation or acknowledgement of the

successful receipt of data. Transmit only channels exist for legacy support and are not recommended for

general use as it also disables the ANT channel management mechanisms. Receive only channels are

recommended for diagnostic applications using continuous scanning mode.

5.2.1.4 Channel Extended Assignment

The optional extended assignment byte allows various ANT features to be enabled. Currently, these

features are frequency agility and background scanning channel. The extended assignment byte is not

available on all ANT devices; please refer to datasheets for more details.

5.2.1.4.1 Frequency Agility

Similar to frequency hopping schemes, ANT Frequency Agili ty allows a channel to change its operating

frequency to improve coexistence with other wireless devices such as Wi-Fi. However, unlike frequency

hopping, this functionality will monitor the channel‟s performance and only change operating frequencies

when significant degradation is observed. Both the master and the slave must be configured with

frequency agility enabled, and have the same three operating frequencies set.

For more information refer to the “ANT Frequency Agility” application note. This application note also

explains how to implement frequency agility at the application level for those ANT devices that do not

have frequency agility as a built in feature.

12 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

5.2.1.4.2 Background Scanning Channel

The background scanning channel is a channel that is performing a continuous search operation. As with

standard ANT search, it can be performed in either high or low priority modes. Only one background

search channel should be open at a time on a single device. For more information refer to the “ANT

Channel Search and Background Scanning” application note.

If other channels are open, it is recommended that the background channel search timeouts are

configured for low priority search mode. This will ensure that the background search mechanism does not

interfere with any other channels operating on the device.

The background scanning channel can also be used in conjunction with proximity search. See section 6.2

for more details.

5.2.2 RF Frequency

ANT technology supports the use of any of the available 125 unique RF operating frequencies. When

assigning frequencies it is important to check for compliance with international standard frequencies. A

channel will operate on a single frequency throughout its existence, which must be known and adhered to

by both master and slave prior to the establishment of a channel. After the channel has been established,

the RF frequency can be changed “on the fly” (i.e. while the channel is open); however, the new

frequency must be set at both the master and the slave nodes. Note that this can result in the slave node

returning to search mode until it finds, and synchronizes with, the master.

The RF frequency is an 8-bit field with acceptable values ranging from 0 to 124. This value represents the

offset in 1MHz increments from 2400MHz, with the maximum frequency being 2524MHz. The following

equation can be used to determine the value for the RF frequency field.

For example, if a network operating frequency of 2450MHz was desired, the RF frequency field will be set

as 50.

The default RF frequency field value is 66 and represents the network operating frequency of 2466MHz.

It is important to note that it is not necessary to use different RF frequencies to support multiple

coexisting channels. The TDMA nature of the ANT system means that a large number of channels can

coexist on a single common RF frequency. It is the product developer‟s responsibility to ensure that RF

frequencies used will comply with the regulations of all regions of the world in which this equipment is to

be used.

5.2.3 Channel ID

The most basic descriptor of a channel , and one that is crucial in device pairing, is the channel ID. In

order to establish an ANT channel, the host must specify its channel ID (if master), or the channel ID it

wishes to search for (if slave). It‟s a 4-byte value that contains 3 fields – Transmission Type, Device Type

(including pairing bit) and Device Number. For a private or a public network, these three fields can be

user defined. Typically, the device type is a number that represents the class (or type) of the master

device. The device number is a unique number representing a specific master device. The transmission

type is a number that represents the different transmission characteristics of a device, which can be

determined by manufacturer or pre-defined in an ANT+ (or any) managed network.

Only devices with matching channel IDs can communicate with each other. The channel ID represents the

device type/number and transmission type of the master device and must be specified on the master

device. On a slave device, these fields are set to determine which master device to communicate with.

MHz

MHzMHzFrequencyRFDesired
valFrequencyRF

1

2400)(__
__




 13 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

)(

32768
__

HzeMessageRat
valPeriodChannel 

They can be set to match a specific master, or any/all of these fields can be set to zero, representing a

wildcard value, such that the slave will find the first master matching other channel parameters (network

key, frequency).

The three types are described in more detail in the following sections.

5.2.3.1 Transmission Type

The transmission type is an 8-bit field used to define certain transmission characteristics of a device. An

example usage is the SensRcore™ implementation, which defines the two least significant bits of the

transmission type to indicate the presence, and size, of a shared address field at the beginning of the

data payload, and the third least significant bit (lsb) to indicate the presence of a Global Data

Identification Byte.

This parameter must be specified on a master device; however, it can be set to zero (wildcard) on a slave

device. For private networks, the transmission type can be defined as desired.

5.2.3.2 Device Type (+Pairing Bit)

The device type is an 8-bit field used to denote the type (or class) of each participating network device.

This field is used to differentiate between multiple nodes of network devices such that participants are

aware of the various classes of connected nodes and can decode the received data accordingly. For

example, one device type value could be assigned to heart rate monitors, which will be different to the

value assigned to bike speed sensors, and their respective data payloads will be interpreted accordingly.

Please note that the most significant bit of the Device Type is a device pairing bit. Refer to section 1, and

the “Device Pairing” application note for more information on device pairing.

This parameter must be specified on a master device; however, it can be set to zero (wildcard) on a slave

device. For private networks, the device type can be defined as desired. Specific implementation-level

information about channel ID usage is provided in the channel ID functional description in Section 9.5.2.3.

5.2.3.3 Device Number

The device number is a 16-bit field that is meant to be unique for a given device type. Typically, this may

be correlated to the serial number of the device or, it could be a random number generated by the device

if the process of setting serial numbers for a particular product is unavailable . This parameter must be

specified on a master device, i.e. it cannot be set to zero. In a slave device, this field may also be used as

a wild card during device pairing as described in section 1. The channel ID functional description is

located in Section 9.5.2.3.

5.2.4 Channel Period

The channel period represents the basic message rate of data packets sent by the master. By default , a

broadcast data packet will be sent (master) and received (slave), on every timeslot at this rate. The

channel message rate can range from 0.5Hz to above 200Hz, with the upper limit dependant on the

specific implementation.

The channel period is a 16-bit field with its value determined by the following equation.

For example, to have a message rate of 4Hz on a channel, the channel period value must be set to 32768

/ 4 = 8192.

14 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

The default message rate is 4Hz, which is chosen to provide good, robust performance as described

below. It is recommended that the message rate be left at the default to provide more readily

discoverable networks with good power and latency characteristics.

The maximum message rate (or the minimum channel period) depends on the computational capacity of

the system. High data rates in combination with multiple active channels will substantially limit the

maximum message rate.

Bursting, which is described in the following section, can achieve a data rate of 20kbps. This is

independent of the message rate. In other words, the message rate will effect the time between whole

burst transfers, but does not effect the actual rate of bursting.

Proper assignment of channel period is critical and it is imperative to be mindful of the following issues:

 The message rate is directly proportional to the power consumption. Please see respective ANT

product datasheet for details.

 A small channel period allows for higher data-transfer rates.

 A small channel period results in faster successful device-search operations.

5.2.5 Network

ANT supports the establishment of numerous unique public, managed and private networks. A particular

network may specify a set of operating rules for all participating nodes. In order fo r two ANT devices to

communicate, they must be members of the same network. This provides the ability to establish a network

that can be publicly available, or purposely shared among multiple vendors with the goal of establishing

an „open‟ system of interoperable devices.

A managed network defines rules and specific behaviors governing its use . An example of a managed

network is the ANT+ network. Those companies who have adopted the ANT+ promise of interoperability

are members of the ANT+ Alliance, a special interest group which fosters optimized brand value and

partnerships with other top tier products. The key advantage of this unique managed network is device

specific interoperability which enables wireless communication with other ANT+ products. Target

applications include any wireless sensor monitoring of sport, wellness or home health.

ANT+ has device profiles that specify data formats, channel parameters and the network key. Examples of

ANT+ Device Profiles include:

 Heart rate monitor

 Speed and distance monitors

 Bike speed and cadence sensors

 Bike power sensor

 Weight scale (for example, tracking BMI and percent body fat)

 Fitness equipment data sensors

 Temperature sensor

Conversely, a private network could be defined to ensure network privacy and restric t access to intended

participating devices only. Channels can be independently assigned to different networks so that it is

possible for a single ANT device to be a member of multiple networks.

 15 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

The ANT Network has two components which are described below.

5.2.5.1 Network Number

A network number is an 8-bit field that identifies the available networks on an ANT device, with

acceptable values ranging from 0 to the maximum number defined by the ANT implementation. The host

can obtain this maximum number by querying the ANT system using the appropriate request message

(Please refer to Section 9 for more details). The default Network Number is 0. And network number 0 is

assigned to the “Public Network” by default . For AP1 devices, the remaining network numbers are left

uninitialised; however, for non-AP1 devices all network numbers also default to the public network key.

The network number will be assigned a network key using the Set Network Key (0x46) message, and any

individual channels assigned to a network number will be using the associated 8-byte network key.

Multiple channels can be assigned to the same network number, so a network key can be used in multiple

channels without having to enter the key multiple times.

5.2.5.2 Network Key

The network key is an 8-byte number that uniquely identifies a network and can provide a measure of

security and access control. The Network Key is configurable by the host application and a particular

Network Number will have a corresponding Network Key. Only channels with identical valid network keys

may communicate with each other. Also, only valid network keys will be accepted by ANT. Note, if a Set

Network Key (0x46) command is sent with an invalid key, the network key will not be changed; it will

retain the value it held prior to the command.

The Network Number and the Network Key together provide the ability to deploy a network with varied

levels of access control and security options. By default, ANT firmware assigns the Network Number 0 with

the default Public Network Key. This network is open to all participating devices and has no set rules

governing its use.

For more information on established public/managed networks or initiating your own network, please

contact Dynastream at www.thisisant.com.

5.2.6 Example Channel Configuration

An example channel configuration for a simple application is given below:

Parameter Value Description

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 1 Sample Serial Number

Transmission Type 1 Transmission Type (no shared address)

Device Type 1 Sample Device Type

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 16384 2Hz Message Rate

Data Type 0x4E Broadcast

Note the network number is set to „0‟, this is the default network number for the public network key.

http://www.thisisant.com/

16 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

5.3 Establishing a channel

The prerequisite for establishing a channel is that the master and slave must have common knowledge of

the channel configuration as outlined in Section 5.2. Figure 5-3 shows the process required to properly

establish communication between two ANT nodes. Certain channel parameters (within solid lines) have no

default value and must be set by the application, while other parameters (within dashed lines) do have

defaults and only require setting if a different value is desired.

Figure 5-3. Process to establish communication channel between master and slave nodes.

The default network configuration is the public network key, assigned to network number 0. If a private or

managed network is desired, this parameter must be set prior to setting any other channel

parameters. Once the network key has been set, all other channel parameters will return to their default

values. Refer to section 9.5.2.7 Set Network Key(0x46) for details.

After (optionally) setting the network key, the channel type must be assigned to the channel you wish to

open. For example, the master node will need to be assigned as one of the transmit channel types, and

Assign Channel
Type: 0x10,0x30 or 0x50

Set Channel ID
Device #

Device type
Trans‟ type

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Assign Channel
Type: 0x00,0x20 or 0x40

Set Channel ID
Device # or “0”

Device type or “0”
Trans‟ type or “0”

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Set Search timeouts
HP: “10” (25s)

LP: “2” (5s)

MASTER SLAVE

Assign Channel
Type: 0x10,0x30 or 0x50

Set Channel ID
Device #

Device type
Trans‟ type

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Assign Channel
Type: 0x00,0x20 or 0x40

Set Channel ID
Device # or “0”

Device type or “0”
Trans‟ type or “0”

Set Channel Period
“8192” (4Hz)

Set RF Frequency
“66” (2466MHz)

Set Network Key
Network #: 0
Key: public

Open Channel

Set Tx Power
“3” (0bDm)

Set Search timeouts
HP: “10” (25s)

LP: “2” (5s)

MASTER SLAVE

 17 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the slave node assigned a corresponding receive channel type. Refer to section 9.5.2.2 Assign Channel

(0x42).

Next, the Channel ID must also be set. The device number/type and transmission type must be specified

on the master node. The slave can set all, some or none of these fields to match those of the mas ter

depending on the application. Any field that does not match that of the master should be set to a wildcard

value of zero. Refer to section 9.5.2.3 Set Channel ID (0x51).

If desired, other channel parameters such as RF frequency (section 9.5.2.6), Channel period (9.5.2.4),

and the yet to be discussed Tx power (9.5.2.8) and search timeouts (9.5.2.5 & 9.5.2.12) can also be set,

but are not required.

The final step is to open the channel (section 9.5.4.2). Once opened, the master establishes the channel

by transmitting 8-byte data packets in the designated timeslot at the established message rate. The

master ANT channel will be maintained indefinitely at this message rate. The channel master‟s host

controller will optionally provide new data to the ANT engine for continuing transmissi ons.

The slave on the other hand, once its channel is opened, will immediately start searching for a master

that matches the channel ID criteria. Once the master has been located, and a connection established, the

slave receives data indefinitely at the given message rate. If no master is found within the given timeout

periods, then the slave channel will close. As the master never searches, no timeout values need to be

set. The master will transmit until the channel is specifically closed by the applicatio n.

5.4 ANT Data Types

There are three data types supported by ANT: broadcast, acknowledged and burst data. Each data type is

sent in 8 byte packets over the RF channel. The data type is not a channel configuration parameter and a

bi-directional ANT channel is not restricted to a single data type. In other words, any of the three data

types can be sent in either the forward or reverse direction, at the channel‟s designated timeslot, at the

discretion of the host. The only restriction is for uni-directional channels, which can only send broadcast

data in the forward direction.

5.4.1 Broadcast Data

Broadcast data is the most basic data type and is the system default. Broadcast data is sent from the

channel master to the slave on every channel timeslot. Broadcast data is only sent from the slave to the

master in the reverse direction if expressly requested by the slave‟s Host MCU (by default, no data is sent

without a request).

A master device is always transmitting in the forward direction, at every timeslot. As stated e arlier, the

broadcast data type is the system default. If no new data has been provided by the host, the previous

message packet, whether it was sent broadcast or otherwise, will be re -transmitted as a broadcast

message. Messages in the reverse direction, on the other hand, are not required on each channel period.

As such, broadcast messages are only sent in the reverse direction once.

Broadcast data is never acknowledged, and so the originating node will not be aware of any lost data

packets. In the case of a one-way transmission link (i.e. transmit-only master communicating to a slave),

broadcast data is the only available data type due to the inability of the master to receive an

acknowledgement.

Broadcast data consumes the least amount of RF bandwidth and system power. It is the preferred choice

of communication where occasional data loss is tolerated (although it should be noted that any data loss

will be very limited in most non-hostile RF environments). An example system where occasional data loss

is not critical is that of a temperature logging system, where changes in temperature are relatively slow

compared to the communications message rate.

18 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

5.4.2 Acknowledged Data

At any time during an established bi-directional connection, in either the forward or reverse direction, a

device can choose to send an acknowledged data packet at the next timeslot. The node that receives the

acknowledged data packet will respond with an acknowledgment message back to the originating device.

The host controller of the originating device will be notified of that packet‟s success or failure, therefore

knowing that the packet transmitted successfully. There is no automatic re -transmission of

unacknowledged data packets.

The master host application may send every data packet as acknowledged data, or may mix broadcast and

acknowledged data as appropriate to the particular application. To decide which is more appropriate, the

following should be taken into consideration:

 Acknowledged data packets use more RF bandwidth and consume more power, which should be

taken into consideration when designing power-sensitive applications.

 Acknowledged data is ideally suited for the transmission of control data, ensuring that both nodes

are aware of each other‟s state.

For a master device, if the data type isn‟t specified as acknowledged or, if an acknowledged message was

sent and no new data provided before the next transmit time slot; the message is sent as Broadcast data

type on the next channel time slot.

5.4.3 Burst Data

Burst data transmission provides a mechanism for large amounts of data to be sent between devices.

Burst transfers consist of a rapid series of continuous acknowledged data messages. The rate at which

packets are burst across the channel is independent of, and significantly faster than, the channel period;

resulting in a maximum 20kbps data throughput. It should be noted that this also means the burst packets

are synchronized off each other, not the regular channel period.

Similar to acknowledged messages, the originating host‟s MCU wi ll be informed of the burst transfer‟s

success or failure. However, the success/failure notification is for the entire burst transfer rather than for

each packet and, unlike acknowledged messages, any lost data packets in the transfer will be

automatically retried. Should any packet fail to transmit successfully after five retries, ANT will abort the

burst transfer and notify the host MCU with a failure message.

There is no limit on the duration of a burst transaction. However, burst transactions take prece dence over

all other open channels on both participating nodes. If there are other channels in the system, care should

be taken to service them with reasonable frequency. Although the ANT protocol is robust and can handle

outages caused by burst transfers or other external interference, excessive channel starvation may lead to

loss of synchronization or data. Some examples of this are:

During a prolonged burst, as the packets are synchronized off each other, clock errors may cause the

regular channel periods to drift, potentially losing synchronization. Hence, once the burst completes, the

channels are no longer synchronized and the slave drops into search.

Another extreme example of this would be if the master node of one channel was servicing a prolonged

burst on another channel; if the burst duration was too long, the slave node of the former channel could

lose synchronization, drop back into a search and timeout (closing the channel).

Bursting can create interference for other devices that are operating a t the same RF frequency.

For more information on burst transfers please refer to the application note “Burst Transfers”.

 19 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

All data types are explained in further detail, and sequence diagrams provided, in section 9.5.5. The host

application software on both the master and slave sides should be implemented to expect common data

types (i.e. broadcast vs. acknowledged vs. burst) to be utilized as appropriate for a particular application.

The specific format of the contents of the data payload must be previously established by both host

controllers such that data can be properly decoded and interpreted.

Data Type
Channel

Direction
Description

Broadcast

Forward

Default Data Type.

Broadcast messages sent every timeslot (unless otherwise requested)

and will be retransmitted if ANT has not received any new data from

the master‟s host MCU

Reverse

Broadcast messages optionally sent each channel timeslot.

Only sent if specifically requested by the slave‟s host MCU.

Sent only once, there is no retransmission

Acknowledged

Forward

If requested, sent on the next channel timeslot

If the data type isn‟t specified as Acknowledged or if no new data is

provided before the next transmit time slot, the message is resent as

Broadcast data type on the next channel time slot

Reverse
Acknowledged data types only sent when specifically requested

Not re-transmitted

Burst
Forward

A burst transfer will commence at start of the next timeslot.

Bursts packets synchronize off each other

Reverse Same as above

All data types can also be „extended‟ such that the receiving node‟s ANT will pass the channel ID

information, along with the data, to the host. For more information see section 7.1.1.

5.5 Independent Channels

An independent channel has only one master and one slave. It is possible for the master or slave to be a

master or slave to another, or a number of other, nodes. But from the point of view of an independent

channel, there is only one of each. For example, consider the four-node network in Figure 3-2. Each

channel has only one master and one slave.

A broadcast network, as shown in Figure 3-1, is also formed using independent channels even though the

data from one master is received by many slaves. Such a network has a unique master who doesn‟t

purposely initiate communication with multiple slaves on the same channel. Note, also, that the data in a

broadcast network is in the forward direction only. This prevents multiple slaves from simultaneously send

data to a single master. This is different to a shared channel, which also has a single master and multiple

slaves; however, there is an addressing scheme that allows for data flow in both directions (refer next

section).

Although independent channels offer simplicity in implementation, a node can only support a limited

number of simultaneous independent channels within the confines of the system‟s computational ability.

For example, the nRF24AP1 can only support 4 independent channels.

For an implementation example using independent channels, refer to Section 8.1.

20 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

5.6 Shared Channels

Shared channels can be used where a single ANT node must receive , and possibly process, data from

many nodes. In this scenario, multiple nodes will share a single independent channel to communicate with

the central node. An example of a shared channel network is provided in Figure 3-1.

Shared channels are made possible by the use of a one- or two-byte Shared Channel Address field and a

specific value for the Channel Type; both controlled by the host application. As will be detailed in a later

section, ANT has an 8 byte data payload. The Shared Channel Address field replaces the first one or two

bytes of the data payload as shown in Figure 5-4.

Figure 5-4. Independent and 2-byte Shared Channel Data Payloads.

If a channel is defined as shared, the host application provides ANT with the shared address and data; for

example, with 2-byte addressing, more than 65k slave devices can share a single ANT channel.

In a shared channel, the node that is intended to communicate with many other nodes must initiate the

channel as the master. All other nodes that access this shared channel must be configured as slaves. All

nodes, both master and slaves must be configured as a shared channel, have matching channel IDs

(wildcards can be set on slaves when opening a channel, but will match upon a successful search), RF

frequencies and channel periods. The master‟s host application must be aware of each slave node‟s

address, and similarly, each slave‟s host application must also know its own shared address.

The master controls the communication by transmitting data at the channel message rate. The master‟s

host application will provide the data payload, including the shared address field as shown in Figure 5-4.

All slaves on the channel will synchronize off this transmitted message; however, ANT will only release

the data to the slave‟s host if the shared address field matches the shared address for that

node or if the shared address holds a value „0‟ . The master can send data to all slaves at the same

time using the Shared Channel Address of 0. A slave will respond in the reverse direction only if its Shared

Channel Address matches the one it receives from the master. An example shared channel is shown in

Figure 5-5, with master node M, and four slave nodes addressed 1:4.

Data
0

Data
1

Data
2

Data
3

Data
4

Data
5

Data
6

Data
7

Data
0

Data
1

Data
2

Data
3

Data
4

Data
5

Shared
Address

LSB

Shared
Address

MSB

Independent Channel Data Payload

Shared Channel Data Payload

 21 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 5-5. Example Shared Channel. Grey nodes indicate the node‟s host received data from ANT.

Arrows indicate direction of data flow.

Figure 5-5 a: The master‟s (M) host provided [01][00] in the shared address field (LSB MSB). ANT will

transmit the data with this shared address on the next channel period. All slave node‟s receive and use

this message to maintain synchronization, but only slave node 1 ‟s host will actually receive the data.

The ANT protocol will prevent the data from progressing to an incorrectly addressed node‟s host. Slave

node 1 has the option of sending data back to the master (i.e. in the reverse direction) at this time. No

other slave node can transmit data to the master.

Figure 5-5 b: The master‟s host provided [04][00] shared address field. Similarly, the data is transmitt ed

on the next channel period, all slaves use this transmission for synchronization; only node 4‟s host

receives the data and has the option of transmitting in the reverse direction.

Figure 5-5 c: Master host provides [00][00] in the shared address field. This indicates a broadcast to ALL

nodes. As such, each slave host receives the data. There is no reverse direction when broadcasting to all

slaves, therefore no slaves can transmit.

The shared channel concept is extensible to acknowledged data and burst data transactions. In burst

data transactions, only the 1 st data packet requires the Shared Channel Address in the data payload, the

remaining data packets may contain only the application data.

Please refer to Section 8.2 for a sample network implementation and to see the sequence of commands

required to create a shared channel.

The shared channel functionality can also be extended for „ad hoc‟ joining/leaving of channel by

implementing an auto shared channel. For more information see application note “Auto-Shared Channel”.

5.7 Continuous Scanning Mode

Continuous scanning mode is another method that can be used when a single ANT node must receive, and

possibly process, data from multiple nodes. Rather than have a single master controlling multiple slaves

(as for shared channels) a node in continuous scanning mode receives full-time, allowing it to receive

from multiple transmitting masters at any time. Similar to a shared channel, all devices operate on the

same RF frequency.

The ANT radio on the central node is always occupied with the continuous scanning mode; hence, no

other channels can be open on that node. Also, as the RF is continually active, thi s node draws significant

power (~18 mA) and should not be used for devices that have tight power constraints .

Each of the transmit nodes should have unique device numbers, such that its channel ID is also unique.

With a unique channel ID, the central node can correctly attribute each received message to its

corresponding master device.

1 3

2 4

M

1 3

2 4

M

1 3

2 4

M

Shared Address Field:
[01][00]

Shared Address Field:
[04][00]

Shared Address Field:
[00][00]

(a) (b) (c)

22 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

The receiving node is configured as a bidirectional receive channel that is opened with the “Open Rx Scan

Mode(0x5B)” command (see section 9.5.4.5). As the node is receiving full time, the channel period does

not need to be set. Although the central node is receiving full time, it can transmit messages back to the

master nodes. For this to happen, a master must first transmit to the receiving node, which can then

optionally send data back to that specific master in the reverse direction.

A receive only channel type can be used in conjunction with the continuous scanning mode for diagnostic

applications.

See the “Continuous Scanning Mode” application note for more details on implementing the continuous

scanning mode.

In comparison to using a node in continuous scanning mode, shared channels have the advantage of

maintaining low power at all nodes. However there is some latency due to the synchronous nature of th e

shared channel, and the time involved to service each individual node. As the central node in continuous

scanning mode is always receiving, there is very little latency and , should the central device have

sufficient power capabilities, this mode is advantageous when intermittent, asynchronous, or

instantaneous transmissions are desired.

Please note, not all modules can support continuous scanning modes; refer to the datasheets for their

respective capabilities.

 23 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6 Device Pairing

The act of pairing two devices (master with slave) involves establishing a relationship between two nodes

that wish to communicate with one another. This relationship can be permanent, semi -permanent or

transitory.

A pairing operation consists of a slave device acquiring the unique channel ID of the master device. If

permanent pairing is desired, the slave node should store the master‟s ID in permanent or non-volatile

memory. This ID will then be used to open a channel with this ID in all subsequent communication

sessions. In semi-permanent relationship, the pairing lasts as long as the channel is maintained. Once it

times out, the pairing is lost. In transitory, the pairing is temporary – for as long as is needed to get some

data.

Please note that if a master uses only broadcast messaging, or if it uses the shared channel feature,

multiple slaves may pair and communicate with the same master.

As previously mentioned, when the master device‟s channel is opened, it will start broadcasting messages.

Its unique channel ID is broadcast with every message. When a slave device‟s channel is opened, it will

immediately start searching for a master that matches the channel ID provided by the slave host MCU. In

the case where a slave does not have knowledge of a specific master ‟s channel ID, a pairing mechanism is

available. The slave can search for a master using a wild card ID (value „0‟) in any, or all, of the channel

ID fields. The slave will then search according to the criteria that i t does know. For example, the slave

may know what device type it wishes to connect to, but not the actual device number or transmission

type. The slave‟s host application would then set the channel ID with the known device type, and place a

wildcard (i.e. 0) in the remaining fields. On opening the channel, the slave would then search for any

masters of that specific device type, and of any device type or transmission type; upon a successful

search result, the specific ID of the master can be stored and used in the same manner as previously

described for all future communications.

The pairing bit, which is the most significant bit (MSB) of the device type field, is an advanced pairing

feature. On the slave side, the pairing bit is only checked by ANT if at least one of the fields of the

Channel ID is a wild card. On the master side, the pairing bit must be set to indicate it is available for

pairing.

Note, the pairing bit does not have to be set for pairing to occur; however, the status of the pairing bit

must match for pairing to occur. This feature allows for more control as, for example, a slave may have a

fully wild-carded channel ID and the pairing bit not set. This would result in the slave searching for any

broadcasting master. Alternatively, if the slave were to have the pairing bit set with a fully wild -carded

channel ID then it would search only for a master that also had its pairing b it set. This is a somewhat

simple example but illustrates how pairing can be aided via the pairing bit.

For more information see the “Device Pairing” application note and the examples below.

24 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

6.1 Pairing Example

An example pairing operation on a network of three remote temperature sensors (masters) and one base

unit (slave) is shown below.

Figure 6-1. Example ANT Network for use in Device Pairing

The base unit wishes to establish a permanent relationship with all temperature sensors. To initiate the

pairing operation, each temperature sensor should be placed into a pairing mode. From a user

perspective, it is left to the application to define the method of entry into pairing mode – for example this

could be done upon initial insertion of a battery, or by means of a button push by the user, etc. As far as

the ANT serial message interface is concerned, the host controller invokes a pairing mode by sending the

following messages to the ANT engine (See Section 9.3 for details):

1. Configure Channel

2. Set Channel ID (discoverable – i.e. device type=temperature sensor with pairing bit set)

3. Open TX Channel

4. Begin transmitting data on channel timeslot

At this time, the base unit (slave) must be prepared to search for the ID of the appropriate device type

(temperature sensor). It performs the following:

1. Configure Channel

2. Set Channel ID (Transmission Type = Specific or Wild card, Device Type = Temperature sensor

with Pairing Bit Set, Device Number = Wild Card)

3. Open RX Channel

4. Begins searching

The base unit finds a temperature sensor device type with pairing bit set. The channel is established, the

slave ANT engine will pass the specific channel ID for that device to the host controller, which will store

the ID for future channel establishment. This procedure is repeated for all three temperature sensors.

Temp
Sensor 1

Temp
Sensor 2

Base Unit
Temp

Sensor 3

Channel 0

Channel 1

Channel 2

 25 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Each temperature sensor can choose to disable its discoverability after a time-out period (or after

connection acknowledgement from the base unit if bidirectional transmission is supported) in order to be

„invisible‟ to future discovery by other slave devices.

This pairing process is required only once for the lifetime of an ANT system if a permanent relationship

between two specific devices is desired. In such cases, device pairing may be performed during product

manufacturing (factory environment) to remove burden from the customer.

6.2 Inclusion/Exclusion Lists

Another pairing feature available on some devices (check datasheets for capabilities) is the

inclusion/exclusion list. Up to four known channel IDs can be sent to the module and stored in this list.

All fields must be defined and contain non-zero values. When enabled and configured as an inclusion list,

the channel ID‟s stored will be the only channel IDs accepted in a wild card search. These means that the

slave will only connect to one of the specific master channel ID‟s listed. Similarly, if this feature is

configured as an exclusion list, the slave will not acquire any master with a listed channel ID.

Refer to sections 9.5.2.9, 9.5.2.10 and “Device Pairing” application note for more details.

6.3 Proximity Search

Another feature to aid in device pairing is proximity search, which allows channels to be acquired

according to the relative distance between two devices. In a standard ANT search as described in the

earlier section, the channel is opened and the slave dev ice starts searching for a master with a matching

channel ID. If any part of the channel ID is assigned a wildcard; then the slave could potentially match to

one of a number of masters in range. For example, if a slave set its device ID to search for a spe cific

device type (say heart rate monitor), but placed a wildcard in all other fields, and there were four heart

rate monitors in range (Figure 6-2 a, grey shading indicating slave‟s range); then, on opening its channel

it could pair to any one of the four heart rate monitors depending on which transmitting master it found

first.

Figure 6-2. (a) Standard search (b) Proximity search, showing bins 1-5 (of maximum 10).

Proximity search designates „bins‟ of proximity ranging from 1 (closest) to 10 (furthest) as illustrated in

Figure 6-2 b. The bins do not correlate to specific distances as this is very design-dependent (antenna

1
2

3
4

5

(a) (b)

26 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

design/orientation, etc) and will need to be determined by the designer . Incremental distances are also

design dependent.

The recommended use is to initially set the proximity search threshold value to bin 1 (Figure 6-3 a), as

the smaller the search area, the better the results as far as limiting the possibility of finding the wrong

device. Setting the threshold value too high could result connecting to one of multiple devices (Figure 6-3

b). Choosing an appropriate proximity threshold is critical in limiting the search accordingly and acquiring

the desired device (Figure 6-3 c).

Figure 6-3. Varying Proximity Thresholds.

Proximity search can be used in conjunction with ANT searches and background scanning channels, but

not with continuous scanning mode.

The proximity search is disabled by default. Once enabled, it is a one time requirement and the threshold

value will be cleared upon a successful acquisition. If the search times out, or if using a background

scanning channel, the threshold value is maintained

For more information please see the “Proximity Search” application note.

This feature is only available on certain ANT devices; please refer to datasheets for capabilities.

1

2

3

4

5

4

5

4

5

(a) (b) (c)

 27 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

7 ANT Interface

The host application and ANT communicate through a simple serial interface. The host can take the form

of an embedded microcontroller or a PC, but the basic functionality remains unchanged. For more details,

see the Interfacing with ANT General Purpose Chipsets and Modules document.

7.1 Message Structure

A typical serial message between the host and ANT engine has the following basic format.

Figure 7-1. ANT Serial Message Structure

As shown above, each message begins with a SYNC byte and ends with a CHECKSUM. The bytes are sent

lsb first. The following table describes each component of the serial message shown above.

Byte # Name Length Description

0 SYNC 1 Byte Fixed value of 10100100 or 10100101 (msb:lsb)

1 MSG LENGTH 1 Byte Number of data bytes in the message. 1 < N <

Max_Data_Size

2 MSG ID 1 Byte Data Type Identifier

0: Invalid

1..255: Valid Data Type (See Section 9 for details)

3..N+2 DATA_1..DATA_N N Bytes Data bytes

N+3 CHECKSUM 1 Byte XOR of all previous bytes including the SYNC byte

A complete summary of supported messages between a host and the ANT engine is pres ented in Section

9. The table is valid for both types of ANT interfaces: Host MCU  ANT and Host PC Interface  ANT.

Message formatting is first presented in summary form, which includes message length, ID and data fields

of each respective message type.

Please note that the multi-byte fields have been implemented in little endian format. Using the example of

a Channel ID message, the least significant byte of „Device Number‟ is assigned to Data1, and the most

significant byte to Data2.

7.1.1 Extended Messages Format

Extended messages allow ANT to pass the channel ID information to the host, along with the received

data message. There are two formats supported by ANT, flagged and legacy, depending on the ANT

device type (refer to Section 9.4 and datasheets for capabilities). Later generation devices support the

flagged extended messages format, AP1 does not support extended messages, and AT3 supports the

legacy format as shown in Figure 7-2.

The extended data will be added to the data message as shown in Figure 7-2. Note the basic frame format

of Sync, Message Length (ML), Message ID (ID) and checksum (CS) is the same. However , instead of just

Data_1 . . . Data_N Msg ID
Msg

Length
Sync

Check
sum

Data_2

28 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the 8-byte data payload (D0:D7). The host will now receive the 8-byte data (D0:D7) packet followed by a

flag byte (0x80) indicating the presence of the channel ID bytes: device number, device type, and

transmission type. The message length value will be altered to account for these additions. If extended

messaging has been enabled, the message length and flag bytes must be checked to see if the channel ID

bytes are present.

Figure 7-2. Extended data current and legacy formats.

Please note, the extended messaging format and Message ID are different for flagged and legacy

extended messaging formats (refer to section 9.3 for message format).

7.2 Host MCU Serial Interface – Physical Layer

The ANT serial interface between host controller and ANT engine can be implemented over either a

synchronous (SPI) or asynchronous (UART) connection. Unlike traditional SPI, the ANT serial connection

uses four GPIO lines for control instead of a slave select; however, a standard SPI block is compatible

with the ANT synchronous serial interface.

The connection type is selected by the product designer as preferred for the given implementation. The

precise details of the physical and electrical interface of each ANT product can be found in each respective

ANT product datasheet. Also refer to the Interfacing with ANT General Purpose Chipsets and Modules

document for more details.

7.3 Host PC Serial Interface

The primary method of communication between ANT and a PC is through the ANT PC Interface Library.

The components of this library are listed in Section 9. Also refer to the “Dynamic Linking with ANT DLL”

application note.

Data
0 . . .

Data
7

Standard Data Packet

Flagged Extended Data Packet

Flag
Byte

Device Number
Device
Type

Trans‟
Type

Check
sum

Channel
Number

Msg ID
Msg

Length
Sync

Channel
Number

Msg ID
Msg

Length
Sync Device Number

Device
Type

Trans‟
Type

Data
0 . . .

Data
7

Check
sum

Legacy Extended Data Packet Format

Sync ML ID C# D0 D1 D2 D3 D4 D5 D6 D7 CS

Extended Info

 29 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

8 Example ANT Network Implementation

A sample network implementation, presenting the features of the ANT protocol is shown in Figure 8-1

below.

Figure 8-1. Example ANT Network for implementation

The simple four-node network describes an application where information from multiple nodes (B, C and

D) is to be received, and possibly analyzed, by a single central node (A). The arrows indicate the primary

flow of information between the corresponding nodes. Note that nodes B, C and D only establish one

channel, thus can be implemented using a single channel ANT device. Node A would require a 4 (or more)

channel ANT device.

The following can be assumed:

 Node B uses the broadcast data type

 Node D uses the broadcast data type

 Node C requires the acknowledged data type

 All of the network prerequisites, such as network type, device ID, RF Frequency, etc. use default

or known values between all nodes

 Device pairing has already been performed between the masters and their corresponding slaves

Sections 8.1 and 8.2 describe two methods of utilizing ANT to deploy the above example network.

Node D

Node A

Node B

Node C

30 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

8.1 Implementation using Independent Channels

Using independent channels is the simplest method of implementing the aforementioned network. Given

the above assumptions, three independent channels are required. The configuration for each channel is

shown in the following tables.

Channel between Node B and Node A where Node B will be the master:

Node Parameter Value Description

B

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 1 Serial Number of Node B

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node B

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

A

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 1 Serial Number of Node B

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node B

Channel Type 0x00 Bidirectional Receive Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

Channel between Node C and Node A where Node C will be the master:

Node Parameter Value Description

C

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 10 Serial Number of Node C

Transmission Type 1 Transmission Type (no shared

address)

Device Type 2 Device Type of Node C

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4F Acknowledged

A

Network Number 0 Default Public Network

RF Frequency 66 Frequency 2466MHz

Device Number 10 Serial Number of Node C

Transmission Type 1 Transmission Type (no shared

address)

Device Type 2 Device Type of Node C

Channel Type 0x00 Bidirectional Receive Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4F Acknowledged

 31 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Channel between Node D and Node A where Node D will be the master:

Node Parameter Value Description

D

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 2 Serial Number of Node D

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node D

Channel Type 0x10 Bidirectional Transmit Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

A

Network Number 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 2 Serial Number of Node D

Transmission Type 1 Transmission Type (no shared

address)

Device Type 1 Device Type of Node D

Channel Type 0x00 Bidirectional Receive Channel

Channel Period 8192 Default 4Hz Message Rate

Data Type 0x4E Broadcast

Section 8.1.1 details the sequence of events and message transactions between the host and ANT for each

participating node as the above channels are established and network formed. Refer to Section 5.3 for

more information on the procedure for establishing a channel, and Section 9 for more information

regarding the various ANT commands.

32 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

8.1.1 Channel between Node B and Node A

The channel between Node B and Node A is established as shown in Figure 8-2.

Figure 8-2. Node A & B Channel Establishment

As the network in this example uses the system defaults, only the minimum commands from host to ANT

are required to establish the channel. The host issues the ANT_AssignChannel() and ANT_SetChannelID()

messages with the configuration fields set as shown above. The channel number is assigned at the

discretion of the host. In this case, it is channel zero for both; however, it should be noted that the

channel numbers do not need to match on either side of the channel.

The host opens the channel using the ANT_OpenChannel() message. It is good practice to ensure the

master channel is opened prior to the slave.

Once opened, the master‟s host provides ANT with data as it sees fit using the ANT_SendBroadcastData()

message. Please note that the frequency at which the host provides ANT with new data may not be the

same as the channel period. ANT will broadcast the data in its buffers at the desired message rate, if no

new data is made available by the host, the previous data will be broadcast. However, appropriate

safeguards to account for such repeated messages should be in p lace on the slave.

Once the slave‟s channel is opened, ANT will inform the host with a ChannelEventFunc() type message

whenever a message from Node B is received. Based on the channel configuration settings, this will

happen at 4Hz. If no message is received within the timeout period of the search, ANT will send the host

a timeout message and close the channel.

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 1

Device type: 1
Trans‟ type: 1

Open Channel

Assign Channel
Channel #: 0

Type: 0x00

Network #:0

Set Channel ID
Channel #: 0
Device #: 1

Device type: 1
Trans‟ type: 1

Open Channel

NODE B
(Master)

NODE A
(Slave)

Transmit Messages

Send Broadcast Data (0x4E)
Search

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 1

Device type: 1
Trans‟ type: 1

Open Channel

Assign Channel
Channel #: 0

Type: 0x00

Network #:0

Set Channel ID
Channel #: 0
Device #: 1

Device type: 1
Trans‟ type: 1

Open Channel

NODE B
(Master)

NODE A
(Slave)

Transmit Messages

Send Broadcast Data (0x4E)
Search

 33 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

8.1.2 Channel between Node C and Node A

The channel between Node B and Node A is established as shown in Figure 8-3.

Figure 8-3. Node C & A Channel Establishment

The channel between nodes A and C are established as for nodes A and B above. Again, only the minimum

commands from host to ANT are required to establish the channel with the given parameters. Note, in

this case the channel numbers do not match. As Nodes B, C and D are single channel devices, their

channel numbers will always be zero. Node A, on the other hand, is a 4 (or more) channel device and as

such, will utilize channels 0, 1 and 2 in this example. As such, node A‟s channel 0 will be associated with

Node B, channel 1 with Node C (as seen above) and channel 2 will be associated with node D as described

in 8.1.3.

Another difference in this channel, is that once the channel is opened, the master‟s host provides ANT

with data as it sees fit using the ANT_SendAcknowledgedData() message. Also note, if no new data is

made available by the host, the previous data will be sent as a broadcast message, not acknowledged

message. This is the default message type as explained in section 5.4.1. Again, appropriate safeguards to

account for such repeated messages should be in place on the slave. In this case, the sl ave could ignore

any broadcast data types that are received from Node C, as all new data will be sent as acknowledged

type and only repeated data will be of broadcast type.

Once the slave‟s channel is opened, ANT will inform the host with a ChannelEventFun c() type message

whenever a message from Node C is received. Again, based on channel configuration settings, this will

happen at 4Hz. If no message is received within the timeout period of the search, ANT will send the host

a timeout message and close the channel.

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 10
Device type: 2
Trans‟ type: 1

Open Channel

Assign Channel
Channel #: 1

Type: 0x00

Network #:0

Set Channel ID
Channel #: 1
Device #: 10
Device type: 2
Trans‟ type: 1

Open Channel

NODE C
(Master)

NODE A
(Slave)

Transmit Messages

Send Acknowledged Data (0x4F)
Search

Assign Channel
Channel #: 0

Type: 0x10

Network #: 0

Set Channel ID
Channel #:0
Device #: 10
Device type: 2
Trans‟ type: 1

Open Channel

Assign Channel
Channel #: 1

Type: 0x00

Network #:0

Set Channel ID
Channel #: 1
Device #: 10
Device type: 2
Trans‟ type: 1

Open Channel

NODE C
(Master)

NODE A
(Slave)

Transmit Messages

Send Acknowledged Data (0x4F)
Search

34 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

8.1.3 Channel between Node D and Node A

The procedure for establishing the channel at Node D is exactly the same as that of Node B. The host of

Node A will open a third channel to communicate with Node D in the same way as for Node B.

The independent channel network example that was implementation above will continue to function as it

was deployed unless an application layer event dictates otherwise.

8.2 Implementation using Shared Channels

The network shown in Figure 8-1 can also be implemented as a single shared channel instead of using

three independent channels. This would allow all nodes to be implemented using single channel ANT

devices. The trade-off is increased power consumption (for the same latency) and, due to the inclusion of

the shared address field, a reduction in the amount of maximum useful data 8 to 6 bytes per packet.

As mentioned in the shared channel section (5.6), the central receiving node will be configured as master

of the shared channel with the remaining nodes its slaves. Each slave will have a unique, two-byte shared

channel address which will be known only to itself and the master. The updated network diagram for this

setup is shown below.

Figure 8-4. Shared channel implementation of sample network

Node D
Slave

Node B
Slave

Node A
Master

Node C
Slave

Shared Channel

Shared Channel
Address = 1

Shared Channel
Address = 2

Shared Channel
Address = 3

 35 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Each node‟s channel configuration is shown below.

Slave

Node

Parameter Value Description

B

Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x20 Shared Receive Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4E Broadcast

C

Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x20 Shared Receive Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4F Acknowledged

D

Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x20 Shared Receive Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4E Broadcast

A

Network Type 0 Default Public Network

RF Frequency 66 Default Frequency 2466MHz

Device Number 3 Serial Number of Node A

Transmission Type 3 Transmission Type (2 byte shared address)

Device Type 3 Device Type of Node A

Channel Type 0x30 Shared Transmit Channel

Channel Period 2370 ~12Hz Message Rate

Data Type 0x4E Broadcast

Please note:

The Network Type, RF Frequency, Device Number, Transmission Type, Device Type and Channel Period

are controlled by the master (Node A). All slaves that want to use this shared channel must adhere to

these parameters.

The channel period for all nodes in the independent channel was 4Hz for each transmitting node (i.e.

nodes B, C, D). In order to maintain this application-level channel period, each node in the shared channel

actually needs to be set to a 12Hz channel period. This is the sum of the desired message rates of each

slave node and will allow the master to service each node at a rate of 4Hz. For example, Node A may

choose to cycle through the slaves, addressing node B on the first channel period, node C on the next

channel period, D on the next period, then back to node B and so on. This will result in each node being

36 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

addressed once every 4Hz. Similarly, the slaves will only be able to communicate back to the master at

the time that they are serviced (i.e. also at 4Hz).

The channel between Node B and Node A is established as shown in Figure 8-5.

Figure 8-5. Shared Channel Example

Apart from the Channel period, the network in this example uses the system defau lts and only minimal

commands from host to ANT are required to establish the channel. The host issues the

ANT_AssignChannel(), ANT_SetChannelID() and the ANT_SetChannelPeriod() messages with the

configuration fields set as shown above. The channel number i s assigned at the discretion of the host. As

all devices in this example are single channel, the channel number is zero for both; however, again it

should be noted that the hosts‟ channel numbers do not need to match on either side of the channel.

Assign Channel
Channel #: 0

Type: 0x30

Network #: 0

Set Channel ID
Channel #:0
Device #: 3

Device type: 3
Trans‟ type: 3

Open Channel

Assign Channel
Channel #: 0

Type: 0x20

Network #:0

Set Channel ID
Channel #: 0
Device #: 3

Device type: 3
Trans‟ type: 3

Open Channel

NODE A
(Master)

NODE B
(Slave)

Transmit Messages

Send Broadcast Data
[01][00][xx]…[xx]

Send Broadcast Data
[02][00][xx]…[xx]

Send Broadcast Data
[03][00][xx]…[xx]

Send Broadcast Data
[01][00][D0]…[D5]

Configures ANT that node has
Shared Address: [01][00]

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Receive messages with Shared
Address: [01][00] or [00][00]

Send Broadcast Data
[01][00][D1]…[D5]

 37 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

The host opens the channel using the ANT_OpenChannel() message. It is good practice to ensure the

master channel is opened prior to any of the slaves.

Once opened, the master‟s host should provide ANT with data on every channel period, using the

ANT_SendBroadcastData() message. The host application should also pay special attent ion to the shared

address field, ensuring that the shared address field changes for each message sent. The shared address

field should cycle through the shared addresses for Nodes B, C and D respectively, servicing each node at

the desired 4Hz.

On the slave side, once the channel is opened, the host should send a single broadcast message to ANT

with the first two bytes indicating Node B‟s shared channel address. This configures ANT to list en to

messages that are addressed to Slave Node B. The host will now be informed each time ANT receives a

message from the master that has Node B‟s shared channel address.

For this application, the slave‟s host would use the ANT_SendBroadcastData() message to provide data to

ANT. ANT will send the data in the reverse direction whenever it receives the appropriately addressed

message from the master (i.e. at 4Hz message rate).

Back on the master side, ANT will inform the host each time a message is received in the reverse direction

from the slave with the corresponding shared channel address. For this particular network, each slave

would send a message back to master Node A each time its own shared channel address appears.

Slave nodes C and D are configured similarly to Node B as shown in Figure 8-6.

38 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 8-6. Slave Node C and D Shared Channel Configuration

One difference being that the hosts send single ANT_SendBroadcastData() messages with the first two

bytes changed to indicate the shared addresses of nodes C & D respectively. Each host will now be

informed each time ANT receives a message from the master that has that nodes shared channel address.

The only other difference, is that node C will use the ANT_SendAcknowledgedData() to provide data to

ANT; which will then send to the master in the reverse direction whenever it receives the properly

addressed message from the master (i.e. at 4Hz message rate).

The Independent and Shared Channel network implementations are to be used as a means for gaining

familiarity with network design and deployment using ANT. The sample network could be implemented in

other, more efficient ways, using various advanced features of ANT. In general, an application will govern

the method of implementation that is best suited for its needs.

Assign Channel
Channel #: 0

Type: 0x20

Network #:0

Set Channel ID
Channel #: 0
Device #: 3

Device type: 3
Trans‟ type: 3

Open Channel

NODE C
(Slave)

Send Broadcast Data
[02][00][D0]…[D5]

Configures ANT that node has
Shared Address: [02][00]

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Receive messages with Shared
Address: [02][00] or [00][00]

Send Acknowledged Data
[02][00][D1]…[D5]

Assign Channel
Channel #: 0

Type: 0x20

Network #:0

Set Channel ID
Channel #: 0
Device #: 3

Device type: 3
Trans‟ type: 3

Open Channel

NODE D
(Slave)

Send Broadcast Data
[03][00][D0]…[D5]

Configures ANT that node has
Shared Address: [03][00]

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Receive messages with Shared
Address: [03][00] or [00][00]

Send Broadcast Data
[03][00][D1]…[D5]

Assign Channel
Channel #: 0

Type: 0x20

Network #:0

Set Channel ID
Channel #: 0
Device #: 3

Device type: 3
Trans‟ type: 3

Open Channel

NODE C
(Slave)

Send Broadcast Data
[02][00][D0]…[D5]

Configures ANT that node has
Shared Address: [02][00]

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Receive messages with Shared
Address: [02][00] or [00][00]

Send Acknowledged Data
[02][00][D1]…[D5]

Assign Channel
Channel #: 0

Type: 0x20

Network #:0

Set Channel ID
Channel #: 0
Device #: 3

Device type: 3
Trans‟ type: 3

Open Channel

NODE D
(Slave)

Send Broadcast Data
[03][00][D0]…[D5]

Configures ANT that node has
Shared Address: [03][00]

Set Channel Period
Channel #:0

Message Period: 2371 (~12Hz)

Receive messages with Shared
Address: [03][00] or [00][00]

Send Broadcast Data
[03][00][D1]…[D5]

 39 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9 Appendix A – ANT Message Details

9.1 ANT Messages

A summary of the various messages that comprise the serial interface between ANT and a host is provided

in Section 9.3.

9.1.1 Config Messages

The ANT configuration messages allow the Host to set or change various parameters of a channel , such as

the network, device type, transmission type, message rate, RF frequency etc. These messages are the

first step in enabling a system for ANT communication.

9.1.2 Control Messages

After desirable configuration of an ANT channel or channels, the control messages provide a method for

supervising the RF as well as the activity of the ANT system.

9.1.3 Notifications

Notifications allow ANT to inform the host of startup conditions.

9.1.4 Data Messages

The final step in establishing ANT communication, the data messages form the basic input and output of

data from an ANT node. In a typical application, the Host will spend most of its ANT specific time on

handling data messages.

9.1.5 Channel Event/Response Messages

The channel event/response messages are comprised of notifications and data that are sent from ANT to

the Host. These include RF events that occur on a channel as well as messages that provide information

about the state of the ANT system.

9.1.6 Requested Response Messages

The Host is able to obtain information from ANT using request messages. ANT replies to the requests

using response messages. These include a summary of the capabilities, version information and status of

channels.

9.1.7 Test Mode

ANT also accepts special test mode messages which allow the product developer or tester to verify the

operation of the RF hardware by placing ANT in a RF continuous wave (CW) mode.

9.2 ANT Message Structure - Notes

The „From‟ column in Section 9.3 denotes the direction of data flow. An entry of „ANT‟ indicates dataflow

from ANTHost. An entry of „Host‟ indicates dataflow from HostANT.

The „Response‟ column in Section 9.3 indicates whether ANT will send a response message to the

respective command.

40 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.3 ANT Message Summary

Class Type ANT PC Interface Function
Refer Section #

Rep
ly

From Len Msg
ID

Data
1

Data
2

Data
3

Data
4

Data
5

Data
6

Dat
a 7

Dat
a 8

Dat
a 9

Config.
Messages

Unassign
Channel

ANT_UnassignChannel()
9.5.2.1 (p46)

Yes Host 1 0x41 Channel
Number

Assign
Channel

ANT_AssignChannel()
9.5.2.2 (p46)

Yes Host 3 0x42 Channel
Number

Channel
Type

Network
Number

[Extended
Assign‟t]

Channel ID ANT_SetChannelId()
9.5.2.3 (p47)

Yes Host 5 0x51 Channel
Number

Device number Device
Type ID

Trans.
Type

Channel
Period

ANT_SetChannelPeriod()
9.5.2.4 (p48)

Yes Host 3 0x43 Channel
Number

Messaging Period

Search
Timeout

ANT_SetChannelSearchTimeout()
9.5.2.5 (p49)

Yes Host 2 0x44 Channel
Number

Search
Timeout

Channel RF
Frequency

ANT_SetChannelRFFreq()
9.5.2.6 (p50)

Yes Host 2 0x45 Channel
Number

RF
Frequency

Set Network ANT_SetNetworkKey()
9.5.2.7 (p50)

Yes Host 9 0x46 Net # Key 0 Key 1 Key 2 Key 3 Key 4 Key
5

Key
6

Key
7

Transmit
Power

ANT_SetTransmitPower()
9.5.2.8 (p51)

Yes Host 2 0x47 0 TX Power

ID List Add ANT_AddChannelID()
9.5.2.9 (p51)

Yes Host 6 0x59 Channel
Number

Device number Device
Type ID

Trans.
Type

List
Index

ID List
Config

ANT_ConfigList()
9.5.2.10 (p52)

Yes Host 3 0x5A Channel
Number

List Size Exclude

Channel
Transmit
Power

ANT_SetChannelTxPower()
9.5.2.11 (p52)

Yes Host 2 0x60 Channel
Number

TX Power

Low Priority
Search
Timeout

ANT_SetLowPriorityChannelSearch
Timeout()
9.5.2.12 (p52)

Yes Host 2 0x63 Channel
Number

Search
Timeout

Serial
Number Set
Channel ID

ANT_SetSerialNumChannelId()
9.5.2.13 (p53)

Yes Host 3 0x65 Channel
Number

Device
Type ID

Trans.
Type

Enable Ext
RX Mesgs

ANT_RxExtMesgsEnable()
9.5.2.14 (p54)

Yes Host 2 0x66 0 Enable

Enable LED ANT_EnableLED()
9.5.2.15 (p54)

Yes Host 2 0x68 0 Enable

Crystal
Enable

ANT_CrystalEnable()
9.5.2.16 (p54)

Yes Host 1 0x6D 0

Frequency
Agility

ANT_ConfigFrequencyAgility()
9.5.2.17 (p55)

Yes Host 4 0x70 Channel
Number

Freq‟ 1 Freq‟ 2 Freq‟ 3

Proximity
Search

ANT_SetProximitySearch()
9.5.2.18 (p55)

Yes Host 2 0x71 Channel
Number

Search
Threshold

Set USB Info ANT_SetUSBDescriptorString()
9.5.2.19 (p56)

Yes Host Description String (refer section 9.5.2.19)

 41 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Class Type ANT PC Interface Function
Refer Section #

Rep
ly

From Len Msg
ID

Data
1

Data
2

Data
3

Data
4

Data
5

Data
6

Dat
a 7

Dat
a 8

Dat
a 9

Notification
s

Startup
Message

->ResponseFunc(-, 0x6F)
9.5.3.1 (p57)

- ANT 1 0x6F Startup
Message

Control
Messages

SystemReset ANT_ResetSystem()
9.5.4.1 (p57)

No Host 1 0x4A 0

Open
Channel

ANT_OpenChannel()
9.5.4.2 (p57)

Yes Host 1 0x4B Channel
Number

Close
Channel

ANT_CloseChannel()
9.5.4.3 (p58)

Yes Host 1 0x4C Channel
Number

Open Rx
Scan Mode

ANT_OpenRxScanMode()
9.5.4.5 (p58)

Yes Host 1 0x5B 0

Request
Message

ANT_RequestMessage()
9.5.4.4 (p58)

Yes Host 2 0x4D Channel
Number

Message
ID

Sleep
Message

ANT_SleepMessage()
9.5.4.6 (p59)

No Host 1 0xC5 0

Data
Messages

Broadcast
Data

ANT_SendBroadcastData()
->ChannelEventFunc(Chan, EV)
9.5.5.1 (p59)

No

Host/
ANT

9 0x4E Channel
Number

Data0 Data1 Data2 Data3 Data4 Data
5

Data
6

Data
7

Acknowledg
e Data

ANT_SendAcknowledgedData()
->ChannelEventFunc(Chan, EV)
9.5.5.2 (p63)

No

Host/
ANT

9 0x4F Channel
Number

Data0 Data1 Data2 Data3 Data4 Data
5

Data
6

Data
7

Burst
Transfer
Data

ANT_SendBurstTransferPacket()
->ChannelEventFunc(Chan, EV)
9.5.5.3 (p67)

No

Host/
ANT

9 0x50 Sequence
/Channel
Number

Data0 Data1 Data2 Data3 Data4 Data
5

Data
6

Data
7

Channel
Event
Messages

Channel
Response /
Event

->ChannelEventFunc(Chan,
MessageCode) or
->ResponseFunc(Chan, MsgID)
9.5.6.1 (p73)

-

ANT 3 0x40 Channel
Number

Message
ID

Message
Code

Requested
Response
Messages

Channel
Status

->ResponseFunc(Chan,0x52)
9.5.7.1 (p76)

- ANT 2 0x52 Channel
Number

Channel
Status

Channel ID ->ResponseFunc(Chan,0x51)
9.5.7.2 (p77)

- ANT 5 0x51 Channel
Number

Device number Device
Type ID

Man ID

ANT Version ->ResponseFunc(-, 0x3E)
9.5.7.3 (p77)

- ANT 11 0x3E Ver0 Ver1 Ver2 Ver3 Ver
4

Ver
5

V
e
r
6

Ver7 Ver8 Ver9 Ver
10

Capabilities ->ResponseFunc(-, 0x54)
9.5.7.4 (p77)

- ANT 6 0x54 Max
Channels

Max
Networks

Standard
Options

Advanced
Options

Adv‟
Option
s 2

Rsvd

Serial
Number

->ResponseFunc(-, 0x61)
9.5.7.5 (p78)

- ANT 4 0x61 Serial Number

Test Mode CW Init ANT_InitCWTestMode()
9.5.8.1 (p79)

Yes Host 1 0x53 0

CW Test ANT_SetCWTestMode()
9.5.8.2 (p79)

Yes Host 3 0x48 0 TX Power RF Freq

42 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Class Type ANT PC Interface Function Reply From Len Msg
ID

Data
1

Data
2

Data
3

Data
4

Data
5

D
a
t
a
6

D
a
t
a
7

D
a
t
a
8

D
a
t
a
9

D
a
t
a
1
0

D
a
t
a
1
1

D
a
t
a
1
2

D
a
t
a
1
3

Ext Data
Messages

Extended
Broadcast
Data¥

ANT_SendExtBroadcastData()¥
->ChannelEventFunc(Chan, EV)
9.5.9.1 (p80)

No Host/
ANT¥

13 0x5D Channel
Number

Device number Device
Type
ID

Trans.
Type

D
a
t
a
0

D
a
t
a
1

D
a
t
a
2

D
a
t
a
3

D
a
t
a
4

D
a
t
a
5

D
a
t
a
6

D
a
t
a
7

Extended
Acknowledged
Data¥

ANT_SendExtAcknowledgedData()
->ChannelEventFunc(Chan, EV)
9.5.9.2 (p81)

No Host/
ANT¥

13 0x5E Channel
Number

Device number Device
Type
ID

Trans.
Type

D
a
t
a
0

D
a
t
a
1

D
a
t
a
2

D
a
t
a
3

D
a
t
a
4

D
a
t
a
5

D
a
t
a
6

D
a
t
a
7

Extended Burst
Data¥

ANT_SendExtBurstTransferPacket(
)
->ChannelEventFunc(Chan, EV)
9.5.9.3 (p82)

No Host/
ANT¥

13 0x5F Sequence
/Channel
Number

Device number Device
Type
ID

Trans.
Type

D
a
t
a
0

D
a
t
a
1

D
a
t
a
2

D
a
t
a
3

D
a
t
a
4

D
a
t
a
5

D
a
t
a
6

D
a
t
a
7

¥ These are legacy formats for AT3 devices

Functions not supported by nRF24AP1 devices
 nRF24AP2‟s devices only support these messages from Host -> ANT. For ANT->Host the additional bytes are appended to standard broadcast,
 acknowledged and burst data.

 43 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.4 ANT Product Capabilities

9.4.1 Interface

Class Type ANT PC Interface Function
nRF24AP1
and AP1
Modules

ANT11TRx1
Chipsets & modules

AT3
Chipsets &
modules

nRF24AP2
& AP2
Modules

nRF24AP2-
USB

Config.
Messages

Unassign Channel ANT_UnAssignChannel()

Yes Yes Yes Yes Yes

Assign Channel ANT_AssignChannel()

Yes
(3-Bytes)

Yes
(3-Bytes)

Yes
(3-Bytes)

Yes
(3or4-Bytes)

Yes
(3or4-Bytes)

Channel ID ANT_SetChannelId() Yes Yes Yes Yes Yes

Channel Period ANT_SetChannelPeriod() Yes Yes Yes Yes Yes

Search Timeout ANT_SetChannelSearchTimeout() Yes Yes Yes Yes Yes

Channel RF
Frequency

ANT_SetChannelRFFreq() Yes Yes Yes Yes Yes

Set Network ANT_SetNetworkKey() Yes Yes Yes Yes Yes

Transmit
Power

ANT_SetTransmitPower() Yes Yes Yes Yes Yes

ID List Add ANT_AddChannelID() No No Yes Yes Yes

ID List Config ANT_ConfigList() No No Yes Yes Yes

Channel Transmit
Power

ANT_SetChannelTxPower() No No Yes Yes Yes

Low Priority Search
Timeout

ANT_SetLowPriorityChannelSearchTimeout() No No Yes Yes Yes

Serial Number Set
Channel ID

ANT_SetSerialNumChannelId() No No Yes No No

Enable Ext RX
Mesgs

ANT_RxExtMesgsEnable() No No Yes Yes Yes

Enable LED ANT_EnableLED() No No Yes No No

Crystal Enable ANT_CrystalEnable() No No No Yes No

Frequency Agility ANT_ConfigFrequencyAgility() No No No Yes Yes

Proximity Search ANT_SetProximitySearch() No No No Yes Yes

Set USB Info ANT_SetUSBDescriptorString() No No No No Yes

Notifications Startup Message ->ResponseFunc(-,0xC5) No No No Yes Yes

Control
Messages

SystemReset ANT_ResetSystem() Yes Yes Yes Yes Yes

Open Channel ANT_OpenChannel() Yes Yes Yes Yes Yes

Close Channel ANT_CloseChannel() Yes Yes Yes Yes Yes

Open Rx Scan Mode ANT_OpenRxScanMode() No No Yes Yes Yes

Request
Message

ANT_RequestMessage() Yes Yes Yes Yes Yes

Sleep Message ANT_Sleep() No No No Yes Yes

Data
Messages

Broadcast Data ANT_SendBroadcastData()
->ChannelEventFunc(Chan, EV)

Yes Yes Yes Yes Yes

44 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Acknowledge Data ANT_SendAcknowledgedData()
->ChannelEventFunc(Chan, EV)

Yes Yes Yes Yes Yes

Burst Transfer Data ANT_SendBurstTransferPacket()
->ChannelEventFunc(Chan, EV)

Yes Yes Yes Yes Yes

Channel
Event
Messages

Channel Response /
Event

->ChannelEventFunc(Chan, MessageCode)
or
->ResponseFunc(Chan, MsgID);

Yes Yes Yes Yes Yes

Requested
Response Messages

Channel Status ->ResponseFunc(Chan,0x52) Yes Yes Yes Yes Yes

Channel ID ->ResponseFunc(Chan,0x51) Yes Yes Yes Yes Yes

ANT Version ->ResponseFunc(-, 0x3E) No Yes Yes Yes Yes

Capabilities ->ResponseFunc(-, 0x54) Yes
(4–bytes)

Yes
(4–bytes)

Yes
(6–bytes)

Yes
(6–bytes)

Yes
(6–bytes)

Serial Number ->ResponseFunc(-, 0x61) No No Yes No No

Test Mode CW Init ANT_InitCWTestMode() Yes Yes Yes Yes Yes

CW Test ANT_SetCWTestMode() Yes Yes Yes Yes Yes

Ext Data Messages Extended Broadcast
Data

ANT_SendExtBroadcastData()
->ChannelEventFunc(Chan, EV)

No No Yes Yes Yes

Extended
Acknowledge
Data

ANT_SendExtAcknowledgedData()
->ChannelEventFunc(Chan, EV)

No No Yes Yes Yes

Extended Burst
Data

ANT_SendExtBurstTransferPacket()
->ChannelEventFunc(Chan, EV)

No No Yes Yes Yes

 45 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.4.2 Events

See Section 9.5.6 for Event details.

Name nRF24AP1
and AP1
Modules

ANT11TRx1
Chipsets and
Modules

AT3
Chipsets and
Modules

nRF24AP2 and
AP2 Modules

nRF24AP2-USB

RESPONSE_NO_ERROR Yes Yes Yes Yes Yes

EVENT_RX_SEARCH_TIMEOUT Yes Yes Yes Yes Yes

EVENT_RX_FAIL Yes Yes Yes Yes Yes

EVENT_TX Yes Yes Yes Yes Yes

EVENT_TRANSFER_RX_FAILED Yes Yes Yes Yes Yes

EVENT_TRANSFER_TX_COMPLETED Yes Yes Yes Yes Yes

EVENT_TRANSFER_TX_FAILED Yes Yes Yes Yes Yes

EVENT_CHANNEL_CLOSED Yes Yes Yes Yes Yes

EVENT_RX_FAIL_GO_TO_SEARCH No Yes Yes Yes Yes

EVENT_CHANNEL_COLLISION No Yes Yes Yes Yes

EVENT_TRANSFER_TX_START No No Yes Yes Yes

CHANNEL_IN_WRONG_STATE Yes Yes Yes Yes Yes

CHANNEL_NOT_OPENED Yes Yes Yes Yes Yes

CHANNEL_ID_NOT_SET Yes Yes Yes Yes Yes

CLOSE_ALL_CHANNELS No No Yes Yes Yes

TRANSFER_IN_PROGRESS Yes Yes Yes Yes Yes

TRANSFER_SEQUENCE_NUMBER_ERROR Yes Yes Yes Yes Yes

TRANSFER_IN_ERROR No No Yes Yes Yes

INVALID_MESSAGE Yes Yes Yes Yes Yes

INVALID_NETWORK_NUMBER Yes Yes Yes Yes Yes

INVALID_LIST_ID No No Yes Yes Yes

INVALID_SCAN_TX_CHANNEL No No Yes Yes Yes

INVALID_PARAMETER_PROVIDED No No No Yes Yes

EVENT_QUE_OVERFLOW No No No Yes Yes

NVM_FULL_ERROR No No Yes No No

NVM_WRITE_ERROR No No Yes No No

USB_STRING_WRITE_FAIL No No No No Yes

46 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5 ANT Message Details

This section provides detailed information regarding ANT message and data fields for each ANT message

type.

9.5.1 ANT Constants

The constants vary depending on the selected ANT product (see product datasheet for further details):

1. MAX_CHAN – number of supported channels. Valid channels are 0..(MAX_CHAN-1).

2. MAX_NET – number of supported networks. Valid networks are 0..(MAX_NET-1).

These values can be determined for the specific ANT implementation by requesti ng the capability message

(see Section 0).

9.5.2 Configuration Messages

The following messages are used to configure a channel. Care should be taken to configure all appropriate

pieces of information for a channel before opening it. All configuration commands return a response to

indicate their success or failure. Therefore, a simple state machine can be setup for configuration of

channels that advances states only when a RESPONSE_NO_ERROR is received for the current command

and to re-send upon failures.

A simple timeout should also be implemented to protect against the case that a success/failure response is

not received. Should this happen, the host should send ANT a series of 15 0‟s to effectively reset the ANT

receive state machine. Please see the Interfacing with ANT General Purpose Chipsets and Modules

Document for more information.

9.5.2.1 Unassign Channel (0x41)

BOOL ANT_UnAssignChannel(UCHAR ucChannel);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN - 1 The channel to be unassigned.

// Example usage

ANT_AssignChannel(0, 0x00, 0);

..

ANT_UnAssignChannel(0);

This message is sent to the module to unassign a channel. A channel must be unassigned before it may be

reassigned using the Assign Channel command.

9.5.2.2 Assign Channel (0x42)

BOOL ANT_AssignChannel(UCHAR ucChannel, UCHAR ucChannelType, UCHAR ucNetworkNumber);

 or

BOOL ANT_AssignChannelExt(UCHAR ucChannel, UCHAR ucChannelType, UCHAR ucNetworkNumber,

UCHAR ucExtend);

Parameters Type Range Description

Channel

Number

UCHAR 0..MAX_CHAN-

1

The channel number to be associated with the assigned channel. The

channel number must be unique for every channel assigned on the

module. The channel number must also be less than the maximum

number of channels supported by the device.

Channel Type UCHAR As specified Bidirectional Channels:

 47 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

0x00 – Receive Channel

0x10 - Transmit Channel

Unidirectional Channels:

0x50 – Transmit Only Channel

0x40 – Receive Only Channel

Shared Channels:

0x20 – Shared Bidirectional Receive Channel

0x30 – Shared Bidirectional Transmit Channel

Network

Number

UCHAR 0..MAX_NET-1 Specifies the network address to be used for this channel. Set this to 0,

to use the default public network. See Network Address for more details.

Extended

Assignment

[optional]

UCHAR As specified 0x01 – Background Scanning Channel Enable

0x04 – Frequency Agility Enable

All other bits are reserved

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel 0 on network number 0 no extended assignment

OR

ANT_AssignChannelExtl(0, 0x00, 0, 0x01); // Background scanning channel on channel 0, network number 0

This message is sent to ANT to assign a channel. Channel assignment reserves a channel number and

assigns the type and network number to the channel. The optional extended assignment byte allows for

the following features to be enabled: frequency agility and background scanning channel. For more

information on these features see sections 5.2.1.4.1, 5.2.1.4.2, and application notes “ANT Frequency

Agility” and “ANT Channel Search and Background Scanning”.

This Assign Channel command should be issued before any other channel configuration messages, and

before the channel is opened. Assigning a channel sets all of the other configuration parameters to their

defaults.

9.5.2.3 Set Channel ID (0x51)

BOOL ANT_SetChannelId(UCHAR ucChannel, USHORT usDeviceNum, UCHAR ucDeviceType, UCHAR

ucTransmissionType);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-

1

The channel number

Device Number USHORT

(little endian)

- 0..65535 The device number. For a slave, use 0 to match

any device number.

Device Type

msb

Pairing Request

UCHAR (1bit) 7 0..1 Pairing Request.

Set this bit on master to request pairing

Set this bit on slave to find a pairing transmitter.

Device Type 0:6

Device type ID

UCHAR (7bits) 0-6 0..127 The device type. For a slave use 0 to match any

device type.

Transmission

Type

UCHAR - 0..255 The transmission type. For a slave use 0 to

receive from any transmission type.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0);

48 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 1234, 120, 1);

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 1); // device number is wild -card

/***/

// Pairing bit on Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 248, 1); // device number is wild-card, device type 120 with pairing bit ON

This message configures the channel ID for a specific channel.

The channel ID is intended to be unique (or nearly so) for each device link in a network. The ID is owned

by the master. The master sets its ID, and the ID is transmitted along with its messages. The slave sets

the channel ID to match the master it wishes to find. It may do this by providing the exact ID of the

device it wishes to search for, or look for a class of device by setting a wildcard (0) for one of the

subfields of the ID (Device Number, Device Type, or Transmission Type). When a match is found using a

wildcard search, the Request Message command (with channel ID in its Message ID field) can be used to

return the channel ID of the matched device.

If the Device Number is set to 0 on the slave, it will search for any masters that have matching Device

and Transmission Types. The state of the Pair Request bits must also match. This allows the product

designer to choose the rules for pairing. If the designer wishes to pair two specific devices only when

both sides agree, then the master and slave will both set the pairing bit when they wish to pair. If the

designer intends for any slave of a certain type to pair to any master of a certain type, on a search at any

time, then the pairing bit should always be set to 0.

When the Device Number is fully known the Pairing Bit is ignored i.e. if you know the exact device you are

looking for, then pairing is irrelevant.

Note that Transmission Type and Device Type IDs are assigned and regulated to maintain network

integrity and interoperability, except for the free default network. Please visit www.thisisant.com for more

details on available standard network types or on how to obtain your own network type identifier.

9.5.2.4 Channel Messaging Period (0x43)

BOOL ANT_SetChannelPeriod(UCHAR ucChannel, USHORT usMessagePeriod);

Parameters Type Range Default Description

Channel

Number

UCHAR 0..MAX_CHAN-1 - The channel number

Messaging

Period

USHORT

(little

endian)

0..65535 8192

(4Hz)

The channel messaging period in seconds * 32768.

Maximum messaging period is ~2 seconds.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild -card and pairing bit OFF

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelPeriod(0, 8192); // 4 Hz channel period

http://www.thisisant.com/

 49 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

This message configures the messaging per iod of a specific channel where:

Messaging Period = Channel period Time (s) * 32768.

E.g.: To send or receive a message at 4Hz, set the Channel period to 32768/4 = 8192.

Note: The minimum acceptable channel period is difficult to specify as it is system dependent and

depends on the number of configured channels and their use. Caution should be used to appropriately test

the system when high data rates are used, especially in combination with multiple channels.

It is of critical importance that the channel period is defined in a manner consistent with the needs of the

application. Some issues to consider are:

1. A smaller device period increases the message rate and thus increases system power consumption

(see respective ANT product datasheet for details).

2. A smaller device period (faster message rate) allows higher Broadcast data-transfer rates.

3. A smaller device period (faster message rate) speeds up the device search operation.

Note: If the slave does not wish to receive data as fast as it is being transmitted, it may select to receive

data at a slower rate. This rate MUST be an integer divisor of the transmitted data rate, do not use non-

integer divisors. For example, if the master is transmitting data at 4Hz (8192), the slave may prefer to

receive data at 1Hz (32768). The slave will then receive 1 in 4 messages. This type of system provides the

advantage of faster acquisition/reacquisition times due to the higher transmit data-rate, but maintains

lower power consumption on the slave. Of course, the required data refresh rate on the slave needs to be

considered if data messages are to be skipped.

9.5.2.5 Channel Search Timeout (0x44)

BOOL ANT_SetChannelSearchTimeout(UCHAR ucChannelNum, UCHAR ucSearchTimeout);

Parameters Type Range Default Description

Channel

Number

UCHAR 0..MAX_CHAN-1 - The channel number

Search

Timeout

UCHAR 0..255 Non-AP1: 10

(25seconds)

AP1: 12

(30 seconds)

The search timeout to be used with by this channel

for receive searching. Each count in this parameter is

equivalent to 2.5 seconds.

i.e. 240 = 600 seconds = 10 minutes

0 - disable high priority search mode*

255 - infinite search timeout*

*except for AP1: 0 = 0*2.5s = immediate timeout.

 255 = 255*2.5 ~ 10.5mins

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild -card and pairing bit OFF

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelSearchTimeout(0, 24); // search timeout is 60s

This message is sent to the module to configure the length of time that the receiver will search for a

channel before timing out. Note that a value of zero will disable high priority search mode, and a value of

50 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

255 sets an infinite search time-out. The exception to this is the AP1 module, which has only a high

priority search mode. For AP1 only, a value of 0 is an immediate search timeout, and a value of 255

corresponds to approximately 10.5 minutes.

9.5.2.6 Channel RF Frequency (0x45)

BOOL ANT_SetChannelRFFreq(UCHAR ucChannel, UCHAR ucRFFreq);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel to be unassigned.

Channel RF

Frequency

UCHAR 0..124 66 Channel Frequency = 2400 MHz + Channel RF

Frequency Number * 1.0 MHz

// Example Usage

ANT_AssignChannel(0, 0x10, 0); // transmit channel on network number 0

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild -card and pairing bit OFF

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelRFFreq(0, 57); // RF frequency is 2457 MHz

This message is sent to ANT to set the RF frequency for a particular channel.

Great care should be taken in choosing an alternate value to the default. The selection of this channel

may affect the ability to certify the product in certain global regions.

9.5.2.7 Set Network Key(0x46)

BOOL ANT_SetNetworkKey(UCHAR ucNetNumber, UCHAR *pucKey);

Parameters Type Range Description

Network Number UCHAR 0..MAX_NET-1 The network number

Network Key 0 UCHAR 0..255 Network byte 0

Network Key 1 UCHAR 0..255 Network byte 1

Network Key 2 UCHAR 0..255 Network byte 2

Network Key 3 UCHAR 0..255 Network byte 3

Network Key 4 UCHAR 0..255 Network byte 4

Network Key 5 UCHAR 0..255 Network byte 5

Network Key 6 UCHAR 0..255 Network byte 6

Network Key 7 UCHAR 0..255 Network byte 7

// Example Usage

UCHAR aucNetworkKey = {0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01}; // sample Network Key

ANT_SetNetworkKey(1, aucNetworkKey); // assign the network key to network number 1

// wait for RESPONSE_NO_ERROR

ANT_AssignChannel(0, 0x00, 1); // receive channel on network 1

This message configures a network address for use by one of the available network numbers.

This command is not required when using the default public network . The default public network key is

already assigned by default to Network Number 0. For nRF24AP1 devices, the remaining network numbers

are left uninitialised. For non-AP1 devices, all remaining network numbers default to the public network.

Only valid network keys will be accepted by ANT. Note, if a Set Network Key (0x46) command is sent with

an invalid key, a RESPONSE_NO_ERROR may be received, but the network key will be unchanged; it will

have retain the value it held prior to the command being issued.

 51 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Note that Network Keys, Transmission Type, and Device Type IDs are assigned and regulated to maintain

network integrity, and interoperability, except for the free default network. Please visit www.thisisant.com

for more details on available standard network types or on how to obtain your own network key.

9.5.2.8 Transmit Power (0x47)

BOOL ANT_SetTransmitPower(UCHAR ucTransmitPower);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included

Transmit

Power

UCHAR 0..3 3

(0dBm)

0 = TX Power -20 dBm

1 = TX Power -10 dBm

2 = TX Power -5 dBm

3 = TX Power 0 dBm

// Example Usage

ANT_SetTransmitPower(2); // set the RF output power to -5 dBm

This message is sent to the module to set the transmit power level for all channels.

This parameter must be used with extreme care. Setting the transmit power level to the highest level may

not always be the most appropriate solution. Higher power levels increase current consumption, affect the

sphere of influence for the device, and may have RF certification implications. A selected implementation

must be tested to ensure that it meets the regulatory requirements of the region of intended sale.

9.5.2.9 Add Channel ID (0x59)

BOOL ANT_AddChannelID(UCHAR ucChannel, USHORT usDeviceNum, UCHAR ucDeviceType, UCHAR

ucTransmissionType, UCHAR ucListIndex);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-

1

The channel number

Device Number USHORT

(little endian)

- 0..65535 The device number. Must not contain a wildcard.

Device Type ID UCHAR (7bits) 0-6 0..127 The device type. Must not contain a wildcard

value.

Transmission

Type

UCHAR - 0..255 The transmission type. Must not contain a

wildcard value.

List Index UCHAR - 0..3 The index where the specified Channel ID is to

be placed in the list.

// Example Usage

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number is wild -card

ANT_AddChannelID(0, 145, 120, 123, 0); //add ID to list in index 0

ANT_AddChannelID(0, 152, 120, 123, 1); //add ID to list in index 1

ANT_ConfigList(0, 2, 0); //configure list as an inclusion list having 2 entries

ANT_OpenChannel(0);

http://www.thisisant.com/

52 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Please note this message is only available on specific devices, check datasheets for capabilities. This

message is sent to the module to add channel IDs to the inclusion/exclusion list. When this list is used,

these ID‟s will either be the only IDs accepted in a wild card search or ID‟s that will not be discovered at

all. The use of these ID‟s is enabled by the ConfigList command detailed below. A maximum of 4 IDs can

be placed in the list.

9.5.2.10 Config List ID (0x5A)

BOOL ANT_ConfigList(UCHAR ucChannel, UCHAR ucListSize, UCHAR ucExclude);

Parameters Type Bit

Range

Range Description

Channel Number UCHAR - 0..MAX_CHAN-1 The channel number

List Size UCHAR - 0-4 The size of the inclusion list

Exclude UCHAR - 0-1 Sets the list as include (0) or exclude (1)

// Example Usage

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number is wild -card

ANT_AddChannelID(0, 145, 120, 123, 0); //add ID to list in index 0

ANT_AddChannelID(0, 152, 120, 123, 1); //add ID to list in index 1

ANT_ConfigList(0, 2, 0); //configure list as an inclusion list having 2 entries

ANT_OpenChannel(0);

Please note this message is only available on specific devices, check datasheets for capabilities. This

message is sent to ANT to configure the inclusion/exclusion list. The size determines which ID‟s in the list

are to be used (setting a size of 0 disables the include/exclude list) and the exclude variable determines

whether the IDs are to be found or to be ignored when the device is searching.

9.5.2.11 Set Channel Tx Power (0x60)

BOOL ANT_SetChannelTxPower(UCHAR ucChannel, UCHAR ucTxPower);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number

Transmit

Power

UCHAR 0..3 0 = TX Power -20 dBm

1 = TX Power -10 dBm

2 = TX Power -5 dBm

3 = TX Power 0 dBm

// Example Usage

ANT_SetChannelTxPower(0, 3); // set the RF output power to 0 dBm on channel 0

This message is sent to the module to set the transmit power level for a specified channel . Please note

this message is only available on specific devices, check datasheets for capabilities.

This parameter must be used with extreme care. Setting the transmit power level to the highest level may

not always be the most appropriate solution. Higher power levels increase current consumption, affect the

sphere of influence for the device, and may have RF certification implications. A selected implementation

must be tested to ensure that it meets the regulatory requirements of the region of intended s ale.

9.5.2.12 Channel Low Priority Search Timeout (0x63)

BOOL ANT_SetLowPriorityChannelSearchTimeout(UCHAR ucChannelNum, UCHAR ucSearchTimeout);

 53 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Parameters Type Range Default Description

Channel

Number

UCHAR 0..MAX_CHAN-1 - The channel number

Search

Timeout

UCHAR 0..255 2 (5

seconds)

The search timeout to be used with by this channel

for receive searching. Each count in this parameter is

equivalent to 2.5 seconds.

i.e. 240 = 600 seconds = 10 minutes

A value of 0 will result is no low priority search.

A value of 255 specifies infinite search time-out.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

 // wait for RESPONSE_NO_ERROR

ANT_SetChannelId(0, 0, 120, 123); // device number wild -card and pairing bit OFF

 // wait for RESPONSE_NO_ERROR

ANT_SetLowPriorityChannelSearchTimeout(0, 24); // low priority search timeout is 60s

Please note this message is only available on specific devices, check datasheets for capabilities. This

message is sent to ANT to configure the duration the receiver will search for a channel in low priority

mode before switching to high priority mode. Unlike high priority mode, a low priority search will not

interrupt other open channels on the device while searching. If the low-priority search times out, the

module will switch to high priority mode until it either times out or the device is found. See the AN11 ANT

Channel Search application note for more details.

9.5.2.13 Serial Number Channel ID (0x65)

BOOL ANT_SetSerialNumChannelId(UCHAR ucChannel, UCHAR ucDeviceType, UCHAR

ucTransmissionType);

Parameters Type Bit Range Range Description

Channel Number UCHAR - 0..MAX_CHAN-1 The channel number

Pairing Request UCHAR (1bit) 7 0..1 Pairing Request.

Set this bit on master to request pairing

Set this bit on slave to find a pairing

transmitter.

Device Type ID UCHAR (7bits) 0-6 0..127 The device type. For a slave use 0 to match

any device type.

Transmission

Type

UCHAR - 0..255 The transmission type. For a slave, use 0 to

receive from any transmission type.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetSerialNumChannelId(0, 120, 123);

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetSerialNumChannelId(0, 120, 123); // device number is wild -card

/***/

// Pairing bit on Rx channel

ANT_AssignChannel(0, 0x00, 0);

 // wait for RESPONSE_NO_ERROR

ANT_SetSerialNumChannelId(0, 248, 123); // device number is wild-card, device type 120 with pairing bit ON

54 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Please note this message is only available on specific devices, check datasheets for capabilities. This

message configures the channel ID to be used by a specific channel in the same way as the Channel ID

command (see section 9.5.2.3) only it uses the two least significant bytes of the device‟s serial number as

the device number.

9.5.2.14 Enable Extended Messages (0x66)

BOOL ANT_RxExtMesgsEnable (UCHAR ucEnable);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included

Enable UCHAR 0..1 0 0 – Disable

1 – Enable

// Example Usage

ANT_RxExtMesgsEnable(1); // enable extended Rx messages

Please note this message is only available on specific devices, check datasheets for capabilities. This

message is sent to ANT to enable or disable the extended Rx messages on the module. If supported, when

this setting is enabled ANT will include the channel ID with the data messages. See section 7.1.1 for more

information regarding the extended data bytes.

9.5.2.15 Enable LED (0x68)

BOOL ANT_EnableLED(UCHAR ucEnable);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included

Enable UCHAR 0..1 0 0 – Disable

1 – Enable

// Example Usage

ANT_EnableLED(1); // enable the LED

Please note this message is only available on specific devices, check datasheets for capabilities. This

message is sent to the module to enable or disable the LED on the module. When the LED is enabled, it

will blink each time a RF transmit or receive event is detected by the module.

9.5.2.16 Enable Crystal (0x6D)

BOOL ANT_CrystalEnable(void);

Parameters Type Range Description

Enable UCHAR 0 A filler 0 byte that must be included

// Example Usage

ANT_CrystalEnable(0); // enable an external 32kHz Crystal

Please note this message is only available on specific devices, check datasheets for capabilities . If the use

of an external 32kHz crystal input is desired, this message must be sent once, each time a startup

message is received (described in section 9.5.3.1).

 55 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Enabling an external 32kHz crystal input as a low power clock source saves ~85uA while ANT is active

when compared to using the internal clock source.

9.5.2.17 Frequency Agility (0x70)

BOOL ANT_ConfigFrequencyAgility(UCHAR ucChannel, UCHAR ucFrequency1, UCHAR ucFrequency2,

UCHAR ucFrequency3);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number

ucFrequency1 UCHAR 0-124 3 Sets operating frequency 1 parameter for ANT

frequency Agility.

ucFrequency2 UCHAR 0-124 39 Sets operating frequency 2 parameter for ANT

frequency Agility.

ucFrequency3 UCHAR 0-124 75 Sets operating frequency 3 parameter for ANT

frequency Agility.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0, 0x04); //extended assignment byte enables frequency agility

 // wait for RESPONSE_NO_ERROR

ANT_ConfigFrequencyAgility(0, 5, 23, 80);

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0, 0x04); //extended assignment byte enables frequency agility

 // wait for RESPONSE_NO_ERROR

ANT_ConfigFrequencyAgility(0, 5, 23, 80); // Frequencies must match (in order)

/***/

Please note this message is only available on specific devices, check datasheets for capabilities. This

function configures the three operating RF frequencies for ANT frequency agility mode and should be used

in conjunction with the ANT_AssignChannel() extended byte (9.5.2.2). Should not be used with shared, or

Tx/Rx only channel types. See section 5.2.1.4.1 and the “ANT Frequency Agility” application note for more

details.

9.5.2.18 Proximity Search (0x71)

BOOL ANT_SetProximitySearch(UCHAR ucChannel, UCHAR ucSearchThreshold);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel number

ucSearchThreshold UCHAR 0-10 0 Sets the proximity threshold bin:

0 – disabled

1:10 – closest to farthest

// Example Usage

// Rx channel

ANT_SetProximitySearch(0, 0x1); // search in nearest vicinity

Please note this message is only available on specific devices, check datasheets for capabilities. This

function enables a one-time proximity requirement for searching. Only ANT devices within the set

proximity bin can be acquired. Search threshold values are not correlated to specific distances as this will

be dependent to the system design. A search threshold value of 1 (i.e. bin 1) will yield the smallest radius

search and is generally recommended as there is less chance of connecting to the wrong device.

56 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Once a proximity search has been successful, this threshold value will be cleared, effectively disabling the

proximity search option. If another proximity search is desired, this command must be sent again prior to

the next search. If the search times out, or if using a background scanning channel, the proximity

threshold retains its value.

9.5.2.19 Set USB Descriptor String (0xC7)

BOOL ANT_SetUSBDescriptorString(UCHAR ucStringNum, UCHAR *pucDescString, UCHAR ucStringSize);

Parameters Type Range Description

ucStringNum UCHAR 0..3 Descriptor String Number

0 – PID/VID

1 – Manufacturer String

2 – Device String

3 – Serial Number String

pucDescString[0] UCHAR 0..255 String Character 0/VID LSB

pucDescString[1] UCHAR 0..255 String Character 1/VID MSB

pucDescString[2] UCHAR 0..255 String Character 2/PID LSB

pucDescString[3] UCHAR 0..255 String Character 3/PID MSB

pucDescString[n] UCHAR 0..255 String Character n

pucDescString[ucStringSize -1] UCHAR 0 NULL character (except for string 0)

ucStringSize UCHAR 1..32 String Length

// Example Usage

UCHAR aucDescString0 = {0xFC, 0x0F, 0x08, 0x10}; // sample VID/PID string

UCHAR aucDescString1 = “Dynastream Innovations”; // sample Manufacturer String

UCHAR aucDescString2 = “ANT USBStick2”; // sample Device String

UCHAR aucDescString3 = {„1‟, ‟2‟, ‟3‟, 0}; // sample Serial Number String (SN will be displayed by the OS as 123)

ANT_SetUSBDescriptorString (0, aucDescString0, sizeof(aucDescString0)); // set the VID/PID string

ANT_SetUSBDescriptorString (1, aucDescString1, sizeof(aucDescString1)); // set the Manufacturer String

ANT_SetUSBDescriptorString (0, aucDescString2, sizeof(aucDescSt ring2)); // set the Device String

ANT_SetUSBDescriptorString (0, aucDescString3, sizeof(aucDescString3)); // set the Serial Number String

IMPORTANT: This message configures USB descriptor strings. The AP2-USB does not support

re-writeable flash memory. Instead, space is allocated for three instances of each string descriptor.

The last descriptor set is the one that is used. Once a descriptor has been set three times, it cannot be

changed.

 57 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.3 Notifications

9.5.3.1 StartupMessage(0x6F)

ResponseFunc (-, 0x6F)

Please note this message is only available on specific devices, check datasheets for capabilities. The

startup message returns a 1-byte bit field, on every ANT power up or reset event. The bitfield indicates

the type of reset occurred.

Parameters Type Range Description

Startup

Message

UCHAR 0..255 The Startup Message bitfield is as follows:

0x00 – POWER_ON_RESET

Bit 0 – HARDWARE_RESET_LINE

Bit 1 – WATCH_DOG_RESET

Bit 5 – COMMAND_RESET

Bit 6 – SYNCHRONOUS_RESET

Bit 7 – SUSPEND_RESET

Other bits are reserved

9.5.4 Control Messages

9.5.4.1 Reset System(0x4A)

BOOL ANT_ResetSystem(void);

Parameters Type Range Description

Filler UCHAR 0

This message is sent to the module to reset the system and put it in a known, low-power state. Execution

of this command terminates all channels. All information previously configured in the system can no

longer be considered valid. After a Reset System command has been issued, the application should wait

500ms to ensure that ANT is in the proper, “after -reset” state before any further commands are issued

from the host. For AT3 and newer modules, the RTS line can be monitored instead: only send commands

after an RTS toggle has been observed. Please see the Interfacing with ANT General Purpose Chipsets and

Modules Document for more information.

9.5.4.2 Open Channel (0x4B)

BOOL ANT_OpenChannel(UCHAR ucChannel);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The number of the channel to be opened

This message is sent to the module to open a channel that has been previously assig ned and configured

with the configuration messages outline in prior sections. Execution of this command causes the channel

to commence operation, and either data messages or events begin to be issued in association with this

channel.

58 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.4.3 Close Channel (0x4C)

BOOL ANT_CloseChannel(UCHAR ucChannel);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The number of the channel to be closed

This message is sent to close a channel that has been previously opened. The host will initially receive a

RESPONSE_NO_ERROR message indicating the message was successfully received by ANT. The actual

closing of the channel will be indicated by an EVENT_CHANNEL_CLOSED, and the host should wait for this

message before performing any other operations on the channel.

When a channel is closed it remains assigned with all associated parameters still valid. The channel may

be reopened at any time with the Open Channel Command.

9.5.4.4 Request Message (0x4D)

BOOL ANT_RequestMessage(UCHAR ucChannel, UCHAR ucMessageID);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number associated with the message request

Message ID

Requested

UCHAR See Section 9.3 ID of the message being requested

// Example Usage

ANT_RequestMessage(0, MESG_CHANNEL_ID_ID); // request the channel ID of channel 0

// response message have the channel ID; no RESPONSE_NO_ERROR will be sent by ANT

This message is sent to the device to request a specific information message from the device.

Valid messages include Channel Status, Channel ID, ANT Version, and Capabilities. Requesting one of

these messages causes ANT to send the appropriate response message. Please see these messages for

specific details.

9.5.4.5 Open Rx Scan Mode(0x5B)

BOOL ANT_OpenRxScanMode();

Parameters Type Range Description

Channel Number UCHAR 0 Filler byte

// Example Usage

ANT_OpenRxScanMode();

This message is sent to the module to open in continuous scan mode. The channel should have been

previously assigned and configured as a slave receive channel. Execution of this command causes the

channel to commence operation in continuous scanning mode. In this mode, the radio is active and

receiving 100% of the time so no other channels can operate when the node is in continuous scanning

mode. The node will pick up any message, regardless of period, that is being transmitted on its RF

frequency and matches its channel ID mask. It can receive from multiple devices simultaneously. It can

also have messages pending to be sent to MAX_CHAN – 1 individual devices that are communicating with

the scanning device. This is achieved by passing an extended data message with the correct Channel ID

for the device the data is to be sent to on a channel in the range of 1:MAX_CHAN – 1.

 59 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.4.6 SleepMessage (0xC5)

BOOL ANT_SleepMessage(void);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

// Example Usage

ANT_SleepMessage(0); // Puts ANT into sleep mode

Please note this message is only available on specific devices, check datasheets for capabilities. The Sleep

command will put ANT into an ultra-low 0.5uA mode. Once this command has been issued, ANT will wait

1.2ms before attempting to enter this mode, by which time the SLEEP/(!MSGRDY) line must be set high.

ANT will remain in this state until the SLEEP/(!MSGRDY) line is pulled low. Please refer to the “ANT Power

States” application note and the Interfacing with ANT Chips and Modules document for more details.

On exiting sleep mode, ANT will perform a reset and any prior configuration information will be lost.

9.5.5 Data Messages

There are three methods for sending and receiving data on a channel. These methods are described

below.

9.5.5.1 Broadcast Data (0x4E)

BOOL ANT_SendBroadcastData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 or

ChannelEventFunc (Channel, EVENT_RX_BROADCAST) // Receive

On embedded platforms, the broadcast message may be processed the same as any other message

received from ANT by processing the MESG_BROADCAST_DATA_ID (0x4E). In order to ensure appropriate

message processing, check the message length field. For standard message packets, the message length

will be 9. For flagged extended messages, the message length will be greater to account for the extra

information appended to the data; check the flag byte for the presence of the channel ID.

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other

events. The event is EVENT_RX_BROADCAST for standard broadcast messages and

EVENT_RX_FLAG_BROADCAST for flagged extended data messages.

Please note that flagged data messages must be enabled using the ANT_RxExtMesgsEnable (0x66)

message.

Any application that processes flagged messages to get channel ID should also process legacy extended

messages (MESG_EXT_BROADCAST_DATA_ID (0x5D) for embedded or EVENT_RX_EXT_BROADCAST for PC

applications) to ensure compatibility.

60 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

[Flag Byte] UCHAR 0x80 0x80 – indicates presence of channel ID bytes

[Device Number] USHORT

(little

endian)

0..65535 Optional extended messages bytes. Only included

if flag byte indicates its presence

[Device Type]

UCHAR 0..255 Optional extended messages byte. Only included if

flag byte indicates its presence

[Transmission Type] UCHAR 0..255 Optional extended messages byte. Only included if

flag byte indicates its presence

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TX:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendBroadcastData(Channel_0, DATA);

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_FLAG_BROADCAST: // PC only; use MsgID 0x4E in embedded

 {

 UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

 if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

 {

 // Channel ID of the device that we just recieved a message from.

 USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

 UCHAR ucDeviceType = aucRxBuffer [12];

 UCHAR ucTransmissionType = aucRxBuffer [13];

 61 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

 printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

 }

 // INTENTIONAL FALLTHROUGH

 }

 case EVENT_RX_BROADCAST: // PC applications only; use MsgID 0x4E in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

Broadcast data is the default method of moving data between the transmitter and the receiver. Broadcast

data is not acknowledged, therefore there is no way of knowing if it was actually received. Figure 9-1

below describes the broadcast message transactions from master host to ANT, over the RF channel to

Slave ANT and host in the forward direction and similarly in the reverse direction (Slave->Master).

62 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 9-1. Broadcast Data Sequence Diagram

Master

A master ANT channel defaults to sending broadcast messages to the slave at the programmed channel

period. The host uses an ANT_SendBroadcastData() message to send data to ANT (1), which will then

buffer the data to be sent over the RF channel on the next designated time slot (i.e. channel period Tch).

ANT_SendBroadcastData()

ANT_SendBroadcastData()

ANT_SendBroadcastData()

ANT_SendBroadcastData()

ANT_SendBroadcastData()

ANT_SendBroadcastData()

ANT_SendBroadcastData()

EVENT_TX

EVENT_TX

EVENT_TX

EVENT_TX

ANT/HOST
Interface

RF
CHANNEL

ANTHOST HOSTANT

MASTER SLAVE

EVENT_TX

ANT/HOST
Interface

Tch

ChannelEventFunc(1)

ChannelEventFunc(0x4E)

ChannelEventFunc(0x4E)

ChannelEventFunc(1)
EVENT_TX

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(0x4E)

ChannelEventFunc(0x4E)

1

23

4

5

6

7

8

9
1011

ChannelEventFunc(1) ChannelEventFunc(0x4E)

ChannelEventFunc(0x4E)

 63 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

At the start of the next time slot, ANT sends the message over the RF channel (2) and issues the host an

EVENT_TX Channel Event Function (3). This EVENT_TX message indicates to the host that ANT is ready to

buffer new data. The host can send more data with another ANT_SendBroadcastData() command (4).

Once the slave‟s ANT receives the transmitted data, it will both notify and send data to the host with a

ChannelEventFunc(0x4E) message (5). The slave has the option of sending data back in the reverse

direction (6). In the case shown in Figure 9-1, the slave did not have any data to send, the dotted arrow

is used to indicate the reverse direction, but no actual data sent.

On the next channel period (8), the process is repeated: ANT sends the data in its buffers over the RF

channel, master host receives an EVENT_TX, and slave host receives the ChannelEventFunc (x04E).

However, should the slave‟s host have requested a data transmission prior to that channel period (7),

than it will be sent in the reverse direction on that timeslot (9). Similarly, an EVENT_TX

ChannelEventFunc(1) will be sent from the slave‟s ANT to host (10) and a ChannelEventFunc(0x4E) from

the master‟s slave will inform its host that a broadcast data type message was received (11).

The process above describes the message transactions for basic bidirectional broadcast operation.

Notes:

The EVENT_TX message can be used to prompt the master MCU that ANT is ready for the next data

packet. It should NOT be used to prompt the slave MCU as, unlike the master, EVENT_TX does not

necessarily occur on every channel period. This is illustrated in the example in Figure 9-1, where

EVENT_TX occurs every second channel period. The ChannelEventFunc(0x4E), on the other hand, can be

used instead as this does occur every channel period on the slave. These implementations are shown for

both slave and master in the example usage at the beginning of th is section.

If the slave does not manage to receive a data packet for its given time slot, an EVENT_RX_FAIL will be

generated instead. No data is sent over the RF channel from slave to master on an EVENT_RX_FAIL.

If the host does not send the ANT_SendBroadcastData() message prior to the next channel timeslot, then

the old data in ANT‟s buffer will be re-transmitted. It is up to the master MCU to send new data on every

message.

9.5.5.2 Acknowledged Data (0x4F)

BOOL ANT_SendAcknowledgedData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 or

ChannelEventFunc(Channel, EVENT_RX_ACKNOWLEDGED) // Receive

On embedded platforms, the broadcast message may be processed as any other message received from

ANT by processing the MESG_ACKNOWLEDGED_DATA_ID (0x4F). In order to ensure appropriate message

processing, check the message length field. For standard message packets, the message length will be 9.

For flagged extended messages, the message length will be greater to account for the extra information

appended to the data; check the flag byte for the presence of the channel ID.

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other

events. The event is EVENT_RX_ACKNOWLEDGED for standard acknowledged messages and

EVENT_RX_FLAG_ACKNOWLEDGED for flagged extended data messages.

Please note that flagged data messages must be enabled using the ANT_RxExtMesgsEnable (0x66)

message.

64 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Any application that processes flagged messages to get channel ID should also process legacy extende d

messages (MESG_EXT_ACKNOWLEDGED_DATA_ID (0x5E) for embedded or

EVENT_RX_EXT_ACKNOWLEDGED for PC applications) to ensure compatibility.

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

[Flag Byte] UCHAR 0x80 0x80 – indicates presence of channel ID bytes

[Device Number] USHORT

(little

endian)

0..65535 Optional extended messages bytes. Only included

if flag byte indicates its presence

[Device Type]

UCHAR 0..255 Optional extended messages byte. Only included if

flag byte indicates its presence

[Transmission Type] UCHAR 0..255 Optional extended messages byte. Only included if

flag byte indicates its presence

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendAckknowledgedData(Channel_0, DATA);

 break;

 }

 }

 break;

}

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_FLAG_ ACKNOWLEDGED: // PC only; use MsgID 0x4E in embedded

 {

 UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

 if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

 {

 // Channel ID of the device that we just recieved a message from.

 USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

 65 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

 UCHAR ucDeviceType = aucRxBuffer [12];

 UCHAR ucTransmissionType = aucRxBuffer [13];

 printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

 }

 // INTENTIONAL FALLTHROUGH

 }

 case EVENT_RX_ACKNOWLEDGED: // PC only; use MsgID 0x4F in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

The Acknowledged Data message can be used in place of the Broadcast Data message to ensure the

successful transmission of data. Acknowledged data is transmitted in the same transmission time slot as

Broadcast Data but extends the length of the timeslot to accommodate the acknowledgement.

Acknowledged Data transmissions cannot be originated from channels configured for transmit only.

66 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 9-2 below describes the acknowledged message transactions from master host to ANT, over the RF

channel to Slave ANT, host and vice versa in the reverse direction.

Figure 9-2 Acknowledged Data Sequence Diagram

ANT_SendAcknowledgedData()

EVENT_TRANSFER
TX_COMPLETED

ANT/HOST
Interface

RF
CHANNEL

ANTHOST HOSTANT

MASTER SLAVE

ANT/HOST
Interface

Tch

ChannelEventFunc(0x4F)ChannelEventFunc(1)

1

23

4

5

6

7

8

9

ANT_SendAcknowledgedData()

ANT_SendAcknowledgedData()

ANT_SendAcknowledgedData()

EVENT_TRANSFER
TX_FAILED

10

EVENT_TRANSFER
TX_COMPLETED

EVENT_TRANSFER
TX_COMPLETED

ANT_SendAcknowledgedData()

EVENT_TX

EVENT_TRANSFER
TX_COMPLETED

ChannelEventFunc() 11

13

14

15

12

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(1)
ChannelEventFunc(0x4F)

ChannelEventFunc(0x4F)

ChannelEventFunc(0x4F)

ChannelEventFunc(0x4E)

 67 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Similar to broadcast messaging, the host application requests the acknowledged data type when it sends

the data payload to ANT with the ANT_SendAcknowledgedData() function (1); ANT buffers the data, which

is transmitted on the next channel period (2). Unlike broadcast, the slave‟s ANT will automatically send an

acknowledgement of receipt of data (this response indicated by the smaller arrowhead on (2)). If the

master‟s ANT successfully receives this acknowledgement, it will send the host an

EVENT_TRANSFER_TX_COMPLETED Channel Event Function (3). In this way, the master host can be sure

the message was transmitted successfully. Similar to broadcast and EVENT_TX, the

EVENT_TRANSFER_TX_COMPLETED can be used to indicate to the host that ANT can receive new data.

The host can send more data to ANT with another ANT_SendAcknowledgedData() command (4).

Once the slave‟s ANT receives the transmitted data, it will both notify and send data to the host with a

ChannelEventFunc(0x4F) message (5). The slave has the option of sending data back in the reverse

direction (6). In this case, the slave did not have any data to send, and the dotted arrow is used to

indicate no actual data sent.

On the next channel period (7), the process repeats. However, should the slave‟s host have requested an

acknowledged data transmission (8), this data will be sent in the reverse direction on that timeslot (9).

The master‟s ANT will automatically send an acknowledgement of receipt (small arrowhead on (9)), and

the slave‟s ANT, on receiving the acknowledgement, will send its host an

EVENT_TRANSFER_TX_COMPLETED (10). The master‟s ANT will send a ChannelEventFunc(0x4F) both

notifying and sending the data to its host (11).

Should the acknowledged message be subject to RF interference (12) and ANT fails to receive the

appropriate acknowledgment, ANT will send an EVENT_TRANSFER_TX_FAILED to the host (13). This can

occur for one of two reasons: either the recipient node (in this case the slave) never received the data

and an acknowledgement was never sent; OR, the recipient (slave) got the data and sent an

acknowledgement, but this failed to reach the originator (master).

Notes:

Similar to broadcast, the EVENT_TRANSFER_TX_COMPLETED or EVENT_TRANSFER_TX_FAILED can be

used to indicate to the master MCU that ANT is ready for the next data packet. Also, on the slave side, the

ChannelEventFunc(0x4F) function can be used to prompt the host for more data. These implementations

are shown in the example usage at the beginning of this section.

If desired, the application can use EVENT_TRANSFER_TX_FAILED to resend the data. ANT does not

automatically resend failed data.

Similar to broadcast, if the slave ANT fails to receive a message in the designated channel period , an

EVENT_RX_FAIL occurs.

If the master host does not send any new data for the next channel timeslot (14 indicates the missing

ANT_SendAcknowledgedData() command), then ANT will resend the old data as a broadcast message

(15).

9.5.5.3 Burst Data (0x50)

BOOL ANT_SendBurstTransfer(UCHAR ucChannel, UCHAR* pucData, USHORT usNumDataPackets);

BOOL ANT_SendBurstTransferPacket(UCHAR ucChannelSeq, UCHAR* pucData); // Transmit

 or

ChannelEventFunc (Channel, EVENT_RX_BURST_PACKET) // Receive

68 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

On embedded platforms, the broadcast message may be processed as any other message received from

ANT by processing the MESG_BURST_DATA_ID (0x50). In order to ensure appropriate message

processing, check the message length field. For standard message packets, the message length will be 9.

For flagged extended messages, the first burst packet will have a message length greater than 9 to

account for the extra information appended to the data; check the flag byte for the presence of the

channel ID. Subsequent message packets will not contain any extra messages and will be 9 bytes in

length.

For PC platforms, the ANT DLL will generate a channel event that may be processed the s ame as other

events. The event is EVENT_RX_BURST for standard acknowledged messages and EVENT_RX_FLAG_BURST

for flagged extended data messages. Note, for bursting only the first packet will contain the flag and extra

information, the remaining burst packets will result in an EVENT_RX_BURST.

Please note that flagged data messages must be enabled using the ANT_RxExtMesgsEnable (0x66)

message.

Any application that processes flagged messages to get channel ID should also process legacy extended

messages (MESG_EXT_BURST_DATA_ID (0x5F) for embedded or EVENT_RX_EXT_BURST for PC

applications) to ensure compatibility.

Parameters Type Range Description

Sequence Number UCHAR (Bits

7:5)

As specified The upper 3 bits of this byte are used as a sequence

number to ensure transfer integrity (see below).

Channel Number UCHAR (Bits

4:0)

0..MAX_CHAN-1 The lower 5 bits represent the channel number that the

burst transfer is taking place on.

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

[Flag Byte] UCHAR 0x80 0x80 – indicates presence of channel ID bytes

Only present on 1st burst packet

[Device Number] USHORT

(little endian)

0..65535 Optional extended messages bytes. Only included if flag

byte indicates its presence. Only present on 1st burst packet

[Device Type]

UCHAR 0..255 Optional extended messages byte. Only included if flag byte

indicates its presence. Only present on 1st burst packet

[Transmission

Type]

UCHAR 0..255 Optional extended messages byte. Only included if flag byte

indicates its presence. Only present on 1st burst packet

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendBurstTransfer(Channel_0, DATA, 4); // 8 bytes per packet, 32 bytes total

 break;

 }

 }

 69 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_FLAG_ BURST_PACKET: // PC only; use MsgID 0x4E in embedded

 {

 UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

 if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

 {

 // Channel ID of the device that we just recieved a message from.

 USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

 UCHAR ucDeviceType = aucRxBuffer [12];

 UCHAR ucTransmissionType = aucRxBuffer [13];

 printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

 }

 // INTENTIONAL FALLTHROUGH

 }

 case EVENT_RX_BURST_PACKET: // PC applications only; use MsgID 0x50 in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer one packet at a time validating the

 // sequence

 break;

 }

 }

 break;

 }

 }

}

70 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Figure 9-3 below describes the burst message transactions from master host to ANT, over the RF channel

to Slave ANT, to host and back.

Figure 9-3 Burst Transfer Sequence Diagram

ANT_SendBroadcastData()

EVENT_TX

ANT/HOST
Interface

RF
CHANNEL

ANTHOST HOSTANT

MASTER SLAVE

ANT/HOST
Interface

Tch

ChannelEventFunc(0x4E)

ChannelEventFunc(0x50)

ChannelEventFunc(0x50)

ChannelEventFunc(0x4E)

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(1)

ChannelEventFunc(0x4F)

1

23

4

5

6

7

8
9

ANT_SendBurstTransferPackt()

ANT_SendAcknowledgedData()

EVENT_TRANSFER
TX_START*

EVENT_TRANSFER
TX_COMPLETED

13

ChannelEventFunc(1)
EVENT_TX

10

ANT_SendBurstTransferPackt()

EVENT_TX
ChannelEventFunc(1)

ChannelEventFunc(0x50)
ChannelEventFunc(0x50)
ChannelEventFunc(0x50)
ChannelEventFunc(0x50)

ChannelEventFunc(0x50)
ChannelEventFunc(0x50)
ChannelEventFunc(0x50)

ChannelEventFunc(0x50)

EVENT_TRANSFER
TX_COMPLETED

11

ChannelEventFunc(1)

12

ChannelEventFunc(0x4E)

ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()

ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()

14

1516

17

 71 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Burst data transmission is used to send larger amounts of data by sending messages con tinuously at the

fastest rate possible. Each message packet in a Burst Transfer is acknowledged, and all lost packets are

tried up to a maximum of 5 times to guarantee reception of the entire data transfer. Should a packet also

fail on the 5 th retry, the rest the transfer will be aborted and ANT will send an error message to the host

MCU.

Transmission begins at the start of the normal time slot and multiple data packets are sent consecutively,

extending the time slot for the duration of the burst transfer. Figure 9-3 below describes the burst

message transactions from master host to ANT, over the RF channel to Slave ANT, to host and back. Also

refer to the application note AN04 - Burst Transfers for more details.

In the example in Figure 9-3, assume the master‟s typical mode of operation is sending broadcast data to

the slave. If the master wishes to send a large amount of data, the master‟s host can send multiple

packets in fast succession, using the Burst Data message in place of a Broadcast or Acknowledged Data

message.

Figure 9-3 (1) shows the master host, in typical operation, sending a broadcast data message, which is

transmitted at the beginning of the next channel period (2). The EVENT_TX (3) informs the host that ANT

is ready for more data, and the host initiates the burst transfer request by sending an

ANT_SendBurstTransferPacket() command (4). Meanwhile, the slave‟s host has been sent the

ChannelEventFunc(0x4E) (5) and no data was sent back in the reverse direction (6).

Once a burst transfer starts transmitting (i.e. on the next channel period), data packets are transmitted at

a very high rate. It is important that the Host/ANT interface can sustain the maximum 20kbps rate. In

order to facilitate this transfer, it is possible to „prime‟ the ANT buffers with 2 (or 8, depending on ANT

device) burst packets prior to the next channel period. Figure 9-3 shows the host priming the ANT buffers

with two ANT_SendBurstTransferPacket() messages (4&7). Please refer to the “Burst Transfers”

application note for more information on burst queuing.

Once the transfer starts on the next channel period (8), an EVENT_TRANSFER_TX_START (9) will be

issued (note this is only applicable for some ANT devices), indicating that ANT has started sending

packets and is ready for more data. The slave‟s host is informed with a ChannelEventFunc(0x50) (10).

The host MCU is also notified for new data through hardware flow control. In asynchronous

communication mode, the RTS line is toggled, whereas the SEN line is toggled in the synchronous

communication mode. See the interfacing with ANT chips and modules document for more information on

these lines.

Note that for each packet ANT sends over the RF channel, ANT receives an acknowledgement (indicated

by the small arrow heads on (8) and subsequent arrows); however, this acknowledgement is not passed

onto the host. ANT will automatically retry any failed packet transfer up to 5 times.

Burst transfers are synchronized off each other and are independent of the channel period. If a burst is

long enough, it will override the subsequent channel periods (11). Once the burst transfer has completed,

the host is notified with an EVENT_TRANSFER_TX_COMPLETED (12). Similar to the acknowledged data

type, the master host could use this response as a prompt to send more data to ANT for transmission on

the next channel period. In this example, the host does not send more data for transmission.

If a transmit was requested by the slave‟s host prior to the commencement of the burst (13), then that

message will be sent in the reverse direction, at the end of the burst transfer (14). In this case, the

request is for an acknowledged message, and the slave will receive an EVENT_TRANSFER_TX_COMPLETED

(or failed) (15). The master ANT will notify and send data to the host with the ChannelEventFunc(0x4F)

message (16). As the master host did not send any new data after receiving the response function (12),

ANT will default to broadcasting on the next channel period (17). It will retransmit the last burst packet

(i.e. the data in its buffer).

72 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Notes:

If any packet still fails after 5 retries, ANT will terminate the burst transfer and the host will be notified

with an EVENT_TRANSFER_TX_FAILED. If the application wishes to retry, it must restart the Burst

Transfer sequence.

If a burst transfer fails in the forward direction (i.e. EVENT_TRANSFER_TX_FAILED), no reverse direction

data can be sent by the slave. Any data the slave has to transmit will wait for the next channel period.

It should be noted that although the example in the figure shows only a master to slave (i.e. forward

direction) burst transaction, burst transfers are also supported in the reverse direction. A Slave can burst

in the reverse direction after a master broadcast, acknowledge or burst data transfer.

Sequence Numbers:

The upper three bits of the channel number field are used as a sequence number to ensure transfer

integrity.

The transmit MCU must ensure that the sequence numbers are generated correctly in order for the ANT

burst state machine to function correctly.

The first packet of a Burst Transfer will have a sequence number of %000. The sequence number is then

incremented with %001 for each successive packet in the transfer rolling over back to %001, when a

value of %011 is reached. The most significant bit of the sequence bits %100 is used as a flag to indicate

the last packet in a Burst Transfer.

Example:

 Channel = 3

 Packet # Channel Number

%000 00011 (0x03)

%001 00011 (0x23)

%010 00011 (0x43)

%011 00011 (0x63)

%001 00011 (0x23)

%110 00011 (0xC3) [Last Packet]
It should be noted that although the example in the figure shows only a master to slave (i.e. forward

direction) burst transaction, burst transfers are also supported in the reverse direction.

 73 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.6 Channel Response / Event Messages

The Response/Event Messages are messages sent from the ANT device to the controller dev ice, either in

response to a message (see Section 9.3 for a list of messages that generate responses), or as generated

by an RF event on the ANT device.

9.5.6.1 Channel Response / Event (0x40)

ChannelEventFunc (Channel, MessageCode) // MessageID == 1

 or

ResponseFunc (Channel, MessageID) // MessageID != 1

The response/event message is either generated in response to a message or from an RF event.

Parameters Type Range Description

Channel

Number

UCHAR 0.. MAX_CHAN-1 The channel number of the channel associated with the event.

Message ID UCHAR 0..255 ID of the message being responded too. This is set to 1 for an RF

Event. (Message codes prefixed by EVENT_)

Message Code enum

0..255 The code for a specific response or event

Message Codes* (The following message codes are defined in antdefines.h)

 Not all message Events are generated by all products. See section 9.4.2 for information on which

event messages are supported by which products.

 Message code values are in decimal

Name Value Description

RESPONSE_NO_ERROR 0 Returned on a successful operation

EVENT_RX_SEARCH_TIMEOUT 1 A receive channel has timed out on searching. The search is

terminated, and the channel has been automatically closed. In

order to restart the search the Open Channel message must

be sent again.

EVENT_RX_FAIL 2 A receive channel missed a message which it was expecting.

This happens when a slave is tracking a master and is

expecting a message at the set message rate.

EVENT_TX 3 A Broadcast message has been transmitted successfully . This

event should be used to send the next message for

transmission to the ANT device if the node is setup as a

master.

EVENT_TRANSFER_RX_FAILED 4 A receive transfer has failed. This occurs when a Burst

Transfer Message was incorrectly received.

EVENT_TRANSFER_TX_COMPLETED 5 An Acknowledged Data message or a Burst Transfer sequence

has been completed successfully. When transmitting

Acknowledged Data or Burst Transfer, there is no EVENT_TX

message.

EVENT_TRANSFER_TX_FAILED 6 An Acknowledged Data message, or a Burst Transfer Message

has been initiated and the transmission failed to complete

successfully

74 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Name Value Description

EVENT_CHANNEL_CLOSED 7 The channel has been successfully closed. When the Host

sends a message to close a channel, it first receives a

RESPONSE_NO_ERROR to indicate that the message was

successfully received by ANT; however,

EVENT_CHANNEL_CLOSED is the actual indication of the

closure of the channel. As such, the Host must use this event

message rather than the RESPONSE_NO_ERROR message to

let a channel state machine continue.

EVENT_RX_FAIL_GO_TO_SEARCH 8 The channel has dropped to search mode after missing too

many messages.

EVENT_CHANNEL_COLLISION 9 Two channels have drifted into each other and overlapped in

time on the device causing one channel to be blocked.

EVENT_TRANSFER_TX_START 10 Sent after a burst transfer begins, effectively on the next

channel period after the burst transfer message has been sent

to the device.

CHANNEL_IN_WRONG_STATE 21 Returned on attempt to perform an action on a channel that is

not valid for the channel‟s state

CHANNEL_NOT_OPENED 22 Attempted to transmit data on an unopened channel

CHANNEL_ID_NOT_SET 24 Returned on attempt to open a channel before setting a valid

ID

CLOSE_ALL_CHANNELS 25 Returned when an OpenRxScanMode() command is sent while

other channels are open.

TRANSFER_IN_PROGRESS 31 Returned on an attempt to communicate on a channel with a

transmit transfer in progress.

TRANSFER_SEQUENCE_NUMBER_ERROR 32 Returned when sequence number is out of order on a Burst

Transfer

TRANSFER_IN_ERROR 33 Returned when a burst message passes the sequence number

check but will not be transmitted due to other reasons.

INVALID_MESSAGE 40 Returned when message has invalid parameters

INVALID_NETWORK_NUMBER 41 Returned when an invalid network number is provided. As

mentioned earlier, valid network numbers are between 0 and

MAX_NET-1.

INVALID_LIST_ID 48 Returned when the provided list ID or size exceeds the limit.

INVALID_SCAN_TX_CHANNEL 49 Returned when attempting to transmit on ANT channel 0 in

scan mode.

INVALID_PARAMETER_PROVIDED 51 Returned when invalid configuration commands are requested

EVENT_QUE_OVERFLOW 53 Only possible when using synchronous serial port. Indicates

that one or more events was lost due to excessive latency in

reading out events over the port.

NVM_FULL_ERROR 64 Returned when the NVM for SensRcore mode is full.

NVM_WRITE_ERROR 65 Returned when writing to the NVM for SensRcore mode fails.

// Example Usage

BOOL ANT_ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_BROADCAST:

 {

 switch (ucChannel)

 75 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Name Value Description

 {

 case Channel_0:

 {

 // process data which is in aucChannelEventBuffer

 break;

 }

 case Channel_N:

 {

 // process data which is in aucChannelEventBuffer

 break;

 }

 }

 break;

 }

 case EVENT_RX_FAIL:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // data packet was lost

 break;

 }

 case Channel_N:

 {

 // data packet was lost

 break;

 }

 }

 break;

 }

 case Default:

 {

 // catch unexpected message codes

 break;

 }

 }

}

76 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.7 Requested Response Messages

The following messages are returned in response to a Request Message (see section 9.5.4.4) sent to ANT.

The specific response message sent is dependent on request‟s message ID parameter. The ANT PC library

will call the Host application‟s ANT response function with the message ID as indicated below for each

message.

The message ID codes are defined in antmessage.h.

9.5.7.1 Channel Status (0x52)

ResponseFunc (Channel, 0x52)

This message returns the channel status information for the specified channel.

Parameters Type Range Description

Channel

Number

UCHAR 0.. MAX_CHAN-1 The channel number

Channel State UCHAR

(Bits 1:0)

0..3 State of the channel

Un-Assigned = 0

Assigned = 1

Searching = 2

Tracking = 3

Reserved UCHAR

(Bits 7:2)

varies Reserved

// Example Usage

BOOL ANT_ResponseFunction(UCHAR ucChannel, UCHAR ucResponseMesgID)

{

 Switch (ucResponseMesgID)

 {

 case MESG_CHANNEL_STATUS_ID:

 {

 switch (aucResponseBuffer[1]) // channel status

 {

 case 0:

 {

 // channel is un-assigned

 break;

 }

 case 1:

 {

 // channel is assigned

 break;

 }

 }

 break;

 }

 }

}

 77 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.7.2 Channel ID (0x51)

ResponseFunc (Channel, 0x51)

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number

Device Number USHORT

(little endian)

0..65535 The device number

Device Type ID UCHAR 0..127 The device type

Transmission Type UCHAR 0..255 The transmission type

This message returns the channel ID of the specified channel. This message is useful when trying to pair

devices. When a slave is attempting to pair to a master, it will typically set one or more of the Device

Number, Device Type, or Transmission Type fields with a wild card. When the slave finds a device that

matches the search – by successfully receiving data, the Request Message can be used to return the

discovered channel‟s ID. This ID can then be saved for future use in opening channel and searching for

this specific device. See pairing under the Usage section for more details.

Note that the Transmission Type and Device Type IDs are assigned and regulated to maintain network

integrity, and interoperability, except for the free default network. Please visit www.thisisant.com for

more details on available standard network types or on how to obtain your own network type identifier.

9.5.7.3 ANT Version (0x3E)

ResponseFunc (-, 0x3E)

The version message returns an 11-byte null-terminated version string, corresponding to the ANT host

interface version.

Parameters Type Range Description

Version Message char[11] 1..255 9 byte string

Please note that this message is not supported on all ANT products.

9.5.7.4 Capabilities (0x54)

ResponseFunc (-, 0x54)

This message returns a summary of the ANT device‟s configuration, which is dependent on both the

software embedded in the ANT MCU and on hardware limitations.

Parameters Type Range Description

Max ANT

Channels

UCHAR 0..MAX_CHAN Returns the Number of ANT channels available

Max Networks UCHAR 0..MAX_NET-1 Returns the number of networks available

Standard

Options

UCHAR 0..255 The Standard Options bitfield is encoded as follows:

Bit 0 - CAPABILITIES_NO_RECEIVE_CHANNELS

Bit 1 - CAPABILITIES_NO_TRANSMIT_CHANNELS

Bit 2 - CAPABILITIES_NO_RECEIVE_MESSAGES

Bit 3 - CAPABILITIES_NO_TRANSMIT_MESSAGES

Bit 4 - CAPABILITIES_NO_ACKD_MESSAGES

Bit 5 - CAPABILITIES_NO_BURST_MESSAGES

Other bits are reserved

http://www.thisisant.com/

78 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Parameters Type Range Description

Advanced

Options

UCHAR 0..255 The Advanced Options bitfield is encoded as follows:

Bit 1 - CAPABILLITES_NETWORK_ENABLED

Bit 3 - CAPABILITIES_SERIAL_NUMBER_ENABLED

Bit 4 - CAPABILITIES_PER_CHANNEL_TX_POWER_ENABLED

Bit 5 - CAPABILITIES_LOW_PRIORITY_SEARCH_ENABLED

Bit 6 - CAPABILLITES_SCRIPT_ENABLED

Bit 7 - CAPABILLITES_SEARCH_LIST_ENABLED

Other bits are reserved

Advanced

Options 2

(available in

new versions

only)

UCHAR 0..255 The Advanced Options 2 bitfield is encoded as follows:

Bit 0 - CAPABILITIES_LED_ENABLED

Bit 1 - CAPABILITIES_EXT_MESSAGE_ENABLED

Bit 2 - CAPABILITIES_SCAN_MODE_ENABLED

Bit 4 - CAPABILITIES_PROX_SEARCH_ENABLED

Bit 5 - CAPABILITIES_EXT_ASSIGN_ENABLED

Other bits are reserved

Reserved UCHAR varies

9.5.7.5 Device Serial Number (0x61)

ResponseFunc (-, 0x61)

Please note this message is only available on specific devices, check datasheets for capabilities. The serial

number is a 4-byte, little-endian, encoded unsigned integer. Please note that this message is not

supported on all ANT products.

Parameters Type Range Description

Serial Number char[4] 1..255 4 byte serial number

 79 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.8 Test Mode

9.5.8.1 Init CW Test Mode (0x53)

BOOL ANT_InitCWTestMode(void);

Parameters Type Range Description

Filler UCHAR 0

This function must be called before the CW Test Mode message below, in order to initialize the module to

the correct state for CW mode.

Note: This command should be executed only directly after a reset, or a System Reset command. Failure

to do so may result in unpredictable results.

9.5.8.2 CW Test Mode (0x48)

BOOL ANT_SetCWTestMode(UCHAR ucTransmitPower, UCHAR ucRFChannel);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included

Transmit

Power

UCHAR 0..3 0 = TX Power -20 dB

1 = TX Power -10 dB

2 = TX Power -5 dB

3 = TX Power 0 dB

Channel RF Frequency UCHAR 0..127 Channel Frequency = 2400 MHz + Channel RF Frequency

Number * 1.0 MHz

// Example Usage

ANT_InitCWTestMode();

// wait for RESPONSE_NO_ERROR

ANT_SetCWTestMode(3, 57); // set RF power to 0dBm and CW 2457MHz

This message is used to put the radio into a CW test mode using the given transmit power level and

channel RF frequency.

This command is intended to test your implementation for RF regulatory requirements. It will set ANT to

transmit and unmodulated carrier wave on the specified RF frequency, at the specified power level.

Note: This command should be executed only directly after an Init CW Test Mode (0x53) command as

described above. Failure to do so may result in unpredictable results.

80 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.9 Extended Data Messages

Each of the Data Message functions described in section 9.5.5 can be sent in the legacy extended data

message format. These functions are now supported in nRF24AP2 as flagged extended message bytes in

existing data messages. See Section 7.1.1 Extended Messages Format. However, AP2 ANT can still accept

the data messages as described here.

9.5.9.1 Extended Broadcast Data (0x5D)

BOOL ANT_SendExtBroadcastData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 or

ChannelEventFunc (Channel, EVENT_RX_EXT_BROADCAST) // Receive

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Device Num USHORT 0..65536 Device Number

Device Type UCHAR 0..255 Device Type

Transmission Type UCHAR 0..255 Transmission Type

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TX:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendExtBroadcastData(Channel_0, DATA);

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_EXT_BROADCAST: // PC applications only; use MsgID 0x5D in embedded

 {

 81 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

The legacy extended broadcast functions the same way as normal broadcast, except that the Channel ID

is appended to the front of the data. Extended messages are enabled by default when Rx Scan Mode is

being used.

Receiver

The corresponding channel slave receives the data at its programmed channel period and generates an

legacy Extended Broadcast Data message to its MCU. If the slave does not manage to receive a data

packet for its time slot, an EVENT_RX_FAIL will be generated instead.

If you are using the ANT library interface it will fill the data into your receive buffer, then send a special

library-only event EVENT_RX_EXT_BROADCAST to let you know that a valid extended broadcast message

has been received.

9.5.9.2 Extended Acknowledged Data (0x5E)

BOOL ANT_SendExtAcknowledgedData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

 or

ChannelEventFunc(Channel, EVENT_RX_EXT_ACKNOWLEDGED) // Receive

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Device Num USHORT 0..65536 Device Number

Device Type UCHAR 0..255 Device Type

Transmission Type UCHAR 0..255 Transmission Type

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

82 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

 case Channel_0:

 {

 ANT_SendExtAckknowledgedData(Channel_0, DATA);

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_EXT_ACKNOWLEDGED: // PC applications only; use MsgID 0x5E in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer

 break;

 }

 }

 break;

 }

 }

}

Extended acknowledged data functions the same way as normal acknowledge, except that the Channel ID

is appended to the front of the data. Extended messages are enabled by default when Rx Scan Mode is

being used.

Receiver

Reception of Acknowledged Data from the master causes an Extended Acknowledged Data message to be

sent to the slave MCU. If the message reception fails, an EVENT_RX_FAIL occurs.

If you are using the ANT library interface it will fill the data into your receive buffer, then send a special

library only event EVENT_RX_EXT_ACKNOWLEDGED to let you know that a valid extended acknowledge

message has been received.

9.5.9.3 Extended Burst Data (0x5F)

BOOL ANT_SendExtBurstTransfer(UCHAR ucChannel, UCHAR* pucData, USHORT usNumDataPackets);

// Transmit

BOOL ANT_SendExtBurstTransferPacket(UCHAR ucChannelSeq, UCHAR* pucData); // Transmit

 or

ChannelEventFunc (Channel, EVENT_RX_EXT_BURST_PACKET) // Receive

 83 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

Parameters Type Range Description

Sequence Number UCHAR

(Bits 7:5)

As specified The upper 3 bits of this byte are used as a sequence number

to ensure transfer integrity (see below).

Channel Number UCHAR

(Bits 4:0)

0..MAX_CHAN-1 The lower 5 bits are the channel number the burst transfer is

taking place on.

Device Num USHORT 0..65536 Device Number

Device Type UCHAR 0..255 Device Type

Transmission Type UCHAR 0..255 Transmission Type

Data 0 UCHAR 0..255 The first data byte

..

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_TRANSFER_TX_COMPLETED:

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 ANT_SendExtBurstData(Channel_0, DATA, 4); // 8 bytes per packet, 32 bytes total

 break;

 }

 }

 break;

 }

 }

}

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

 switch (ucEvent)

 {

 case EVENT_RX_EXT_BURST_PACKET: // PC applications only; use MsgID 0x5F in embedded

 {

 switch (ucChannel)

 {

 case Channel_0:

 {

 // process received data which is in channel event buffer one packet at a time validating the

 // sequence

 break;

 }

 }

 break;

 }

 }

84 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

}

Extended burst data functions the same way as normal burst data, except that the Channel ID is

appended to the front of the data. Extended messages are enabled by default when Rx Scan Mode is

being used.

Receiver

Reception of Burst Data from the master causes Extended Burst Data Messages to be sent to the slave

MCU. If burst message reception exceeds the maximum number of retries an EVENT_TRANSFER_RX_FAIL

occurs.

 85 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

9.5.10 PC Functional Interface Configuration

The functions described in this section are unique to the ANT PC Library interface, and are used to set up

and configure the ANT PC Library for use. They are not available to an embedded application as the

messages are exchanged directly through a serial interface.

9.5.10.1 ANT PC Library Usage Notes

The following notes apply when using the ANT PC Library. The files for this library can be downloaded

from the www.thisisant.com website:

 ANT_DLL.dll, DSI_CP210xManufacturing_3_1.dll and DSI_SiUSBXp_3_1.dll must be accessible to

the application that is using the ANT PC Library. In other words, these files must

be placed in the same folder as the executable , or in a Windows system folder.

 antmessage.h and antdefines.h must be included where calls to the ANT PC Library are made.

9.5.10.2 ANT_Init

BOOL ANT_Init(UCHAR ucUSBDeviceNum, USHORT usBaudrate);

Parameters Type Range Description

ucUSBDeviceNum UCHAR 0..N-1 USB device number of the module to connect to. Modules connected to

a PC will be assigned USB device numbers starting from 0. N is the

number of USB ANT devices that are connected.

usBaudrate USHORT Asynchronous baud rate used to connect to the ANT controller. See

specific ANT controllers for allowable baud rates.

// Example Usage

if (ANT_Init(0, 38400) == false)

 // error message

else

 // continue to ANT initialization

ANT_Init is called to initialize the ANT library and connect to the ANT module. Function returns TRUE if

successfully connected to the module, otherwise returns FALSE.

9.5.10.3 ANT_Close

void ANT_Close (void);

Parameters Type Range Description

None

// Example Usage

ANT_Close();

ANT_Close closes the USB connection to the ANT module.

9.5.10.4 ANT_AssignResponseFunction

void ANT_AssignResponseFunction(RESPONSE_FUNC pfResponse, UCHAR *pucResponseBuffer);

Parameters Type Description

pfResponse RESPONSE_FUNC Pointer to the function that will be called whenever a response / event

message is received from the module.

pucResponseBuffer UCHAR* Pointer to the buffer where the data of the response / event message

will be written to. This buffer should be sized to

MESG_RESPONSE_EVENT_SIZE.

86 of 86

 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

// Example Usage

BOOL ANT_ResponseFunction(UCHAR ucChannel, UCHAR ucResponseMesgID);

UCHAR aucResponseBuffer[MESG_RESPONSE_EVENT_SIZE];

..

ANT_AssignResponseFunction(&ANT_ResponseFunction, aucResponseBuffer);

ANT_AssignResponseFunction sets the response callback function and the return data buffer. The callback

function and data buffer are used whenever a response message is received from ANT. The response

buffer needs to be large enough to hold an incoming response, which is of size

MESG_RESPONSE_EVENT_SIZE. This function must be called immediately after calling ANT_Open and

before any other ANT calls are made.

The response function must be a C function.

9.5.10.5 ANT_AssignChannelEventFunction

void ANT_AssignChannelEventFunction(UCHAR ucChannel, CHANNEL_EVENT_FUNC pfChannelEvent,

UCHAR *pucRxBuffer);

Parameters Type Description

ucChannel UCHAR Channel Number

pfChannelEvent CHANNEL_EVENT_FUNC Pointer to the function that will be called whenever an event for this

channel occurs.

pucResponseBuffer UCHAR* Pointer to the buffer where the data of the response/event message

is written. This buffer should be sized to MESG_DATA_SIZE.

// Example Usage

BOOL ANT_ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent);

UCHAR aucChannelEventBuffer[MESG_DATA_SIZE];

.

.

ANT_AssignChannelEventFunction(channel_0, &ANT_ChannelEventFunction, aucChannelEventBuffer);

ANT_AssignChannelEventFunction sets the channel event function and the return data buffer. The callback

function and data buffer are used whenever an event message is received from ANT for the given channel.

The response buffer needs to be large enough to hold an incoming response which is of size

MESG_DATA_SIZE. This function must be called to set up a given channel before any other ANT functions

that use this channel are called.

The channel event callback function must be a C function. Each channel can have its own event callback

function, along with a unique data buffer; or they can both be shared, or any combination thereof, that

best suits the application.

