HBANT

the power of less

ANT Message Protocol
and Usage

D00000652 Rev 4.1

P +1 403.932.4620 F +1 403.932.6521

228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

2 of 86

Copyright Information and Usage Notice

This information disclosed herein is the exclusive property of Dynastream Innovations Inc. No part of this
publication may be reproduced or transmitted in any form or by any means including electronic storage,
reproduction, execution or transmission without the prior written consent of Dynastream Innovations Inc.
The recipient of this document by its retention and use agrees to respect the copyright of the information
contained herein.

The information contained in this document is subject to change without notice and should not be
construed as a commitment by Dynastream Innovations Inc. unless such commitment is expressly given in
a covering document.

The Dynastream Innovations Inc. ANT Products described by the information in this document are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which the
failure of the Dynastream product could create a situation where personal injury or death may occur. If
you use the Products for such unintended and unauthorized applications, you do so at your own risk and
you shall indemnify and hold Dynastream and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended
or unauthorized use, even if such claim alleges that Dynastream was negligent regarding the design or
manufacture of the Product.

©2009, 2010 Dynastream Innovations Inc. All Rights Reserved.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

3 of 86

Table of Contents
Introduction
The ANT Product Family
Network topologies
ANT Nodes
ANT Channels
5.1 Channel Communication
5.2 Channel Configuration
5.2.1 Channel Type......c....
5.2.2 RF Frequency..........
5.2.3 Channel ID..............
oI S g = o a8 =T To T I U
5.2.5 NEEWOIK ceteiiiiii it e
5.2.6 Example Channel Configuration
53 Establishing a channel.......................
5.4 ANT Data Types......ccccvvivivinininininininns
5.4.1 Broadcast Data........ccccccovriunrnnennnnn.
5.4.2 Acknowledged Data........ccccevvrererns
5.4.3 Burst Data.....cccccevvrvininiiininininininnnns
5.5 Independent Channelscccvvvenne
5.6 Shared Channels.........cccccoiiiinnennnnn.
5.7 ContinUOUS SCANNING MOAEccoiiiiic i
6 Device Pairing
6.1 PairiNG EXaMPIE ..eiiiiiiiiii i
6.2 Inclusion/Exclusion Lists
6.3 ProXimity SEAICH.....ciiiiiiiiiiiiiiii it e et e e e r e e r e e rararae
7 ANT Interface
7.1 MESSAGE SEIUCTUIE ..iviiiiiirieiies it
7.1.1 Extended Messages FOrMat......iuiuieiiiiieiiiiieieiereieiiesrererereresererererererererersrersressrssereresererereresereeneennenn
7.2 Host MCU Serial Interface — PhySiCal LAYEKcvvviiiiiiiiiiieieiiieieierersiereeesereseseresesesesesesssesssssssssssesesssenen
7.3 [[0 o Ot g = I g T =T RS TR
8 Example ANT Network Implementation
8.1 Implementation using Independent Channels
8.1.1 Channel between Node B and Node A
8.1.2 Channel between Node C and Node A
8.1.3 Channel between Node D and Node A
8.2 Implementation using Shared ChannElSuuiuiuiurnimiii .
9 Appendix A — ANT Message Details
9.1 L L 1= T Y- T =N
LS00 o T ==Y T P
9.1.2 Control Messages
9.1.3 Notifications............
9.1.4 Data Messages.........coevrerrriiniisunnennns
9.1.5 Channel Event/Response Messages....
9.1.6 Requested Response Messages..........
9.1.7 Test Mode.....cceviiiiiimeeieeiieiinees
9.2 ANT Message Structure - Notes.........
9.3 ANT Message Summaryccoeeuvnees
9.4 ANT Product Capabiliti€Seveieieieieiiieieieieieiereie e e e e e e e e e e s e s e e e e e s e s e s e e e s e s e e e s e sererererererererees
LS R (1= g = o= PPN
9.4.2 Eventsccccoevurnnnne
9.5 ANT Message Details...
9.5.1 ANT Constantscccevurmmnmnnnnnnnns
9.5.2 Configuration Messages..........ccuue.
9.5.3 Notificationscovecvvrereieisiisiinnnns
9.5.4 CONEIOI MESSAGESuvveiiiurrieiiiriis it s st s b saa e e s b e e e s s b e s aan e e e s s bb e e s s nn e s s annn s
LR T T B = 1 = TN 11T T [PP
9.5.6 Channel Response / Event Messagescccceeeun...
9.5.7 Requested Response Messages
9.5.8 Test Mode....cevveriieiuerniereniieiinnns
9.5.9 Extended Data MeSSagescururmrmrmrmrnrnrnrnrnrnnnns
9.5.10 PC Functional Interface Configuration

NhWNER

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

4 of 86

1 Introduction

ANT™ is a practical wireless sensor network protocol running in the 2.4 GHz ISM band. Designed for ultra-
low power, ease of use, efficiency and scalability, ANT easily handles peer-to-peer, star, tree and fixed
mesh topologies. ANT provides reliable data communications, flexible and adaptive network operation and
cross-talk immunity. ANT protocol stack is extremely compact, requiring minimal microcontroller resources
and considerably reducing system costs.

ANT provides carefree handling of the Physical, Network and Transport OSI layers. In addition, it
incorporates key low-level security features that form the foundation for user-defined sophisticated
network security implementations. ANT ensures adequate user control while considerably lightening
computational burden in providing a simple yet effective wireless networking solution.

Application / Presentation
Layers User Defined

Higher Level Security

Network / Transport &
Low Level Security
Data Link Layer Implemented
by ANT

Physical Layer

Figure 1-1. OSI Layer model of ANT

The interface between ANT and the Host application has been designed with the utmost simplicity in mind
such that ANT can be easily and quickly implemented into new devices and applications. The
encapsulation of the wireless protocol complexity within the ANT chipset vastly reduces the burden on the
application host controller, allowing a low-cost 4-bit or 8-bit Microcontroller (MCU) to establish and
maintain complex wireless networks. Data transfers can be scheduled in a deterministic or ad-hoc fashion.
A burst mode allows for the efficient transfer of large amounts of stored data to and from a PC or other
computing device.

A typical ANT-enabled device consists of an application host MCU interfaced with an ANT module, chipset
or chip. The host MCU establishes and maintains a communication session to other remote ANT-enabled
devices by means of a simple, bidirectional, serial message protocol. This document details the protocol
and provides examples of how to use ANT for wireless networking.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

5 of 86

2 The ANT Product Family

ANT technology has been incorporated into a family of products that allows a particular implementation to
be scaled to suit the needs of the application and the vision of the product designer.

ANT technology is available in the following formats:
ANT Single Chip & Chipset
Intended for integration onto the customer’s PCB and interfaced with a host MCU.

1. Nordic Semiconductor nRF24AP2 chip family (-1ch, -8ch and —USB) — second generation of the
ANT implementation integrated into a single-chip RF protocol and IC.

2. Nordic Semiconductor nRF24AP1 — first generation, complete ANT implementation integrated into
a single-chip RF protocol and transceiver Integrated Circuit (IC).

3. AT3 chipset family — two-chip ANT solution that combines an ANT-protocol MCU with a Nordic
Semiconductor RF IC (nRF24L01+ or nRF24L01).

ANT Module

The ANT modules are certified or certification ready PCB modules incorporating an ANT chip or chipset
and can be mounted onto existing PCB, allowing for immediate product integration with minimal effort.

ANT USB Stick

The ANT USB Stick provides a bridge between an ANT network and a PC. ANT USB stick comes with
royalty-free drivers which can be redistributed with ANT.

ANT Development Kit

Development Kits are available to provide a timely and efficient path to ANT integration for both the
embedded and PC environments. The embedded environment offers easy integration with custom
hardware. The PC environment provides USB interconnection along with drivers and sample applications.

ANT PC Interface Software

A royalty-free PC software library provides an interface to the ANT USB Stick and ANT Development Kit,
and is readily integrated with a customer’s PC application.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

6 of 86

3 Network topologies

The ANT protocol has been designed from the ground up to support a large range of scalable network
topologies. It can be as simple as a 2-node unidirectional connection between a transmitting peripheral

device and a receiver, or as complex as a multi-transceiver system with full point-to-multipoint
communication capabilities.

ANT-FS s
BROADCAST P$ER (Secure Authenticated) TAR
PEER
o) o
-
—_=

Acknowledged -+
.
Bidirectional °
O

QQEQQE
OCCEEE

SHARED SHARED

UNI-DIRECTIONAL BI-DIRECTIONAL SCANNING MODE
SHARED

e

PRACTICAL MESH

Sensor
‘ Hub SHARED CLUSTER

Figure 3-1. Example ANT Networks

L

oy .
.Athelpowuer;!: 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

7 of 86

For the purpose of illustration, a simple example follows to demonstrate the basic concept of ANT
channels (Figure 3-2).

Channel A

Channel C
Hub 1 -

Channel B

Figure 3-2. A Simple ANT Network

ANT usage and configuration is channel-based. Each ANT node (represented by a circle) can connect to
other ANT nodes via dedicated channels. Each channel generally connects two nodes together; however a
single channel can in fact connect multiple nodes.

Each channel has, as a minimum, a single master and single slave participant. The master acts as the
primary transmitter, and the slave acts as the primary receiver. In Figure 3-2, large arrows indicate the
primary data flow from master to slave, with small arrows indicating reverse message flow (e.g. Channel
B, C). A channel with a single arrow (e.g. Channel A) is used to represent a one-way link, which supports
the use of lower-power transmit-only nodes. Note that an ANT node can act as both a slave (e.g. Hub1
channel A, B) and a master (e.g. Hubl channel C) simultaneously.

The following table describes the master / slave status of each of the channels shown in Figure 3-2

Channel Master Slave
Channel A Sensorl (TX-Only) Hub1 (RX)
Channel B Sensor2 (TX) Hub1 (RX)
Channel C Hub1 (TX) Hub2 (RX)
L
3 i . .
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

8 of 86

4 ANT Nodes

Each node in an ANT network consists of an ANT protocol engine and a host controller (MCU). The ANT
engine encapsulates the complexity of establishing and maintaining ANT connections and channel
operation within its firmware. The host controller is thus free to handle the particulars of an application
with only a limited burden in initiating ANT communications to other nodes, which it does via a simple
serial interface between host and ANT engine, as shown in the following diagram.

Node

Host MCU

7

Ant Engine

Serial
Interface

Figure 4-1. Contents of an ANT node

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

9 of 86

5 ANT Channels

In this section, further details are presented about the ANT protocol’s most fundamental building block:
the channel. As previously discussed, a channel must be established to connect two nodes together.

Nodel |«
Channel A

Channel A

Master Slave

Figure 5-1. Channel communication between two ANT nodes
A channel consists of:
e A master (e.g. Nodel)
e A slave (e.g. Node2)

5.1 Channel Communication

The ANT data types determine the type of communication that will occur between the two nodes of an
ANT channel. There are three data types: broadcast, acknowledged and burst message transfers. Each
time the host application sends a data message to ANT for transmission, it specifies the data type along
with the message data. Details on the host->ANT serial interface and messaging will be described in later
sections.

The overall communication has two levels — one governs the direction (master to slave or vice versa) and
the second specifies the type. They are described in detail in the following sections.

Data messages are transferred between nodes in one of two directions:
1. Forward Direction (Master -> Slave)

2. Reverse Direction (Slave -> Master)

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

10 of 86

Messages are transmitted in the forward direction at the designated channel period (Tch). In other words,
once the channel is opened, a master device will always transmit a message on each channel timeslot as
shown in Figure 5-2. The slave may optionally send data back to the master in the reverse direction.

Tch Tch * Tch

master [] B]

J J i J fime ™

we i N N N

Ol
Forward . Reverse
Channel Timeslot (Always) E Direction (Optional) B Direction

time"

Figure 5-2. Channel communication showing forward and reverse directions. Not to scale.

There are three basic data types supported in both forward and reverse directions: broadcast,
acknowledged and burst. These are described in section 5.3.

5.2 Channel Configuration

In order for two ANT devices to communicate, they require a common channel configuration that includes
information related to the operating parameters of a channel. The following information is required to
define a channel configuration.

e Channel Type (section 5.2.1)

» Optional Extended Assignment (section 5.2.1.4)

e RF Frequency (section 5.2.2)

e Channel ID

o Transmission Type (section 5.2.3.1)

e Device Type (section 5.2.3.2)

e Device Number (section (5.2.3.3)
e Channel Period (section 5.2.4)
e Network (section 5.2.5)

Although the configuration of a specific channel can remain constant throughout its connection, most
parameters may be changed while the channel is open. Also, it should be noted that a master can
maintain multiple channels that differ in terms of channel configuration parameters.

Further information on which channel parameters must be set prior to opening a channel, may or may not
be changed during an open channel, and resulting implications, can be found in Section 5.3.

5.2.1 Channel Type

Channel type specifies the type of communication that will occur on the channel. It is an 8-bit field with
certain acceptable values in the range of 0 to 255. The channel type must be specified prior to opening
and establishing a channel. Some common channel types are given below.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

11 of 86

Value Description

0x00 Bidirectional Slave Channel

0x10 Bidirectional Master Channel

0x20 Shared Bidirectional Slave Channel
0x40 Slave Receive Only Channel

5.2.1.1 Bidirectional Channel

For a bidirectional channel type, data can flow in both the forward and reverse directions. The primary
direction data flow is determined by the mode specified. For example, if a node establishes a bidirectional
slave channel type, it will primarily receive but can still transmit in the reverse direction. Similarly, the
master node will primarily transmit data in the forward direction but can also receive in the reverse
direction. Please refer to Sections 5.1 for more information on the concept of forward and reverse data
flow.

5.2.1.2 Shared Bidirectional Channel

Shared channels expand on the basic bidirectional channel types. Shared channels can be used where a
single ANT node must receive, and possibly process, data from many nodes. In this scenario, multiple
nodes will share a single independent channel to communicate with the central node. An example of a
shared channel network is provided in Figure 3-1. See section 5.5 and 5.6 for more information regarding
independent and shared channels respectively.

5.2.1.3 Transmit/Receive Only Channel

Transmit and receive only channel types can only send data in the forward direction. In other words, the
master cannot receive data from any slave and similarly, for the receive only channel, the slave cannot
send data. As such, this channel type can only use the broadcast data type (described in section 5.3) and
should not be used if the application requires any form of confirmation or acknowledgement of the
successful receipt of data. Transmit only channels exist for legacy support and are not recommended for
general use as it also disables the ANT channel management mechanisms. Receive only channels are
recommended for diagnostic applications using continuous scanning mode.

5.2.1.4 Channel Extended Assignment

The optional extended assignment byte allows various ANT features to be enabled. Currently, these
features are frequency agility and background scanning channel. The extended assignment byte is not
available on all ANT devices; please refer to datasheets for more details.

5.2.1.4.1 Frequency Agility

Similar to frequency hopping schemes, ANT Frequency Agility allows a channel to change its operating
frequency to improve coexistence with other wireless devices such as Wi-Fi. However, unlike frequency
hopping, this functionality will monitor the channel’s performance and only change operating frequencies
when significant degradation is observed. Both the master and the slave must be configured with
frequency agility enabled, and have the same three operating frequencies set.

For more information refer to the "ANT Frequency Agility” application note. This application note also
explains how to implement frequency agility at the application level for those ANT devices that do not
have frequency agility as a built in feature.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

12 of 86

5.2.1.4.2 Background Scanning Channel

The background scanning channel is a channel that is performing a continuous search operation. As with
standard ANT search, it can be performed in either high or low priority modes. Only one background
search channel should be open at a time on a single device. For more information refer to the "ANT
Channel Search and Background Scanning” application note.

If other channels are open, it is recommended that the background channel search timeouts are
configured for low priority search mode. This will ensure that the background search mechanism does not
interfere with any other channels operating on the device.

The background scanning channel can also be used in conjunction with proximity search. See section 6.2
for more details.

5.2.2 RF Frequency

ANT technology supports the use of any of the available 125 unique RF operating frequencies. When
assigning frequencies it is important to check for compliance with international standard frequencies. A
channel will operate on a single frequency throughout its existence, which must be known and adhered to
by both master and slave prior to the establishment of a channel. After the channel has been established,
the RF frequency can be changed “on the fly” (i.e. while the channel is open); however, the new
frequency must be set at both the master and the slave nodes. Note that this can result in the slave node
returning to search mode until it finds, and synchronizes with, the master.

The RF frequency is an 8-bit field with acceptable values ranging from 0 to 124. This value represents the
offset in 1MHz increments from 2400MHz, with the maximum frequency being 2524MHz. The following
equation can be used to determine the value for the RF frequency field.

Desired _ RF _ Frequency (MHz) — 2400MHz

1MHz
For example, if a network operating frequency of 2450MHz was desired, the RF frequency field will be set
as 50.

RF _ Frequency _val =

The default RF frequency field value is 66 and represents the network operating frequency of 2466MHz.

It is important to note that it is not necessary to use different RF frequencies to support multiple
coexisting channels. The TDMA nature of the ANT system means that a large number of channels can
coexist on a single common RF frequency. It is the product developer’s responsibility to ensure that RF
frequencies used will comply with the regulations of all regions of the world in which this equipment is to
be used.

5.2.3 Channel ID

The most basic descriptor of a channel, and one that is crucial in device pairing, is the channel ID. In
order to establish an ANT channel, the host must specify its channel ID (if master), or the channel ID it
wishes to search for (if slave). It's a 4-byte value that contains 3 fields — Transmission Type, Device Type
(including pairing bit) and Device Number. For a private or a public network, these three fields can be
user defined. Typically, the device type is a number that represents the class (or type) of the master
device. The device number is a unique number representing a specific master device. The transmission
type is a number that represents the different transmission characteristics of a device, which can be
determined by manufacturer or pre-defined in an ANT+ (or any) managed network.

Only devices with matching channel IDs can communicate with each other. The channel ID represents the
device type/number and transmission type of the master device and must be specified on the master
device. On a slave device, these fields are set to determine which master device to communicate with.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

13 of 86

They can be set to match a specific master, or any/all of these fields can be set to zero, representing a
wildcard value, such that the slave will find the first master matching other channel parameters (network
key, frequency).

The three types are described in more detail in the following sections.

5.2.3.1 Transmission Type

The transmission type is an 8-bit field used to define certain transmission characteristics of a device. An
example usage is the SensRcore™ implementation, which defines the two least significant bits of the
transmission type to indicate the presence, and size, of a shared address field at the beginning of the
data payload, and the third least significant bit (Isb) to indicate the presence of a Global Data
Identification Byte.

This parameter must be specified on a master device; however, it can be set to zero (wildcard) on a slave
device. For private networks, the transmission type can be defined as desired.

5.2.3.2 Device Type (+Pairing Bit)

The device type is an 8-bit field used to denote the type (or class) of each participating network device.
This field is used to differentiate between multiple nodes of network devices such that participants are
aware of the various classes of connected nodes and can decode the received data accordingly. For
example, one device type value could be assigned to heart rate monitors, which will be different to the
value assigned to bike speed sensors, and their respective data payloads will be interpreted accordingly.

Please note that the most significant bit of the Device Type is a device pairing bit. Refer to section 1, and
the “Device Pairing” application note for more information on device pairing.

This parameter must be specified on a master device; however, it can be set to zero (wildcard) on a slave
device. For private networks, the device type can be defined as desired. Specific implementation-level
information about channel ID usage is provided in the channel ID functional description in Section 9.5.2.3.

5.2.3.3 Device Number

The device number is a 16-bit field that is meant to be unique for a given device type. Typically, this may
be correlated to the serial number of the device or, it could be a random number generated by the device
if the process of setting serial numbers for a particular product is unavailable. This parameter must be
specified on a master device, i.e. it cannot be set to zero. In a slave device, this field may also be used as
a wild card during device pairing as described in section 1. The channel ID functional description is
located in Section 9.5.2.3.

5.2.4 Channel Period

The channel period represents the basic message rate of data packets sent by the master. By default, a
broadcast data packet will be sent (master) and received (slave), on every timeslot at this rate. The
channel message rate can range from 0.5Hz to above 200Hz, with the upper limit dependant on the
specific implementation.

The channel period is a 16-bit field with its value determined by the following equation.

Channel Period val = 32768
MessageRat{H?2)
For example, to have a message rate of 4Hz on a channel, the channel period value must be set to 32768
/4 = 8192.
L
2 i) -
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

14 of 86

The default message rate is 4Hz, which is chosen to provide good, robust performance as described
below. It is recommended that the message rate be left at the default to provide more readily
discoverable networks with good power and latency characteristics.

The maximum message rate (or the minimum channel period) depends on the computational capacity of
the system. High data rates in combination with multiple active channels will substantially limit the
maximum message rate.

Bursting, which is described in the following section, can achieve a data rate of 20kbps. This is
independent of the message rate. In other words, the message rate will effect the time between whole
burst transfers, but does not effect the actual rate of bursting.

Proper assignment of channel period is critical and it is imperative to be mindful of the following issues:

e The message rate is directly proportional to the power consumption. Please see respective ANT
product datasheet for details.

e A small channel period allows for higher data-transfer rates.
e A small channel period results in faster successful device-search operations.

5.2.5 Network

ANT supports the establishment of numerous unique public, managed and private networks. A particular
network may specify a set of operating rules for all participating nodes. In order for two ANT devices to
communicate, they must be members of the same network. This provides the ability to establish a network
that can be publicly available, or purposely shared among multiple vendors with the goal of establishing
an ‘open’ system of interoperable devices.

A managed network defines rules and specific behaviors governing its use. An example of a managed
network is the ANT+ network. Those companies who have adopted the ANT+ promise of interoperability
are members of the ANT+ Alliance, a special interest group which fosters optimized brand value and
partnerships with other top tier products. The key advantage of this unique managed network is device
specific interoperability which enables wireless communication with other ANT+ products. Target
applications include any wireless sensor monitoring of sport, wellness or home health.

ANT+ has device profiles that specify data formats, channel parameters and the network key. Examples of
ANT+ Device Profiles include:

e Heart rate monitor

e Speed and distance monitors

e Bike speed and cadence sensors

e Bike power sensor

e Weight scale (for example, tracking BMI and percent body fat)
e Fitness equipment data sensors

e Temperature sensor

Conversely, a private network could be defined to ensure network privacy and restrict access to intended
participating devices only. Channels can be independently assigned to different networks so that it is
possible for a single ANT device to be a member of multiple networks.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

15 of 86

The ANT Network has two components which are described below.

5.2.5.1 Network Number

A network number is an 8-bit field that identifies the available networks on an ANT device, with
acceptable values ranging from 0 to the maximum number defined by the ANT implementation. The host
can obtain this maximum number by querying the ANT system using the appropriate request message
(Please refer to Section 9 for more details). The default Network Number is 0. And network number 0 is
assigned to the “Public Network” by default. For AP1 devices, the remaining network numbers are left
uninitialised; however, for non-AP1 devices all network numbers also default to the public network key.

The network number will be assigned a network key using the Set Network Key (0x46) message, and any
individual channels assigned to a network number will be using the associated 8-byte network key.
Multiple channels can be assigned to the same network number, so a network key can be used in multiple
channels without having to enter the key multiple times.

5.2.,5.2 Network Key

The network key is an 8-byte number that uniquely identifies a network and can provide a measure of
security and access control. The Network Key is configurable by the host application and a particular
Network Number will have a corresponding Network Key. Only channels with identical valid network keys
may communicate with each other. Also, only valid network keys will be accepted by ANT. Note, if a Set
Network Key (0x46) command is sent with an invalid key, the network key will not be changed; it will
retain the value it held prior to the command.

The Network Number and the Network Key together provide the ability to deploy a network with varied
levels of access control and security options. By default, ANT firmware assigns the Network Number 0 with
the default Public Network Key. This network is open to all participating devices and has no set rules
governing its use.

For more information on established public/managed networks or initiating your own network, please
contact Dynastream at www.thisisant.com.

5.2.6 Example Channel Configuration

An example channel configuration for a simple application is given below:

Parameter Value Description
Network Number 0 Default Public Network
RF Frequency 66 Default Frequency 2466MHz
Device Number 1 Sample Serial Number
Transmission Type 1 Transmission Type (no shared address)
Device Type 1 Sample Device Type
Channel Type 0x10 Bidirectional Transmit Channel
Channel Period 16384 2Hz Message Rate
Data Type 0x4E Broadcast

Note the network number is set to ‘0’, this is the default network number for the public network key.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

http://www.thisisant.com/

16 of 86

5.3 Establishing a channel

The prerequisite for establishing a channel is that the master and slave must have common knowledge of
the channel configuration as outlined in Section 5.2. Figure 5-3 shows the process required to properly
establish communication between two ANT nodes. Certain channel parameters (within solid lines) have no
default value and must be set by the application, while other parameters (within dashed lines) do have
defaults and only require setting if a different value is desired.

MASTER SLAVE
! Set Network Key | | Set Network Key |
[Network #: 0 ! : Network #: 0 !
! Key: public : i Key: public |
Assign Channel Assign Channel
Type: 0x10,0x30 or 0x50 Type: 0x00,0x20 or 0x40
Set Channel ID Set Channel ID
Device # Device # or 0"
Device type Device type or “0”
Trans’ type Trans' type or “0”
[= mmmmmsmsmsmsmsmsms==- =
\ Set RF Frequency ! | Set RF Frequency !
I 66" (2466MHz) I ! 66" (2466MHz) I
m— = ——— - mmmm s e e mm == - =
! Set Channel Period | | Set Channel Period !
I “8192” (4Hz) I ! “8192" (4Hz) I
B S . I]
! SetTxPower ! | SetTx Power !
I “3” (0bDm) I ! “3” (0bDm)

1 .

1 Set Search timeouts |
| HP: “10” (25s) 1
i LP: “2” (5s) |

\ I

Open Channel Open Channel

Figure 5-3. Process to establish communication channel between master and slave nodes.

The default network configuration is the public network key, assigned to network number 0. If a private or
managed network is desired, this parameter must be set prior to setting any other channel
parameters. Once the network key has been set, all other channel parameters will return to their default
values. Refer to section 9.5.2.7 Set Network Key(0x46) for details.

After (optionally) setting the network key, the channel type must be assigned to the channel you wish to
open. For example, the master node will need to be assigned as one of the transmit channel types, and

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

17 of 86

the slave node assigned a corresponding receive channel type. Refer to section 9.5.2.2 Assign Channel
(0x42).

Next, the Channel ID must also be set. The device number/type and transmission type must be specified
on the master node. The slave can set all, some or none of these fields to match those of the master
depending on the application. Any field that does not match that of the master should be set to a wildcard
value of zero. Refer to section 9.5.2.3 Set Channel ID (0x51).

If desired, other channel parameters such as RF frequency (section 9.5.2.6), Channel period (9.5.2.4),
and the yet to be discussed Tx power (9.5.2.8) and search timeouts (9.5.2.5 & 9.5.2.12) can also be set,
but are not required.

The final step is to open the channel (section 9.5.4.2). Once opened, the master establishes the channel
by transmitting 8-byte data packets in the designated timeslot at the established message rate. The
master ANT channel will be maintained indefinitely at this message rate. The channel master’s host
controller will optionally provide new data to the ANT engine for continuing transmissions.

The slave on the other hand, once its channel is opened, will immediately start searching for a master
that matches the channel ID criteria. Once the master has been located, and a connection established, the
slave receives data indefinitely at the given message rate. If no master is found within the given timeout
periods, then the slave channel will close. As the master never searches, no timeout values need to be
set. The master will transmit until the channel is specifically closed by the application.

5.4 ANT Data Types

There are three data types supported by ANT: broadcast, acknowledged and burst data. Each data type is
sent in 8 byte packets over the RF channel. The data type is not a channel configuration parameter and a
bi-directional ANT channel is not restricted to a single data type. In other words, any of the three data
types can be sent in either the forward or reverse direction, at the channel’s designated timeslot, at the
discretion of the host. The only restriction is for uni-directional channels, which can only send broadcast
data in the forward direction.

5.4.1 Broadcast Data

Broadcast data is the most basic data type and is the system default. Broadcast data is sent from the
channel master to the slave on every channel timeslot. Broadcast data is only sent from the slave to the
master in the reverse direction if expressly requested by the slave’s Host MCU (by default, no data is sent
without a request).

A master device is always transmitting in the forward direction, at every timeslot. As stated earlier, the
broadcast data type is the system default. If no new data has been provided by the host, the previous
message packet, whether it was sent broadcast or otherwise, will be re-transmitted as a broadcast
message. Messages in the reverse direction, on the other hand, are not required on each channel period.
As such, broadcast messages are only sent in the reverse direction once.

Broadcast data is never acknowledged, and so the originating node will not be aware of any lost data
packets. In the case of a one-way transmission link (i.e. transmit-only master communicating to a slave),
broadcast data is the only available data type due to the inability of the master to receive an
acknowledgement.

Broadcast data consumes the least amount of RF bandwidth and system power. It is the preferred choice
of communication where occasional data loss is tolerated (although it should be noted that any data loss
will be very limited in most non-hostile RF environments). An example system where occasional data loss
is not critical is that of a temperature logging system, where changes in temperature are relatively slow
compared to the communications message rate.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

18 of 86

5.4.2 Acknowledged Data

At any time during an established bi-directional connection, in either the forward or reverse direction, a
device can choose to send an acknowledged data packet at the next timeslot. The node that receives the
acknowledged data packet will respond with an acknowledgment message back to the originating device.
The host controller of the originating device will be notified of that packet’s success or failure, therefore
knowing that the packet transmitted successfully. There is no automatic re-transmission of
unacknowledged data packets.

The master host application may send every data packet as acknowledged data, or may mix broadcast and
acknowledged data as appropriate to the particular application. To decide which is more appropriate, the
following should be taken into consideration:

e Acknowledged data packets use more RF bandwidth and consume more power, which should be
taken into consideration when designing power-sensitive applications.

o Acknowledged data is ideally suited for the transmission of control data, ensuring that both nodes
are aware of each other’s state.

For a master device, if the data type isn’t specified as acknowledged or, if an acknowledged message was
sent and no new data provided before the next transmit time slot; the message is sent as Broadcast data
type on the next channel time slot.

5.4.3 Burst Data

Burst data transmission provides a mechanism for large amounts of data to be sent between devices.
Burst transfers consist of a rapid series of continuous acknowledged data messages. The rate at which
packets are burst across the channel is independent of, and significantly faster than, the channel period;
resulting in a maximum 20kbps data throughput. It should be noted that this also means the burst packets
are synchronized off each other, not the regular channel period.

Similar to acknowledged messages, the originating host’s MCU will be informed of the burst transfer’s
success or failure. However, the success/failure notification is for the entire burst transfer rather than for
each packet and, unlike acknowledged messages, any lost data packets in the transfer will be
automatically retried. Should any packet fail to transmit successfully after five retries, ANT will abort the
burst transfer and notify the host MCU with a failure message.

There is no limit on the duration of a burst transaction. However, burst transactions take precedence over
all other open channels on both participating nodes. If there are other channels in the system, care should
be taken to service them with reasonable frequency. Although the ANT protocol is robust and can handle
outages caused by burst transfers or other external interference, excessive channel starvation may lead to
loss of synchronization or data. Some examples of this are:

During a prolonged burst, as the packets are synchronized off each other, clock errors may cause the
regular channel periods to drift, potentially losing synchronization. Hence, once the burst completes, the
channels are no longer synchronized and the slave drops into search.

Another extreme example of this would be if the master node of one channel was servicing a prolonged
burst on another channel; if the burst duration was too long, the slave node of the former channel could
lose synchronization, drop back into a search and timeout (closing the channel).

Bursting can create interference for other devices that are operating at the same RF frequency.

For more information on burst transfers please refer to the application note “Burst Transfers”.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

19 of 86

All data types are explained in further detail, and sequence diagrams provided, in section 9.5.5. The host
application software on both the master and slave sides should be implemented to expect common data
types (i.e. broadcast vs. acknowledged vs. burst) to be utilized as appropriate for a particular application.
The specific format of the contents of the data payload must be previously established by both host
controllers such that data can be properly decoded and interpreted.

Channel .
Data Type)) Description
Direction
Default Data Type.
Forward Broadcast messages sent every timeslot (unless otherwise requested)
and will be retransmitted if ANT has not received any new data from
Broadcast the master’s host MCU

Broadcast messages optionally sent each channel timeslot.
Reverse Only sent if specifically requested by the slave’s host MCU.
Sent only once, there is no retransmission

If requested, sent on the next channel timeslot
If the data type isn’t specified as Acknowledged or if no new data is

Forward . o .
provided before the next transmit time slot, the message is resent as
Acknowledged ;
Broadcast data type on the next channel time slot
Acknowledged data types only sent when specifically requested
Reverse .
Not re-transmitted
Forward A burst transfer will commence at start of the next timeslot.
Burst Bursts packets synchronize off each other
Reverse Same as above

All data types can also be ‘extended’ such that the receiving node’s ANT will pass the channel ID
information, along with the data, to the host. For more information see section 7.1.1.

5.5 Independent Channels

An independent channel has only one master and one slave. It is possible for the master or slave to be a
master or slave to another, or a number of other, nodes. But from the point of view of an independent
channel, there is only one of each. For example, consider the four-node network in Figure 3-2. Each
channel has only one master and one slave.

A broadcast network, as shown in Figure 3-1, is also formed using independent channels even though the
data from one master is received by many slaves. Such a network has a unique master who doesn’t
purposely initiate communication with multiple slaves on the same channel. Note, also, that the data in a
broadcast network is in the forward direction only. This prevents multiple slaves from simultaneously send
data to a single master. This is different to a shared channel, which also has a single master and multiple
slaves; however, there is an addressing scheme that allows for data flow in both directions (refer next
section).

Although independent channels offer simplicity in implementation, a node can only support a limited
number of simultaneous independent channels within the confines of the system’s computational ability.
For example, the nRF24AP1 can only support 4 independent channels.

For an implementation example using independent channels, refer to Section 8.1.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

20 of 86

5.6 Shared Channels

Shared channels can be used where a single ANT node must receive, and possibly process, data from
many nodes. In this scenario, multiple nodes will share a single independent channel to communicate with
the central node. An example of a shared channel network is provided in Figure 3-1.

Shared channels are made possible by the use of a one- or two-byte Shared Channel Address field and a
specific value for the Channel Type; both controlled by the host application. As will be detailed in a later
section, ANT has an 8 byte data payload. The Shared Channel Address field replaces the first one or two
bytes of the data payload as shown in Figure 5-4.

Independent Channel Data Payload

Data Data Data Data Data Data Data Data
0 1 2 3 4 5 6 7

Shared Channel Data Payload

Shared | Shared
Address | Address
LSB MSB

Data Data Data Data Data Data
0 1 2 3 4 5

Figure 5-4. Independent and 2-byte Shared Channel Data Payloads.

If a channel is defined as shared, the host application provides ANT with the shared address and data; for
example, with 2-byte addressing, more than 65k slave devices can share a single ANT channel.

In a shared channel, the node that is intended to communicate with many other nodes must initiate the
channel as the master. All other nodes that access this shared channel must be configured as slaves. All
nodes, both master and slaves must be configured as a shared channel, have matching channel IDs
(wildcards can be set on slaves when opening a channel, but will match upon a successful search), RF
frequencies and channel periods. The master’s host application must be aware of each slave node’s
address, and similarly, each slave’s host application must also know its own shared address.

The master controls the communication by transmitting data at the channel message rate. The master’s
host application will provide the data payload, including the shared address field as shown in Figure 5-4.
All slaves on the channel will synchronize off this transmitted message; however, ANT will only release
the data to the slave’s host if the shared address field matches the shared address for that
node or if the shared address holds a value '0’. The master can send data to all slaves at the same
time using the Shared Channel Address of 0. A slave will respond in the reverse direction only if its Shared
Channel Address matches the one it receives from the master. An example shared channel is shown in
Figure 5-5, with master node M, and four slave nodes addressed 1:4.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

21 of 86

Shared Address Field: Shared Address Field: Shared Address Field:
[01][00] [04][00] [00][00]

Figure 5-5. Example Shared Channel. Grey nodes indicate the node’s host received data from ANT.
Arrows indicate direction of data flow.

Figure 5-5 a: The master’s (M) host provided [01][00] in the shared address field (LSB MSB). ANT will
transmit the data with this shared address on the next channel period. All slave node’s receive and use
this message to maintain synchronization, but only slave node 1’s host will actually receive the data.
The ANT protocol will prevent the data from progressing to an incorrectly addressed node’s host. Slave
node 1 has the option of sending data back to the master (i.e. in the reverse direction) at this time. No
other slave node can transmit data to the master.

Figure 5-5 b: The master’s host provided [04][00] shared address field. Similarly, the data is transmitted
on the next channel period, all slaves use this transmission for synchronization; only node 4’s host
receives the data and has the option of transmitting in the reverse direction.

Figure 5-5 c: Master host provides [00][00] in the shared address field. This indicates a broadcast to ALL
nodes. As such, each slave host receives the data. There is no reverse direction when broadcasting to all
slaves, therefore no slaves can transmit.

The shared channel concept is extensible to acknowledged data and burst data transactions. In burst
data transactions, only the 1°* data packet requires the Shared Channel Address in the data payload, the
remaining data packets may contain only the application data.

Please refer to Section 8.2 for a sample network implementation and to see the sequence of commands
required to create a shared channel.

The shared channel functionality can also be extended for ‘ad hoc’ joining/leaving of channel by
implementing an auto shared channel. For more information see application note “Auto-Shared Channel”.

5.7 Continuous Scanning Mode

Continuous scanning mode is another method that can be used when a single ANT node must receive, and
possibly process, data from multiple nodes. Rather than have a single master controlling multiple slaves
(as for shared channels) a node in continuous scanning mode receives full-time, allowing it to receive
from multiple transmitting masters at any time. Similar to a shared channel, all devices operate on the
same RF frequency.

The ANT radio on the central node is always occupied with the continuous scanning mode; hence, no
other channels can be open on that node. Also, as the RF is continually active, this node draws significant
power (~18 mA) and should not be used for devices that have tight power constraints.

Each of the transmit nodes should have unique device numbers, such that its channel ID is also unique.
With a unique channel ID, the central node can correctly attribute each received message to its
corresponding master device.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

22 of 86

The receiving node is configured as a bidirectional receive channel that is opened with the “"Open Rx Scan
Mode(0x5B)” command (see section 9.5.4.5). As the node is receiving full time, the channel period does
not need to be set. Although the central node is receiving full time, it can transmit messages back to the
master nodes. For this to happen, a master must first transmit to the receiving node, which can then
optionally send data back to that specific master in the reverse direction.

A receive only channel type can be used in conjunction with the continuous scanning mode for diagnostic
applications.

See the “Continuous Scanning Mode” application note for more details on implementing the continuous
scanning mode.

In comparison to using a node in continuous scanning mode, shared channels have the advantage of
maintaining low power at all nodes. However there is some latency due to the synchronous nature of the
shared channel, and the time involved to service each individual node. As the central node in continuous
scanning mode is always receiving, there is very little latency and, should the central device have
sufficient power capabilities, this mode is advantageous when intermittent, asynchronous, or
instantaneous transmissions are desired.

Please note, not all modules can support continuous scanning modes; refer to the datasheets for their
respective capabilities.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

23 of 86

6 Device Pairing

The act of pairing two devices (master with slave) involves establishing a relationship between two nodes
that wish to communicate with one another. This relationship can be permanent, semi-permanent or
transitory.

A pairing operation consists of a slave device acquiring the unique channel ID of the master device. If
permanent pairing is desired, the slave node should store the master’s ID in permanent or non-volatile
memory. This ID will then be used to open a channel with this ID in all subsequent communication
sessions. In semi-permanent relationship, the pairing lasts as long as the channel is maintained. Once it
times out, the pairing is lost. In transitory, the pairing is temporary — for as long as is needed to get some
data.

Please note that if a master uses only broadcast messaging, or if it uses the shared channel feature,
multiple slaves may pair and communicate with the same master.

As previously mentioned, when the master device’s channel is opened, it will start broadcasting messages.
Its unique channel ID is broadcast with every message. When a slave device’s channel is opened, it will
immediately start searching for a master that matches the channel ID provided by the slave host MCU. In
the case where a slave does not have knowledge of a specific master’s channel ID, a pairing mechanism is
available. The slave can search for a master using a wild card ID (value ‘0’) in any, or all, of the channel
ID fields. The slave will then search according to the criteria that it does know. For example, the slave
may know what device type it wishes to connect to, but not the actual device number or transmission
type. The slave’s host application would then set the channel ID with the known device type, and place a
wildcard (i.e. 0) in the remaining fields. On opening the channel, the slave would then search for any
masters of that specific device type, and of any device type or transmission type; upon a successful
search result, the specific ID of the master can be stored and used in the same manner as previously
described for all future communications.

The pairing bit, which is the most significant bit (MSB) of the device type field, is an advanced pairing
feature. On the slave side, the pairing bit is only checked by ANT if at least one of the fields of the
Channel ID is a wild card. On the master side, the pairing bit must be set to indicate it is available for
pairing.

Note, the pairing bit does not Aave to be set for pairing to occur; however, the status of the pairing bit
must match for pairing to occur. This feature allows for more control as, for example, a slave may have a
fully wild-carded channel ID and the pairing bit not set. This would result in the slave searching for any
broadcasting master. Alternatively, if the slave were to have the pairing bit set with a fully wild-carded
channel ID then it would search only for a master that also had its pairing bit set. This is a somewhat
simple example but illustrates how pairing can be aided via the pairing bit.

For more information see the “Device Pairing” application note and the examples below.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

24 of 86

6.1 Pairing Example

An example pairing operation on a network of three remote temperature sensors (masters) and one base
unit (slave) is shown below.

Temp

Sensor 1 Channel 0

Channel 2

Temp
Sensor 3

Base Unit

Channel 1

Temp
Sensor 2

Figure 6-1. Example ANT Network for use in Device Pairing

The base unit wishes to establish a permanent relationship with all temperature sensors. To initiate the
pairing operation, each temperature sensor should be placed into a pairing mode. From a user
perspective, it is left to the application to define the method of entry into pairing mode — for example this
could be done upon initial insertion of a battery, or by means of a button push by the user, etc. As far as
the ANT serial message interface is concerned, the host controller invokes a pairing mode by sending the
following messages to the ANT engine (See Section 9.3 for details):

1. Configure Channel

2. Set Channel ID (discoverable — i.e. device type=temperature sensor with pairing bit set)
3. Open TX Channel

4. Begin transmitting data on channel timeslot

At this time, the base unit (slave) must be prepared to search for the ID of the appropriate device type
(temperature sensor). It performs the following:

1. Configure Channel

2. Set Channel ID (Transmission Type = Specific or Wild card, Device Type = Temperature sensor
with Pairing Bit Set, Device Number = Wild Card)

3. Open RX Channel
4. Begins searching

The base unit finds a temperature sensor device type with pairing bit set. The channel is established, the
slave ANT engine will pass the specific channel ID for that device to the host controller, which will store
the ID for future channel establishment. This procedure is repeated for all three temperature sensors.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

25 of 86

Each temperature sensor can choose to disable its discoverability after a time-out period (or after
connection acknowledgement from the base unit if bidirectional transmission is supported) in order to be
‘invisible’ to future discovery by other slave devices.

This pairing process is required only once for the lifetime of an ANT system if a permanent relationship
between two specific devices is desired. In such cases, device pairing may be performed during product
manufacturing (factory environment) to remove burden from the customer.

6.2 Inclusion/Exclusion Lists

Another pairing feature available on some devices (check datasheets for capabilities) is the
inclusion/exclusion list. Up to four known channel IDs can be sent to the module and stored in this list.
All fields must be defined and contain non-zero values. When enabled and configured as an inclusion list,
the channel ID’s stored will be the only channel IDs accepted in a wild card search. These means that the
slave will only connect to one of the specific master channel ID’s listed. Similarly, if this feature is
configured as an exclusion list, the slave will not acquire any master with a listed channel ID.

Refer to sections 9.5.2.9, 9.5.2.10 and “Device Pairing” application note for more details.

6.3 Proximity Search

Another feature to aid in device pairing is proximity search, which allows channels to be acquired
according to the relative distance between two devices. In a standard ANT search as described in the
earlier section, the channel is opened and the slave device starts searching for a master with a matching
channel ID. If any part of the channel ID is assigned a wildcard; then the slave could potentially match to
one of a number of masters in range. For example, if a slave set its device ID to search for a specific
device type (say heart rate monitor), but placed a wildcard in all other fields, and there were four heart
rate monitors in range (Figure 6-2 a, grey shading indicating slave’s range); then, on opening its channel
it could pair to any one of the four heart rate monitors depending on which transmitting master it found
first.

(@ (b)
Figure 6-2. (a) Standard search (b) Proximity search, showing bins 1-5 (of maximum 10).

Proximity search designates ‘bins’ of proximity ranging from 1 (closest) to 10 (furthest) as illustrated in
Figure 6-2 b. The bins do not correlate to specific distances as this is very design-dependent (antenna

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

26 of 86

design/orientation, etc) and will need to be determined by the designer. Incremental distances are also
design dependent.

The recommended use is to initially set the proximity search threshold value to bin 1 (Figure 6-3 a), as
the smaller the search area, the better the results as far as limiting the possibility of finding the wrong
device. Setting the threshold value too high could result connecting to one of multiple devices (Figure 6-3
b). Choosing an appropriate proximity threshold is critical in limiting the search accordingly and acquiring
the desired device (Figure 6-3 c).

(a) (b) (@
Figure 6-3. Varying Proximity Thresholds.

Proximity search can be used in conjunction with ANT searches and background scanning channels, but
not with continuous scanning mode.

The proximity search is disabled by default. Once enabled, it is a one time requirement and the threshold
value will be cleared upon a successful acquisition. If the search times out, or if using a background
scanning channel, the threshold value is maintained

For more information please see the “Proximity Search” application note.

This feature is only available on certain ANT devices; please refer to datasheets for capabilities.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

27 of 86

7 ANT Interface

The host application and ANT communicate through a simple serial interface. The host can take the form
of an embedded microcontroller or a PC, but the basic functionality remains unchanged. For more details,
see the Interfacing with ANT General Purpose Chipsets and Modules document.

7.1 Message Structure

A typical serial message between the host and ANT engine has the following basic format.

Msg Check

Sync Length MsgID | Data_1 | Data_2 | ... | Data_N sum

Figure 7-1. ANT Serial Message Structure

As shown above, each message begins with a SYNC byte and ends with a CHECKSUM. The bytes are sent
Isb first. The following table describes each component of the serial message shown above.

Byte # Name Length Description
0 SYNC 1 Byte Fixed value of 10100100 or 10100101 (msb:lsb)
1 MSG LENGTH 1 Byte Number of data bytes in the message. 1 < N <
Max_Data_Size
2 MSG ID 1 Byte Data Type Identifier
0: Invalid
1..255: Valid Data Type (See Section 9 for details)
3..N+2 DATA_1..DATA_N N Bytes Data bytes
N+3 CHECKSUM 1 Byte XOR of all previous bytes including the SYNC byte

A complete summary of supported messages between a host and the ANT engine is presented in Section
9. The table is valid for both types of ANT interfaces: Host MCU & ANT and Host PC Interface < ANT.
Message formatting is first presented in summary form, which includes message length, ID and data fields
of each respective message type.

Please note that the multi-byte fields have been implemented in little endian format. Using the example of
a Channel ID message, the least significant byte of ‘Device Number’ is assigned to Datal, and the most
significant byte to Data2.

7.1.1 Extended Messages Format

Extended messages allow ANT to pass the channel ID information to the host, along with the received
data message. There are two formats supported by ANT, flagged and legacy, depending on the ANT
device type (refer to Section 9.4 and datasheets for capabilities). Later generation devices support the
flagged extended messages format, AP1 does not support extended messages, and AT3 supports the
legacy format as shown in Figure 7-2.

The extended data will be added to the data message as shown in Figure 7-2. Note the basic frame format
of Sync, Message Length (ML), Message ID (ID) and checksum (CS) is the same. However, instead of just

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

28 of 86

the 8-byte data payload (D0:D7). The host will now receive the 8-byte data (D0:D7) packet followed by a
flag byte (0x80) indicating the presence of the channel ID bytes: device number, device type, and
transmission type. The message length value will be altered to account for these additions. If extended
messaging has been enabled, the message length and flag bytes must be checked to see if the channel ID
bytes are present.

Standard Data Packet

Sync| ML [ID | C# | DO | D1 | D2 | D3 [D4 | D5 | D6 | D7 | CS

Extended Info

I
Msg Channel | Data Data Flag . Device | Trans’ | Check
Sync Length Msg ID Number 0 e 7 Byte Device :\lumber Type Type sum
Flagged Extended Data Packet
Msg Channel ! Device | Trans’ | Data Data Check
Sync Length Msg ID Number Device :\lumber Type Type 0 e 7 sum

Legacy Extended Data Packet Format

Figure 7-2. Extended data current and legacy formats.

Please note, the extended messaging format and Message ID are different for flagged and legacy
extended messaging formats (refer to section 9.3 for message format).

7.2 Host MCU Serial Interface — Physical Layer

The ANT serial interface between host controller and ANT engine can be implemented over either a
synchronous (SPI) or asynchronous (UART) connection. Unlike traditional SPI, the ANT serial connection
uses four GPIO lines for control instead of a slave select; however, a standard SPI block is compatible
with the ANT synchronous serial interface.

The connection type is selected by the product designer as preferred for the given implementation. The
precise details of the physical and electrical interface of each ANT product can be found in each respective
ANT product datasheet. Also refer to the Interfacing with ANT General Purpose Chipsets and Modules
document for more details.

7.3 Host PC Serial Interface

The primary method of communication between ANT and a PC is through the ANT PC Interface Library.
The components of this library are listed in Section 9. Also refer to the “"Dynamic Linking with ANT DLL”
application note.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

29 of 86

8 Example ANT Network Implementation

A sample network implementation, presenting the features of the ANT protocol is shown in Figure 8-1
below.

Node D

Node A

Node B

Figure 8-1. Example ANT Network for implementation

The simple four-node network describes an application where information from multiple nodes (B, C and
D) is to be received, and possibly analyzed, by a single central node (A). The arrows indicate the primary
flow of information between the corresponding nodes. Note that nodes B, C and D only establish one
channel, thus can be implemented using a single channel ANT device. Node A would require a 4 (or more)
channel ANT device.

The following can be assumed:
e Node B uses the broadcast data type
e Node D uses the broadcast data type
e Node C requires the acknowledged data type

e All of the network prerequisites, such as network type, device ID, RF Frequency, etc. use default
or known values between all nodes

e Device pairing has already been performed between the masters and their corresponding slaves

Sections 8.1 and 8.2 describe two methods of utilizing ANT to deploy the above example network.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

30 of 86

8.1 Implementation using Independent Channels

Using independent channels is the simplest method of implementing the aforementioned network. Given
the above assumptions, three independent channels are required. The configuration for each channel is
shown in the following tables.

Channel between Node B and Node A where Node B will be the master:

Node Parameter Value Description
Network Number 0 Default Public Network
RF Frequency 66 Default Frequency 2466MHz
Device Number 1 Serial Number of Node B
Transmission Type 1 Transmission Type (no shared
B address)
Device Type 1 Device Type of Node B
Channel Type 0x10 Bidirectional Transmit Channel
Channel Period 8192 Default 4Hz Message Rate
Data Type 0x4E Broadcast
Network Number 0 Default Public Network
RF Frequency 66 Default Frequency 2466MHz
Device Number 1 Serial Number of Node B
Transmission Type 1 Transmission Type (no shared
A address)
Device Type 1 Device Type of Node B
Channel Type 0x00 Bidirectional Receive Channel
Channel Period 8192 Default 4Hz Message Rate
Data Type 0x4E Broadcast

Channel between Node C and Node A where Node C will be the master:

Node Parameter Value Description
Network Number 0 Default Public Network
RF Frequency 66 Default Frequency 2466MHz
Device Number 10 Serial Number of Node C
Transmission Type 1 Transmission Type (no shared
C address)
Device Type 2 Device Type of Node C
Channel Type 0x10 Bidirectional Transmit Channel
Channel Period 8192 Default 4Hz Message Rate
Data Type 0x4F Acknowledged
Network Number 0 Default Public Network
RF Frequency 66 Frequency 2466MHz
Device Number 10 Serial Number of Node C
Transmission Type 1 Transmission Type (no shared
A address)
Device Type 2 Device Type of Node C
Channel Type 0x00 Bidirectional Receive Channel
Channel Period 8192 Default 4Hz Message Rate
Data Type 0x4F Acknowledged
L
ANT 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com
, , , .

the power of less

Channel between Node D and Node A where Node D will be the master:

Node Parameter
Network Number

RF Frequency
Device Number

Transmission Type

Device Type
Channel Type
Channel Period

Data Type
Network Number

RF Frequency

Device Number

Transmission Type

Device Type
Channel Type
Channel Period

Data Type

Value
0
66
2
1

0x10
8192
0x4E

66

0x00
8192
0x4E

31 of 86

Description

Default Public Network
Default Frequency 2466MHz
Serial Number of Node D

Transmission Type (no shared
address)

Device Type of Node D
Bidirectional Transmit Channel
Default 4Hz Message Rate
Broadcast

Default Public Network
Default Frequency 2466MHz
Serial Number of Node D

Transmission Type (no shared
address)

Device Type of Node D
Bidirectional Receive Channel
Default 4Hz Message Rate
Broadcast

Section 8.1.1 details the sequence of events and message transactions between the host and ANT for each
participating node as the above channels are established and network formed. Refer to Section 5.3 for
more information on the procedure for establishing a channel, and Section 9 for more information

regarding the various ANT commands.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

thisisant.com

32 of 86

8.1.1 Channel between Node B and Node A

The channel between Node B and Node A is established as shown in Figure 8-2.

NODE B
(Master)

Assign Channel
Channel #: 0
Type: 0x10
Network #: 0

!

Set Channel ID
Channel #:0
Device #: 1

Device type: 1
Trans' type: 1

|

Open Channel

NODE A
(Slave)

Assign Channel
Channel #: 0
Type: 0x00
Network #:0

!

Set Channel ID
Channel #: 0
Device #: 1
Device type: 1
Trans' type: 1

}

Open Channel

: Transmit Messages | I :
! I

: Send Broadcast Data (0x4E) | Search :

e o o e e o o - — 1 e e e oo

Figure 8-2. Node A & B Channel Establishment

As the network in this example uses the system defaults, only the minimum commands from host to ANT
are required to establish the channel. The host issues the ANT_AssignChannel() and ANT_SetChannelID()
messages with the configuration fields set as shown above. The channel number is assigned at the
discretion of the host. In this case, it is channel zero for both; however, it should be noted that the
channel numbers do not need to match on either side of the channel.

The host opens the channel using the ANT_OpenChannel() message. It is good practice to ensure the
master channel is opened prior to the slave.

Once opened, the master’s host provides ANT with data as it sees fit using the ANT_SendBroadcastData()
message. Please note that the frequency at which the host provides ANT with new data may not be the
same as the channel period. ANT will broadcast the data in its buffers at the desired message rate, if no
new data is made available by the host, the previous data will be broadcast. However, appropriate
safeguards to account for such repeated messages should be in place on the slave.

Once the slave’s channel is opened, ANT will inform the host with a ChannelEventFunc() type message
whenever a message from Node B is received. Based on the channel configuration settings, this will
happen at 4Hz. If no message is received within the timeout period of the search, ANT will send the host
a timeout message and close the channel.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

thisisant.com

8.1.2 Channel between Node C and Node A

The channel between Node B and Node A is established as shown in Figure 8-3.

NODE C
(Master)

Assign Channel
Channel #: 0
Type: 0x10
Network #: 0

|

Set Channel ID
Channel #:0
Device #: 10
Device type: 2
Trans’ type: 1

!

Open Channel

NODE A
(Slave)

Assign Channel
Channel #: 1
Type: 0x00
Network #:0

!

Set Channel ID
Channel #: 1
Device #: 10
Device type: 2
Trans’ type: 1

!

Open Channel

33 0f 86

I Transmit Messages |

I |
| Send Acknowledged Data (0x4F) |

Figure 8-3. Node C & A Channel Establishment

The channel between nodes A and C are established as for nodes A and B above. Again, only the minimum
commands from host to ANT are required to establish the channel with the given parameters. Note, in
this case the channel numbers do not match. As Nodes B, C and D are single channel devices, their
channel numbers will always be zero. Node A, on the other hand, is a 4 (or more) channel device and as
such, will utilize channels 0, 1 and 2 in this example. As such, node A’s channel 0 will be associated with
Node B, channel 1 with Node C (as seen above) and channel 2 will be associated with node D as described
in 8.1.3.

Another difference in this channel, is that once the channel is opened, the master’s host provides ANT
with data as it sees fit using the ANT_SendAcknowledgedData() message. Also note, if no new data is
made available by the host, the previous data will be sent as a broadcast message, not acknowledged
message. This is the default message type as explained in section 5.4.1. Again, appropriate safeguards to
account for such repeated messages should be in place on the slave. In this case, the slave could ighore
any broadcast data types that are received from Node C, as all new data will be sent as acknowledged
type and only repeated data will be of broadcast type.

Once the slave’s channel is opened, ANT will inform the host with a ChannelEventFunc() type message
whenever a message from Node C is received. Again, based on channel configuration settings, this will
happen at 4Hz. If no message is received within the timeout period of the search, ANT will send the host
a timeout message and close the channel.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

thisisant.com

34 of 86

8.1.3 Channel between Node D and Node A

The procedure for establishing the channel at Node D is exactly the same as that of Node B. The host of
Node A will open a third channel to communicate with Node D in the same way as for Node B.

The independent channel network example that was implementation above will continue to function as it
was deployed unless an application layer event dictates otherwise.

8.2 Implementation using Shared Channels

The network shown in Figure 8-1 can also be implemented as a single shared channel instead of using
three independent channels. This would allow all nodes to be implemented using single channel ANT
devices. The trade-off is increased power consumption (for the same latency) and, due to the inclusion of
the shared address field, a reduction in the amount of maximum useful data 8 to 6 bytes per packet.

As mentioned in the shared channel section (5.6), the central receiving node will be configured as master
of the shared channel with the remaining nodes its slaves. Each slave will have a unique, two-byte shared
channel address which will be known only to itself and the master. The updated network diagram for this
setup is shown below.

Node A
Master

Shared | Channel

Shared Channel
Address = 1

Shared Channel
Address = 3

Shared Channel
Address = 2

Figure 8-4. Shared channel implementation of sample network

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

Each node’s channel configuration is shown below.

Slave Parameter
Node

Network Type
RF Frequency
Device Number
Transmission Type
Device Type
Channel Type
Channel Period
Data Type
Network Type
RF Frequency
Device Number
Transmission Type
Device Type
Channel Type
Channel Period
Data Type
Network Type
RF Frequency
Device Number
Transmission Type
Device Type
Channel Type
Channel Period
Data Type
Network Type
RF Frequency
Device Number
Transmission Type
Device Type
Channel Type
Channel Period
Data Type
Please note:

Value

66

0x20
2370
0x4E

66

0x20
2370
0x4F

66

0x20
2370
0x4E

66

0x30
2370
0x4E

350f 86

Description

Default Public Network

Default Frequency 2466MHz

Serial Number of Node A

Transmission Type (2 byte shared address)
Device Type of Node A

Shared Receive Channel

~12Hz Message Rate

Broadcast

Default Public Network

Default Frequency 2466MHz

Serial Number of Node A

Transmission Type (2 byte shared address)
Device Type of Node A

Shared Receive Channel

~12Hz Message Rate

Acknowledged

Default Public Network

Default Frequency 2466MHz

Serial Number of Node A

Transmission Type (2 byte shared address)
Device Type of Node A

Shared Receive Channel

~12Hz Message Rate

Broadcast

Default Public Network

Default Frequency 2466MHz

Serial Number of Node A

Transmission Type (2 byte shared address)
Device Type of Node A

Shared Transmit Channel

~12Hz Message Rate

Broadcast

The Network Type, RF Frequency, Device Number, Transmission Type, Device Type and Channel Period
are controlled by the master (Node A). All slaves that want to use this shared channel must adhere to

these parameters.

The channel period for all nodes in the independent channel was 4Hz for each transmitting node (i.e.
nodes B, C, D). In order to maintain this application-level channel period, each node in the shared channel
actually needs to be set to a 12Hz channel period. This is the sum of the desired message rates of each
slave node and will allow the master to service each node at a rate of 4Hz. For example, Node A may
choose to cycle through the slaves, addressing node B on the first channel period, node C on the next
channel period, D on the next period, then back to node B and so on. This will result in each node being

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

L

thisisant.com

36 of 86

addressed once every 4Hz. Similarly, the slaves will only be able to communicate back to the master at
the time that they are serviced (i.e. also at 4Hz).

The channel between Node B and Node A is established as shown in Figure 8-5.

Address: [01][00] or [00][00]
Send Broadcast Data
[03][00][xx]...[xx] Send Broadcast Data

[01][00][D1]...[D5]

NODE A NODE B
(Master) (Slave)
Assign Channel Assign Channel
Channel #: 0 Channel #: 0
Type: 0x30 Type: 0x20
Network #: 0 Network #:0
Set Channel ID Set Channel ID
Channel #:0 Channel #: 0
Device #: 3 Device #: 3
Device type: 3 Device type: 3
Trans' type: 3 Trans' type: 3
Set Channel Period Set Channel Period
Channel #:0 Channel #:0
Message Period: 2371 (~12Hz) Message Period: 2371 (~12Hz)
Open Channel Open Channel
_______ . !
I Transmit Messages 1
| I Send Broadcast Data
| ‘— I [01][00][DO]...[D5]
|
I Send Broadcast Data : Configures ANT that node has
I [01][00][XX]...[x] I Shared Address: [01][00]
: ¢ !
| Send Broadcast Data ! P ————— - 1 _____ 9
L [02][00]0xx]...[xx] !
I * : Receive messages with Shared
! 1
! I
! 1
! I

Figure 8-5. Shared Channel Example

Apart from the Channel period, the network in this example uses the system defaults and only minimal
commands from host to ANT are required to establish the channel. The host issues the
ANT_AssignChannel(), ANT_SetChannelID() and the ANT_SetChannelPeriod() messages with the
configuration fields set as shown above. The channel number is assigned at the discretion of the host. As
all devices in this example are single channel, the channel number is zero for both; however, again it
should be noted that the hosts’ channel numbers do not need to match on either side of the channel.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

37 of 86

The host opens the channel using the ANT_OpenChannel() message. It is good practice to ensure the
master channel is opened prior to any of the slaves.

Once opened, the master’s host should provide ANT with data on every channel period, using the
ANT_SendBroadcastData() message. The host application should also pay special attention to the shared
address field, ensuring that the shared address field changes for each message sent. The shared address
field should cycle through the shared addresses for Nodes B, C and D respectively, servicing each node at
the desired 4Hz.

On the slave side, once the channel is opened, the host should send a single broadcast message to ANT
with the first two bytes indicating Node B’s shared channel address. This configures ANT to listen to
messages that are addressed to Slave Node B. The host will now be informed each time ANT receives a
message from the master that has Node B’s shared channel address.

For this application, the slave’s host would use the ANT_SendBroadcastData() message to provide data to
ANT. ANT will send the data in the reverse direction whenever it receives the appropriately addressed
message from the master (i.e. at 4Hz message rate).

Back on the master side, ANT will inform the host each time a message is received in the reverse direction
from the slave with the corresponding shared channel address. For this particular network, each slave
would send a message back to master Node A each time its own shared channel address appears.

Slave nodes C and D are configured similarly to Node B as shown in Figure 8-6.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

38 of 86

NODE C NODE D
(Slave) (Slave)
Assign Channel Assign Channel
Channel #: 0 Channel #: 0
Type: 0x20 Type: 0x20
Network #:0 Network #:0
Set Channel ID Set Channel ID
Channel #: 0 Channel #: 0
Device #: 3 Device #: 3
Device type: 3 Device type: 3
Trans’ type: 3 Trans’ type: 3
Set Channel Period Set Channel Period
Channel #:0 Channel #:0
Message Period: 2371 (~12Hz) Message Period: 2371 (~12Hz)
Open Channel Open Channel
Send Broadcast Data Send Broadcast Data
[02][00][DO]...[D5] [03][00][DO]...[D5]
Configures ANT that node has Configures ANT that node has
Shared Address: [02][00] Shared Address: [03][00]

Receive messages with Shared
Address: [03][00] or [00][00]

Receive messages with Shared
Address: [02][00] or [00][00]

[02][00][D1]...[D5]

|
|
|
Send Broadcast Data 1
[03][00][D1]...[D5] |
|

|
|
|
Send Acknowledged Data :
|

Figure 8-6. Slave Node C and D Shared Channel Configuration

One difference being that the hosts send single ANT_SendBroadcastData() messages with the first two
bytes changed to indicate the shared addresses of nodes C & D respectively. Each host will now be
informed each time ANT receives a message from the master that has that nodes shared channel address.

The only other difference, is that node C will use the ANT_SendAcknowledgedData() to provide data to
ANT; which will then send to the master in the reverse direction whenever it receives the properly
addressed message from the master (i.e. at 4Hz message rate).

The Independent and Shared Channel network implementations are to be used as a means for gaining
familiarity with network design and deployment using ANT. The sample network could be implemented in
other, more efficient ways, using various advanced features of ANT. In general, an application will govern
the method of implementation that is best suited for its needs.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

39 of 86

9 Appendix A — ANT Message Details

9.1 ANT Messages

A summary of the various messages that comprise the serial interface between ANT and a host is provided
in Section 9.3.

9.1.1 Config Messages

The ANT configuration messages allow the Host to set or change various parameters of a channel, such as
the network, device type, transmission type, message rate, RF frequency etc. These messages are the
first step in enabling a system for ANT communication.

9.1.2 Control Messages

After desirable configuration of an ANT channel or channels, the control messages provide a method for
supervising the RF as well as the activity of the ANT system.

9.1.3 Notifications

Notifications allow ANT to inform the host of startup conditions.

9.1.4 Data Messages

The final step in establishing ANT communication, the data messages form the basic input and output of
data from an ANT node. In a typical application, the Host will spend most of its ANT specific time on
handling data messages.

9.1.5 Channel Event/Response Messages

The channel event/response messages are comprised of notifications and data that are sent from ANT to
the Host. These include RF events that occur on a channel as well as messages that provide information
about the state of the ANT system.

9.1.6 Requested Response Messages

The Host is able to obtain information from ANT using request messages. ANT replies to the requests
using response messages. These include a summary of the capabilities, version information and status of
channels.

9.1.7 Test Mode

ANT also accepts special test mode messages which allow the product developer or tester to verify the
operation of the RF hardware by placing ANT in a RF continuous wave (CW) mode.

9.2 ANT Message Structure - Notes

The ‘From’ column in Section 9.3 denotes the direction of data flow. An entry of 'ANT' indicates dataflow
from ANT=Host. An entry of ‘Host’ indicates dataflow from Host=>ANT.

The ‘Response’ column in Section 9.3 indicates whether ANT will send a response message to the
respective command.

L

= "
.AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

Class

Config.
Messages

40 of 86

9.3 ANT Message Summary

Type

Unassign
Channel
Assign
Channel
Channel ID

Channel
Period
Search
Timeout
Channel RF
Frequency
Set Network

Transmit
Power

ID List Add

ID List
Config
Channel
Transmit
Power

Low Priority
Search
Timeout
Serial
Number Set
Channel ID
Enable Ext
RX Mesgs

Enable LED

Crystal
Enable
Frequency
Agility
Proximity
Search

Set USB Info

ANT PC Interface Function
Refer Section #

ANT UnassignChannel()
9.5.2.1 (p46)
ANT_AssignChannel()
9.5.2.2 (p46)

ANT SetChannelld()
9.5.2.3 (p47)
ANT_SetChannelPeriod()
9.5.2.4 (p48)

ANT_ SetChannelSearchTimeout()
9.5.2.5 (p49)

ANT SetChannelRFFreq()
9.5.2.6 (p50)
ANT_SetNetworkKey()
9.5.2.7 (p50)
ANT_SetTransmitPower()
9.5.2.8 (p51)

ANT AddChannelID()
9.5.2.9 (p51)
ANT_ConfigList()

9.5.2.10 (p52)

ANT SetChannelTxPower()
9.5.2.11 (p52)

ANT_SetlLowPriorityChannelSearch

Timeout()

9.5.2.12 (p52)

ANT SetSerialNumChannelld()
9.5.2.13 (p53)

ANT_RxExtMesgsEnable()
9.5.2.14 (p54)

ANT EnableLED

9.5.2.15 (p54)
ANT_CrystalEnable()
9.5.2.16 (p54)

ANT ConfigFrequencyAgility()
9.5.2.17 (p55)

ANT SetProximitySearch()
9.5.2.18 (p55)

ANT_SetUSBDescriptorString()
9.5.2.19 (p56)

Rep
ly
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Yes

Yes

Yes

Yes
Yes
Yes
Yes
Yes

Yes

From

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Host

Len Msg
1D
1 0x41
3 0x42
5 0x51
3 0x43
2 0x44
2 0x45
9 0x46
2 0x47
6 0x59
3 0x5A
2 0x60
2 0x63
3 0x65
2 0x66
2 0x68
1 0x6D
4 0x70
2 0x71

Data
1

Channel
Number

Channel
Number

Channel
Number

Channel
Number

Channel
Number

Channel
Number

Net #

Channel
Number

Channel
Number

Channel
Number

Channel
Number

Channel
Number

0

Channel
Number

Channel
Number

Description String (refer section 9.5.2.19)

A N T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

Data Data Data Data Data Dat Dat Dat
2 3 4 5 6 a7z a8 a9
Channel Network [Extended
Type Number Assign’t]
Device number Device Trans.
Type ID Type
Messaging Period
Search
Timeout
RF
Frequency
Key 0 Key 1 Key 2 Key 3 Key 4 Key Key Key
5 6 7
TX Power
Device number Device Trans. List
Type ID Type Index

List Size Exclude
TX Power
Search
Timeout
Device Trans.
Type ID Type
Enable
Enable
Freq’ 1 Freq’ 2 Freq’ 3
Search
Threshold

y 4

thisisant.com

41 of 86

Class Type ANT PC Interface Function Rep From Len Msg Data Data Data Data Data Data Dat Dat Dat
Refer Section # ly ID 1 2 3 4 5 6 a7z a8 a9
Notification Startup ->ResponseFunc(-, 0x6F) - ANT 1 Ox6F Startup
S Message 9.5.3.1 (p57) Message
Control SystemReset ANT ResetSystem() No Host 1 0x4A 0
Messages 9.5.4.1 (p57)
Open ANT OpenChannel() Yes Host 1 0x4B Channel
Channel 9.5.4.2 (p57) Number
Close ANT CloseChannel() Yes Host 1 0x4C Channel
Channel 9.5.4.3 (p58) Number
Open Rx ANT_OpenRxScanMode() Yes Host 1 0x5B 0
Scan Mode 9.5.4.5 (p58)
Request ANT RequestMessage() Yes Host 2 0x4D Channel Message
Message 9.5.4.4 (p58) Number ID
Sleep ANT_SleepMessage() No Host 1 0xC5 0
Message 9.5.4.6 (p59)
Data Broadcast ANT SendBroadcastData() Host/ 9 0x4E Channel Data0 Datal Data2 Data3 Data4 Data Data Data
Messages Data ->ChannelEventFunc(Chan, EV) No ANT Number 5 6 7
9.5.5.1 (p59)
Acknowledg ANT SendAcknowledgedData() Host/ 9 0x4F Channel Data0 Datal Data2 Data3 Data4 Data Data Data
e Data ->ChannelEventFunc(Chan, EV) No ANT Number 5 6 7
9.5.5.2 (p63)
Burst ANT SendBurstTransferPacket() Host/ 9 0x50 Sequence Data0 Datal Data2 Data3 Data4 Data Data Data
Transfer ->ChannelEventFunc(Chan, EV) No ANT /Channel 5 6 7
Data 9.5.5.3 (p67) Number
Channel Channel ->ChannelEventFunc(Chan, ANT 3 0x40 Channel Message Message
Event Response / MessageCode) or - Number 1D Code
Messages Event ->ResponseFunc(Chan, MsglID)
9.5.6.1 (p73)
Requested Channel ->ResponseFunc(Chan,0x52) ° ANT 2 0x52 Channel Channel
Response Status 9.5.7.1 (p76) Number Status
Messages Channel ID ->ResponseFunc(Chan,0x51) = ANT 5 0x51 Channel Device number Device Man ID
9.5.7.2 (p77) Number Type ID
ANT Version ->ResponseFunc(-, 0x3E) o ANT 11 Ox3E Ver0 Verl Ver2 Ver3 Ver Ver V Ver7 Ver8 Ver9 Ver
9.5.7.3 (p77) 4 5 e 10
r
6
Capabilities ->ResponseFunc(-, 0x54) = ANT 6 0x54 Max Max Standard Advanced Adv’ Rsvd
9.5.7.4 (p77) Channels Networks Options Options Option
s 2
Serial ->ResponseFunc(-, 0x61) S ANT 4 0x61 Serial Number
Number 9.5.7.5 (p78)
Test Mode CW Init ANT_InitCWTestMode() Yes Host 1 0x53 0
9.5.8.1 (p79)
CW Test ANT_SetCWTestMode() Yes Host 3 0x48 0 TX Power RF Freq
9.5.8.2 (p79)
y 4
.A N 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

42 of 86

Class Type

Ext Data Extended
Messages Broadcast
Data*

Extended
Acknowledged
Data®

Extended Burst
Data¥

ANT PC Interface Function

ANT SendExtBroadcastData()*
->ChannelEventFunc(Chan, EV)
9.5.9.1 (p80)

ANT SendExtAcknowledgedData()
->ChannelEventFunc(Chan, EV)
9.5.9.2 (p81)

ANT_SendExtBurstTransferPacket(

)
->ChannelEventFunc(Chan, EV)
9.5.9.3 (p82)

Reply

No

No

No

These are legacy formats for AT3 devices
Functions not supported by nRF24AP1 devices
nRF24AP2’s devices only support these messages from Host -> ANT. For ANT->Host the additional bytes are appended to standard broadcast,

acknowledged and burst data.

From

Host/
ANTY

Host/
ANTY

Host/
ANTY

Len

13

13

13

Msg

0x5D

0x5E

0x5F

Data

Channel
Number

Channel
Number

Sequence
/Channel
Number

Data Data
2 3

Device number

Device number

Device number

A N T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

Data

Device
Type
1D

Device

Type
ID

Device

Type
ID

Data

Trans.

Type

Trans.

Type

Trans.

Type

oo o Qg

o0t g OVt U Ot g

N *o QD

RO T O RO T RO T O

CX R)

NO T O NY T T N T O

oo+ Qg

WO T O WY F0 g W o g

DY T g DT O DY T D ORI T
VY 0 g V1Y T O U 0O KLY QD
QY T g O T O O TO O N T QD
N 0 O N T O N T0 0O WY T QO

thisisant.com

9.4 ANT Product Capabilities

9.4.1 Interface

Class

Config.
Messages

Notifications

Control
Messages

Data
Messages

Type
Unassign Channel
Assign Channel

Channel ID
Channel Period
Search Timeout

Channel RF
Frequency

Set Network

Transmit
Power

ID List Add
ID List Config

Channel Transmit
Power

Low Priority Search
Timeout

Serial Number Set
Channel ID

Enable Ext RX
Mesgs

Enable LED

Crystal Enable
Frequency Agility
Proximity Search
Set USB Info
Startup Message
SystemReset

Open Channel
Close Channel
Open Rx Scan Mode

Request
Message

Sleep Message
Broadcast Data

ANT PC Interface Function
ANT_UnAssignChannel()
ANT_AssignChannel()

ANT_SetChannelId()
ANT_SetChannelPeriod()
ANT_SetChannelSearchTimeout()
ANT_SetChannelRFFreq()

ANT_SetNetworkKey()
ANT_SetTransmitPower()

ANT_AddChannelID()
ANT_ConfigList()
ANT_SetChannelTxPower()

ANT_SetLowPriorityChannelSearchTimeout()
ANT_SetSerialNumChannelld()
ANT_RxExtMesgsEnable()

ANT_EnableLED()
ANT_CrystalEnable()
ANT_ConfigFrequencyAgility()
ANT_SetProximitySearch()
ANT_SetUSBDescriptorString()
->ResponseFunc(-,0xC5)
ANT_ResetSystem()
ANT_OpenChannel()
ANT_CloseChannel()
ANT_OpenRxScanMode()
ANT_RequestMessage()

ANT_Sleep()

ANT_SendBroadcastData()
->ChannelEventFunc(Chan, EV)

nRF24AP1
and AP1
Modules

Yes

Yes
(3-Bytes)
Yes
Yes
Yes
Yes

Yes
Yes

No
No
No

No
No
No

No
No
No
No
No
No
Yes
Yes
Yes
No
Yes

No
Yes

A N T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

43 of 86

ANT11TRx1 AT3 nRF24AP2 nRF24AP2-
Chipsets & modules Chipsets & & AP2 USB
modules Modules
Yes Yes Yes Yes
Yes Yes Yes Yes
(3-Bytes) (3-Bytes) (3or4-Bytes) (3or4-Bytes)
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
No Yes Yes Yes
No Yes Yes Yes
No Yes Yes Yes
No Yes Yes Yes
No Yes No No
No Yes Yes Yes
No Yes No No
No No Yes No
No No Yes Yes
No No Yes Yes
No No No Yes
No No Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
No Yes Yes Yes
Yes Yes Yes Yes
No No Yes Yes
Yes Yes Yes Yes
y 4
thisisant.com

44 of 86

Channel
Event
Messages

Requested
Response Messages

Test Mode

Ext Data Messages

Acknowledge Data
Burst Transfer Data

Channel Response /
Event

Channel Status
Channel ID
ANT Version
Capabilities

Serial Number

CW Init

CW Test

Extended Broadcast
Data

Extended
Acknowledge

Data

Extended Burst
Data

ANT_SendAcknowledgedData()

->ChannelEventFunc(Chan, EV)
ANT_SendBurstTransferPacket()
->ChannelEventFunc(Chan, EV)

->ChannelEventFunc(Chan, MessageCode)

or
->ResponseFunc(Chan, MsglD);

->ResponseFunc(Chan,0x52)
->ResponseFunc(Chan,0x51)
->ResponseFunc(-, 0x3E)
->ResponseFunc(-, 0x54)

->ResponseFunc(-, 0x61)
ANT_InitCWTestMode()
ANT_SetCWTestMode()
ANT_SendExtBroadcastData()
->ChannelEventFunc(Chan, EV)

ANT_SendExtAcknowledgedData()
->ChannelEventFunc(Chan, EV)

ANT_SendExtBurstTransferPacket()
->ChannelEventFunc(Chan, EV)

Yes
Yes

Yes

Yes
Yes
No
Yes
(4-bytes)
No
Yes
Yes
No

No

No

the power of less

A N T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
Yes Yes Yes Yes
(4-bytes) (6—bytes) (6—bytes) (6—bytes)
No Yes No No
Yes Yes Yes Yes
Yes Yes Yes Yes
No Yes Yes Yes
No Yes Yes Yes
No Yes Yes Yes
thisisant.com

45 of 86

9.4.2 Events

See Section 9.5.6 for Event details.

Name nRF24AP1 ANT11TRx1 AT3 nRF24AP2 and nRF24AP2-USB
and AP1 Chipsets and Chipsets and AP2 Modules
Modules Modules Modules
RESPONSE_NO_ERROR Yes Yes Yes Yes Yes
EVENT_RX_SEARCH_TIMEOUT Yes Yes Yes Yes Yes
EVENT_RX_FAIL Yes Yes Yes Yes Yes
EVENT_TX Yes Yes Yes Yes Yes
EVENT_TRANSFER_RX_FAILED Yes Yes Yes Yes Yes
EVENT_TRANSFER_TX_COMPLETED Yes Yes Yes Yes Yes
EVENT_TRANSFER_TX_FAILED Yes Yes Yes Yes Yes
EVENT_CHANNEL_CLOSED Yes Yes Yes Yes Yes
EVENT_RX_FAIL_GO_TO_SEARCH No Yes Yes Yes Yes
EVENT_CHANNEL_COLLISION No Yes Yes Yes Yes
EVENT_TRANSFER_TX_START No No Yes Yes Yes
CHANNEL_IN_WRONG_STATE Yes Yes Yes Yes Yes
CHANNEL_NOT_OPENED Yes Yes Yes Yes Yes
CHANNEL_ID_NOT_SET Yes Yes Yes Yes Yes
CLOSE_ALL_CHANNELS No No Yes Yes Yes
TRANSFER_IN_PROGRESS Yes Yes Yes Yes Yes
TRANSFER_SEQUENCE_NUMBER_ERROR Yes Yes Yes Yes Yes
TRANSFER_IN_ERROR No No Yes Yes Yes
INVALID_MESSAGE Yes Yes Yes Yes Yes
INVALID_NETWORK_NUMBER Yes Yes Yes Yes Yes
INVALID_LIST_ID No No Yes Yes Yes
INVALID_SCAN_TX_CHANNEL No No Yes Yes Yes
INVALID_PARAMETER_PROVIDED No No No Yes Yes
EVENT_QUE_OVERFLOW No No No Yes Yes
NVM_FULL_ERROR No No Yes No No
NVM_WRITE_ERROR No No Yes No No
USB_STRING_WRITE_FAIL No No No No Yes
L
AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

46 of 86

9.5 ANT Message Details

This section provides detailed information regarding ANT message and data fields for each ANT message
type.

9.5.1 ANT Constants

The constants vary depending on the selected ANT product (see product datasheet for further details):
1. MAX_CHAN — number of supported channels. Valid channels are 0..(MAX_CHAN-1).
2. MAX_NET - number of supported networks. Valid networks are 0..(MAX_NET-1).

These values can be determined for the specific ANT implementation by requesting the capability message
(see Section 0).

9.5.2 Configuration Messages

The following messages are used to configure a channel. Care should be taken to configure all appropriate
pieces of information for a channel before opening it. All configuration commands return a response to
indicate their success or failure. Therefore, a simple state machine can be setup for configuration of
channels that advances states only when a RESPONSE_NO_ERROR is received for the current command
and to re-send upon failures.

A simple timeout should also be implemented to protect against the case that a success/failure response is
not received. Should this happen, the host should send ANT a series of 15 0’s to effectively reset the ANT
receive state machine. Please see the Interfacing with ANT General Purpose Chipsets and Modules
Document for more information.

9.5.2.1 Unassign Channel (0x41)
BOOL ANT_UnAssignChannel(UCHAR ucChannel);

Parameters Type Range Description
Channel Number UCHAR 0..MAX_CHAN - 1 The channel to be unassigned.

// Example usage
ANT_AssignChannel(0, 0x00, 0);

ANT_UnAssignChannel(0);
This message is sent to the module to unassign a channel. A channel must be unassigned before it may be
reassigned using the Assign Channel command.

9.5.2.2 Assign Channel (0x42)
BOOL ANT_AssignChannel(UCHAR ucChannel, UCHAR ucChannelType, UCHAR ucNetworkNumber);

or

BOOL ANT_AssignChannelExt(UCHAR ucChannel, UCHAR ucChannelType, UCHAR ucNetworkNumber,
UCHAR ucExtend);

Parameters Type Range Description
Channel UCHAR 0..MAX_CHAN- The channel number to be associated with the assigned channel. The
Number 1 channel number must be unique for every channel assigned on the

module. The channel number must also be less than the maximum
number of channels supported by the device.

Channel Type UCHAR As specified Bidirectional Channels:

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

47 of 86

0x00 — Receive Channel
0x10 - Transmit Channel

Unidirectional Channels:
0x50 — Transmit Only Channel
0x40 — Receive Only Channel

Shared Channels:
0x20 — Shared Bidirectional Receive Channel
0x30 — Shared Bidirectional Transmit Channel

Network UCHAR 0..MAX_NET-1 Specifies the network address to be used for this channel. Set this to 0,
Number to use the default public network. See Network Address for more details.
Extended UCHAR As specified 0x01 — Background Scanning Channel Enable

Assignment 0x04 — Frequency Agility Enable

[optional] All other bits are reserved

// Example Usage
ANT_AssignChannel(0, 0x00, 0); // receive channel 0 on network number 0 no extended assignment

OR

ANT_AssignChannelExtl(0, 0x00, 0, 0x01); // Background scanning channel on channel 0, network number 0

This message is sent to ANT to assign a channel. Channel assignment reserves a channel number and
assigns the type and network number to the channel. The optional extended assignment byte allows for
the following features to be enabled: frequency agility and background scanning channel. For more
information on these features see sections 5.2.1.4.1, 5.2.1.4.2, and application notes “"ANT Frequency
Agility” and “ANT Channel Search and Background Scanning”.

This Assign Channel command should be issued before any other channel configuration messages, and
before the channel is opened. Assigning a channel sets all of the other configuration parameters to their
defaults.

9.5.2.3 Set Channel ID (0x51)
BOOL ANT_SetChannelld(UCHAR ucChannel, USHORT usDeviceNum, UCHAR ucDeviceType, UCHAR
ucTransmissionType);

Parameters Type Bit Range Range Description
Channel Number UCHAR - 0..MAX_CHAN- The channel number
1
Device Number USHORT - 0..65535 The device number. For a slave, use 0 to match
(little endian) any device number.
Device Type UCHAR (1bit) 7 0..1 Pairing Request.
msb Set this bit on master to request pairing
Pairing Request Set this bit on slave to find a pairing transmitter.
Device Type 0:6 UCHAR (7bits) 0-6 0..127 The device type. For a slave use 0 to match any
Device type ID device type.
Transmission UCHAR = 0..255 The transmission type. For a slave use 0 to
Type receive from any transmission type.

// Example Usage
// Tx channel
ANT_AssignChannel(0, 0x10, 0);

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

48 of 86

// wait for RESPONSE_NO_ERROR
ANT_SetChannelId(0, 1234, 120, 1);
/***/
// Rx channel
ANT_AssignChannel(0, 0x00, 0);

// wait for RESPONSE_NO_ERROR
ANT_SetChannelId(0, 0, 120, 1); // device number is wild-card
/***/
// Pairing bit on Rx channel
ANT_AssignChannel(0, 0x00, 0);

// wait for RESPONSE_NO_ERROR
ANT_SetChannelId(0, 0, 248, 1); // device number is wild-card, device type 120 with pairing bit ON

This message configures the channel ID for a specific channel.

The channel ID is intended to be unique (or nearly so) for each device link in a network. The ID is owned
by the master. The master sets its ID, and the ID is transmitted along with its messages. The slave sets
the channel ID to match the master it wishes to find. It may do this by providing the exact ID of the
device it wishes to search for, or look for a class of device by setting a wildcard (0) for one of the
subfields of the ID (Device Number, Device Type, or Transmission Type). When a match is found using a
wildcard search, the Request Message command (with channel ID in its Message ID field) can be used to
return the channel ID of the matched device.

If the Device Number is set to 0 on the slave, it will search for any masters that have matching Device
and Transmission Types. The state of the Pair Request bits must also match. This allows the product
designer to choose the rules for pairing. If the designer wishes to pair two specific devices only when
both sides agree, then the master and slave will both set the pairing bit when they wish to pair. If the
designer intends for any slave of a certain type to pair to any master of a certain type, on a search at any
time, then the pairing bit should always be set to 0.

When the Device Number is fully known the Pairing Bit is ignored i.e. if you know the exact device you are
looking for, then pairing is irrelevant.

Note that Transmission Type and Device Type IDs are assighed and regulated to maintain network
integrity and interoperability, except for the free default network. Please visit www.thisisant.com for more
details on available standard network types or on how to obtain your own network type identifier.

9.5.2.4 Channel Messaging Period (0x43)
BOOL ANT_SetChannelPeriod(UCHAR ucChannel, USHORT usMessagePeriod);

Parameters Type Range Default Description

Channel UCHAR 0..MAX_CHAN-1 = The channel number

Number

Messaging USHORT 0..65535 8192 The channel messaging period in seconds * 32768.

Period (little (4Hz) Maximum messaging period is ~2 seconds.
endian)

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelld(0, 0, 120, 123); // device number wild-card and pairing bit OFF
// wait for RESPONSE_NO_ERROR

ANT_SetChannelPeriod(0, 8192); // 4 Hz channel period

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

http://www.thisisant.com/

49 of 86

This message configures the messaging period of a specific channel where:
Messaging Period = Channel period Time (s) * 32768.
E.g.: To send or receive a message at 4Hz, set the Channel period to 32768/4 = 8192.

Note: The minimum acceptable channel period is difficult to specify as it is system dependent and
depends on the number of configured channels and their use. Caution should be used to appropriately test
the system when high data rates are used, especially in combination with multiple channels.

It is of critical importance that the channel period is defined in a manner consistent with the needs of the
application. Some issues to consider are:

1. A smaller device period increases the message rate and thus increases system power consumption
(see respective ANT product datasheet for details).

2. A smaller device period (faster message rate) allows higher Broadcast data-transfer rates.
3. A smaller device period (faster message rate) speeds up the device search operation.

Note: If the slave does not wish to receive data as fast as it is being transmitted, it may select to receive
data at a slower rate. This rate MUST be an integer divisor of the transmitted data rate, do not use non-
integer divisors. For example, if the master is transmitting data at 4Hz (8192), the slave may prefer to
receive data at 1Hz (32768). The slave will then receive 1 in 4 messages. This type of system provides the
advantage of faster acquisition/reacquisition times due to the higher transmit data-rate, but maintains
lower power consumption on the slave. Of course, the required data refresh rate on the slave needs to be
considered if data messages are to be skipped.

9.5.2.5 Channel Search Timeout (0x44)
BOOL ANT_SetChannelSearchTimeout(UCHAR ucChannelNum, UCHAR ucSearchTimeout);

Parameters Type Range Default Description
Channel UCHAR 0..MAX_CHAN-1 - The channel number
Number
Search UCHAR 0..255 Non-AP1: 10 The search timeout to be used with by this channel
Timeout (25seconds) for receive searching. Each count in this parameter is
equivalent to 2.5 seconds.
AP1: 12 i.e. 240 = 600 seconds = 10 minutes

(30 seconds)
0 - disable high priority search mode*
255 - infinite search timeout*

*except for AP1: 0 = 0*2.5s = immediate timeout.
255 = 255*%2.5 ~ 10.5mins

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelld(0, 0, 120, 123); // device number wild-card and pairing bit OFF
// wait for RESPONSE_NO_ERROR

ANT_SetChannelSearchTimeout(0, 24); // search timeout is 60s

This message is sent to the module to configure the length of time that the receiver will search for a
channel before timing out. Note that a value of zero will disable high priority search mode, and a value of

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

50 of 86

255 sets an infinite search time-out. The exception to this is the AP1 module, which has only a high
priority search mode. For AP1 only, a value of 0 is an immediate search timeout, and a value of 255
corresponds to approximately 10.5 minutes.

9.5.2.6 Channel RF Frequency (0x45)
BOOL ANT_SetChannelRFFreq(UCHAR ucChannel, UCHAR ucRFFreq);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 - The channel to be unassigned.

Channel RF UCHAR 0..124 66 Channel Frequency = 2400 MHz + Channel RF
Frequency Frequency Number * 1.0 MHz

// Example Usage

ANT_AssignChannel(0, 0x10, 0); // transmit channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelld(0, 0, 120, 123); // device number wild-card and pairing bit OFF

// wait for RESPONSE_NO_ERROR

ANT_SetChannelRFFreq(0, 57); // RF frequency is 2457 MHz

This message is sent to ANT to set the RF frequency for a particular channel.

Great care should be taken in choosing an alternate value to the default. The selection of this channel
may affect the ability to certify the product in certain global regions.

9.5.2.7 Set Network Key(0x46)
BOOL ANT_SetNetworkKey(UCHAR ucNetNumber, UCHAR *pucKey);

Parameters Type Range Description
Network Number UCHAR 0..MAX_NET-1 The network number
Network Key 0 UCHAR 0..255 Network byte 0
Network Key 1 UCHAR 0..255 Network byte 1
Network Key 2 UCHAR 0..255 Network byte 2
Network Key 3 UCHAR 0..255 Network byte 3
Network Key 4 UCHAR 0..255 Network byte 4
Network Key 5 UCHAR 0..255 Network byte 5
Network Key 6 UCHAR 0..255 Network byte 6
Network Key 7 UCHAR 0..255 Network byte 7

// Example Usage
UCHAR aucNetworkKey = {0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01}; // sample Network Key

ANT_SetNetworkKey(1, aucNetworkKey); // assign the network key to network number 1

// wait for RESPONSE_NO_ERROR

ANT_AssignChannel(0, 0x00, 1); // receive channel on network 1

This message configures a network address for use by one of the available network numbers.

This command is not required when using the default public network. The default public network key is
already assigned by default to Network Number 0. For nRF24AP1 devices, the remaining network numbers
are left uninitialised. For non-AP1 devices, all remaining network numbers default to the public network.

Only valid network keys will be accepted by ANT. Note, if a Set Network Key (0x46) command is sent with
an invalid key, a RESPONSE_NO_ERROR may be received, but the network key will be unchanged; it will
have retain the value it held prior to the command being issued.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

51 of 86

Note that Network Keys, Transmission Type, and Device Type IDs are assigned and regulated to maintain
network integrity, and interoperability, except for the free default network. Please visit www.thisisant.com
for more details on available standard network types or on how to obtain your own network key.

9.5.2.8 Transmit Power (0x47)
BOOL ANT_SetTransmitPower(UCHAR ucTransmitPower);

Parameters Type Range Default Description

Filler UCHAR 0 0 A filler 0 byte that must be included
Transmit UCHAR 0..3 3 0 = TX Power -20 dBm

Power (0dBm) 1 = TX Power -10 dBm

2 = TX Power -5 dBm
3 = TX Power 0 dBm

// Example Usage
ANT_SetTransmitPower(2); // set the RF output power to -5 dBm
This message is sent to the module to set the transmit power level for all channels.

This parameter must be used with extreme care. Setting the transmit power level to the highest level may
not always be the most appropriate solution. Higher power levels increase current consumption, affect the
sphere of influence for the device, and may have RF certification implications. A selected implementation
must be tested to ensure that it meets the regulatory requirements of the region of intended sale.

9.5.2.9 Add Channel ID (0x59)
BOOL ANT_AddChannelID(UCHAR ucChannel, USHORT usDeviceNum, UCHAR ucDeviceType, UCHAR
ucTransmissionType, UCHAR ucListIndex);

Parameters Type Bit Range Range Description
Channel Number UCHAR @ 0..MAX_CHAN- The channel number
1
Device Number USHORT - 0..65535 The device number. Must not contain a wildcard.
(little endian)
Device Type ID UCHAR (7bits) 0-6 0..127 The device type. Must not contain a wildcard
value.
Transmission UCHAR - 0..255 The transmission type. Must not contain a
Type wildcard value.
List Index UCHAR - 0..3 The index where the specified Channel ID is to

be placed in the list.
// Example Usage

/***/
// Rx channel
ANT_AssignChannel(0, 0x00, 0);
// wait for RESPONSE_NO_ERROR
ANT_SetChannelId(0, 0, 120, 123); // device number is wild-card

ANT_AddChannelID(0, 145, 120, 123, 0); //add ID to list in index 0
ANT_AddChannelID(0, 152, 120, 123, 1); //add ID to list in index 1

ANT_ConfigList(0, 2, 0); //configure list as an inclusion list having 2 entries
ANT_OpenChannel(0);

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

http://www.thisisant.com/

52 of 86

Please note this message is only available on specific devices, check datasheets for capabilities. This
message is sent to the module to add channel IDs to the inclusion/exclusion list. When this list is used,
these ID’s will either be the only IDs accepted in a wild card search or ID’s that will not be discovered at
all. The use of these ID’s is enabled by the ConfigList command detailed below. A maximum of 4 IDs can
be placed in the list.

9.5.2.10 Config List ID (0x5A)
BOOL ANT_ConfigList(UCHAR ucChannel, UCHAR uclListSize, UCHAR ucExclude);

Parameters Type Bit Range Description
Range
Channel Number UCHAR = 0..MAX_CHAN-1 The channel number
List Size UCHAR = 0-4 The size of the inclusion list
Exclude UCHAR = 0-1 Sets the list as include (0) or exclude (1)

// Example Usage
/***/
// Rx channel
ANT_AssignChannel(0, 0x00, 0);

// wait for RESPONSE_NO_ERROR
ANT_SetChannelld(0, 0, 120, 123); // device number is wild-card

ANT_AddChannelID(0, 145, 120, 123, 0); //add ID to list in index 0
ANT_AddChannelID(0, 152, 120, 123, 1); //add ID to list in index 1

ANT_ConfiglList(0, 2, 0); //configure list as an inclusion list having 2 entries

ANT_OpenChannel(0);

Please note this message is only available on specific devices, check datasheets for capabilities. This
message is sent to ANT to configure the inclusion/exclusion list. The size determines which ID’s in the list
are to be used (setting a size of 0 disables the include/exclude list) and the exclude variable determines
whether the IDs are to be found or to be ignored when the device is searching.

9.5.2.11 Set Channel Tx Power (0x60)
BOOL ANT_SetChannelTxPower(UCHAR ucChannel, UCHAR ucTxPower);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number
Transmit UCHAR 0..3 0 = TX Power -20 dBm
Power 1 = TX Power -10 dBm

2 = TX Power -5 dBm
3 = TX Power 0 dBm

// Example Usage
ANT_SetChannelTxPower(0, 3); // set the RF output power to 0 dBm on channel 0

This message is sent to the module to set the transmit power level for a specified channel. Please note
this message is only available on specific devices, check datasheets for capabilities.

This parameter must be used with extreme care. Setting the transmit power level to the highest level may
not always be the most appropriate solution. Higher power levels increase current consumption, affect the
sphere of influence for the device, and may have RF certification implications. A selected implementation
must be tested to ensure that it meets the regulatory requirements of the region of intended sale.

9.5.2.12 Channel Low Priority Search Timeout (0x63)
BOOL ANT_SetLowPriorityChannelSearchTimeout(UCHAR ucChannelNum, UCHAR ucSearchTimeout);

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

53 of 86

Parameters Type Range Default Description

Channel UCHAR 0..MAX_CHAN-1 = The channel number

Number

Search UCHAR 0..255 2 (5 The search timeout to be used with by this channel
Timeout seconds) for receive searching. Each count in this parameter is

equivalent to 2.5 seconds.
i.e. 240 = 600 seconds = 10 minutes

A value of 0 will result is no low priority search.
A value of 255 specifies infinite search time-out.

// Example Usage

ANT_AssignChannel(0, 0x00, 0); // receive channel on network number 0

// wait for RESPONSE_NO_ERROR

ANT_SetChannelld(0, 0, 120, 123); // device number wild-card and pairing bit OFF

// wait for RESPONSE_NO_ERROR

ANT_SetLowPriorityChannelSearchTimeout(0, 24); // low priority search timeout is 60s

Please note this message is only available on specific devices, check datasheets for capabilities. This
message is sent to ANT to configure the duration the receiver will search for a channel in low priority
mode before switching to high priority mode. Unlike high priority mode, a low priority search will not
interrupt other open channels on the device while searching. If the low-priority search times out, the
module will switch to high priority mode until it either times out or the device is found. See the AN11 ANT
Channel Search application note for more details.

9.5.2.13 Serial Number Channel ID (0x65)
BOOL ANT_SetSerialNumChannelld(UCHAR ucChannel, UCHAR ucDeviceType, UCHAR
ucTransmissionType);

Parameters Type Bit Range Range Description
Channel Number UCHAR - 0..MAX_CHAN-1 The channel number
Pairing Request UCHAR (1bit) 7 0..1 Pairing Request.

Set this bit on master to request pairing
Set this bit on slave to find a pairing
transmitter.

Device Type ID UCHAR (7bits) 0-6 0..127 The device type. For a slave use 0 to match
any device type.

Transmission UCHAR - 0..255 The transmission type. For a slave, use 0 to
Type receive from any transmission type.

// Example Usage
// Tx channel
ANT_AssignChannel(0, 0x10, 0);
// wait for RESPONSE_NO_ERROR
ANT_SetSerialNumChannelld(0, 120, 123);
/***/
// Rx channel
ANT_AssignChannel(0, 0x00, 0);
// wait for RESPONSE_NO_ERROR
ANT_SetSerialNumChannelld(0, 120, 123); // device number is wild-card
/***/
// Pairing bit on Rx channel
ANT_AssignChannel(0, 0x00, 0);
// wait for RESPONSE_NO_ERROR
ANT_SetSerialNumChannelld(0, 248, 123); // device number is wild-card, device type 120 with pairing bit ON

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

54 of 86

Please note this message is only available on specific devices, check datasheets for capabilities. This
message configures the channel ID to be used by a specific channel in the same way as the Channel ID
command (see section 9.5.2.3) only it uses the two least significant bytes of the device’s serial nhumber as
the device number.

9.5.2.14 Enable Extended Messages (0x66)
BOOL ANT_RxExtMesgsEnable (UCHAR ucEnable);

Parameters Type Range Default Description
Filler UCHAR 0 0 A filler 0 byte that must be included
Enable UCHAR 0..1 0 0 — Disable

1 - Enable

// Example Usage
ANT_RxExtMesgsEnable(1); // enable extended Rx messages

Please note this message is only available on specific devices, check datasheets for capabilities. This
message is sent to ANT to enable or disable the extended Rx messages on the module. If supported, when
this setting is enabled ANT will include the channel ID with the data messages. See section 7.1.1 for more
information regarding the extended data bytes.

9.5.2.15 Enable LED (0x68)
BOOL ANT_EnableLED(UCHAR ucEnable);

Parameters Type Range Default Description
Filler UCHAR 0 0 A filler 0 byte that must be included
Enable UCHAR 0..1 0 0 — Disable

1 - Enable

// Example Usage
ANT_EnableLED(1); // enable the LED

Please note this message is only available on specific devices, check datasheets for capabilities. This
message is sent to the module to enable or disable the LED on the module. When the LED is enabled, it
will blink each time a RF transmit or receive event is detected by the module.

9.5.2.16 Enable Crystal (0x6D)
BOOL ANT_CrystalEnable(void);

Parameters Type Range Description
Enable UCHAR 0 A filler 0 byte that must be included

// Example Usage
ANT_CrystalEnable(0); // enable an external 32kHz Crystal

Please note this message is only available on specific devices, check datasheets for capabilities. If the use
of an external 32kHz crystal input is desired, this message must be sent once, each time a startup
message is received (described in section 9.5.3.1).

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

55 of 86

Enabling an external 32kHz crystal input as a low power clock source saves ~85uA while ANT is active
when compared to using the internal clock source.

9.5.2.17 Frequency Agility (0x70)
BOOL ANT_ConfigFrequencyAgility(UCHAR ucChannel, UCHAR ucFrequencyl, UCHAR ucFrequency2,
UCHAR ucFrequency3);

Parameters Type Range Default Description
Channel Number UCHAR 0..MAX_CHAN-1 = The channel number
ucFrequencyl UCHAR 0-124 3 Sets operating frequency 1 parameter for ANT

frequency Agility.
ucFrequency?2 UCHAR 0-124 39 Sets operating frequency 2 parameter for ANT
frequency Agility.

ucFrequency3 UCHAR 0-124 75 Sets operating frequency 3 parameter for ANT
frequency Agility.

// Example Usage

// Tx channel

ANT_AssignChannel(0, 0x10, 0, 0x04); //extended assignment byte enables frequency agility
// wait for RESPONSE_NO_ERROR

ANT_ConfigFrequencyAgility(0, 5, 23, 80);

/***/

// Rx channel

ANT_AssignChannel(0, 0x00, 0, 0x04); //extended assignment byte enables frequency agility
// wait for RESPONSE_NO_ERROR

ANT_ConfigFrequencyAgility(0, 5, 23, 80); // Frequencies must match (in order)
/***/

Please note this message is only available on specific devices, check datasheets for capabilities. This
function configures the three operating RF frequencies for ANT frequency agility mode and should be used
in conjunction with the ANT_AssignChannel() extended byte (9.5.2.2). Should not be used with shared, or
Tx/Rx only channel types. See section 5.2.1.4.1 and the “"ANT Frequency Agility” application note for more
details.

9.5.2.18 Proximity Search (0x71)
BOOL ANT_SetProximitySearch(UCHAR ucChannel, UCHAR ucSearchThreshold);

Parameters Type Range Default Description

Channel Number UCHAR 0..MAX_CHAN-1 = The channel number

ucSearchThreshold UCHAR 0-10 0 Sets the proximity threshold bin:
0 — disabled

1:10 — closest to farthest

// Example Usage
// Rx channel
ANT_SetProximitySearch(0, Ox1); // search in nearest vicinity

Please note this message is only available on specific devices, check datasheets for capabilities. This
function enables a one-time proximity requirement for searching. Only ANT devices within the set
proximity bin can be acquired. Search threshold values are not correlated to specific distances as this will
be dependent to the system design. A search threshold value of 1 (i.e. bin 1) will yield the smallest radius
search and is generally recommended as there is less chance of connecting to the wrong device.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

56 of 86

Once a proximity search has been successful, this threshold value will be cleared, effectively disabling the
proximity search option. If another proximity search is desired, this command must be sent again prior to

the next search. If the search times out, or if using a background scanning channel, the proximity

threshold retains its value.

9.5.2.19 Set USB Descriptor String (0xC7)
BOOL ANT_SetUSBDescriptorString(UCHAR ucStringNum, UCHAR *pucDescString, UCHAR ucStringSize);

Parameters

ucStringNum

pucDescString[0]
pucDescString[1]
pucDescString[2]
pucDescString[3]
pucDescString[n]
pucDescString[ucStringSize -1]
ucStringSize

// Example Usage
UCHAR aucDescString0

UCHAR aucDescString2
UCHAR aucDescString3

ANT_SetUSBDescriptorString (0,
ANT_SetUSBDescriptorString (1,
ANT_SetUSBDescriptorString (0,
ANT_SetUSBDescriptorString (0,

Type
UCHAR

UCHAR
UCHAR
UCHAR
UCHAR
UCHAR
UCHAR
UCHAR

Range

0..3

aucDescString0,
aucDescString1,
aucDescString2,
aucDescString3,

= oo o9 o o0

..255
.255
.255
.255
.255

.32

Description

Descriptor String Number

0 — PID/VID

1 — Manufacturer String
2 — Device String
3 — Serial Number String

String Character 0/VID LSB
String Character 1/VID MSB
String Character 2/PID LSB
String Character 3/PID MSB
String Character n

NULL character (except for string 0)

String Length

{O0xFC, 0x0F, 0x08, 0x10}; // sample VID/PID string

UCHAR aucDescStringl = “Dynastream Innovations”; // sample Manufacturer String
“ANT USBStick2"”; // sample Device String
{'1’, '2', '3', 0}; // sample Serial Number String (SN will be displayed by the OS as 123)

sizeof(aucDescString0)); // set the VID/PID string
sizeof(aucDescStringl)); // set the Manufacturer String
sizeof(aucDescString2)); // set the Device String
sizeof(aucDescString3)); // set the Serial Number String

IMPORTANT: This message configures USB descriptor strings. The AP2-USB does not support
re-writeable flash memory. Instead, space is allocated for three instances of each string descriptor.
The last descriptor set is the one that is used. Once a descriptor has been set three times, it cannot be

changed.

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

L

thisisant.com

57 of 86

9.5.3 Notifications

9.5.3.1 StartupMessage(0x6F)
ResponseFunc (-, 0x6F)

Please note this message is only available on specific devices, check datasheets for capabilities. The
startup message returns a 1-byte bit field, on every ANT power up or reset event. The bitfield indicates
the type of reset occurred.

Parameters Type Range Description
Startup UCHAR 0..255 The Startup Message bitfield is as follows:
Message 0x00 — POWER_ON_RESET

Bit 0 — HARDWARE_RESET_LINE
Bit 1 — WATCH_DOG_RESET

Bit 5 — COMMAND_RESET

Bit 6 — SYNCHRONOUS_RESET
Bit 7 — SUSPEND_RESET

Other bits are reserved

9.5.4 Control Messages

9.5.4.1 Reset System(0x4A)
BOOL ANT_ResetSystem(void);

Parameters Type Range Description
Filler UCHAR 0

This message is sent to the module to reset the system and put it in a known, low-power state. Execution
of this command terminates all channels. All information previously configured in the system can no
longer be considered valid. After a Reset System command has been issued, the application should wait
500ms to ensure that ANT is in the proper, “after-reset” state before any further commands are issued
from the host. For AT3 and newer modules, the RTS line can be monitored instead: only send commands
after an RTS toggle has been observed. Please see the Interfacing with ANT General Purpose Chipsets and
Modules Document for more information.

9.5.4.2 Open Channel (0x4B)
BOOL ANT_OpenChannel(UCHAR ucChannel);

Parameters Type Range Description
Channel Number UCHAR 0..MAX_CHAN-1 The number of the channel to be opened

This message is sent to the module to open a channel that has been previously assigned and configured
with the configuration messages outline in prior sections. Execution of this command causes the channel
to commence operation, and either data messages or events begin to be issued in association with this
channel.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

58 of 86

9.5.4.3 Close Channel (0x4C)
BOOL ANT_CloseChannel(UCHAR ucChannel);

Parameters Type Range Description
Channel Number UCHAR 0..MAX_CHAN-1 The number of the channel to be closed

This message is sent to close a channel that has been previously opened. The host will initially receive a
RESPONSE_NO_ERROR message indicating the message was successfully received by ANT. The actual
closing of the channel will be indicated by an EVENT_CHANNEL_CLOSED, and the host should wait for this
message before performing any other operations on the channel.

When a channel is closed it remains assigned with all associated parameters still valid. The channel may
be reopened at any time with the Open Channel Command.

9.5.4.4 Request Message (0x4D)
BOOL ANT_RequestMessage(UCHAR ucChannel, UCHAR ucMessagelD);

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number associated with the message request
Message ID UCHAR See Section 9.3 ID of the message being requested

Requested

// Example Usage
ANT_RequestMessage(0, MESG_CHANNEL_ID_ID); // request the channel ID of channel 0
// response message have the channel ID; no RESPONSE_NO_ERROR will be sent by ANT

This message is sent to the device to request a specific information message from the device.

Valid messages include Channel Status, Channel ID, ANT Version, and Capabilities. Requesting one of
these messages causes ANT to send the appropriate response message. Please see these messages for
specific details.

9.5.4.5 Open Rx Scan Mode(0x5B)
BOOL ANT_OpenRxScanMode();

Parameters Type Range Description
Channel Number UCHAR 0 Filler byte

// Example Usage
ANT_OpenRxScanMode();

This message is sent to the module to open in continuous scan mode. The channel should have been
previously assigned and configured as a slave receive channel. Execution of this command causes the
channel to commence operation in continuous scanning mode. In this mode, the radio is active and
receiving 100% of the time so no other channels can operate when the node is in continuous scanning
mode. The node will pick up any message, regardless of period, that is being transmitted on its RF
frequency and matches its channel ID mask. It can receive from multiple devices simultaneously. It can
also have messages pending to be sent to MAX_CHAN - 1 individual devices that are communicating with
the scanning device. This is achieved by passing an extended data message with the correct Channel ID
for the device the data is to be sent to on a channel in the range of 1:MAX_CHAN - 1.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

59 of 86

9.5.4.6 SleepMessage (0xC5)
BOOL ANT_SleepMessage(void);

Parameters Type Range Description
Filler UCHAR 0 A filler 0 byte that must be included

// Example Usage
ANT_SleepMessage(0); // Puts ANT into sleep mode

Please note this message is only available on specific devices, check datasheets for capabilities. The Sleep
command will put ANT into an ultra-low 0.5uA mode. Once this command has been issued, ANT will wait
1.2ms before attempting to enter this mode, by which time the SLEEP/(!MSGRDY) line must be set high.
ANT will remain in this state until the SLEEP/(!MSGRDY) line is pulled low. Please refer to the "ANT Power
States” application note and the Interfacing with ANT Chips and Modules document for more details.

On exiting sleep mode, ANT will perform a reset and any prior configuration information will be lost.

9.5.5 Data Messages

There are three methods for sending and receiving data on a channel. These methods are described
below.

9.5.5.1 Broadcast Data (0x4E)
BOOL ANT_SendBroadcastData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

or
ChannelEventFunc (Channel, EVENT_RX_BROADCAST) // Receive

On embedded platforms, the broadcast message may be processed the same as any other message
received from ANT by processing the MESG_BROADCAST_DATA_ID (0x4E). In order to ensure appropriate
message processing, check the message length field. For standard message packets, the message length
will be 9. For flagged extended messages, the message length will be greater to account for the extra
information appended to the data; check the flag byte for the presence of the channel ID.

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other
events. The event is EVENT_RX_BROADCAST for standard broadcast messages and
EVENT_RX_FLAG_BROADCAST for flagged extended data messages.

Please note that flagged data messages must be enabled using the ANT_RxExtMesgsEnable (0x66)
message.

Any application that processes flagged messages to get channel ID should also process legacy extended
messages (MESG_EXT_BROADCAST_DATA_ID (0x5D) for embedded or EVENT_RX_EXT_BROADCAST for PC
applications) to ensure compatibility.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

60 of 86

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Data 0 UCHAR 0..255 The first data byte

Data 7 UCHAR 0..255 The eighth data byte

[Flag Byte] UCHAR 0x80 0x80 — indicates presence of channel ID bytes

[Device Number] USHORT 0..65535 Optional extended messages bytes. Only included
(little if flag byte indicates its presence
endian)

[Device Type] UCHAR 0..255 Optional extended messages byte. Only included if

flag byte indicates its presence

[Transmission Type] UCHAR 0..255 Optional extended messages byte. Only included if
flag byte indicates its presence

// Example Usage

// Transmitter
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_TX:
{
switch (ucChannel)
{
case Channel_0:
{
ANT_SendBroadcastData(Channel_0, DATA);
break;

}

break;

}

/********************************>I<*************************/

// Receiver
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_RX_FLAG_BROADCAST: // PC only; use MsgID 0x4E in embedded

{
UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)

{
// Channel ID of the device that we just recieved a message from.
USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);
UCHAR ucDeviceType = aucRxBuffer [12];
UCHAR ucTransmissionType = aucRxBuffer [13];

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

61 of 86

printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);
¥
// INTENTIONAL FALLTHROUGH
b
case EVENT_RX_BROADCAST: // PC applications only; use MsgID 0x4E in embedded
{
switch (ucChannel)
{

case Channel_0:

{

// process received data which is in channel event buffer
break;

break;

Broadcast data is the default method of moving data between the transmitter and the receiver. Broadcast
data is not acknowledged, therefore there is no way of knowing if it was actually received. Figure 9-1
below describes the broadcast message transactions from master host to ANT, over the RF channel to
Slave ANT and host in the forward direction and similarly in the reverse direction (Slave->Master).

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

62 of 86

MASTER RF SLAVE

CHANNEL

HOST HOST

ANT_SendBroadcastData()

9 Tch
ChannelEventFunc(l) ChannelEventFunc(0x4E)

ANT_SendBroadcastData()

ANT_SendBroadcastData()

ChannelEventFunc(1) EVENT_TX o

ANT_SendBroadcastData()
ChannelEventFunc(0x4E), @

ChannelEventFunc(0x4E)

ChannelEventFunc(1)
EVENT_TX @

ChannelEventFunc(1) ¢ EVENT TX

ANT SendBroadcastData() ChannelEventFunc(0x4E)

ANT_SendBroadcastData()

ChannelEventFunc(1)P A 2% 1 8 . €5
ANT_SendBroadcastData()
ChannelEventFunc(0x4E)

ChannelEventFunc(0x4E)

ChannelEventFunc(1)
EVENT_TX

Figure 9-1. Broadcast Data Sequence Diagram

Master

A master ANT channel defaults to sending broadcast messages to the slave at the programmed channel
period. The host uses an ANT_SendBroadcastData() message to send data to ANT (1), which will then

buffe

r the data to be sent over the RF channel on the next designated time slot (i.e. channel period Tch).

BANT

the power of less

228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

L

thisisant.com

63 of 86

At the start of the next time slot, ANT sends the message over the RF channel (2) and issues the host an
EVENT_TX Channel Event Function (3). This EVENT_TX message indicates to the host that ANT is ready to
buffer new data. The host can send more data with another ANT_SendBroadcastData() command (4).

Once the slave’s ANT receives the transmitted data, it will both notify and send data to the host with a
ChannelEventFunc(0x4E) message (5). The slave has the option of sending data back in the reverse
direction (6). In the case shown in Figure 9-1, the slave did not have any data to send, the dotted arrow
is used to indicate the reverse direction, but no actual data sent.

On the next channel period (8), the process is repeated: ANT sends the data in its buffers over the RF
channel, master host receives an EVENT_TX, and slave host receives the ChannelEventFunc (x04E).
However, should the slave’s host have requested a data transmission prior to that channel period (7),
than it will be sent in the reverse direction on that timeslot (9). Similarly, an EVENT_TX
ChannelEventFunc(1) will be sent from the slave’s ANT to host (10) and a ChannelEventFunc(0x4E) from
the master’s slave will inform its host that a broadcast data type message was received (11).

The process above describes the message transactions for basic bidirectional broadcast operation.
Notes:

The EVENT_TX message can be used to prompt the master MCU that ANT is ready for the next data
packet. It should NOT be used to prompt the slave MCU as, unlike the master, EVENT_TX does not
necessarily occur on every channel period. This is illustrated in the example in Figure 9-1, where
EVENT_TX occurs every second channel period. The ChannelEventFunc(0x4E), on the other hand, can be
used instead as this does occur every channel period on the slave. These implementations are shown for
both slave and master in the example usage at the beginning of this section.

If the slave does not manage to receive a data packet for its given time slot, an EVENT_RX_FAIL will be
generated instead. No data is sent over the RF channel from slave to master on an EVENT_RX_FAIL.

If the host does not send the ANT_SendBroadcastData() message prior to the next channel timeslot, then
the old data in ANT’s buffer will be re-transmitted. It is up to the master MCU to send new data on every
message.

9.5.5.2 Acknowledged Data (0x4F)
BOOL ANT_SendAcknowledgedData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

or
ChannelEventFunc(Channel, EVENT_RX_ACKNOWLEDGED) // Receive

On embedded platforms, the broadcast message may be processed as any other message received from
ANT by processing the MESG_ACKNOWLEDGED_DATA_ID (0x4F). In order to ensure appropriate message
processing, check the message length field. For standard message packets, the message length will be 9.
For flagged extended messages, the message length will be greater to account for the extra information
appended to the data; check the flag byte for the presence of the channel ID.

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other
events. The event is EVENT_RX_ACKNOWLEDGED for standard acknowledged messages and
EVENT_RX_FLAG_ACKNOWLEDGED for flagged extended data messages.

Please note that flagged data messages must be enabled using the ANT_RxExtMesgsEnable (0x66)
message.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

64 of 86

Any application that processes flagged messages to get channel ID should also process legacy extended
messages (MESG_EXT_ACKNOWLEDGED_DATA_ID (0x5E) for embedded or
EVENT_RX_EXT_ACKNOWLEDGED for PC applications) to ensure compatibility.

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from

Data 0 UCHAR 0..255 The first data byte

Data 7 UCHAR 0..255 The eighth data byte

[Flag Byte] UCHAR 0x80 0x80 — indicates presence of channel ID bytes

[Device Number] USHORT 0..65535 Optional extended messages bytes. Only included
(little if flag byte indicates its presence
endian)

[Device Type] UCHAR 0..255 Optional extended messages byte. Only included if

flag byte indicates its presence

[Transmission Type] UCHAR 0..255 Optional extended messages byte. Only included if
flag byte indicates its presence

// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{
switch (ucEvent)
{
case EVENT_TRANSFER_TX_COMPLETED:
{
switch (ucChannel)
{
case Channel_0:
{
ANT_SendAckknowledgedData(Channel_0, DATA);
break;
)
b
break;
b
b
/**/
/| Receiver
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_RX_FLAG_ ACKNOWLEDGED: // PC only; use MsgID 0x4E in embedded
{

UCHAR ucFlag = aucRxBuffer[9]; // First byte after the payload

if(ucFlag & ANT_EXT_MESG_BITFIELD_DEVICE_ID)
{

// Channel ID of the device that we just recieved a message from.
USHORT usDeviceNumber = aucRxBuffer [10] |(aucRxBuffer [11] << 8);

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

UCHAR ucDeviceType = aucRxBuffer [12];
UCHAR ucTransmissionType = aucRxBuffer [13];

printf("Chan ID(%d/%d/%d) - ", usDeviceNumber, ucDeviceType, ucTransmissionType);

b
// INTENTIONAL FALLTHROUGH

by

case EVENT_RX_ACKNOWLEDGED: // PC only; use MsgID 0x4F in embedded

{

switch (ucChannel)

{

case Channel_0:

{
// process received data which is in channel event buffer
break;

break;

65 of 86

The Acknowledged Data message can be used in place of the Broadcast Data message to ensure the
successful transmission of data. Acknowledged data is transmitted in the same transmission time slot as

Broadcast Data but extends the length of the timeslot to accommodate the acknowledgement.

Acknowledged Data transmissions cannot be originated from channels configured for transmit only.

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

L

thisisant.com

66 of 86

Figure 9-2 below describes the acknowledged message transactions from master host to ANT, over the RF
channel to Slave ANT, host and vice versa in the reverse direction.

MASTER RF SLAVE
CHANNEL

HOST HOST

(1)

ANT_SendAcknowledgedData(),

SENT_TRANSFER
o Tch @

ChannelEventFunc(1)P 2312

ChannelEventFunc(0x4F
ANT_SendAcknowledgedData() ()

ANT_SendAcknowledgedData(

EVENT_TRANSFER

ChannelEventFunc(1) w. [ChannelEventFunc(0x4F)
4

ANT_SendAcknowledgedData() | ChannelEventFunc(1)
ChannelEventFunc() @ EVENT_TRANSFER
TX_COMPLETED

EVENT_TRANSFER

ChannelEventFunc(1) <« X FAILED ChannelEventFunc(0x4F)

ANT_SendAcknowledgedData()

EVENT_TRANSFER
TX_COMPLETED

(14

ChannelEventFunc(1) ChannelEventFunc(0x4F)

ChannelEventFunc(1)! SOl e @ ChannelEventFunc(0x4E)

Figure 9-2 Acknowledged Data Sequence Diagram

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

67 of 86

Similar to broadcast messaging, the host application requests the acknowledged data type when it sends
the data payload to ANT with the ANT_SendAcknowledgedData() function (1); ANT buffers the data, which
is transmitted on the next channel period (2). Unlike broadcast, the slave’s ANT will automatically send an
acknowledgement of receipt of data (this response indicated by the smaller arrowhead on (2)). If the
master’s ANT successfully receives this acknowledgement, it will send the host an
EVENT_TRANSFER_TX_COMPLETED Channel Event Function (3). In this way, the master host can be sure
the message was transmitted successfully. Similar to broadcast and EVENT_TX, the
EVENT_TRANSFER_TX_COMPLETED can be used to indicate to the host that ANT can receive new data.
The host can send more data to ANT with another ANT_SendAcknowledgedData() command (4).

Once the slave’s ANT receives the transmitted data, it will both notify and send data to the host with a
ChannelEventFunc(0x4F) message (5). The slave has the option of sending data back in the reverse
direction (6). In this case, the slave did not have any data to send, and the dotted arrow is used to
indicate no actual data sent.

On the next channel period (7), the process repeats. However, should the slave’s host have requested an
acknowledged data transmission (8), this data will be sent in the reverse direction on that timeslot (9).
The master’s ANT will automatically send an acknowledgement of receipt (small arrowhead on (9)), and
the slave’s ANT, on receiving the acknowledgement, will send its host an
EVENT_TRANSFER_TX_COMPLETED (10). The master’s ANT will send a ChannelEventFunc(0x4F) both
notifying and sending the data to its host (11).

Should the acknowledged message be subject to RF interference (12) and ANT fails to receive the
appropriate acknowledgment, ANT will send an EVENT_TRANSFER_TX_FAILED to the host (13). This can
occur for one of two reasons: either the recipient node (in this case the slave) never received the data
and an acknowledgement was never sent; OR, the recipient (slave) got the data and sent an
acknowledgement, but this failed to reach the originator (master).

Notes:

Similar to broadcast, the EVENT_TRANSFER_TX_COMPLETED or EVENT_TRANSFER_TX_FAILED can be
used to indicate to the master MCU that ANT is ready for the next data packet. Also, on the slave side, the
ChannelEventFunc(0x4F) function can be used to prompt the host for more data. These implementations
are shown in the example usage at the beginning of this section.

If desired, the application can use EVENT_TRANSFER_TX_FAILED to resend the data. ANT does not
automatically resend failed data.

Similar to broadcast, if the slave ANT fails to receive a message in the designated channel period, an
EVENT_RX_FAIL occurs.

If the master host does not send any new data for the next channel timeslot (14 indicates the missing
ANT_SendAcknowledgedData() command), then ANT will resend the old data as a broadcast message
(15).

9.5.5.3 Burst Data (0x50)
BOOL ANT_SendBurstTransfer(UCHAR ucChannel, UCHAR* pucData, USHORT usNumDataPackets);

BOOL ANT_SendBurstTransferPacket(UCHAR ucChannelSeq, UCHAR* pucData); // Transmit
or

ChannelEventFunc (Channel, EVENT_RX_BURST_PACKET) // Receive

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

68 of 86

On embedded platforms, the broadcast message may be processed as any other message received from
ANT by processing the MESG_BURST_DATA_ID (0x50). In order to ensure appropriate message
processing, check the message length field. For standard message packets, the message length will be 9.
For flagged extended messages, the first burst packet will have a message length greater than 9 to
account for the extra information appended to the data; check the flag byte for the presence of the
channel ID. Subsequent message packets will not contain any extra messages and will be 9 bytes in
length.

For PC platforms, the ANT DLL will generate a channel event that may be processed the same as other
events. The event is EVENT_RX_BURST for standard acknowledged messages and EVENT_RX_FLAG_BURST
for flagged extended data messages. Note, for bursting only the first packet will contain the flag and extra
information, the remaining burst packets will result in an EVENT_RX_BURST.

Please note that flagged data messages must be enabled using the ANT_RxExtMesgsEnable (0x66)
message.

Any application that processes flagged messages to get channel ID should also process legacy extended
messages (MESG_EXT_BURST_DATA_ID (0x5F) for embedded or EVENT_RX_EXT_BURST for PC
applications) to ensure compatibility.

Parameters Type Range Description
Sequence Number UCHAR (Bits As specified The upper 3 bits of this byte are used as a sequence
7:5) number to ensure transfer integrity (see below).
Channel Number UCHAR (Bits 0..MAX_CHAN-1 The lower 5 bits represent the channel number that the
4:0) burst transfer is taking place on.
Data 0 UCHAR 0..255 The first data byte
Data 7 UCHAR 0..255 The eighth data byte
[Flag Byte] UCHAR 0x80 0x80 — indicates presence of channel ID bytes
Only present on 1st burst packet
[Device Number] USHORT 0..65535 Optional extended messages bytes. Only included if flag
(little endian) byte indicates its presence. Only present on 1% burst packet
[Device Type] UCHAR 0..255 Optional extended messages byte. Only included if flag byte
indicates its presence. Only present on 1% burst packet
[Transmission UCHAR 0..255 Optional extended messages byte. Only included if flag byte
Type] indicates its presence. Only present on 1%t burst packet

// Example Usage
// Transmitter
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_TRANSFER_TX_COMPLETED:
{
switch (ucChannel)
{
case Channel_0:
{
ANT_SendBurstTransfer(Channel_0, DATA, 4); // 8 bytes per packet, 32 bytes total
break;

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

69 of 86

L

A N T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

70 of 86

Figure 9-3 below describes the burst message transactions from master host to ANT, over the RF channel

to Slave ANT, to host and back.

MASTER RF

SLAVE

CHANNEL
T

HOST AN ANT

(1)

ANT_SendBroadcastData()

@

Tch
ChanneIEventFunc(l) ;

ANT_SendBurstTransferPackt() (4)

ANT_SendBurstTransferPackt()

EVENT_TRANSFER

ChannelEventFun%l EEESNRT
ANT_SendBurstTransferPackt(

ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()

e o0 0 0 o

ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt()
ANT_SendBurstTransferPackt() EVENT TRANSFER

ChannelEventFunc(1) JX_COMPLETED

ChannelEventFunc(0x4E

—_—
EVENT_TRANSFER|
TX_COMPLETED

ChannelEventFunc(1) EVENT_TX

EVENT_TX

ChannelEventFunc(1)

ANT_SendAcknowledgedData(

HOST

ChannelEventFunc(0x4E)

ChannelEventFunc(0x50)
ChannelEventFunc(0x50
ChannelEventFunc(0x50
ChannelEventFunc(0x50
ChannelEventFunc(0x50

e o0 0 00

ChannelEventFunc(0x50
ChannelEventFunc(0x50
ChannelEventFunc(0x50
ChannelEventFunc(0x50
ChannelEventFunc(0x50

ChannelEventFunc(1)

ChannelEventFunc(0x4E)

ChannelEventFunc(0x4E)

Figure 9-3 Burst Transfer Sequence Diagram

SBANT

the power of less

228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

thisisant.com

71 of 86

Burst data transmission is used to send larger amounts of data by sending messages continuously at the
fastest rate possible. Each message packet in a Burst Transfer is acknowledged, and all lost packets are
tried up to a maximum of 5 times to guarantee reception of the entire data transfer. Should a packet also
fail on the 5™ retry, the rest the transfer will be aborted and ANT will send an error message to the host
MCU.

Transmission begins at the start of the normal time slot and multiple data packets are sent consecutively,
extending the time slot for the duration of the burst transfer. Figure 9-3 below describes the burst
message transactions from master host to ANT, over the RF channel to Slave ANT, to host and back. Also
refer to the application note ANO4 - Burst Transfers for more details.

In the example in Figure 9-3, assume the master’s typical mode of operation is sending broadcast data to
the slave. If the master wishes to send a large amount of data, the master’s host can send multiple
packets in fast succession, using the Burst Data message in place of a Broadcast or Acknowledged Data
message.

Figure 9-3 (1) shows the master host, in typical operation, sending a broadcast data message, which is
transmitted at the beginning of the next channel period (2). The EVENT_TX (3) informs the host that ANT
is ready for more data, and the host initiates the burst transfer request by sending an
ANT_SendBurstTransferPacket() command (4). Meanwhile, the slave’s host has been sent the
ChannelEventFunc(0x4E) (5) and no data was sent back in the reverse direction (6).

Once a burst transfer starts transmitting (i.e. on the next channel period), data packets are transmitted at
a very high rate. It is important that the Host/ANT interface can sustain the maximum 20kbps rate. In
order to facilitate this transfer, it is possible to ‘prime’ the ANT buffers with 2 (or 8, depending on ANT
device) burst packets prior to the next channel period. Figure 9-3 shows the host priming the ANT buffers
with two ANT_SendBurstTransferPacket() messages (4&7). Please refer to the “Burst Transfers”
application note for more information on burst queuing.

Once the transfer starts on the next channel period (8), an EVENT_TRANSFER_TX_START (9) will be
issued (note this is only applicable for some ANT devices), indicating that ANT has started sending
packets and is ready for more data. The slave’s host is informed with a ChannelEventFunc(0x50) (10).

The host MCU is also notified for new data through hardware flow control. In asynchronous
communication mode, the RTS line is toggled, whereas the SEN line is toggled in the synchronous
communication mode. See the interfacing with ANT chips and modules document for more information on
these lines.

Note that for each packet ANT sends over the RF channel, ANT receives an acknowledgement (indicated
by the small arrow heads on (8) and subsequent arrows); however, this acknowledgement is not passed
onto the host. ANT will automatically retry any failed packet transfer up to 5 times.

Burst transfers are synchronized off each other and are independent of the channel period. If a burst is
long enough, it will override the subsequent channel periods (11). Once the burst transfer has completed,
the host is notified with an EVENT_TRANSFER_TX_COMPLETED (12). Similar to the acknowledged data
type, the master host could use this response as a prompt to send more data to ANT for transmission on
the next channel period. In this example, the host does not send more data for transmission.

If a transmit was requested by the slave’s host prior to the commencement of the burst (13), then that
message will be sent in the reverse direction, at the end of the burst transfer (14). In this case, the
request is for an acknowledged message, and the slave will receive an EVENT_TRANSFER_TX_COMPLETED
(or failed) (15). The master ANT will notify and send data to the host with the ChannelEventFunc(0x4F)
message (16). As the master host did not send any new data after receiving the response function (12),
ANT will default to broadcasting on the next channel period (17). It will retransmit the last burst packet
(i.e. the data in its buffer).

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

72 of 86

Notes:

If any packet still fails after 5 retries, ANT will terminate the burst transfer and the host will be notified
with an EVENT_TRANSFER_TX_FAILED. If the application wishes to retry, it must restart the Burst
Transfer sequence.

If a burst transfer fails in the forward direction (i.e. EVENT_TRANSFER_TX_FAILED), no reverse direction
data can be sent by the slave. Any data the slave has to transmit will wait for the next channel period.

It should be noted that although the example in the figure shows only a master to slave (i.e. forward
direction) burst transaction, burst transfers are also supported in the reverse direction. A Slave can burst
in the reverse direction after a master broadcast, acknowledge or burst data transfer.

Sequence Numbers:

The upper three bits of the channel number field are used as a sequence number to ensure transfer
integrity.

The transmit MCU must ensure that the sequence numbers are generated correctly in order for the ANT
burst state machine to function correctly.

The first packet of a Burst Transfer will have a sequence number of %000. The sequence number is then
incremented with %001 for each successive packet in the transfer rolling over back to %001, when a
value of %011 is reached. The most significant bit of the sequence bits %100 is used as a flag to indicate
the last packet in a Burst Transfer.

Example:
Channel = 3
Packet # Channel Number
%000 00011 (0x03)
%001 00011 (0x23)
%010 00011 (0x43)
%011 00011 (0x63)
%001 00011 (0x23)
%110 00011 (0xC3) [Last Packet]

It should be noted that although the example in the figure shows only a master to slave (i.e. forward
direction) burst transaction, burst transfers are also supported in the reverse direction.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

73 of 86

9.5.6 Channel Response / Event Messages

The Response/Event Messages are messages sent from the ANT device to the controller device, either in
response to a message (see Section 9.3 for a list of messages that generate responses), or as generated
by an RF event on the ANT device.

9.5.6.1 Channel Response / Event (0x40)
ChannelEventFunc (Channel, MessageCode) // MessagelD ==

or
ResponseFunc (Channel, MessagelD) // MessagelD != 1

The response/event message is either generated in response to a message or from an RF event.

Parameters Type Range Description

Channel UCHAR 0.. MAX_CHAN-1 The channel number of the channel associated with the event.
Number

Message ID UCHAR 0..255 ID of the message being responded too. This is set to 1 for an RF

Event. (Message codes prefixed by EVENT_)

Message Code enum 0..255 The code for a specific response or event

Message Codes* (The following message codes are defined in antdefines.h)

o Not all message Events are generated by all products. See section 9.4.2 for information on which
event messages are supported by which products.

e Message code values are in decimal

Name Value Description
RESPONSE_NO_ERROR 0 Returned on a successful operation
EVENT_RX_SEARCH_TIMEOUT 1 A receive channel has timed out on searching. The search is

terminated, and the channel has been automatically closed. In
order to restart the search the Open Channel message must
be sent again.

EVENT_RX_FAIL 2 A receive channel missed a message which it was expecting.
This happens when a slave is tracking a master and is
expecting a message at the set message rate.

EVENT_TX 3 A Broadcast message has been transmitted successfully. This
event should be used to send the next message for
transmission to the ANT device if the node is setup as a

master.
EVENT_TRANSFER_RX_FAILED 4 A receive transfer has failed. This occurs when a Burst
Transfer Message was incorrectly received.
EVENT_TRANSFER_TX_COMPLETED 5 An Acknowledged Data message or a Burst Transfer sequence

has been completed successfully. When transmitting
Acknowledged Data or Burst Transfer, there is no EVENT_TX
message.

EVENT_TRANSFER_TX_FAILED 6 An Acknowledged Data message, or a Burst Transfer Message
has been initiated and the transmission failed to complete
successfully

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

74 of 86

Name
EVENT_CHANNEL_CLOSED

EVENT_RX_FAIL_GO_TO_SEARCH

EVENT_CHANNEL_COLLISION

EVENT_TRANSFER_TX_START

CHANNEL_IN_WRONG_STATE

CHANNEL_NOT_OPENED
CHANNEL_ID_NOT_SET

CLOSE_ALL_CHANNELS

TRANSFER_IN_PROGRESS

TRANSFER_SEQUENCE_NUMBER_ERROR

TRANSFER_IN_ERROR

INVALID_MESSAGE
INVALID_NETWORK_NUMBER

INVALID_LIST_ID
INVALID_SCAN_TX_CHANNEL

INVALID_PARAMETER_PROVIDED
EVENT_QUE_OVERFLOW

NVM_FULL_ERROR
NVM_WRITE_ERROR
// Example Usage

Value

48
49

51

53

64
65

10

21

22
24

25

31

32

33

40
41

Description

The channel has been successfully closed. When the Host
sends a message to close a channel, it first receives a
RESPONSE_NO_ERROR to indicate that the message was
successfully received by ANT; however,
EVENT_CHANNEL_CLOSED is the actual indication of the
closure of the channel. As such, the Host must use this event
message rather than the RESPONSE_NO_ERROR message to
let a channel state machine continue.

The channel has dropped to search mode after missing too
many messages.

Two channels have drifted into each other and overlapped in
time on the device causing one channel to be blocked.

Sent after a burst transfer begins, effectively on the next
channel period after the burst transfer message has been sent
to the device.

Returned on attempt to perform an action on a channel that is
not valid for the channel’s state

Attempted to transmit data on an unopened channel
Returned on attempt to open a channel before setting a valid
D

Returned when an OpenRxScanMode() command is sent while
other channels are open.

Returned on an attempt to communicate on a channel with a
transmit transfer in progress.

Returned when sequence number is out of order on a Burst
Transfer

Returned when a burst message passes the sequence number
check but will not be transmitted due to other reasons.
Returned when message has invalid parameters

Returned when an invalid network number is provided. As
mentioned earlier, valid network numbers are between 0 and
MAX_NET-1.

Returned when the provided list ID or size exceeds the limit.
Returned when attempting to transmit on ANT channel 0 in
scan mode.

Returned when invalid configuration commands are requested
Only possible when using synchronous serial port. Indicates
that one or more events was lost due to excessive latency in
reading out events over the port.

Returned when the NVM for SensRcore mode is full.

Returned when writing to the NVM for SensRcore mode fails.

BOOL ANT_ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

switch (ucEvent)

{

case EVENT_RX_BROADCAST:

{

switch (ucChannel)

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

L

thisisant.com

75 of 86

Name Value Description

case Channel_0:

{

// process data which is in aucChannelEventBuffer
break;

}

case Channel_N:

{
// process data which is in aucChannelEventBuffer
break;

}

break;
}
case EVENT_RX_FAIL:
{
switch (ucChannel)
{
case Channel_0:
{
// data packet was lost
break;
}
case Channel_N:
{
// data packet was lost
break;

}

break;

b

case Default:

{

// catch unexpected message codes
break;

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

76 of 86

9.5.7 Requested Response Messages

The following messages are returned in response to a Request Message (see section 9.5.4.4) sent to ANT.
The specific response message sent is dependent on request’'s message ID parameter. The ANT PC library
will call the Host application’s ANT response function with the message ID as indicated below for each
message.

The message ID codes are defined in antmessage.h.

9.5.7.1 Channel Status (0x52)
ResponseFunc (Channel, 0x52)

This message returns the channel status information for the specified channel.

Parameters Type Range Description
Channel UCHAR 0.. MAX_CHAN-1 The channel number
Number
Channel State UCHAR 0..3 State of the channel
(Bits 1:0) Un-Assigned = 0
Assigned =1
Searching =2
Tracking =3
Reserved UCHAR varies Reserved
(Bits 7:2)

// Example Usage
BOOL ANT_ResponseFunction(UCHAR ucChannel, UCHAR ucResponseMesgID)
{
Switch (ucResponseMesgID)
{
case MESG_CHANNEL_STATUS_ID:
{
switch (aucResponseBuffer[1]) // channel status
{
case 0:
{
// channel is un-assigned
break;
)
case 1:
{
// channel is assigned
break;

b

break;
¥

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

77 of 86

9.5.7.2 Channel ID (0x51)
ResponseFunc (Channel, 0x51)

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel number

Device Number USHORT 0..65535 The device number
(little endian)

Device Type ID UCHAR 0..127 The device type

Transmission Type UCHAR 0..255 The transmission type

This message returns the channel ID of the specified channel. This message is useful when trying to pair
devices. When a slave is attempting to pair to a master, it will typically set one or more of the Device
Number, Device Type, or Transmission Type fields with a wild card. When the slave finds a device that
matches the search — by successfully receiving data, the Request Message can be used to return the
discovered channel’s ID. This ID can then be saved for future use in opening channel and searching for
this specific device. See pairing under the Usage section for more details.

Note that the Transmission Type and Device Type IDs are assigned and regulated to maintain network
integrity, and interoperability, except for the free default network. Please visit www.thisisant.com for
more details on available standard network types or on how to obtain your own network type identifier.

9.5.7.3 ANT Version (0x3E)
ResponseFunc (-, 0x3E)

The version message returns an 11-byte null-terminated version string, corresponding to the ANT host
interface version.

Parameters Type Range Description

Version Message char[11] 1..255 9 byte string

Please note that this message is not supported on all ANT products.

9.5.7.4 Capabilities (0x54)
ResponseFunc (-, 0x54)

This message returns a summary of the ANT device’s configuration, which is dependent on both the
software embedded in the ANT MCU and on hardware limitations.

Parameters Type Range Description

Max ANT UCHAR 0..MAX_CHAN Returns the Number of ANT channels available
Channels

Max Networks UCHAR 0..MAX_NET-1 Returns the number of networks available

Standard UCHAR 0..255 The Standard Options bitfield is encoded as follows:
Options Bit 0 - CAPABILITIES_NO_RECEIVE_CHANNELS

Bit 1 - CAPABILITIES_NO_TRANSMIT_CHANNELS
Bit 2 - CAPABILITIES_NO_RECEIVE_MESSAGES
Bit 3 - CAPABILITIES_NO_TRANSMIT_MESSAGES
Bit 4 - CAPABILITIES_NO_ACKD_MESSAGES

Bit 5 - CAPABILITIES_NO_BURST_MESSAGES
Other bits are reserved

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

http://www.thisisant.com/

78 of 86

Parameters

Advanced
Options

Advanced
Options 2
(available in
new versions
only)

Reserved

9.5.7.5 Device Serial Number (0x61)
ResponseFunc (-, 0x61)

Range
0..255

0..255

varies

Description

The Advanced Options bitfield is encoded as follows:
Bit 1 - CAPABILLITES_NETWORK_ENABLED
Bit 3 - CAPABILITIES_SERIAL_NUMBER_ENABLED

Bit 4 - CAPABILITIES_PER_CHANNEL_TX_POWER_ENABLED

Bit 5 - CAPABILITIES_LOW_PRIORITY_SEARCH_ENABLED
Bit 6 - CAPABILLITES_SCRIPT_ENABLED
Bit 7 - CAPABILLITES_SEARCH_LIST_ENABLED

Other bits are reserved

The Advanced Options 2 bitfield is encoded as follows:
Bit 0 - CAPABILITIES_LED_ENABLED

Bit 1 - CAPABILITIES_EXT_MESSAGE_ENABLED

Bit 2 - CAPABILITIES_SCAN_MODE_ENABLED

Bit 4 - CAPABILITIES_PROX_SEARCH_ENABLED

Bit 5 - CAPABILITIES_EXT_ASSIGN_ENABLED

Other bits are reserved

Please note this message is only available on specific devices, check datasheets for capabilities. The serial

number is a 4-byte, little-endian, encoded unsigned integer. Please note that this message is not

supported on all ANT products.

Parameters

Serial Number

Range Description

1..255 4 byte serial number

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

thisisant.com

79 of 86

9.5.8 Test Mode

9.5.8.1 Init CW Test Mode (0x53)
BOOL ANT_InitCWTestMode(void);

Parameters Type Range Description
Filler UCHAR 0

This function must be called before the CW Test Mode message below, in order to initialize the module to
the correct state for CW mode.

Note: This command should be executed only directly after a reset, or a System Reset command. Failure
to do so may result in unpredictable results.

9.5.8.2 CW Test Mode (0x48)
BOOL ANT_SetCWTestMode(UCHAR ucTransmitPower, UCHAR ucRFChannel);

Parameters Type Range Description

Filler UCHAR 0 A filler 0 byte that must be included
Transmit UCHAR 0..3 0 = TX Power -20 dB

Power 1 = TX Power -10 dB

2 = TX Power -5 dB
3 = TX Power 0 dB

Channel RF Frequency UCHAR 0..127 Channel Frequency = 2400 MHz + Channel RF Frequency
Number * 1.0 MHz

// Example Usage

ANT_InitCWTestMode();

// wait for RESPONSE_NO_ERROR

ANT_SetCWTestMode(3, 57); // set RF power to 0dBm and CW 2457MHz

This message is used to put the radio into a CW test mode using the given transmit power level and
channel RF frequency.

This command is intended to test your implementation for RF regulatory requirements. It will set ANT to
transmit and unmodulated carrier wave on the specified RF frequency, at the specified power level.

Note: This command should be executed only directly after an Init CW Test Mode (0x53) command as
described above. Failure to do so may result in unpredictable results.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

80 of 86

9.5.9 Extended Data Messages

Each of the Data Message functions described in section 9.5.5 can be sent in the legacy extended data
message format. These functions are now supported in nRF24AP2 as flagged extended message bytes in
existing data messages. See Section 7.1.1 Extended Messages Format. However, AP2 ANT can still accept

the data messages as described here.

9.5.9.1 Extended Broadcast Data (0x5D)
BOOL ANT_SendExtBroadcastData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

or

ChannelEventFunc (Channel, EVENT_RX_EXT_BROADCAST) // Receive

Parameters
Channel Number

Device Num
Device Type
Transmission Type
Data 0

Data 7
// Example Usage

// Transmitter

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

switch (ucEvent)

{
case EVENT_TX:

{

switch (ucChannel)

{

case Channel_0:

{

ANT_SendExtBroadcastData(Channel_0, DATA);

break;
)
b

break;

Type
UCHAR

USHORT
UCHAR
UCHAR
UCHAR

UCHAR

Range

0..MAX_CHAN-1

0..

..65536
.255
.255
.255

255

Description
The channel the data is for/from

Device Number
Device Type
Transmission Type
The first data byte

The eighth data byte

/**/

// Receiver

BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)

{

switch (ucEvent)

{

case EVENT_RX_EXT_BROADCAST: // PC applications only; use MsgID 0x5D in embedded

{

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1

the power of less

thisisant.com

81 of 86

switch (ucChannel)
{
case Channel_0:
{
// process received data which is in channel event buffer
break;
)
b
break;
)
b
b

The legacy extended broadcast functions the same way as normal broadcast, except that the Channel ID
is appended to the front of the data. Extended messages are enabled by default when Rx Scan Mode is
being used.

Receiver

The corresponding channel slave receives the data at its programmed channel period and generates an
legacy Extended Broadcast Data message to its MCU. If the slave does not manage to receive a data
packet for its time slot, an EVENT_RX_FAIL will be generated instead.

If you are using the ANT library interface it will fill the data into your receive buffer, then send a special
library-only event EVENT_RX_EXT_BROADCAST to let you know that a valid extended broadcast message
has been received.

9.5.9.2 Extended Acknowledged Data (0x5E)
BOOL ANT_SendExtAcknowledgedData(UCHAR ucChannel, UCHAR* pucBroadcastData); // Transmit

or

ChannelEventFunc(Channel, EVENT_RX_EXT_ACKNOWLEDGED) // Receive

Parameters Type Range Description

Channel Number UCHAR 0..MAX_CHAN-1 The channel the data is for/from
Device Num USHORT 0..65536 Device Number

Device Type UCHAR 0..255 Device Type

Transmission Type UCHAR 0..255 Transmission Type

Data 0 UCHAR 0..255 The first data byte

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage
// Transmitter
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_TRANSFER_TX_COMPLETED:
{
switch (ucChannel)

{

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

82 of 86

case Channel_0:
{
ANT_SendExtAckknowledgedData(Channel_0, DATA);
break;
)
}
break;
)
}
}

/**/
// Receiver
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)

{
case EVENT_RX_EXT_ACKNOWLEDGED: // PC applications only; use MsgID 0x5E in embedded

{
switch (ucChannel)

{

case Channel_0:

{

// process received data which is in channel event buffer
break;
)
}

break;
)
}
b

Extended acknowledged data functions the same way as normal acknowledge, except that the Channel ID
is appended to the front of the data. Extended messages are enabled by default when Rx Scan Mode is
being used.

Receiver

Reception of Acknowledged Data from the master causes an Extended Acknowledged Data message to be
sent to the slave MCU. If the message reception fails, an EVENT_RX_FAIL occurs.

If you are using the ANT library interface it will fill the data into your receive buffer, then send a special
library only event EVENT_RX_EXT_ACKNOWLEDGED to let you know that a valid extended acknowledge
message has been received.

9.5.9.3 Extended Burst Data (0x5F)
BOOL ANT_SendExtBurstTransfer(UCHAR ucChannel, UCHAR* pucData, USHORT usNumbDataPackets);

// Transmit
BOOL ANT_SendExtBurstTransferPacket(UCHAR ucChannelSeq, UCHAR* pucData); // Transmit
or

ChannelEventFunc (Channel, EVENT_RX_EXT_BURST_PACKET) // Receive

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

83 of 86

Parameters Type Range Description

Sequence Number UCHAR As specified The upper 3 bits of this byte are used as a sequence number
(Bits 7:5) to ensure transfer integrity (see below).

Channel Number UCHAR 0..MAX_CHAN-1 The lower 5 bits are the channel number the burst transfer is
(Bits 4:0) taking place on.

Device Num USHORT 0..65536 Device Number

Device Type UCHAR 0..255 Device Type

Transmission Type UCHAR 0..255 Transmission Type

Data 0 UCHAR 0..255 The first data byte

Data 7 UCHAR 0..255 The eighth data byte

// Example Usage
// Transmitter
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_TRANSFER_TX_COMPLETED:
{
switch (ucChannel)
{
case Channel_0:
{
ANT_SendExtBurstData(Channel_0, DATA, 4); // 8 bytes per packet, 32 bytes total
break;

break;

/********************************>I<*************************/

// Receiver
BOOL ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent)
{
switch (ucEvent)
{
case EVENT_RX_EXT_BURST_PACKET: // PC applications only; use MsgID Ox5F in embedded
{
switch (ucChannel)
{
case Channel_0:
{
/] process received data which is in channel event buffer one packet at a time validating the
// sequence
break;

}

break;

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

84 of 86

}

Extended burst data functions the same way as normal burst data, except that the Channel ID is
appended to the front of the data. Extended messages are enabled by default when Rx Scan Mode is
being used.

Receiver
Reception of Burst Data from the master causes Extended Burst Data Messages to be sent to the slave

MCU. If burst message reception exceeds the maximum number of retries an EVENT_TRANSFER_RX_FAIL
occurs.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

85 of 86

9.5.10 PC Functional Interface Configuration

The functions described in this section are unique to the ANT PC Library interface, and are used to set up
and configure the ANT PC Library for use. They are not available to an embedded application as the
messages are exchanged directly through a serial interface.

9.5.10.1 ANT PC Library Usage Notes
The following notes apply when using the ANT PC Library. The files for this library can be downloaded
from the www.thisisant.com website:

e ANT_DLL.dIl, DSI_CP210xManufacturing_3_1.dll and DSI_SiUSBXp_3_1.dll must be accessible to
the application that is using the ANT PC Library. In other words, these files must
be placed in the same folder as the executable, or in a Windows system folder.

e antmessage.h and antdefines.h must be included where calls to the ANT PC Library are made.

9.5.10.2 ANT_Init
BOOL ANT_Init(UCHAR ucUSBDeviceNum, USHORT usBaudrate);

Parameters Type Range Description

ucUSBDeviceNum UCHAR 0..N-1 USB device number of the module to connect to. Modules connected to
a PC will be assigned USB device numbers starting from 0. N is the
number of USB ANT devices that are connected.

usBaudrate USHORT Asynchronous baud rate used to connect to the ANT controller. See
specific ANT controllers for allowable baud rates.

// Example Usage
if (ANT_Init(0, 38400) == false)
// error message
else
// continue to ANT initialization
ANT_Init is called to initialize the ANT library and connect to the ANT module. Function returns TRUE if
successfully connected to the module, otherwise returns FALSE.

9.5.10.3 ANT_Close
void ANT_Close (void);

Parameters Type Range Description
None
// Example Usage

ANT_Close();
ANT_Close closes the USB connection to the ANT module.

9.5.10.4 ANT_AssignResponseFunction
void ANT_AssignResponseFunction(RESPONSE_FUNC pfResponse, UCHAR *pucResponseBuffer);

Parameters Type Description

pfResponse RESPONSE_FUNC Pointer to the function that will be called whenever a response / event
message is received from the module.

pucResponseBuffer UCHAR* Pointer to the buffer where the data of the response / event message
will be written to. This buffer should be sized to
MESG_RESPONSE_EVENT_SIZE.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

86 of 86

// Example Usage
BOOL ANT_ResponseFunction(UCHAR ucChannel, UCHAR ucResponseMesgID);
UCHAR aucResponseBuffer[MESG_RESPONSE_EVENT_SIZE];

ANT_AssignResponseFunction(&ANT_ResponseFunction, aucResponseBuffer);

ANT_AssignResponseFunction sets the response callback function and the return data buffer. The callback
function and data buffer are used whenever a response message is received from ANT. The response
buffer needs to be large enough to hold an incoming response, which is of size
MESG_RESPONSE_EVENT_SIZE. This function must be called immediately after calling ANT_Open and
before any other ANT calls are made.

The response function must be a C function.

9.5.10.5 ANT_AssignChannelEventFunction
void ANT_AssignChannelEventFunction(UCHAR ucChannel, CHANNEL_EVENT_FUNC pfChannelEvent,
UCHAR *pucRxBuffer);

Parameters Type Description
ucChannel UCHAR Channel Number
pfChannelEvent CHANNEL_EVENT_FUNC Pointer to the function that will be called whenever an event for this

channel occurs.

pucResponseBuffer =~ UCHAR* Pointer to the buffer where the data of the response/event message
is written. This buffer should be sized to MESG_DATA_SIZE.

// Example Usage
BOOL ANT_ChannelEventFunction(UCHAR ucChannel, UCHAR ucEvent);
UCHAR aucChannelEventBuffer[MESG_DATA_SIZE];

ANT_AssignChannelEventFunction(channel_0, &ANT_ChannelEventFunction, aucChannelEventBuffer);

ANT_AssignChannelEventFunction sets the channel event function and the return data buffer. The callback
function and data buffer are used whenever an event message is received from ANT for the given channel.
The response buffer needs to be large enough to hold an incoming response which is of size
MESG_DATA_SIZE. This function must be called to set up a given channel before any other ANT functions
that use this channel are called.

The channel event callback function must be a C function. Each channel can have its own event callback
function, along with a unique data buffer; or they can both be shared, or any combination thereof, that
best suits the application.

L

AN T 228 River Avenue, Cochrane, Alberta, Canada T4C 2C1 thisisant.com

the power of less

