’ life.augmented user manu al

Developing applications on STM32Cube™ with LwIP TCP/IP stack

Note:

March 2014

Introduction

STM32F4x7/9xx and STM32F2x7xx microcontrollers feature a high-quality 10/100 Mbit/s
Ethernet peripheral that supports both Media Independent Interface (MIl) and Reduced
Media Independent Interface (RMII) to interface with the Physical Layer (PHY).

When working with an Ethernet communication interface, a TCP/IP stack is mostly used to
communicate over a local or a wide area network.

This user manual describes how to integrate a free middleware TCP/IP stack using
STM32CubeF2 and STM32CubeF4 HAL drivers, into an embedded application based on
STM32F2x7xx and STM32F4x7/9xx microcontrollers, respectively (refer to Section 1 for
details on STM32Cube). The middleware TCP/IP stack is the LwIP (Lightweight IP) which is
an open source stack intended for embedded devices.

For each evaluation board, this package contains nine applications running on top of the
LwlIP stack:
e Applications running in standalone mode (without an RTOS) based on Raw API:

— A Web server

— ATFTP server

— A TCP echo client application

— ATCP echo server application

— A UDP echo client application

— A UDP echo server application
e Applications running with the FreeRTOS operating system:

— A Web server based on netconn API

— A Web server based on socket API

— A TCP/UDP echo server application based on netconn API.
In this document, STM32Cube™ refers to STM32CubeF2 and STM32CubeF4, STM32F4xx
to STM32F4x7xx and STM32F4x9xx microcontrollers, and STM322xx-EVAL and

STM324xx-EVAL to the STM3221x-EVAL, STM324xG-EVAL and STM324x9I-EVAL
evaluation boards.

The screenshots and file names provided in this document correspond to application
examples running on STM32F4 microcontrollers. However, they are also applicable to
STM32F2X7xX.

DoclD025731 Rev 1 1/44

www.st.com

http://www.st.com

Contents UM1713

Contents
1 STM32Cube™ overview i, 6
2 LwIP TCP/IP stack description 7
2.1 Stack features 7
2.2 LiCeNSE . .. 7
2.3 LwIP architecture 8
2.4 LwlIP stack folder organizationofthe 9
25 LWIP APL OVEIVIEW . . . ettt e e e e e e 10
251 Raw APl . 10
25.2 Netconn APl . .. 11
253 Socket APl ... 12
2.6 LwIP buffer management 12
26.1 Packet buffer structure 12
2.6.2 pbuf management APIS 13
3 Interfacing LwIP with STM32Cube Ethernet HAL driver 15
4 LWIP configuration 17
4.1 Modules SUPPOIt e 17
4.2 Memory configuration 17
5 Developing applications with LwIP stack 19
5.1 Developing in standalone mode using the Raw APl 19
51.1 Operation model 19
5.1.2 Example of TCP echo server demonstration 20
5.2 Developing with an RTOS using Netconn or Socket APl 23
5.2.1 Operation model 23
5.2.2 Example of a TCP echoserver demonstration using the Netconn APl . 24
6 LwIP package description 27
6.1 LwlIP package directories 27
6.2 Applications settings e 27

6.2.1 PHY interface configuration 27

2144 DoclD025731 Rev 1 ‘Yl

UM1713 Contents
6.2.2 MAC and IP address settingst 27
6.2.3 Firmware features 28
6.3 Evaluation boards settings i 28
6.3.1 STM324X9I-EVAL settings e e 28
6.3.2 STM324XG-EVAL settings e 28
6.3.3 STM3222XG-EVAL settingst e 29
7 Using the LwIP applications 30
7.1 Getting started applications 30
7.1.1 TCPechoclient 30
7.1.2 TCP Echo server e 31
7.13 UDPechoclient e 32
714 UDP ChO SEIVEN . . . e e 33
7.1.5 UDP TCP echo server based on netconn AP 34
7.2 Features applications 35
7.2.1 Web serverbasedonraw APl 35
7.2.2 Web server based on netconn APl 37
7.2.3 Web server based on socket APl L 38
7.3 Integrated applications 39
7.3.1 TRT P SeIVer . . 39
8 CONCIUSION . .. 41
AppendiX A FAQ e 42
A.1 How do | choose between static or dynamic (DHCP)
IP address allocation?. i 42
A.2 How does the application behave when the Ethernet cable
isdisconnected? e 42
A.3 How can the application be ported on a different hardware? 42
9 Revision history 43
‘Y_l DoclD025731 Rev 1 3/44

List of tables UM1713

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.

4/44

TCP Raw APIfUNCLIONSo e 10
UDP Raw APL fUNCLIONSo e e 11
Netconn AP fUNCIONSo 11
Socket AP fUNCHIONS.o e 12
Pbuf APIfUNCLIONS 13
Ethernet interface functions description e 15
LWIP memory configurationt e 17
STM324x9I-EVAL jumper configurations i e 28
STM324xG-EVAL jumper configurations i e 28
STM322xG-EVAL jumper configurations e 29
LWIP applications categoriesttt e 30
Document revision history i e 43

3

DoclD025731 Rev 1

UM1713

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

3

STM32Cube block diagram e 6
LWIP architeCture e 9
Figure 2 LwlIP folder organization.ttt e e 9
PhUf StruCtUre . . . 12
Standalone operation model. 19
LwIP operation model with RTOS. e e 23
TCP echo client 31
TCP EChO SeIVEr. . o 32
UDP echo Client e 33
UDP €ChO0 SBIVEI . . oot 34
Web server home pagettt e 36
SSIUSE INHTTP SEIVEN . ..t e e e e 37
Web server listof taskpage e 38
TFETP tool (tftpd32) . . .o e e e 39

DocID025731 Rev 1 5/44

STM32Cube™ overview

1 STM32Cube™ overview

STM32Cube™ is an STMicroelectronics original initiative to ease developers life by
reducing development efforts, time and cost. STM32Cube covers STM32 portfolio.
STM32Cube Version 1.x includes:

e The STM32CubeMX, a graphical software configuration tool that allows to generate C
initialization code using graphical wizards.

o A comprehensive embedded software platform, delivered per series (such as
STM32CubeF2 for STM32F2 series and STM32CubeF4 for STM32F4 series)

— The STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across STM32 portfolio

— A consistent set of middleware components such as RTOS, USB, TCP/IP,
Graphics
— All embedded software utilities coming with a full set of examples.

Figure 1. STM32Cube block diagram

Evaluation boards Discovery boards Dedicated boards

\Application level Demonstrations

. N
FAT
TCP/IP Graphics File CMSIS
System
\ [Middleware level JJ \ Uilities)
|)
HAL level
[STM32F0 STM32F1 STM32F2 STM32F3 STM32F4 STM32L1]
Hardware

3

6/44 DoclD025731 Rev 1

LwIP TCP/IP stack description

2.1

2.2

3

LwIP TCP/IP stack description

Stack features

LwlIP is a free TCP/IP stack developed by Adam Dunkels at the Swedish Institute of
Computer Science (SICS) and licensed under a modified BSD license.

The focus of the LwIP TCP/IP implementation is to reduce RAM usage while keeping a full
scale TCP/IP stack. This makes LwIP suitable for use in embedded systems.

LwIP comes with the following protocols:

e |IPv4 and IPv6 (Internet Protocol v4 and v6)

e ICMP (Internet Control Message Protocol) for network maintenance and debugging
e IGMP (Internet Group Management Protocol) for multicast traffic management

e UDP (User Datagram Protocol)

e TCP (Transmission Control Protocol)

e DNS (Domain Name Server)

e SNMP (Simple Network Management Protocol)

e DHCP (Dynamic Host Configuration Protocol)

e PPP (Point to Point Protocol)

e ARP (Address Resolution Protocol)

LwlIP has three application programming interfaces (APIs):

e Raw APIis the native LwIP API. It enables the development of applications using event
callbacks. This API provides the best performance and optimized code size, but adds
some complexity to application development.

e Netconn APl is a high-level sequential API that requires a real-time operating system
(RTOS). The Netconn API enables multithreaded operations.

e BSD Socket API: Berkeley-like Socket API (developed on top of the Netconn API)

The source code for the LwIP stack can be downloaded from http://savannah.nongnu.org.

License

LwlIP is licensed under the BSD license. Below is a copy of the LwIP license document that
is included in the source codes:
/*

* Copyright (c) 2001-2004 Swedish Institute of Computer Science.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without
modification,

* are permitted provided that the following conditions are met:

*

* 1. Redistributions of source code must retain the above copyright notice,

* this list of conditions and the following disclaimer.

DoclD025731 Rev 1 7144

LwIP TCP/IP stack description

2.3

8/44

* 2. Redistributions in binary form must reproduce the above copyright
notice,

* this list of conditions and the following disclaimer in the
documentation
* and/or other materials provided with the distribution.

* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ~"AS IS'' AND ANY EXPRESS OR
IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT

* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT

* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS

* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING

* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY

* OF SUCH DAMAGE.

*

* This file is part of the 1lwIP TCP/IP stack.

*

*/

LwlIP architecture

LwIP complies with the TCP/IP model architecture which specifies how data should be
formatted, transmitted, routed and received to provide end-to-end communications.

This model includes four abstraction layers which are used to sort all related protocols
according to the scope of networking involved (see Figure 2). From lowest to highest, the
layers are:

e The link layer contains communication technologies for a single network segment
(link) of a local area network.

e Theinternet layer (IP) connects independent networks, thus establishing
internetworking.

e The transport layer handles host-to-host communications.

e The application layer contains all protocols for specific data communications services
on a process-to-process level.

3

DoclD025731 Rev 1

LwIP TCP/IP stack description

2.4

3

Figure 2. LwIP architecture

dth.C, dns.c ... Application layer
udp C th C Transport layer
Ip C Internet layer
. N k
netlf.C in?;‘:l"’g::e layer

LwlIP stack folder organization of the

When unzipped, the LwIP stack files can be found under \Middlewares\Third_Party\LwIP.

Figure 3. Figure 2 LwIP folder organization

4 LwIP
doc
4 Erc
api
core
include
netif
4 system
arch
noQ5
as
test

where
doc contains documentation text files
src contains source files of the LwlP stack
api contains Netconn and Socket API files
core contains LwIP core files
include contains LwIP include files
netif contains Network interface files
system contains LwIP port hardware implementation files
arch contains STM32 architecture port files (used data types,...)
OS contains LwIP port hardware implementation files using an operating system
noOS contains LwIP port hardware implementation files in Standalone mode

DoclD025731 Rev 1 9/44

LwIP TCP/IP stack description

As mentioned above, three types of APIs are offered by LwIP stack:

2.5 LwIP API overview
° Raw API
. Netconn API
. Socket API

2.5.1 Raw API

The Raw API is based on the native LwIP API. It is used to develop callback-based

applications.

When initializing the application, the user needs to register callback functions to different
core events (such as TCP_Sent, TCP_error,...). The callback functions are called from the
LwlIP core layer when the corresponding event occurs.

Table 1 provides a summary of the Raw API functions for TCP applications.

Table 1. TCP Raw API functions

API functions

Description

TCP connection
setup

Creates a new TCP PCB (protocol control

tep_new block).

tcp_bind Binds a TCP PCB to a local IP address and port.
tcp_listen Starts the listening process on the TCP PCB.
tcp_accept Assigns a callback function that will be called

when

tcp_accepted

new TCP connection arrives.

tcp_connect

Informs the LwlIP stack that an incoming TCP

tcp_write connection has been accepted.
Sending TCP data tcp_sent Connects to a remote TCP host.
tcp_output Queues up data to be sent.
Assigns a callback function that will be called
o tcp_recv h
Receiving TCP when
tcp_recved data is acknowledged by the remote host.
Application polling tcp_poll Forces queued data to be sent.
Sets the callback function that will be called
tcp_close
when new
Closing _and aborting tcp_err data arrives.
connections
tcp_abort Must be called when the application has

processed

Table 2 provides a summary of the Raw API functions for UDP applications.

10/44

DoclD025731 Rev 1

3

LwIP TCP/IP stack description

2.5.2

3

Table 2. UDP Raw API functions

API functions

Description

udp_new Creates a new UDP PCB.
udp_remove Removes and de-allocates a UDP PCB.
udp_bind Binds a UDP PCB with a local IP address and port.

udp_connect

Sets up a UDP PCB remote IP address and port.

udp_disconnect

Removes a UDP PCB remote IP and port.

udp_send Sends UDP data.
udp_recv Specifies a callback function which is called when a datagram is received.
Netconn API

The Netconn API is a high-level sequential APl which model of execution is based on the
blocking open-read-write-close paradigm.

To operate correctly, this API must run in a multithreaded operating mode implementing a
dedicated thread for the LwIP TCP/IP stack and/or multiple threads for the application.

Table 3 provides a summary of the Netconn API functions.

Table 3. Netconn API functions

API functions

Description

netconn_new

Creates a new connection.

netconn_delete

Deletes an existing connection.

netconn_bind

Binds a connection to a local IP address and port.

netconn_connect

Connects to a remote IP address and port.

netconn_send

Sends data to the currently connected remote IP/port (not applicable for

netconn_recv

TCP connections).

netconn_listen

Receives data from a netconn.

netconn_accept

Sets a TCP connection into a listening mode.

netconn_write

Accepts an incoming connection on a listening TCP connection.

netconn_close

Sends data on a connected TCP netconn.

DoclD025731 Rev 1 11/44

LwIP TCP/IP stack description

2.5.3 Socket API

LwlIP offers the standard BSD socket API. This is a sequential API which is internally built on
top of the Netconn API.

Table 4 provides a summary of the main socket API functions.

Table 4. Socket API functions

API functions Description
socket Creates a new socket.
bind Binds a socket to an IP address and port.
listen Listens for socket connections.
connect Connects a socket to a remote host IP address and port.
accept Accepts a new connection on a socket.
read Reads data from a socket.
write Writes data on a socket.
close Closes a socket (socket is deleted).
2.6 LwlIP buffer management

2.6.1 Packet buffer structure

LwIP manages packet buffers using a data structure called pbuf. The pbuf structure enables
the allocation of a dynamic memory to hold a packet content and lets packets reside in the
static memory.

Pbufs can be linked together in a chain, thus enabling packets to span over several pbufs.

Figure 4. Pbuf structure

next P next pbuf structure

payload

len

tot_len

flags ref

Room for packet headers

MS18173V1

12/44 DoclD025731 Rev 1 ‘Yl

LwIP TCP/IP stack description

2.6.2

3

where
next contains the pointer to the next pbuf in a pbuf chain
payload contains the pointer to the packet data payload
len is the length of the data content of the pbuf
tot_len is the sum of pbuf len plus all the len fields of the next pbufs in the chain

ref is the 4-bit reference count that indicates the number of pointers that point to the
pbuf. A pbuf can be released from memory only when its reference count is zero.

flags (on 4 bits) indicate the type of pbuf.

LwlIP defines three types of pbufs, depending on the allocation type:
e PBUF_POOL

pbuf allocation is performed from a pool of statically preallocated pbufs of predefined
size. Depending on the data size that needs to be allocated, one or multiple chained
pbufs are required.

e PBUF_RAM
pbuf is dynamically allocated in memory (one contiguous chunk of memory for the full
pbuf)

e PBUF_ROM

No memory space allocation is required for user payload: the pbuf payload pointer
points to data in ROM memory that can be used only for sending constant data.

For packet reception, the suitable pbuf type is PBUF_POOL. It allows to quickly allocate
memory for the packet received from the pool of pbufs. Depending on the size of the
received packet, one or multiple chained pbufs are allocated. The PBUF_RAM is not
suitable for packet reception because dynamic allocation takes some delay. It may also lead
to memory fragmentation.

For packet transmission, the user can choose the most suitable pbuf type according to the
data to be transmitted,.

pbuf management APIs

LwIP has a specific API for working with pbufs. This API is implemented in the pbuf.c core
file.

Table 5. Pbuf API functions

API functions Description
pbuf_alloc Allocates a new pbuf.
pbuf_realloc Resizes a pbuf (shrink size only).
pbuf_ref Increments the reference count field of a pbuf.

pbuf_free Decrements the pbuf reference count. If it reaches zero, the pbuf is

deallocated.
pbuf_clen Returns the count number of pbufs in a pbuf chain.

Chains two pbufs together (but does not change the reference count of the
pbuf_cat tail pbuf chain).
pbuf_chain Chains two pbufs together (tail chain reference count is incremented).

DoclD025731 Rev 1 13/44

LwIP TCP/IP stack description

Table 5. Pbuf API functions (continued)

API functions Description
pbuf_dechain Unchains the first pbuf from its succeeding pbufs in the chain.
pbuf_header Adjusts the payload pointer to hide or reveal headers in the payload.

pbuf_copy_partial Copies (part of) the contents of a packet buffer to an application supplied

buffer.
pbuf_take Copies application supplied data into a pbuf.
pbuf_coalesce Creates a single pbuf out of a queue of pbufs.
pbuf_memcmp Compare pbuf contents at specified offset with other memory
pbuf_memfind Find occurrence of memory in pbuf, starting from an offset
pbuf_strstr Find occurrence of a string in pbuf, starting from an offset
Note: ‘pbuf’ can be a single pbuf or a chain of pbufs.

When working with the Netconn API, netbufs (network buffers) are used for
sending/receiving data.

A netbuf is simply a wrapper for a pbuf structure. It can accommodate both allocated and
referenced data.

A dedicated API (implemented in file netbuf.c) is provided for managing netbufs (allocating,
freeing, chaining, extracting data,...).

3

14/44 DoclD025731 Rev 1

Interfacing LwIP with STM32Cube Ethernet HAL driver

3

Interfacing LwIP with STM32Cube Ethernet HAL
driver

This package includes two implementations:
¢ Implementation without operating system (standalone)
e Implementation with an operating system using CMSIS-RTOS API

For both implementations, the ethernetif.c file is used to link the LwIP stack to the STM32
Ethernet network interface.

The port of LwlIP stack that must be connected to STM32F4xx/STM32F2x7xx is located in
the “lwip/system” folder.

The Ethernet handle of the HAL (ETH_HandleTypeDef) should be declared in the
ethernetif.c file, as well as the Ethernet DMA descriptors (ETH_DMADescTypeDef) and the
Rx/Tx buffers of the Ethernet driver.

Table 6 provides a description of the LwlIP interface API.

Table 6. Ethernet interface functions description

Function Description

Calls the Ethernet driver functions to initialize the STM32F4xx

low_level_init and STM32F2x7xx Ethernet peripheral

low_level_output Calls the Ethernet driver functions to send an Ethernet packet

low_level_input Calls the Ethernet driver functions to receive an Ethernet packet.

Initializes the network interface structure (netif) and calls

ethernetif_init low_level_init to initialize the Ethernet peripheral

Calls low_level_input to receive a packet then provide it to the

ethernet_input LwlIP stack

The following example shows how to initialize the Ethernet peripheral, using HAL API, into
the interface API:

static void low level init (struct netif *netif)

{

uint8 t macaddress[6]= {MAC ADDRO, MAC_ADDR1, MAC_ADDR2, MAC_ADDR3,
MAC_ADDR4, MAC_ADDR5};

EthHandle.Instance = ETH;

EthHandle.Init .MACAddr = macaddress;
EthHandle.Init.AutoNegotiation = ETH AUTONEGOTIATION ENABLE;
EthHandle.Init.Speed = ETH_SPEED 100M;
EthHandle.Init.DuplexMode = ETH MODE FULLDUPLEX;
EthHandle.Init.MediaInterface = ETH _MEDIA INTERFACE MII;
EthHandle.Init.RxMode = ETH RXINTERRUPT MODE;
EthHandle.Init.ChecksumMode = ETH_CHECKSUM BY HARDWARE;
EthHandle.Init.PhyAddress = DP83848 PHY ADDRESS;

DoclD025731 Rev 1 15/44

Interfacing LwIP with STM32Cube Ethernet HAL driver

16/44

/* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */
HAL ETH Init (&EthHandle) ;

/* Initialize Tx Descriptors list: Chain Mode */

HAL ETH DMATxDescListInit (&EthHandle, DMATxDscrTab, &Tx Buff [0] [0],
ETH TXBUFNB) ;

/* Initialize Rx Descriptors list: Chain Mode */

HAL ETH DMARxDescListInit (&EthHandle, DMARxDscrTab, &Rx Buff [0] [0],
ETH _RXBUFNB) ;

/* Enable MAC and DMA transmission and reception */

HAL ETH Start (¢EthHandle) ;
}

The ethernet_input() function implementation differs between standalone and RTOS modes:

¢ In standalone applications, this function must be inserted into the main loop of the
application to poll for any received packet.

e InRTOS applications, this function is implemented as a thread waiting for a semaphore
to handle a received packet. The semaphore is given when the Ethernet peripheral
generates an interrupt for a received packet.

The ethernetif.c file also implements the Ethernet peripheral MSP routines for low layer
initialization (GPIO, CLK ...) and interrupts callbacks.

In case of RTOS implementation, an additional file is used (sys_arch.c). This file implements
an emulation layer for the RTOS services (message passing through RTOS mailbox,
semaphores, etc.). This file should be tailored according to the current RTOS, that is
FreeRTOS for this package.

3

DoclD025731 Rev 1

LwIP configuration

4

4.1

4.2

3

LwlIP configuration

LwlIP provides a file named Iwipopts.h that allows the user to fully configure the stack and all
its modules. The user does not need to define all the LwlIP options: if an option is not
defined, a default value defined in opt.h file is used. Therefore, lwipopts.h provides a way to
override much of the IwIP behavior.

Modules support

The user can choose the modules he needs for his application, so that the code size will be
optimized by compiling only the selected features.

As an example, to disable UDP and enable DHCP, the following code must be implemented
in lwipopts.h file:

/* Disable UDP */

#define LWIP_UDP 0

/* Enable DHCP */
#define LWIP_ DHCP 1

Memory configuration

LwlIP provides a flexible way to manage memory pool sizes and organization.

It reserves a fixed-size static memory area in the data segment. It is subdivided into the
various pools that IwlP uses for the various data structures. As an example, there is a pool
for struct tcp_pcb, and another pool for struct udp_pcb. Each pool can be configured to hold
a fixed number of data structures. This number can be changed in the Iwipopts.h file. For
example, MEMP_NUM_TCP_PCB and MEMP_NUM_UDP_PCB define the maximum
number of tcp_pcb and udb_pcb structures that can be active in the system at a given time.

The user options can be changed in Iwipopts.h. Table 7 provides a summary of the main
RAM memory options.

Table 7. LwIP memory configuration

LwIP memory option Definition
MEM_SIZE ZI;:/l\:)l(F:a?ic(e)igmemory size: used for all LwIP dynamic memory
MEMP_NUM_PBUF Total number of MEM_REF and MEM_ROM pbufs.
MEMP_NUM_UDP_PCB Total number of UDP PCB structures.
MEMP_NUM_TCP_PCB Total number of TCP PCB structures.

MEMP_NUM_TCP_PCB_LISTEN | Total number of listening TCP PCBs.

MEMP_NUM_TCP_SEG Maximum number of simultaneously queued TCP segments.
PBUF_POOL_SIZE Total number of PBUF_POOL type pbufs.
DoclD025731 Rev 1 17/44

LwIP configuration

18/44

Table 7. LwIP memory configuration (continued)

LwIP memory option

Definition

PBUF_POOL_BUFSIZE

Size of a PBUF_POOL type pbufs.

TCP_MSS

TCP maximum segment size.

TCP_SND_BUF

TCP send buffer space for a connection.

TCP_SND_QUEUELEN

Maximum number of pbufs in the TCP send queue.

TCP_WND

Advertised TCP receive window size.

DoclD025731 Rev 1

3

Developing applications with LwIP stack

5.1

5.1.1

3

Developing applications with LwIP stack

Developing in standalone mode using the Raw API

Operation model

In standalone mode, the operation model is based on continuous software polling to check if
a packet has been received.

When a packet has been received, it is first copied from the Ethernet driver buffers into the
LwlIP buffers. To copy the packet as fast as possible, the LwIP buffers (pbufs) should be
allocated from the pool of buffers (PBUF_POOL).

When a packet has been copied, it is handed to the LwIP stack for processing. Depending
on the received packet, the stack may or may not notify the application layer.

LwIP communicates with the application layer using event callback functions. These
functions should be assigned before starting the communication process.

Refer to Figure 5 for a description of the standalone operation model flowchart.

Figure 5. Standalone operation model

v

A Poll for packet reception

New packet received ?

Copy packet from driver
buffers to IwiP buffers

Processing of the packet by
the IwlP stack

Application
notification needed?

Processing of application
assigned callback function

I MS18174V1

DoclD025731 Rev 1 19/44

Developing applications with LwIP stack

5.1.2

20/44

For TCP applications, the following common callback functions must be assigned:

e Callback for incoming TCP connection event, assigned by TCP_accept API call

e Callback for incoming TCP data packet event, assigned by TCP_recev API call

e Callback for signaling successful data transmission, assigned by TCP_sent API call

e Callback for signaling TCP error (after a TCP abort event), assigned by TCP_err API
call

e Periodic callback (every 1 or 2 s) for polling the application, assigned by TCP_poll API
call

Example of TCP echo server demonstration

The TCP echo server example provided in the \LwIP\LwIP_TCP_Echo_Server folder is a
simple application that implements a TCP server which echoes any received TCP data
packet coming from a remote client.

The following example provides a description of the firmware structure. This is an extract of
the main.c file.
int main (void)

{

/* Reset of all peripherals, Initializes the Flash interface and the
Systick. */

HAL_Tnit();

/* Initilaize the LwIP stack */
IwIP_init () ;
/* Network interface configuration */

Netif Config();

/* tcp echo server Init */

tcp echoserver init();

/* Infinite loop */
while (1)
{
/* Read a received packet from the Ethernet buffers and send it
to the 1wIP for handling */
ethernetif input (&gnetif) ;

/* Handle LwIP timeouts */

sys_check timeouts() ;

3

DoclD025731 Rev 1

Developing applications with LwIP stack

3

The following functions are called:

1.

HAL _Init function is called to reset all peripherals and to Initializes the Flash interface
and the Systick timer

IwlP_init function is called to initialize the LwIP stack internal structures and start stack
operations.

Netif_config function is called to configure the network interface (netif).
tcp_echoserver_init function is called to initialize the TCP echo server application.

ethernetif_input function in the infinite while loop polls for packet reception. When a
packet is received, it is passed to be handled by the stack

sys_check_timeouts LwlIP function is called to handle certain LwIP internal periodic
tasks (protocol timers, retransmission of TCP packets...).

tcp_echoserver_init function description

The tcp_echoserver_init function code is the following:

void tcp echoserver init (void)

{

/* create new tcp pcb */

tcp echoserver pcb = tcp new() ;

if

{

(tcp_echoserver pcb != NULL)

err_t err;

/* bind echo pcb to port 7 (ECHO protocol) */
err = tcp_bind(tcp_echoserver pcb, IP_ADDR ANY, 7);

if (err == ERR_OK)
{
/* start tcp listening for echo_pcb */

tcp echoserver pcb = tcp listen(tcp_echoserver pcb);

/* initialize LwIP tcp_accept callback function */
tcp accept (tcp_echoserver pcb, tcp echoserver accept);

}

else

{

/* deallocate the pcb */
memp free (MEMP_TCP_ PCB, tcp echoserver pcb) ;

LwlIP API calls tcp_new to allocate a new TCP protocol control block (PCB)
(tcp_echoserver_pch).

The allocated TCP PCB is bound to a local IP address and port using tcp_bind function.

DoclD025731 Rev 1 21/44

Developing applications with LwIP stack

After binding the TCP PCB, tcp_listen function is called in order to start the TCP listening
process on the TCP PCB.

Finally a tcp_echoserver_accept callback function should be assigned to handle incoming
TCP connections on the TCP PCB. This is done by using tcp_accept LwIP API function.

Starting from this point, the TCP server is ready to accept any incoming connection from
remote clients.

tcp_echoserver_accept function description

The following example shows how incoming TCP connections are handled by
tcp_echoserver_accept user callback function. This is an extract from this function.

static err t tcp_ echoserver accept(void *arg, struct tcp pcb *newpcb, err t
err)

{

/* allocate structure es to maintain tcp connection informations */

es = (struct tcp echoserver struct *)mem malloc (sizeof (struct
tcp echoserver struct));

if (es != NULL)

{
es->state = ES ACCEPTED;
es->pcb = newpcb;

es->p = NULL;

/* pass newly allocated es structure as argument to newpcb */

tcp arg(newpcb, es);

/* initialize 1lwIP tcp recv callback function for newpcb */

tcp_recv (newpcb, tcp_echoserver recv);

/* initialize 1lwIP tcp_err callback function for newpcb */

tcp_err (newpcb, tcp_echoserver error) ;

/* initialize 1lwIP tcp poll callback function for newpcb */

tcp poll (newpcb, tcp echoserver poll, 1);

ret _err = ERR OK;

3

22/44 DoclD025731 Rev 1

Developing applications with LwIP stack

5.2

5.2.1

3

The following functions are called:

1. The new TCP connection is passed to tcp_echoserver_accept callback function
through newpchb parameter.

2. Anes structure is used to store the application status. It is passed as an argument to
the TCP PCB “newpcb” connection by calling tcp_arg LwIP API.

3. A TCP receive callback function, tcp_echoserver_recy, is assigned by calling LwIP API
tcp_recv. This callback handles all the data traffic with the remote client.

4. A TCP error callback function, tcp_echoserver_error, is assigned by calling LwIP API
tcp_err. This callback handles TCP errors.

5. A TCP poll callback function, tcp_echoserver_poll, is assigned by calling LwIP API
tcp_poll to handle periodic application tasks (such as checking if the application data
remains to be transmitted).

Developing with an RTOS using Netconn or Socket API

Operation model

The operation model when working with an RTOS has the following characteristics:
The TCP/IP stack and the application run in separate threads.

The application communicates with the stack through sequential API calls that use the
RTOS mailbox mechanism for inter-process communications. The API calls are blocking
calls. This means that the application thread is blocked until a response is received from the
stack.

An additional thread, the network interface thread, is used to get any received packets from
driver buffers and provide them to the TCP/IP stack using the RTOS mailbox. This thread is
informed of a packet reception using the Ethernet receive interrupt service routine.

Refer to Figure 6 for a description of the lwIP operation model flowchart with RTOS.

Figure 6. LwIP operation model with RTOS

Application

(HTTPTFTP....) task

Blocking Sequential
API Call(read, write,...)

TCP/IP Packet
stack task Reception
Packet Transfer
to stack
Network Interface
Task 4_/
Semaphore MS18175V1
DoclD025731 Rev 1 23/44

Developing applications with LwIP stack

5.2.2

24/44

Example of a TCP echoserver demonstration using the Netconn API

From the application point of view, the Netconn API offers a simpler way than the raw API
for developing TCP/IP applications. This is because it has a more intuitive sequential API.

The following example shows a TCP echoserver application developed with the Netconn
API. This is extract of the main.c file.

int main (void)

{

/* Create the Start thread */

osThreadDef (Start, StartThread, osPriorityNormal, O,
ConfigMINIMAL_STACK_SIZE * 2);

osThreadCreate (osThread(Start), NULL) ;

/* Start the scheduler */
osKernelStart (NULL, NULL) ;

/* We should never get here as control is now taken by the scheduler */
for(;;);

}

The start thread has the following code:

static void StartThread(void const * argument)

{

/* Create tcp_ ip stack thread */
tcpip init(NULL, NULL);

/* Network interface configuration */

Netif Config();

/* Initialize tcp echo server */

tecpecho init () ;

for(;;)
{
}
}
The following functions are called:

1. tcpip_init function is called to initialize the LwIP stack modules and to start the TCP/IP
stack thread.

2. Netif_config function is called to configure the network interface (netif).
3. The TCP echo server thread is created in tcpecho_init function.

3

DoclD025731 Rev 1

Developing applications with LwIP stack

3

void tcpecho_init (void)

{

sys_thread new("tcpecho thread", tcpecho thread, NULL,
DEFAULT THREAD STACKSIZE, TCPECHO_ THREAD PRIO) ;

}
tcpecho_thread function description

The TCP echo server thread has the following code:

static void tcpecho_thread(void *arg)

{

/* Create a new connection identifier. */

conn = netconn_new (NETCONN_TCP) ;

if (conn!=NULL)

{

/* Bind connection to well known port number 7. */

err = netconn bind(conn, NULL, 7);

if (err == ERR_OK)

{

/* Tell connection to go into listening mode. */

netconn listen(conn) ;

while (1)

{

/* Grab new connection. */

accept_err = netconn_accept(conn, &newconn) ;

/* Process the new connection. */

if (accept err == ERR_OK)
{
while ((recv_err = netconn recv(newconn, &buf)) == ERR_OK)
{
do

{

netbuf data(buf, &data, &len);

netconn write (newconn, data, len, NETCONN_ COPY) ;

}

while (netbuf next (buf) >= 0);

netbuf delete (buf) ;

}

/* Close connection and discard connection identifier. */
netconn_close (newconn) ;

netconn_ delete (newconn) ;

DoclD025731 Rev 1 25/44

Developing applications with LwIP stack

26/44

}

}

else

{

netconn delete (newconn) ;

The following sequence is executed:

1.

Netconn_new API function is called with NETCONN_TCP parameter will create a new
TCP connection.

The newly created connection is then bound to port 7 (echo protocol) by calling
Netconn_bind API function.

After binding the connection, the application starts monitoring the connection by calling
Netconn_listen API function.

In the infinite while(1) loop, the application waits for a new connection by calling the API
function Netconn_accept. This API call blocks the application task when there is no
incoming connection.

When there is an incoming connection, the application can start receiving data by
calling netconn_recv API function. Incoming data is received in a netbuf.

The application can get the received data by calling netbuf_data netbuf API function.

The received data is sent back (echoed) to the remote TCP client by calling
Netconn_write API function.

Netconn_close and Netconn_delete are used to close and delete the Netconn
connection, respectively.

3

DoclD025731 Rev 1

LwIP package description

6.1

6.2

6.2.1

Note:

6.2.2

3

LwlIP package description

LwIP package directories

The package contains a set of applications running on top of the LwIP stack and
STM32Cube HAL and BSP drivers. The firmware is composed from the following modules:

e Drivers: contains the low level drivers of STM32F4xx/STM32F2x7xx microcontroller
- CMSIs
— BSP drivers
— HAL drivers
e Middlewares: contains libraries and protocol components
— LwIP TCP/IP stack
— FatFS
— FreeRTOS
e Projects: contains the source file and configurations of each application

Applications are located under Projects repository following this path:
Projects\STM322xx_EVAL\LwIP\ and Projects\STM324xx_EVAL\LwIP\.

Applications settings

PHY interface configuration

The Ethernet peripheral is interfaced with an external PHY to provide physical layer
communications. The PHY registers definition and define statements are located in the HAL
configuration file stm32f4xx_hal_conf.h.

The PHY can operates in MIl or RMII mode. To select the required mode, fill the
Medialnterface parameter in Init structure when initializing the Ethernet peripheral.

The RMII mode is not supported when using the STM324x9I-EVAL board.

When operating in RMII mode with the STM324xG-EVAL board, the user has to provide the
50 MHz clock by soldering a 50 MHz oscillator (ref SM7745HEV-50.0M or equivalent) on
the U3 footprint located under CN3 and by removing the jumper from JP5. This oscillator is
not provided with the board.

MAC and IP address settings

The default MAC address is set to 00:00:00:00:00:02. To change this address, modify the
six bytes defined in the stm32f4xx_hal_conf.h file.

The default IP address is set to: 192.168.0.10. To change this address, modify the four
bytes defined in the main.h file.

DoclD025731 Rev 1 27144

LwlIP package description

6.2.3

Note:

Note:

6.3

6.3.1

6.3.2

28/44

Firmware features

This package includes modules to enhance and widen the use of the some applications.

The DHCP protocol is supported so that the STM32 MCU can act as a DHCP client to get a
dynamic IP address when it is connected to a DHCP server. To enable DHCP protocol,
uncomment the following macro:

#define USE_DHCP” from main.h file.

If the IP address is configured by DHCP and the application does not find a DHCP server on
the network to which it is already connected, the IP address is then automatically set to the
static address (192.168.0.10).

The user can enable the LCD controller by defining the #define USE LCD macro in
main.h. If it is enabled, text messages will be displayed to inform the user of the status of the
application (assigned IP address, network link status ...)

Getting started applications do not support DHCP and LCD modules. Refer to Section 7:
Using the LwIP applications for more information.

Evaluation boards settings

STM324x9I-EVAL settings
To run the software on the STM324x9I-EVAL board, configure it as shown in Table 8.

Table 8. STM324x9I-EVAL jumper configurations

Jumper MIl mode configuration

1-2: provide 25 MHz clock by external crystal

JP6
2-3: provide 25 MHz clock by MCO at PA8

STM324xG-EVAL settings

To run the software on the STM324xG-EVAL board, configure it as shown in Table 9.

Table 9. STM324xG-EVAL jumper configurations

Jumper MIl mode configuration RMII mode configuration
1-2: provide 25 MHz clock by external crystal i
JP5 . Not fitted
2-3: provide 25 MHz clock by MCO at PA8
JP6 2-3: Mll interface mode is enabled. 1-2: RMIl interface mode is enabled.
JP8 Open: MIl interface mode is selected. Closed: RMII interface mode is selected.

3

DoclD025731 Rev 1

LwIP package description

6.3.3 STM3222xG-EVAL settings
To run the software on the STM322xG-EVAL board, configure it as shown in Table 10.

Table 10. STM322xG-EVAL jumper configurations

Jumper MIl mode configuration RMII mode configuration

1-2: provide 25 MHz clock by external crystal i
JP5 . Not fitted
2-3: provide 25 MHz clock by MCO at PA8

JP6 2-3: Mll interface mode is enabled. 1-2: RMIl interface mode is enabled.
JP8 Open: MIl interface mode is selected. Closed: RMII interface mode is selected.
‘Yl DoclD025731 Rev 1 29/44

Using the LwIP applications

v

7.1

7.1.1

30/44

Using the LwIP applications

The STM32Cube LwIP package comes with several applications that use the different LwIP
stack API sets.

The applications are divided into three categories as shown in Table 11.

Table 11. LwIP applications categories

Categories Applications

TCP Echo client

TCP Echo server

Getting started (basic) UDP Echo client

UDP Echo server
TCP and UDP Echo server (Netconn API)
HTTP Server (Raw API)

Features HTTP Server (Netconn API)
HTTP Server (Socket API)

Integrated TFTP Server

Getting started applications use the minimal configuration to run applications on
top of the LwlIP stack. LEDs are used to inform the user of application status.

Features applications provide more flexibility and options. They support network
protocols like HTTP, DHCP and use LCD messages to indicate application status.

Integrated application supports FatFS middleware component and TFTP protocol
to transfer files to and from microSD™ card located on the evaluation board.

Getting started applications

TCP echo client

This application is used to test a basic TCP connection. The STM32 MCU acts as a TCP
client that connects to the TCP server. The client sends a string and the server echoes back
the same string to the client.

To test the TCP echo client application, follow these steps:

1. Make sure the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.

2. Build and program the demonstration code into the STM32F4xx/STM32F2x7xx Flash
memory.

LEDs indicates the LwIP initialization success or failure (the dynamic address
allocation “DHCP” is not supported for this application).

3. On the remote PC, open a command prompt window. Under Windows, select Start >
All Programs > Accessories > Command Prompt.

DoclD025731 Rev 1 ‘Yl

Using the LwlIP applications

Note:

4. At the command prompt, enter:
C:\>echotool /p tcp /s
where:

— /ptepis the TCP protocol (TCP protocol)
— /s is the actual mode of connection (Server mode)

5. When the Key button is pressed on the STM324xx-EVAL/STM322xG-EVAL board, the
client sends a string and the server echoes back the same string to the client.

Make sure the remote PC IP address is identical to the address defined in the main.h file

(192.168.0.11 by default).

Figure 7 shows an example of this command string and of the module response.

Figure 7. TCP echo client

= Command Prompt - echotool fp tcp /s

C:~>echotool /p tcp s
Waiting for TCP connection on port 7. Press any

Client 192.168.8.18:4897 accepted at 2:24:42 PH
2:24:42 PH received [sending tcp client message

Session closed by peep.
Waiting for TCP connection on port 7. Press any

Client 192.168.8.18:4898 accepted at 2:24:45 PH
2:24:45 PHM received [sending tcp client message

Session closed by peep.
Waiting for TCP connection on port 7. Press any

Client 192.168.8.18:489? accepted at 2:24:46 PM
2:24:46 PM received [sending tcp client message

Message counter

Session closed by peep.
Waiting for TCP connection on port 7. Press any

3

TCP Echo server

This application is used to test a basic TCP connection. The STM32 MCU acts as a TCP
server that waits for client requests. It simply echoes back whatever is sent.

To test the TCP echo server demo, follow these steps:

1. Make sure of the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.

2. Build and program the demonstration code into the STM32F4xx/STM32F2x7xx Flash
memory.
LEDs indicates the LwIP initialization success or failure (the dynamic address
allocation “DHCP” is not supported for this application).

3.

On the remote PC, open a command prompt window. Under Windows, select Start >
All Programs > Accessories > Command Prompt.

DoclD025731 Rev 1 31/44

Using the LwIP applications

4. At the command prompt, enter:

C:\>echotool IP address /p tcp /r 7 /n 15 /t 2 /d Testing LwIP TCP echo
server

where:

— IP_address isthe actual board IP address. By default, the following static IP
address is used: 192.168.0.10

— /ptcpis the protocol (TCP protocol)

— /ris the actual remote port on the echo server (echo port)

— /n s the number of echo requests (for example, 15)

— /t is the connection timeout in seconds (for example, 2)

— /dis the message to be sent for echo (for example, “Testing LwIP TCP echo
server”)

Figure 8 shows an example of this command string and of the module response.

Figure 8. TCP echo server

=+ Command Prompt

C:~>echotool 1922.168.8.18 /p tcp »» 7 /n 15 “t 2 /d Testing LwIP TCP echo server E

Hoztname 172.168.8.18 resolved as 172.168.8.18

=]
"

time
time
time
time
time
time
time
time
time
time
time
time
time
time

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

SO ERE®E

SRNOOONREEEEEEE®
=] sd =] s =] =] === ~] =] =] ~d~]

LB TC TR TR R T T T R B B R |

192.168. time ms

: Received=15, Corrupted=8

Statistics provide the number of received and corrupted packets is the end of the test.

7.1.3 UDP echo client

32/44

This application is used to test basic UDP echo connections. The STM32 MCU acts as a
UDP client that connects to a UDP server.

To test the UDP echo client demonstration, follow steps below:

1. Make sure of the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.

2. Build and program the demonstration code into the STM32F4xx/STM32F2x7xx Flash
memory.

LEDs indicates the LwIP initialization success or failure (the dynamic address
allocation “DHCP” is not supported for this application).

3. On the remote PC, open a command prompt window. Under Windows, select Start >
All Programs > Accessories > Command Prompt.

4. At the command prompt, enter:

DoclD025731 Rev 1 ‘Yl

Using the LwlIP applications

C:\>echotool /p udp /s
where:
— /p udp is the protocol (UDP protocol)
— /s is the actual mode of connection (Server mode)
5. When the Key button is pressed on the STM324xx-EVAL/STM322xG-EVAL board, the
client sends a string and the server echoes back the same string to the client.

Note: Make sure that the remote PC IP address is identical to the address defined in the main.h
file (192.168.0.11 by default).

Figure 9 shows an example of this command string and of the module response.

Figure 9. UDP echo client

Command Prompt - echotool fp udp fs

Meszage

C:~>echotool ~/p udp ~s L
counter

for UDP ion on port V. Press any key to exit.
PH from a.

from a.

from a.

from a.

from a.

from a.

B.

B.

B.

B.

B.

B:48%6 received [sending wdp client
B:48%6 received [sending wdp client
B:48%6 received [sending wdp client
B:48%6 received [sending wdp client
B:48%6 received [sending wdp client
B:48%6 received [sending wdp client
B:48%6 received [sending wdp client
received [sending wdp client
received [sending wdp client
from received [sending wdp client
from received [sending wdp client m
from received [sending wdp client m
from received [sending wdp client m
from received [sending wdp client m
from received [sending wdp client m
from received [sending wdp client m

from
from
from

o o ok o o e ok ok ok ke

|l el el el el i === BRI R R]

OO DDEDM M MDD D
B s G0 B0 P () el e el el bl e el el el

7.1.4 UDP echo server

This application is used to test basic UDP connections. The STM32 MCU acts as a UDP
server that waits for client requests.

To test the UDP echo server application, follow these steps:

1. Make sure of the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.

2. Build and program the demonstration code into the STM32F4xx/STM32F2x7xx Flash
memory.

LEDs indicates the LwIP initialization success or failure (the dynamic address
allocation “DHCP” is not supported for this application).

3. On the remote PC, open a command prompt window. Under Windows, select Start >
All Programs > Accessories > Command Prompt.

4. At the command prompt, enter:

3

DoclD025731 Rev 1 33/44

Using the LwIP applications

C:\>echotool IP address /p udp /r 7 1/ 7 /n 15 /t 2 /d Testing
LwIP UDP echo server

where:

— IP_address is the actual board IP address. By default, the following static IP
address is used: 192.168.0.10

— /p s the protocol (UDP protocol)

— /ris the actual remote port on the echo server (echo port)

— /1lis the actual local port for the client (echo port)

— /n s the number of echo requests (for example, 15)

— /t is the connection timeout in seconds (for example, 2)

— /dis the message to be sent for echo (for example, “Testing LwIP UDP echo
server”)

Figure 10 shows an example of this command string and of the module response.

Figure 10. UDP echo server

Command Prompt

C:~rechotool 192.168.8.18 /p wdp /» 7 1 7 /n 15 st 2 /d Testing LwIP UDP echo server
Hoztname 172.168_.0A.10 resolved as 192.168.8.18

192.168.8.18:7,
192.168.8.18:7,
192.168.8.18:7,
192.168.8.18:7,
192.168.8.18:7,
192.168.8.18:7,
192.168.8.18:7,
192.168.8.18:7,

ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
s

BRI NIIEIEELE®

Note: Statistics providing the number of received and corrupted packets are given at the end of
the test.

7.15 UDP TCP echo server based on netconn AP

This demonstration provides the echo service application both for TCP and UDP protocols:

e To test the UDP TCP echo server netconn demonstration in TCP server mode, refer to
Section 7.1.2: TCP Echo server.

. To test the UDP TCP echo server netconn demonstration in UDP server mode, refer to
Section 7.1.4: UDP echo server.

3

34/44 DoclD025731 Rev 1

Using the LwlIP applications

7.2

7.2.1

3

Features applications

Web server based on raw API

This application implements a web server based on the LwIP raw API. It is used to connect
to the STM32 MCU from a web client and to load HTML pages.

The web server application implements the following features:

URL parsing

CGI (Common Gateway Interface)
SSI (Server Side Includes)
Dynamic Header generation
HTTP Post request

To test the web server application, follow these steps:

1.
2.

Make sure of the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.
In the main.h file, uncomment “USE_DHCP” or “USE_LCD” options to enable the
DHCP client or LCD screen features.

Build and program the application code into the STM32F4xx/STM32F2x7xx Flash
memory.

If “USE_ DHCP” and “USE_LCD" are defined, a message is displayed on the LCD
screen to indicate the success or failure of the DHCP IP address allocation, otherwise
the LEDs indicate the result of this operation.

After an IP address has been assigned (either a static or a dynamic address), the user
can start the application.

On the remote PC, open a web client (Mozilla Firefox or Internet Explorer) and type the
board IP address in a web browser. By default, the following static IP address is used:
192.168.0.10.

DoclD025731 Rev 1 35/44

Using the LwIP applications

Figure 11. Web server home page

/= STM32F4xx - Windows Internet Explorer provided by Corporate PackageFabric@5T

@.\-_ o~ | el epynaz.es.0.g DIEEN [[o]-
File Edit Wiew Favorites Tools Help

= i »
w o [@erSZqux]] e~ [:F Page v { Toos

fi - 8
STMicroelectronics "l

STM32F4xx Webserver Demo
Based on the IwWIP TCP/IP stack

3
STM32 F-4 Series

; o -
A new generation on STM32 with significant improvement in STMSE"H&‘E&'“Q your creativity

features / performance: ‘\ 4
« More Memory 4
s Advanced features (
« Maintain close pin-out compatibility 2 -
.

Maintain close software compatibility

Complement the existing family with more performance,
memory and features

The STM32F4xx home page

v

[& € Internst H100% v

Server Side Includes (SSI)
The SSl is a method used to dynamically include dynamic data in HTML code.

This is done by placing a specific tag inside the HTML code of the web page. The tag should
have the following format:

<!--#tag-->

For the ADC conversion page, the following tag is used inside the HTML code:

<!--#t-->

When there is a request for the ADC webpage (which has a “.shtml” extension), the server
parses the webpage and when the tag is found, it is replaced by the ADC conversion value.

3

36/44 DoclD025731 Rev 1

Using the LwlIP applications

Figure 12. SSluse in HTTP server

ﬂ; STM32F4xxADC - Windows Internet Explorer provided by Corporate PackageFabric@ST I'ZHEIEI

a
@.\- 5 = | &) hitp:Jf192.168.0. 10/STM3ZF40xDC shiml | [42] [%] | [[2]-

Fil= Edit View Favorites Tools Help

- — = i »
w oA [@srmazmxxnoc l l f3 - B - & - [5hPage - & Toos -

STM32F4xx ADC Conversion

This page allows you to get continuously the ADC 3 Channel 7 analog input converted value. This ADC Channel is connected to the
STM324xG-EVAL board's potentiometer. The ADC value is updated, automatically, each 1s with the last converted ADC Channel 7 value.
You could check this by changing the potentiometer position and check that the ADC value is updated, by an automatic refresh of this
page, with the new converted value.

ADC Converted Value | 1527 mv

Done (& & Internet H100% -

Common Gateway Interface (CGl)

The CGl is a standard web technique used to execute a request coming from a client on the
server side and then to return a response to the client.

In LwIP, the CGI offered works only with GET method requests and can handle up to 16
parameters encoded in the URI. The CGI handler function executed on the server side
returns a HTML file that the HTTP server sends to the client.

In the HTTP server demonstration, this method is used to control the four LEDs (LED1,
LED2, LED3 and LED4) of the evaluation board.

7.2.2 Web server based on netconn API

This application implement of a web server based on the netconn API. It is used to connect
to the STM32 MCU from a web client and to load HTML pages.

This web server contains two HTML pages. The first one gives general information about
STM32F4xx/STM32F2x7xx microcontrollers and the LwIP stack. The second one lists the
running tasks and their status. This page is automatically updated every second (see
Figure 13).

3

DoclD025731 Rev 1 37/44

Using the LwIP applications

To test the HTTP server netconn demo, follow these steps:

1.
2.

Make sure of the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.

In the main.h file, uncomment “USE_DHCP” or “USE_LCD” options enable the DHCP
client or LCD screen features

Build and program the application code into the STM32F4xx/STM32F2x7xx Flash
memory.

If “USE_ DHCP” and “USE_LCD?” are defined, a message is displayed on the LCD
screen to indicate the success or failure of the DHCP IP address allocation, otherwise
the LEDs indicate the result of this operation.

After an IP address has been assigned (either a static or a dynamic address), the user
can start the application.

On the remote PC, open a web client (Mozilla Firefox or Internet Explorer) and type the
board IP address in a web browser. By default, the following static IP address is used:
192.168.0.10.

Figure 13. Web server list of task page

(= STM32F4xxTASKS - Windows Internet Explorer provided by Corporate PackageFabric@5T r:”ﬁ”z‘

@'\:/ hd |(ti http:ff192, 168,010/ STM32 4 TASKS html "| % | | il

File Edit Wew Favorites Tools Help

- S— = . »
v & [@STMEquxxTASKS l l B - B &= - [hPags - {3 Tods -

STM32F4xx List of tasks and their status

Number of page hits: 27

Name State Priocrity Stack HNum

TCE/IP

B 4 Z8e
105
31

21z
113

878

Wom W
W
TR

B : Blocked, R: Ready, D: Deleted, 5 : Suspended

Done

(@ & Internet 0%

7.2.3 Web server based on socket API

This application implement of a web server based on the socket API. To test this
demonstration, refer to Section 7.2.2: Web server based on netconn API.

38/44

3

DoclD025731 Rev 1

Using the LwlIP applications

7.3

7.3.1

3

Integrated applications

TFTP server

The TFTP server is a file transfer application that requires a remote TFTP client. The files
are transferred to and from the microSD card located on the STM324xx-EVAL/STM322xG-
EVAL board.

The TFTP server waits for a request from a remote TFTP client. The STM324xx-
EVAL/STM322xG-EVAL evaluation board must be connected through a remote PC to
download or upload a file. To do this, a TFTP client must be installed on the remote PC. This
can be done by using the tftpd32 tool which can be found at http://tftpd32.jounin.net.

To test the TFTP server application, follow these steps:
1. Make sure of the STM324xx-EVAL/STM322xG-EVAL jumper settings are correct.

2. Inthe main.h file, uncomment “USE_DHCP” or “USE_LCD” options to enable the
DHCP client or LCD screen features.

3. Build and program the application code into the STM32F4xx/STM32F2x7xx Flash
memory.

4. If*USE_DHCP” and “USE_LCD” are defined, a message is displayed on the LCD
screen indicating the success or failure of the DHCP IP address allocation, otherwise
the LEDs indicate the result of this operation

5. After an IP address has been assigned (either a static or a dynamic address), the user
can start the application.

6. On the remote PC, open the TFTP client (for example, TFTPD32), and configure the
TFTP server address (host address in TFTPD32).

7. Start transferring files to and from the micro SD card located on the STM324xx-
EVAL/STM322xG-EVAL board.

Figure 11 gives an overview of the tftpd32 tool.

Figure 14. TFTP tool (tftpd32)

- Titpd32 by Ph. Jounin gﬁlgi

The PC IP address — | Cunent Directory |C:\Program Fles\Tfpd32 w| Browse
Server interfaces [132158.0.1 :J S_ML[JLI
The board IP address _ | fjip Seqver Thp Client | DHCP sesver | Systog server | Log viewer |

Host 192 166,010 Pod Bicacion s varioie
' brre A+ il
Directory for local __,__E“_'cf‘_FLﬁE \picture, ._‘;‘_,_(—’” ile to send/receive
file to receive/send Remote File |
- i M
Size [Delaill] Put a file inta the

G | Fut I“-_________'____._.—-—-——‘’_'_ STM3I24xx-EVAL's 5D
(“_____-—*' e card

Getafile fromthe _
STM324xx-EVAL's SD
card

___Abow | St | __ Heo |
4

Configure the Tftpd32 tool: TFTP client
must be enabled

DoclD025731 Rev 1 39/44

Using the LwIP applications

Note:

40/44

Make sure that the microSD card is plugged into the dedicated connector prior to
downloading/uploading a file from/to the STM324xx-EVAL/STM322xG-EVAL board.

DoclD025731 Rev 1

3

Conclusion

3

Conclusion

LwlIP package allows to use IwIP TCP/IP stack with the STM32Cube HAL API. This open
source stack offers the services of a full-scale TCP/IP stack while keeping relatively low
RAM/ROM usage.

Two approaches are described for developing TCP/IP applications, either in a Standalone
mode, or using a real-time operating system (RTOS) for multi-threaded operations.

DoclD025731 Rev 1 41/44

FAQ

Appendix A FAQ

Al

A.2

A.3

42/44

How do | choose between static or dynamic (DHCP)
IP address allocation?

When the macro #define USE_DHCP located in main.h is commented, a static IP address
is assigned to the STM32 microcontroller (by default 192.168.0.10, this value can be
modified from “main.h” file).

If the macro #define USE DHCP is uncommented, the DHCP protocol is enabled, and
the STM32 will act as a DHCP client

How does the application behave when the Ethernet cable
is disconnected?

When the cable is disconnected the Ethernet peripheral stops both transmission and
reception traffics and the network interface is shut down. If an LCD controller is used, a
message is displayed to inform the user that the cable is not connected, otherwise the red
LED of the evaluation board is switched on.

When the user re-connects the cable, the Ethernet traffic resumes and the network interface
is set up. If an LCD controller is used, a message is displayed to inform the user of the new
IP address either with static or dynamic allocation, otherwise the yellow LED of the
evaluation board is switched on.

How can the application be ported on a different hardware?

When another hardware platform is used, check the GPIO configuration in the
HAL_ETH_Msplnit() function for the Ethernet peripheral and in HAL_PPP_Msplnit() or
HAL_Msplnit() if the application needs more PPP peripheral.

3

DoclD025731 Rev 1

Revision history

3

Revision history

Table 12. Document revision history

Date

Revision

Changes

28-Mar-2014

1

Initial release.

DoclD025731 Rev 1

43/44

UM1713

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST") reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

44/44 DoclD025731 Rev 1 ‘Yl

	1 STM32Cube™ overview
	2 LwIP TCP/IP stack description
	2.1 Stack features
	2.2 License
	2.3 LwIP architecture
	2.4 LwIP stack folder organization of the
	2.5 LwIP API overview
	2.5.1 Raw API
	Table 1. TCP Raw API functions
	Table 2. UDP Raw API functions

	2.5.2 Netconn API
	Table 3. Netconn API functions

	2.5.3 Socket API
	Table 4. Socket API functions

	2.6 LwIP buffer management
	2.6.1 Packet buffer structure
	2.6.2 pbuf management APIs
	Table 5. Pbuf API functions (continued)

	3 Interfacing LwIP with STM32Cube Ethernet HAL driver
	Table 6. Ethernet interface functions description

	4 LwIP configuration
	4.1 Modules support
	4.2 Memory configuration
	Table 7. LwIP memory configuration (continued)

	5 Developing applications with LwIP stack
	5.1 Developing in standalone mode using the Raw API
	5.1.1 Operation model
	5.1.2 Example of TCP echo server demonstration
	tcp_echoserver_init function description
	tcp_echoserver_accept function description

	5.2 Developing with an RTOS using Netconn or Socket API
	5.2.1 Operation model
	5.2.2 Example of a TCP echoserver demonstration using the Netconn API
	tcpecho_thread function description

	6 LwIP package description
	6.1 LwIP package directories
	6.2 Applications settings
	6.2.1 PHY interface configuration
	6.2.2 MAC and IP address settings
	6.2.3 Firmware features

	6.3 Evaluation boards settings
	6.3.1 STM324x9I-EVAL settings
	Table 8. STM324x9I-EVAL jumper configurations

	6.3.2 STM324xG-EVAL settings
	Table 9. STM324xG-EVAL jumper configurations

	6.3.3 STM3222xG-EVAL settings
	Table 10. STM322xG-EVAL jumper configurations

	7 Using the LwIP applications
	Table 11. LwIP applications categories
	7.1 Getting started applications
	7.1.1 TCP echo client
	7.1.2 TCP Echo server
	7.1.3 UDP echo client
	7.1.4 UDP echo server
	7.1.5 UDP TCP echo server based on netconn AP

	7.2 Features applications
	7.2.1 Web server based on raw API
	Server Side Includes (SSI)
	Common Gateway Interface (CGI)

	7.2.2 Web server based on netconn API
	7.2.3 Web server based on socket API

	7.3 Integrated applications
	7.3.1 TFTP server

	8 Conclusion
	Appendix A FAQ
	A.1 How do I choose between static or dynamic (DHCP) IP address allocation?
	A.2 How does the application behave when the Ethernet cable is disconnected?
	A.3 How can the application be ported on a different hardware?

	9 Revision history
	Table 12. Document revision history

