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Getting started with STemWin Library
 

Introduction
A partnership with Segger Microcontroller GmbH & Co. KG enables STMicroelectronics to 
provide STemWin Library, a product based on Segger’s graphic library emWin.

STemWin Library is a professional graphical stack library enabling the building up of 
Graphical User Interfaces (GUIs) with any STM32, any LCD/TFT display and any LCD/TFT 
controller, taking advantage of STM32 hardware accelerations whenever possible.

STemWin Library is a comprehensive solution coming with rich features such as JPG, GIF 
and PNG decoding, many widgets (checkboxes, buttons…) and a VNC server allowing to 
display remotely a local display, but also professional tools such as GUIBuilder to create 
dialog boxes by drag and drop, a font converter, etc.

The letters XYZ in the terms STemWinXYZ and STemWinLibraryXYZ refer to the latest 
STemWin version as described in the firmware package release notes. 

This graphic library is fully integrated inside the STM32CubeF2 and STM32CubeF4 
firmware components.

Table 1. Applicable Software
Type Part numbers and product categories 

MCU Software STemWin, STM32CubeF2, STM32CubeF4

www.st.com

http://www.st.com
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1 Library and package presentation

The STemWin Library package includes a set of firmware libraries and software tools used 
to build advanced and professional GUI-based applications.

1.1 Licensing information
• STemWin Library GUI files are provided in object format and licensed under MCD-ST 

Image Software License Agreement V2 (the “License”); you may not use this package 
except in compliance with the License. You may obtain a copy of the License at: 
http://www.st.com.

• STemWin Library configuration and header files are provided in source format and 
licensed under MCD-ST Liberty Software License Agreement V2 (the “License”); you 
may not use this package except in compliance with the License. You may obtain a 
copy of the License at: http://www.st.com

Unless required by applicable law or agreed to in writing, software distributed under the 
License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS 
OF ANY KIND, either express or implied. See the License for the specific language 
governing permissions and limitations under the License.

1.2 Library description
Figure 1 shows how STemWin is structured internally and how it can be implemented in a 
complete project.

Figure 1. STemWin layers

1. The CRC module (in RCC peripheral clock enable register) should be enabled before using the library.
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STemWin Library includes two optimized drivers:
• Direct linear access (LIN) driver for the STM32F429 TFT-LCD controller with the 

DMA2D ChromART graphical acceleration engine,
• FlexColor (indirect access) driver for serial and parallel bus external LCD controllers 

available on all STM32 EVAL boards.

Refer to Table 2 for a list of all supported display controllers.

Note: It is still possible to support any other LCD type just by implementing its own “custom” driver.

In addition to the main application, the user has to set and customize two essential interface 
files:
• LCD configuration file (LCDConf_stm32xxx_eval.c)

– LCD Display initialization and configuration
– LCD Display driver link and customizing
– Additional hardware capability management

• GUI configuration file (GUIConf_stm32xxx_eval.c)
– Module selection (memory device, window manager…)
– GUI memory and heap management

          

Table 2. Supported LCD controllers

Driver Supported LCD controllers Supported 
bits/pixels

GUIDRV_Lin

This driver supports every display controller with linear 
addressable video memory with a direct (full bus) interface. This 
means that the video RAM is directly addressable by the address 
lines of the CPU.
The driver contains no controller-specific code. So it can also be 
used for solutions without display controller which require a driver 
which only manages the video RAM.

16, 18

GUIDRV_FlexColor

Epson S1D19122
FocalTech FT1509
Himax HX8301, HX8340, HX8347, HX8352, HX8353, HX8325A
Hitachi HD66772
Ilitek ILI9220, ILI9221, ILI9320, ILI9325, ILI9328, ILI9335,
ILI9338, ILI9340, ILI9341, ILI9342, ILI9481
LG Electronics LGDP4531, LGDP4551
Novatek NT39122
OriseTech SPFD5408, SPFD54124C, SPFD5414D
Renesas R61505, R61516, R61526, R61580
Samsung S6D0117, S6E63D6
Sitronix ST7628, ST7637, ST7687, ST7712, ST7735
Solomon SSD1355, SSD1961, SSD1963, SSD2119
Syncoam SEPS525

1, 2, 4, 8, 
16, 24, 32
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1.3 Package organization
Figure 2 shows the project tree.

Figure 2. Project tree

1.4 Delivered binaries
STemWin Library is distributed by ST as an object code library locked to STM32 products.

The library is compiled for CM3 and CM4 cores, both with and without OS support. In the 
CM4 versions, the FPU is enabled.

Note that the library is compiler-dependent (IAR, ARM, GCC).
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To summarize, the folder “Libraries\STemWinLibraryXYZ\Lib” contains twelve binaries:
• STemWinXYZ_CM3_IAR.a
• STemWinXYZ_CM3_Keil.a
• STemWinXYZ_CM3_GCC.a
• STemWinXYZ_CM3_OS_IAR.a
• STemWinXYZ_CM3_OS_Keil.a
• STemWinXYZ_CM3_OS_GCC.a
• STemWinXYZ_CM4_IAR.a
• STemWinXYZ_CM4_Keil.a
• STemWinXYZ_CM4_GCC.a
• STemWinXYZ_CM4_OS_IAR.a
• STemWinXYZ_CM4_OS_Keil.a
• STemWinXYZ_CM4_OS_GCC.a
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2 Supported EVAL boards and examples

Table 3 lists the supported EVAL boards and examples.

          

As illustrated in Figure 3, each project contains two sub-projects:
• RTOS-based example
• Standalone example

Figure 3. Structure of the STemWin Library examples

The Config\ folder contains the two interface files described in Section 1.2:
• GUIConf_stm32xxx_eval.c/.h
• LCDConf_stm32xxx_eval.c/.h

Table 3. Supported EVAL boards and examples
STM32 Series/EVAL board LCD interface LCD driver

STM32F1

STM3210B-EVAL SPI

FlexColor

STM3210C-EVAL SPI

STM3210E-EVAL FSMC

STM32100B-EVAL SPI

STM32100E-EVAL FSMC

STM32F2 STM322xG-EVAL FSMC

STM32F3
STM32303C-EVAL SPI

STM32373C-EVAL SPI

STM32F4
STM324xG-EVAL FSMC

STM324x9I-EVAL LTDC Lin

STM32L1
STM32L152-EVAL SPI

FlexColor
STM32L152D-EVAL FSMC
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In the RTOS example, the Config\ directory also contains the Free RTOS configuration file 
(FreeRTOSConfig.h).

The main application source code is located in the Demo\ folder. It consists of a generic 
demonstration composed of several sub-modules such as:
• Radial menu (selects an icon from a radial menu using STemWin motion support)
• List view (shows some features of the LISTVEW widget)
• Bitmap (shows different bitmaps with and without compression)
• Antialiased text (outputs anti-aliased text on various backgrounds)
• Tree view (shows a hierarchical view of the files in a directory and some moving 

sprites)
• Icon view (demonstrates the use of the ICONVIEW widget)

…

All these modules cannot be fully supported on all EVAL boards: each example will contain 
more or less modules depending on the memory available on the board.

The user can choose which module to activate in file GUIDEMO.h located under Demo\. 

A portion of code (module selection) from the GUIDEMO.h file is shown below.

/*********************************************************************

*

* Configuration of modules to be used

*

**********************************************************************

*/

#ifndef SHOW_GUIDEMO_BITMAP

#define SHOW_GUIDEMO_BITMAP (1)

#endif

#ifndef SHOW_GUIDEMO_COLORBAR

#define SHOW_GUIDEMO_COLORBAR (0)

#endif

#ifndef SHOW_GUIDEMO_CURSOR

#define SHOW_GUIDEMO_CURSOR (1)

#endif

#ifndef SHOW_GUIDEMO_GRAPH

#define SHOW_GUIDEMO_GRAPH (1)

#endif

#ifndef SHOW_GUIDEMO_LISTVIEW

#define SHOW_GUIDEMO_LISTVIEW (1)

#endif
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#ifndef SHOW_GUIDEMO_SPEED

#define SHOW_GUIDEMO_SPEED (1)

#endif

#ifndef SHOW_GUIDEMO_TREEVIEW

#define SHOW_GUIDEMO_TREEVIEW (0)

#endif

#ifndef SHOW_GUIDEMO_ICONVIEW

#define SHOW_GUIDEMO_ICONVIEW (1)

#endif

#ifndef SHOW_GUIDEMO_RADIALMENU

#define SHOW_GUIDEMO_RADIALMENU (1)

#endif

#ifndef SHOW_GUIDEMO_VSCREEN

#define SHOW_GUIDEMO_VSCREEN (0)

#endif

#ifndef SHOW_GUIDEMO_AUTOMOTIVE

#define SHOW_GUIDEMO_AUTOMOTIVE (0)

#endif

Note that the VNC module (described in detail in Section 3.8) is activated by default with the 
following configurations:
• STM324xG-EVAL + FreeRTOS
• STM322xG-EVAL + FreeRTOS
• STM324x9I-EVAL-MB1046 + FreeRTOS

The User\ directory includes the system-related files, the main program and, in some 
examples (where the VNC feature is supported), the network connection configuration files.
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3 How to use STemWin Library step by step

This section provides an overview of the main features of STemWin Library, as well as the 
main settings and configuration steps. For further details, refer to the Segger’s emWin User 
Manual.

3.1 Configuration
The configuration is basically divided into two parts: GUI configuration and LCD 
configuration. 
• The GUI configuration covers the configuration of default colors and fonts and of 

available memory.
• The LCD configuration is more hardware-dependent and enables the user to define the 

physical size of the display, the display driver and the color conversion routines to be 
used.

When a new LCD controller needs to be supported, two essential files must be created, in 
addition to the already existing OS configuration file: GUIConf_stm32xxx_eval.c and 
LCDConf_stm32xxx_eval.c.

3.1.1 GUIConf_stm32xxx_eval.c
In this file, the user should implement the GUI_X_Config() function which is the very first 
routine called during the initialization process. Its main task is to set up the available 
memory for the GUI and to then assign it to the dynamic memory management system.

This operation is done via the GUI_ALLOC_AssignMemory() function: it passes a pointer to 
a memory block and its size (in bytes) to the memory manager.

Note: The memory must be accessible and must be 8-, 16- and 32-bit wide. Memory access is 
checked during initialization.

3.1.2 LCDConf_stm32xxx_eval.c
The main function here is LCD_X_Config(), called immediately after GUI_X_Config() has 
been executed. LCD_X_Config() allows creating and configuring a display driver for each 
layer by calling:
• GUI_DEVICE_CreateAndLink(), which creates the driver device and links it to the 

device chain;
• LCD_SetSizeEx() and LCD_SetVSizeEx(), to set the display size configuration;
• Other driver-specific configuration routines such as:

– GUIDRV_FlexColor_Config(), in association with the usage of the FlexColor 
driver;

– LCD_SetVRAMAddrEx(), required in case of linear addressable memory.

As mentioned in Section 1.2, STemWin Library comes with two optimized drivers, 
GUIDRV_Lin and GUIDRV_FlexColor, which cover all the LCDs embedded in ST EVAL-
boards.
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For more details about usage of these drivers, please visit Segger’s website:

http://www.segger.com

http://www.segger.com

In general, when a new LCD type needs to be supported, the user should check if the same 
LCD controller is already supported, then he just has to update the already existing 
LCDConf_stm32xxx_eval.c.

Another function, LCD_X_DisplayDriver(), is called by the display driver for several 
purposes, for example when using advanced features like multiple buffers, smooth scrolling 
or virtual pages. To support the corresponding task, the routine needs to be adapted to the 
display controller.

If the used display controller is not supported, user can easily create his own driver just by 
adapting the GUIDRV_Template.c file located under Library\STemWinLibraryXYZ\Config. 
Actually this template file contains the complete functionality needed for a display driver. 
The main routines that need to be adapted are _SetPixelIndex() and _GetPixelIndex(). If the 
display is not readable, a display data cache should be implemented instead of using the 
_GetPixelIndex() function.

3.1.3 GUI_X.c or GUI_X_OS.c
• GUI_X.c for single task execution:

“Single task” means that the project uses STemWin only from within one single task. The 
main purpose is to supply STemWin with a timing base. OS_TimeMS needs to be 
incremented each ms.
• GUI_X_OS.c for multitask execution:

If STemWin is used in a multitasking system, this file contains additional routines required 
for synchronizing tasks (for this purpose, the file GUI_X_FreeRTOS.c can be used as a 
template).

3.2 GUI initialization
To initialize the STemWin internal data structures and variables, GUI_Init() should be used.

Note that before initializing the GUI, the CRC module (in RCC peripheral clock enable 
register) should be enabled

A simple “Hello world” program illustrates this initialization, as shown below.

“Hello world” example:
void Main(void) {

int xPos, yPos;

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_CRC, ENABLE);

GUI_Init();

xPos = LCD_GetXSize() / 2;

yPos = LCD_GetYSize() / 3;

GUI_SetFont(GUI_FONT_COMIC24B_ASCII);
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GUI_DispStringHCenterAt("Hello world!", xPos, yPos);

while(1);

}

3.3 Core functions

3.3.1 Image file display
STemWin currently supports the BMP, JPEG, GIF and PNG file formats. The library includes 
rich APIs for each one of these image formats (fully documented in the STemWin User 
Manual). An approximation of the memory resources needed for each image type is given in 
Section 4: Performance and footprint.

3.3.2 Bidirectional text
Drawing Arabic or Hebrew text with STemWin is quite easy and is supported automatically 
in each text-based function. It only needs to be enabled once by using the following 
command:
GUI_UC_EnableBIDI()

3.3.3 Alpha blending
Alpha blending is a method combining the alpha channel with other layers in an image in 
order to create the appearance of semi-transparency (see Figure 4).

Figure 4. Alpha blending effect

The user can enable automatic alpha blending using the following command: 
GUI_EnableAlpha()

He can also give an alpha value to determine how much of a pixel should be visible and how 
much of the background should show through:
GUI_SetUserAlpha()

3.3.4 Sprites and cursors
A sprite is an image which can be shown above all other graphics on the screen.

A sprite preserves the screen area it covers. It can be moved or removed at any time, fully 
restoring the screen content. Animation by use of multiple images is also possible.
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Figure 5. Animated sprites

Sprites can be animated (Figure 5) by calling GUI_SPRITE_CreateAnim().

Note that sprites manage the background automatically.

STemWin also includes a system-wide cursor (Figure 6), which can also be animated by 
using GUI_CURSOR_SetAnim(). Cursors are actually based on sprites.

Figure 6. Cursors

Although the cursor always exists, it is hidden by default. It is not visible until a call is made 
to show it (GUI_CURSOR_Show()), and may be hidden again at any point 
(GUI_CURSOR_Hide()).

3.4 Memory devices
A memory device is a hardware-independent destination device for drawing operations.

If a memory device is created (by calling GUI_MEMDEV_Create()) then validated (by 
calling GUI_MEMDEV_Select()), all drawing operations are executed in memory. The final 
result is displayed on the screen only when all operations have been finished. This action is 
done by calling GUI_MEMDEV_CopyToLCD().

Memory devices can be used:
• to prevent flickering effect (due to direct drawing on the display),
• as containers for decompressed images,
• for rotating (GUI_MEMDEV_Rotate()) and scaling operations (Figure 7),
• for fading operations,
• for window animations,
• for transparency effects.
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Figure 7. Scaling and rotation effect using memdev

Since memory devices need a considerable amount of memory (see component “Memory 
Device” in Table 7), it is advised to use an external memory if available.

3.5 Antialiasing
Antialiasing smoothes curves and diagonal lines by “blending” the background color with the 
foreground one. This is done by adding intermediate colors between object and 
background.

Shape antialiasing

STemWin supports antialiased drawing of:
• Text (Font Converter is required to create AA fonts)
• Arcs (GUI_AA_DrawArc())
• Circles (GUI_AA_FillCircle())
• Lines (GUI_AA_DrawLine())
• Polygons (GUI_AA_DrawPolyOutline() and GUI_AA_FillPolygon())

Figure 8. Shape antialiasing

3.6 Window Manager
Window Manager can be described as:
• A management system for a hierarchic window structure:

– Each layer has its own desktop window. Each desktop window can have its own 
hierarchic tree of child windows.

• A callback mechanism-based system:
– Communication is based on an event-driven callback mechanism. All drawing 

operations should be done within the WM_PAINT event.
• The foundation of the widget library:

– All widgets are based on the functions of the Window Manager.
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3.7 Widget library
Widgets (Window + Gadget) are windows with object-type properties. They require the 
Window Manager.

A list of all widgets available in STemWin Library can be found at: http://www.segger.com

Once a widget is created, it is treated just like any other window. The Window Manager 
ensures that it is properly displayed (and redrawn) whenever necessary.

Figure 9. Widget examples

Widget creation

Creating a widget can be done with one line of code.

There are basically two ways of creating a widget:
• Direct creation:

Creation functions exist for each widget:
– <WIDGET>_CreateEx(): creation without user data.
– <WIDGET>_CreateUser(): creation with user data.

• Indirect creation:

“Indirect” means here using a dialog box creation function and a 
GUI_WIDGET_CREATE_INFO structure which contains a pointer to the indirect creation 
routine:

– <WIDGET>_CreateIndirect(): creation by dialog box creation function.

3.8 VNC server
VNC stands for “Virtual Network Computing”. The VNC server is used to connect the 
embedded target to a network PC via TCP/IP, which allows to:
• view the LCD content on the distant PC monitor, and to
• control the embedded environment using the mouse.

In other words, the display contents of the embedded device are visible on the screen of the 
machine running the client (for example, a network PC); the mouse and keyboard can then 
be used to control the target.
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Figure 10. VNC server usage

3.8.1 Requirements
• An STM32 device with embedded Ethernet IP, such as STM32F107xx, STM32F2x7xx 

or STM32F4x7xx.
• A TCP/IP stack should be present in the target. In the delivered demo, LwIP is used.
• The VNC server should run as a separate thread. Therefore, a multitasking system is 

required to use the emWin VNC server. In our case, the demo package runs with 
FreeRTOS.

• A VNC viewer (such as RealVNC, TightVNC, UltraVNC…) should be present in the 
supervising PC.
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3.8.2 Process description
• Connect the target hardware to the network (or to the PC, if a local connection is 

needed) via an Ethernet cable.
• Run the demo.

– The VNC_Server_task is a sub-task of the Background_Task.
– After hardware (LEDs, Touch Screen, SRAM…) and GUI initialization, the TCP/IP 

(LwIP) stack is also initialized.
– Then GUI_VNC_X_StartServer() is called to:
a) initialize the VNC context and attach it to a layer,
b) create a task for the VNC server, which listens on port 5900 until an incoming 

connection is detected and then runs the actual server (by calling 
GUI_VNC_Process()).

• If DHCP is enabled (“#define USE_DHCP” in main.h):
– Wait for the IP address to be assigned by the DHCP server; it will be displayed in 

the “VNC Server” page (just after the “Intro” page).
– If it is impossible to retrieve any IP address (DHCP timeout), a predefined static IP 

address is assigned and displayed.
• If DHCP is disabled (or in case of DHCP timeout):

– Wait for a static IP address to be displayed.
– Configure the IP address and the subnet mask of the PC with the same class 

address as used in the target hardware.
• Start the VNC viewer.

– Connect to the IP address of the target hardware (see Figure 11).
– The demo is then displayed on the PC.

• Using the VNC viewer, the user can:
– Watch the running demo on the PC monitor (live streaming);
– Control the target hardware from the PC (using the mouse);
– Take screenshots of the demo (if needed for a manual, for example).

Note: Breaking the viewer's connection to the server and then reconnecting does not result in any 
loss of data.

Figure 11. VNC client
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3.9 Fonts
The most common fonts are included in STemWin Library as a standard font package. All of 
them contain the ASCII character set and most of them also the ISO 8859-1 characters.

A complete list of the embedded fonts is shown below (taken from GUI.h).

Note: The STemWin Library default font is GUI_Font6x8.

Fonts included in STemWin library
//

// Proportional fonts

//

#define GUI_FONT_8_ASCII &GUI_Font8_ASCII

#define GUI_FONT_8_1 &GUI_Font8_1

#define GUI_FONT_10S_ASCII &GUI_Font10S_ASCII

#define GUI_FONT_10S_1 &GUI_Font10S_1

#define GUI_FONT_10_ASCII &GUI_Font10_ASCII

#define GUI_FONT_10_1 &GUI_Font10_1

#define GUI_FONT_13_ASCII &GUI_Font13_ASCII

#define GUI_FONT_13_1 &GUI_Font13_1

#define GUI_FONT_13B_ASCII &GUI_Font13B_ASCII

#define GUI_FONT_13B_1 &GUI_Font13B_1

#define GUI_FONT_13H_ASCII &GUI_Font13H_ASCII

#define GUI_FONT_13H_1 &GUI_Font13H_1

#define GUI_FONT_13HB_ASCII &GUI_Font13HB_ASCII

#define GUI_FONT_13HB_1 &GUI_Font13HB_1

#define GUI_FONT_16_ASCII &GUI_Font16_ASCII

#define GUI_FONT_16_1 &GUI_Font16_1

#define GUI_FONT_16_HK &GUI_Font16_HK

#define GUI_FONT_16_1HK &GUI_Font16_1HK

#define GUI_FONT_16B_ASCII &GUI_Font16B_ASCII

#define GUI_FONT_16B_1 &GUI_Font16B_1

#define GUI_FONT_20_ASCII &GUI_Font20_ASCII

#define GUI_FONT_20_1 &GUI_Font20_1

#define GUI_FONT_20B_ASCII &GUI_Font20B_ASCII

#define GUI_FONT_20B_1 &GUI_Font20B_1

#define GUI_FONT_24_ASCII &GUI_Font24_ASCII

#define GUI_FONT_24_1 &GUI_Font24_1

#define GUI_FONT_24B_ASCII &GUI_Font24B_ASCII

#define GUI_FONT_24B_1 &GUI_Font24B_1

#define GUI_FONT_32_ASCII &GUI_Font32_ASCII

#define GUI_FONT_32_1 &GUI_Font32_1

#define GUI_FONT_32B_ASCII &GUI_Font32B_ASCII

#define GUI_FONT_32B_1 &GUI_Font32B_1

//
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// Proportional fonts, framed

//

#define GUI_FONT_20F_ASCII &GUI_Font20F_ASCII

//

// Monospaced

//

#define GUI_FONT_4X6 &GUI_Font4x6

#define GUI_FONT_6X8 &GUI_Font6x8

#define GUI_FONT_6X8_ASCII &GUI_Font6x8_ASCII

#define GUI_FONT_6X8_1 &GUI_Font6x8_1

#define GUI_FONT_6X9 &GUI_Font6x9

#define GUI_FONT_8X8 &GUI_Font8x8

#define GUI_FONT_8X8_ASCII &GUI_Font8x8_ASCII

#define GUI_FONT_8X8_1 &GUI_Font8x8_1

#define GUI_FONT_8X9 &GUI_Font8x9

#define GUI_FONT_8X10_ASCII &GUI_Font8x10_ASCII

#define GUI_FONT_8X12_ASCII &GUI_Font8x12_ASCII

#define GUI_FONT_8X13_ASCII &GUI_Font8x13_ASCII

#define GUI_FONT_8X13_1 &GUI_Font8x13_1

#define GUI_FONT_8X15B_ASCII &GUI_Font8x15B_ASCII

#define GUI_FONT_8X15B_1 &GUI_Font8x15B_1

#define GUI_FONT_8X16 &GUI_Font8x16

#define GUI_FONT_8X17 &GUI_Font8x17

#define GUI_FONT_8X18 &GUI_Font8x18

#define GUI_FONT_8X16X1X2 &GUI_Font8x16x1x2

#define GUI_FONT_8X16X2X2 &GUI_Font8x16x2x2

#define GUI_FONT_8X16X3X3 &GUI_Font8x16x3x3

#define GUI_FONT_8X16_ASCII &GUI_Font8x16_ASCII

#define GUI_FONT_8X16_1 &GUI_Font8x16_1

//

// Digits

//

#define GUI_FONT_D24X32 &GUI_FontD24x32

#define GUI_FONT_D32 &GUI_FontD32

#define GUI_FONT_D36X48 &GUI_FontD36x48

#define GUI_FONT_D48 &GUI_FontD48

#define GUI_FONT_D48X64 &GUI_FontD48x64

#define GUI_FONT_D64 &GUI_FontD64

#define GUI_FONT_D60X80 &GUI_FontD60x80

#define GUI_FONT_D80 &GUI_FontD80

//

// Comic fonts
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//

#define GUI_FONT_COMIC18B_ASCII &GUI_FontComic18B_ASCII

#define GUI_FONT_COMIC18B_1 &GUI_FontComic18B_1

#define GUI_FONT_COMIC24B_ASCII &GUI_FontComic24B_ASCII

#define GUI_FONT_COMIC24B_1 &GUI_FontComic24B_1

In most cases, those fonts are found sufficient. However, if needed, STemWin also supports 
several external font formats:
• System Independent Font (SIF) format
• External Bitmap Font (XBF) format
• TrueType Font (TTF) format

For those, STemWin Library includes a rich font API. See Table 4.

          

Table 4. Font API 
Routine Description

C file related font functions

GUI_SetDefaultFont() Sets the default font.

GUI_SetFont() Sets the current font.

’SIF’ file related font functions

GUI_SIF_CreateFont() Creates and selects a font by passing a pointer to system- 
independent font data.

GUI_SIF_DeleteFont() Deletes a font previously created by GUI_SIF_CreateFont().

’TTF’ file related font functions

GUI_TTF_CreateFont() Creates a GUI font from a TTF font file.

GUI_TTF_DestroyCache() Destroys the cache of the TTF engine.

GUI_TTF_Done() Frees all dynamically allocated memory of the TTF engine.

GUI_TTF_GetFamilyName() Returns the family name of the font.

GUI_TTF_GetStyleName() Returns the style name of the font.

GUI_TTF_SetCacheSize() Can be used to set the default size of the TTF cache.

’XBF’ file related font functions

GUI_XBF_CreateFont() Creates and selects a font by passing a pointer to a callback 
function, which then extracts data from the XBF font file.

GUI_XBF_DeleteFont() Deletes a font previously created by GUI_XBF_CreateFont().

Common font-related functions

GUI_GetCharDistX() Returns the width in pixels (X-size) of a specified character in 
the current font.

GUI_GetFont() Returns a pointer to the currently selected font.

GUI_GetFontDistY() Returns the Y-spacing of the current font.

GUI_GetFontInfo() Returns a structure containing font information.

GUI_GetFontSizeY() Returns the height in pixels (Y-size) of the current font.
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3.10 GUIBuilder
The GUIBuilder is a tool for easily creating dialogs: instead of writing source code, the user 
can place and size widgets by drag and drop. Additional properties can be added via a pop-
up menu. Fine tuning can be done by editing the properties of the widgets.

The GUIBuilder then generates some dialog C code that can be either customized or 
integrated as is in the project.

Figure 12. The GUIBuilder application

GUI_GetLeadingBlankCols() Returns the number of leading blank pixel columns of the given 
character.

GUI_GetStringDistX() Returns the X-size of a text using the current font.

GUI_GetTextExtend() Evaluates the size of a text using the current font

GUI_GetTrailingBlankCols() Returns the number of trailing blank pixel columns of the given 
character.

GUI_GetYDistOfFont() Returns the Y-spacing of a particular font.

GUI_GetYSizeOfFont() Returns the Y-size of a particular font.

GUI_IsInFont() Evaluates whether a specified character belongs to a particular 
font.

GUI_SetDefaultFont() Sets the default font to be used after GUI_Init().

Table 4. Font API (continued)
Routine Description
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3.10.1 Basic usage of the GUIBuilder
• Start with the FRAMEWIN or WINDOW widget: only those widgets are able to serve as 

parent windows for a dialog.
• Place the widgets within the parent window: the widgets can be placed and sized by 

moving them with the mouse and/or by editing the properties in the property window.
• Configure the widgets: the pop-up menu shows the available options.
• Save the dialog: each dialog is saved in a separate file. The filenames are generated 

automatically, based on the name of the parent window.

3.10.2 Creation routine
The file generated using GUIBuilder contains a creation routine for the dialog. The routine 
name includes the name of the parent window: WM_HWIN Create<WindowName>(void);

Simply call the following routine to create the dialog:

hWin = CreateFramewin();

3.10.3 User-defined code
The generated code contains a couple of comments to add user code between them. To be 
able to read back the file with the GUIBuilder, the code must be between these comments.

Note: Adding code outside the user code comments makes the file unreadable for the GUIBuilder.

3.10.4 Callback routine
The main part of the generated file is the callback routine. It normally contains the following 
message handlers:
• WM_INIT_DIALOG

The widget initialization is done here immediately after creating all widgets of the dialog. The 
user code area can be used to add further initialization.
• WM_NOTIFY_PARENT

It contains (empty) message handlers to be filled with user code. For each notification of the 
widget, there is one message handler. Further reactions on notification messages can be 
added.
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4 Performance and footprint

4.1 LCD driver performance
Table 5 lists a set of tests used to measure the speed of the display driver.

          

The tests were done on the STM324xG-EVAL and STM324x9I-EVAL boards using 
respectively FlexColor and Lin drivers.

The results are shown in Table 6.

          

M=megapixels/second

Table 5. Speed test list
Test name Description 

Test 1: Filling Measures the speed of filling. An area of 64 * 64 pixels is filled with 
different colors.

Test 2: Small fonts Measures the speed of small character output. An area of 60 * 64 pixels is 
filled with small-character text.

Test 3: Big fonts Measures the speed of big character output. An area of 65 * 48 pixels is 
filled with big-character text.

Test 4: Bitmap 1 bpp Measures the speed of 1 bpp bitmaps. An area of 58 * 8 pixels is filled 
with a 1 bpp bitmap.

Test 5: Bitmap 2 bpp Measures the speed of 2 bpp bitmaps. An area of 32 * 11 pixels is filled 
with a 2 bpp bitmap.

Test 6: Bitmap 4 bpp Measures the speed of 4 bpp bitmaps. An area of 32 * 11 pixels is filled 
with a 4 bpp bitmap.

Test 7: Bitmap 8 bpp Measures the speed of 8 bpp bitmaps. An area of 32 * 11 pixels is filled 
with an 8 bpp bitmap.

Test 8: Bitmap 16 bpp Measures the speed of 16 bpp bitmaps. An area of 64 * 8 pixels is filled 
with an 8 bpp bitmap.

Table 6. Speed test for the FlexColor and Lin drivers
Test name FlexColor Lin

Test 1: Filling 7.48 M 73.47 M

Test 2: Small fonts 1.57 M 4.16 M

Test 3: Big fonts 2.35 M 5.96 M

Test 4: Bitmap 1bpp 3.23 M 8.81 M

Test 5: Bitmap 2bpp 2.28 M 6.29 M

Test 6: Bitmap 4bpp 2.22 M 6.13 M

Test 7: Bitmap 8bpp 1.17 M 9.71 M

Test 8: Bitmap 16bpp 5.57 M 4.55 M
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4.2 STemWin footprint
The operation area of STemWin varies widely, depending primarily on the application and 
features used. In the following sections, memory requirements of various modules are 
listed, as well as the memory requirements of example applications.

The following table shows the memory requirements of the main components of STemWin. 
These values depend a lot on the compiler options, the compiler version and the used CPU. 
Note that the listed values are the requirements of the basic functions of each module.

          

Table 7. Module footprint
Component ROM RAM Description

Windows Manager 6.2 Kbytes 2.5 Kbytes
Additional memory requirements of 
basic application when using the 
Window Manager.

Memory Devices 4.7 Kbytes 7 Kbytes
Additional memory requirements of a 
basic application when using memory 
devices.

Antialiasing 4.5 Kbytes 2 * LCD_XSIZE Additional memory requirements for 
the antialiasing software item.

Driver 2 – 8 Kbytes 20 bytes

The memory requirements of the driver 
depend on the configured driver and 
whether a data cache is used or not. 
With a data cache, the driver requires 
more RAM.

Multilayer 2 – 8 Kbytes -

If working with a multi layer or a multi 
display configuration, additional 
memory is required for each additional 
layer, because each requires its own 
driver.

Core 5.2 Kbytes 80 bytes
Memory requirements of a typical 
application without using additional 
software items.

JPEG 12 Kbytes 38 Kbytes Basic routines for drawing JPEG files.

GIF 3.3 Kbytes 17 Kbytes Basic routines for drawing GIF files.

Sprites 4.7 Kbytes 16 bytes Routines for drawing sprites and 
cursors.

Font 1 – 4 Kbytes - Depends on the font size to be used.
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Table 8. Widget footprint 
Component ROM RAM Description

BUTTON 1 Kbyte 40 bytes *1

CHECKBOX 1 Kbyte 52 bytes *1

DROPDOWN 1.8 Kbytes 52 bytes *1

EDIT 2.2 Kbytes 28 bytes *1

FRAMEWIN 2.2 Kbytes 12 bytes *1

GRAPH 2.9 Kbytes 48 bytes *1

GRAPH_DATA_XY 0.7 Kbytes - *1

GRAPH_DATA_YT 0.6 Kbytes - *1

HEADER 2.8 Kbytes 32 bytes *1

LISTBOX 3.7 Kbytes 56 bytes *1

LISTVIEW 3.6 Kbytes 44 bytes *1

MENU 5.7 Kbytes 52 bytes *1

MULTIEDIT 7.1 Kbytes 16 bytes *1

MULTIPAGE 3.9 Kbytes 32 bytes *1

PROGBAR 1.3 Kbytes 20 bytes *1

RADIOBUTTON 1.4 Kbytes 32 bytes *1

SCROLLBAR 2 Kbytes 14 bytes *1

SLIDER 1.3 Kbytes 16 bytes *1

TEXT 1 Kbyte 16 bytes *1

CALENDAR 0.6 Kbyte 32 bytes *1
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5 FAQs (Frequently Asked Questions)

This section gathers some of the most frequent questions STemWin Library package users 
may ask, and provides some solutions and tips.

          

Table 9. FAQs 
No. Question Answer/solution

1 Are all the STemWin features 
included in the package?

Yes. The delivered locked binaries where compiled with 
all the features enabled.

2
What is the STemWin Library 
configuration (during the binary 
generation)?

The file GUIConf.h (located under 
Libraries\STemWinLibraryXYZ\Config\) was used to 
generate the STemWin binaries.
The content of that file is as follows:
#define GUI_NUM_LAYERS (2)
#define GUI_DEFAULT_FONT    &GUI_Font6x8
#define GUI_SUPPORT_TOUCH (1)
#define GUI_SUPPORT_MOUSE (1)
#define GUI_SUPPORT_UNICODE (1)
#define GUI_WINSUPPORT (1)
#define GUI_SUPPORT_MEMDEV (1)
#define GUI_SUPPORT_AA (1)
#define WM_SUPPORT_STATIC_MEMDEV (1)

3 Isn’t the delivered binary too 
large?

No. It depends on the application. The compiler 
considers only called parts from the external functions; 
thus, non-used resources are not included in the final 
application size.

4 How can a new LCD controller be 
supported?

To support any kind of LCD controller, the user should 
implement two configuration files:
LCDConf.c/.h
GUIConf.c/.h
Section 3.1 describes in detail the content of those files.

5 Is it mandatory to use the 
FreeRTOS operating system?

No. Any other operating system can be used. But then a 
corresponding GUI_X_OS.c file is needed (see 
Section 3.1.3).

6

The project is compiled without 
errors but, when running the 
application, the display does not 
work.

This issue may be caused by one of the following:
Stack size is too low.
Wrong initialization of the display controller.
Wrong configuration of the display interface.
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6 Revision history

          

Table 10. Document revision history
Date Revision Changes

19-Jul-2013 1 Initial release.

07-Feb-2014 2
- The use of STemWin generic version (XYZ).
- The support of STM324x9I-EVAL board.

20-Mar-2014 3 - Added reference to STM32CubeF2 and 
STM32CubeF4
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