o~

) /4

life.augmented

AN4323
Application note

Getting started with STemWin Library

March 2014

Introduction

A partnership with Segger Microcontroller GmbH & Co. KG enables STMicroelectronics to

provide STemWin Library, a product based on Segger’s graphic library emWin.

STemWin Library is a professional graphical stack library enabling the building up of
Graphical User Interfaces (GUls) with any STM32, any LCD/TFT display and any LCD/TFT

controller, taking advantage of STM32 hardware accelerations whenever possible.

STemWin Library is a comprehensive solution coming with rich features such as JPG, GIF
and PNG decoding, many widgets (checkboxes, buttons...) and a VNC server allowing to
display remotely a local display, but also professional tools such as GUIBuilder to create

dialog boxes by drag and drop, a font converter, etc.

The letters XYZ in the terms STemWinXYZ and STemWinLibraryXYZ refer to the latest
STemWin version as described in the firmware package release notes.

This graphic library is fully integrated inside the STM32CubeF2 and STM32CubeF4
firmware components.

Table 1. Applicable Software

Type

Part numbers and product categories

MCU Software

STemWin, STM32CubeF2, STM32CubeF4

DoclD024959 Rev 3

1/31

www.st.com

http://www.st.com

Contents AN4323

Contents
1 Library and package presentation 6
1.1 Licensing information 6
1.2 Library description e 6
1.3 Package organization 8
1.4 Delivered binaries 8
2 Supported EVAL boards andexamples 10
3 How to use STemWin Library stepbystep 13
3.1 Configuration e 13
3.11 GUIConf stm32xxx_eval.c 13
3.1.2 LCDConf stm32xxx_eval.c 13
343 GULXCOrGULX OS.C o uvvveeee e 14
3.2 GUl initialization e 14
3.3 Corefunctions i 15
3.3.1 Imagefiledisplay 15
3.3.2 Bidirectionaltext 15
3.3.3 Alphablending 15
3.34 SPrites @and CUMSOrSt e e e e 15
3.4 Memory deviCes 16
3.5 Antialiasing 17
3.6 Window Manager 17
3.7 Widgetlibrary e 18
3.8 VUNC SerVer . ..o 18
3.8.1 Requirements 19
3.8.2 Process description 20
3.9 Fonts 21
3.10 GUIBUIIdEr 24
3.10.1 Basicusage ofthe GUIBuilder 25
3.10.2 Creationroutine i e 25
3.10.3 User-definedcode i 25
3.10.4 Callbackroutine 25

2/31 DoclD024959 Rev 3 KYI

AN4323 Contents
4 Performance and footprint i i, 26

4.1 LCD driver performance 26

4.2 STemWin footprint 27
5 FAQs (Frequently Asked Questions)coounn. 29
6 Revision history i i i 30
Kys DoclD024959 Rev 3 3/31

List of tables AN4323

List of tables

Table 1. Applicable Software 1
Table 2. Supported LCD controllerso e 7
Table 3. Supported EVAL boards and examples 10
Table 4. FONt APl . e e e 23
Table 5. Speedtestlist. e 26
Table 6. Speed test for the FlexColor and Lindrivers. 26
Table 7. Module footprint 27
Table 8. Widget footprint. e 28
Table 9. FAQS. . . 29
Table 10. Document revision history. e 30
4/31 DoclD024959 Rev 3 ‘y_l

AN4323

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

3

STemWin layers 6
Projecttree 8
Structure of the STemWin Library examples 10
Alpha blending effect 15
Animated Sprites e 16
CUISOTS .« . ottt 16
Scaling and rotation effectusingmemdev 17
Shape antialiasing e 17
Widget examples e e 18
VINC SEIVEr USAE. . . . ottt et e et e e e e e e e 19
VNC client. . ..o 20
The GUIBuilder application. 24

DoclD024959 Rev 3 5/31

Library and package presentation AN4323

1 Library and package presentation

The STemWin Library package includes a set of firmware libraries and software tools used
to build advanced and professional GUI-based applications.

1.1 Licensing information

e STemWin Library GUI files are provided in object format and licensed under MCD-ST
Image Software License Agreement V2 (the “License”); you may not use this package
except in compliance with the License. You may obtain a copy of the License at:
http://www.st.com.

e STemWin Library configuration and header files are provided in source format and
licensed under MCD-ST Liberty Software License Agreement V2 (the “License”); you
may not use this package except in compliance with the License. You may obtain a
copy of the License at: http://www.st.com

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an “AS 1S” BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

1.2 Library description

Figure 1 shows how STemWin is structured internally and how it can be implemented in a
complete project.

Figure 1. STemWin layers

Applization

=

Windaw manager

G| Core [rendering)

Display driver

1. The CRC module (in RCC peripheral clock enable register) should be enabled before using the library.

6/31 DoclD024959 Rev 3 ‘YI

AN4323 Library and package presentation

STemWin Library includes two optimized drivers:

e Direct linear access (LIN) driver for the STM32F429 TFT-LCD controller with the
DMA2D ChromART graphical acceleration engine,

e FlexColor (indirect access) driver for serial and parallel bus external LCD controllers
available on all STM32 EVAL boards.
Refer to Table 2 for a list of all supported display controllers.

Note: It is still possible to support any other LCD type just by implementing its own “custom” driver.
In addition to the main application, the user has to set and customize two essential interface
files:

e LCD configuration file (LCDConf_stm32xxx_eval.c)
— LCD Display initialization and configuration
— LCD Display driver link and customizing
— Additional hardware capability management
e GUI configuration file (GUIConf_stm32xxx_eval.c)
— Module selection (memory device, window manager...)
— GUI memory and heap management

Table 2. Supported LCD controllers

Supported

Driver Supported LCD controllers bits/pixels

This driver supports every display controller with linear

addressable video memory with a direct (full bus) interface. This
means that the video RAM is directly addressable by the address
GUIDRV_Lin lines of the CPU. 16, 18

The driver contains no controller-specific code. So it can also be
used for solutions without display controller which require a driver
which only manages the video RAM.

Epson S1D19122

FocalTech FT1509

Himax HX8301, HX8340, HX8347, HX8352, HX8353, HX8325A
Hitachi HD66772

llitek 1L19220, 1LI19221, 1LI9320, ILI9325, ILI9328, ILI9335,
ILI19338, ILI9340, 1L19341, 1LI9342, ILI9481

LG Electronics LGDP4531, LGDP4551 1,2,4,8
Novatek NT39122 16, 24, 32
OriseTech SPFD5408, SPFD54124C, SPFD5414D
Renesas R61505, R61516, R61526, R61580
Samsung S6D0117, S6E63D6

Sitronix ST7628, ST7637, ST7687, ST7712, ST7735
Solomon SSD1355, SSD1961, SSD1963, SSD2119
Syncoam SEPS525

GUIDRV_FlexColor

3

DoclD024959 Rev 3 7/31

Library and package presentation

AN4323

1.3

1.4

8/31

Package organization

Figure 2 shows the project tree.

Figure 2. Project tree

WS STemin_Library

) _htmresc

- | Libraries
- | CMSIS)

STemWinLibraryXYZ
, Config

, Documentation
) inc

| Lib

Standard and advanced libraries

;05
J Software

STemWin Library:

Config: global config file + GUIConf and LCDConf
template files

Documentation: emWin User & Reference Guide
inc: header files of the STemWin components

Lib: binary format libraries compiled for CM3 and CM4

core (with and without OS support)
OS: library interface with RTOS
Software: PC applications

Binaries folder: contains all projects in “hex” format

Examples implemented on all supported boards

- | STM32F0xx_StdPeriph_Driver
[~ | STM32F10x_StdPeriph_Driver
[~ | STM32F2x7_ETH_Driver
[~ | STM32F Zux_StdPeriph_Driver
[| STM32F30x_StdPeriph_Driver
[t | STM32F37x_StdPeriph_Driver
[| STM32F4x7_ETH_Driver
[#- |, STM32F%xx_StdPeriph_Driver
t-- | STM32L 1xx_StdPeriph_Driver J
-, Project
- || Binaries
- | STM32100B-EVAL)
G- | STM32100E-EVAL
G- | STM32108-EVAL
- | STM3Z10C-EVAL
G- | STM3210E-EVAL
- | STM322%G-EVAL
- | STM32303C-EVAL
[fy STM32373C-EVAL
[| STM324x9T-EVAL
[|| STM324uG-EVAL
[#- | STM32L152-EVAL
H-) STM32L152D-EVAL)

|| 5TM32_EVAL
- |, Third_Party

STM32_EVAL: standard evaluation boards hardware

driver

Third_Party: Third party drivers such as:
- LwlIP drivers

- FreeRTOS drivers

MSv32145v4

Delivered binaries

STemWin Library is distributed by ST as an object code library locked to STM32 products.

The library is compiled for CM3 and CM4 cores, both with and without OS support. In the
CM4 versions, the FPU is enabled.

Note that the library is compiler-dependent (IAR, ARM, GCC).

DoclD024959 Rev 3

3

AN4323 Library and package presentation

To summarize, the folder “Libraries\STemWinLibraryXYZ\Lib” contains twelve binaries:
e STemWinXYZ_CM3_IAR.a

e STemWinXYZ_CM3 Keil.a

e STemWinXYZ_CM3_GCC.a

e STemWinXYZ_CM3_OS_IAR.a
e STemWinXYZ_CM3_0OS_Keil.a
e STemWinXYZ _CM3 OS GCC.a
e STemWinXYZ_CM4_lAR.a

e STemWinXYZ_CM4 Keil.a

e STemWinXYZ_CM4_GCC.a

e STemWinXYZ_CM4_OS_IAR.a
e STemWinXYZ_CM4_0OS_Keil.a
e STemWinXYZ CM4 OS GCC.a

3

DoclD024959 Rev 3 9/31

Supported EVAL boards and examples

AN4323

2 Supported EVAL boards and examples

Table 3 lists the supported EVAL boards and examples.

Table 3. Supported EVAL boards and examples

STM32 Series/EVAL board LCD interface LCD driver
STM3210B-EVAL SPI
STM3210C-EVAL SPI
STM32F1 STM3210E-EVAL FSMC
STM32100B-EVAL SPI
STM32100E-EVAL FSMC FlexColor
STM32F2 STM322xG-EVAL FSMC
STM32303C-EVAL SPI
STM32F3
STM32373C-EVAL SPI
STM324xG-EVAL FSMC
STM32F4
STM324x91-EVAL LTDC Lin
STM32L152-EVAL SPI
STM32L1 FlexColor
STM32L152D-EVAL FSMC

As illustrated in Figure 3, each project contains two sub-projects:
e RTOS-based example
e Standalone example

Figure 3. Structure of the STemWin Library examples

- |, RTOS

..... . Config

..... l Cemo

----- | EWARM

----- . MDK-ARM
-----) TruesTUDIO
..... l User

-l || Standalone

..... . Config

..... l Cemo

----- | EWARM

----- . MDK-ARM
-----) TruesTUDIO
..... l User

The Config\ folder contains the two interface files described in Section 1.2:
e GUIConf_stm32xxx_eval.c/.h
e LCDConf_stm32xxx_eval.c/.h

10/31 DoclD024959 Rev 3

3

AN4323

Supported EVAL boards and examples

3

In the RTOS example, the Config\ directory also contains the Free RTOS configuration file
(FreeRTOSConfig.h).

The main application source code is located in the Demo\ folder. It consists of a generic

demonstration composed of several sub-modules such as:

e Radial menu (selects an icon from a radial menu using STemWin motion support)

e List view (shows some features of the LISTVEW widget)

e Bitmap (shows different bitmaps with and without compression)

e Antialiased text (outputs anti-aliased text on various backgrounds)

e Tree view (shows a hierarchical view of the files in a directory and some moving
sprites)

e Icon view (demonstrates the use of the ICONVIEW widget)

All these modules cannot be fully supported on all EVAL boards: each example will contain
more or less modules depending on the memory available on the board.

The user can choose which module to activate in file GUIDEMO.h located under Demo\.

A portion of code (module selection) from the GUIDEMO.h file is shown below.

/***

*

* Configuration of modules to be used
*
RS SRS S SR RS SRR R SRR R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE S
*/
#ifndef SHOW_GUIDEMO_BITMAP
#define SHOW_GUIDEMO_BITMAP (1)
#endif
#ifndef SHOW_GUIDEMO_COLORBAR
#define SHOW_GUIDEMO_COLORBAR (0)
#endif
#ifndef SHOW_GUIDEMO_CURSOR
#define SHOW_GUIDEMO_CURSOR (1)
#endif
#ifndef SHOW_GUIDEMO_GRAPH
#define SHOW_GUIDEMO_GRAPH (1)
#endif
#ifndef SHOW_GUIDEMO_LISTVIEW
#define SHOW_GUIDEMO_LISTVIEW (1)
#endif
DoclD024959 Rev 3 11/31

Supported EVAL boards and examples AN4323

#ifndef SHOW_GUIDEMO_SPEED
#define SHOW_GUIDEMO_SPEED (1)
#endif

#ifndef SHOW_GUIDEMO_TREEVIEW
#define SHOW_GUIDEMO_TREEVIEW (0)
#endif

#ifndef SHOW_GUIDEMO_ICONVIEW
#define SHOW_GUIDEMO_ICONVIEW (1)
#endif

#ifndef SHOW_GUIDEMO_RADIALMENU
#define SHOW_GUIDEMO_RADIALMENU (1)
#endif

#ifndef SHOW_GUIDEMO_VSCREEN
#define SHOW_GUIDEMO_VSCREEN (0)
#endif

#ifndef SHOW_GUIDEMO_AUTOMOTIVE
#define SHOW_GUIDEMO_AUTOMOTIVE (0)
#endif

Note that the VNC module (described in detail in Section 3.8) is activated by default with the
following configurations:

e STM324xG-EVAL + FreeRTOS
e STM322xG-EVAL + FreeRTOS
e STM324x9I-EVAL-MB1046 + FreeRTOS

The User\ directory includes the system-related files, the main program and, in some
examples (where the VNC feature is supported), the network connection configuration files.

3

12/31 DoclD024959 Rev 3

AN4323

How to use STemWin Library step by step

3

3.1

3141

Note:

3.1.2

)

How to use STemWin Library step by step

This section provides an overview of the main features of STemWin Library, as well as the
main settings and configuration steps. For further details, refer to the Segger’'s emWin User
Manual.

Configuration

The configuration is basically divided into two parts: GUI configuration and LCD
configuration.

e The GUI configuration covers the configuration of default colors and fonts and of
available memory.

e The LCD configuration is more hardware-dependent and enables the user to define the
physical size of the display, the display driver and the color conversion routines to be
used.

When a new LCD controller needs to be supported, two essential files must be created, in
addition to the already existing OS configuration file: GUIConf_stm32xxx_eval.c and
LCDConf_stm32xxx_eval.c.

GUIConf_stm32xxx_eval.c

In this file, the user should implement the GUI_X_Config() function which is the very first
routine called during the initialization process. Its main task is to set up the available
memory for the GUI and to then assign it to the dynamic memory management system.

This operation is done via the GUI_ALLOC_AssignMemory() function: it passes a pointer to
a memory block and its size (in bytes) to the memory manager.

The memory must be accessible and must be 8-, 16- and 32-bit wide. Memory access is
checked during initialization.

LCDConf_stm32xxx_eval.c

The main function here is LCD_X_Config(), called immediately after GUI_X_Config() has
been executed. LCD_X_Config() allows creating and configuring a display driver for each
layer by calling:
e GUI_DEVICE_CreateAndLink(), which creates the driver device and links it to the
device chain;
e LCD_SetSizeEx() and LCD_SetVSizeEXx(), to set the display size configuration;
e Other driver-specific configuration routines such as:
— GUIDRV_FlexColor_Config(), in association with the usage of the FlexColor
driver;
— LCD_SetVRAMAJArEXx(), required in case of linear addressable memory.
As mentioned in Section 1.2, STemWin Library comes with two optimized drivers,

GUIDRV_Lin and GUIDRV_FlexColor, which cover all the LCDs embedded in ST EVAL-
boards.

DoclD024959 Rev 3 13/31

How to use STemWin Library step by step AN4323

313

3.2

14/31

For more details about usage of these drivers, please visit Segger’s website:
http://www.segger.com
http://www.segger.com

In general, when a new LCD type needs to be supported, the user should check if the same
LCD controller is already supported, then he just has to update the already existing
LCDConf_stm32xxx_eval.c.

Another function, LCD_X_DisplayDriver(), is called by the display driver for several
purposes, for example when using advanced features like multiple buffers, smooth scrolling
or virtual pages. To support the corresponding task, the routine needs to be adapted to the
display controller.

If the used display controller is not supported, user can easily create his own driver just by
adapting the GUIDRV_Template.c file located under Library\STemWinLibraryXYZ\Config.
Actually this template file contains the complete functionality needed for a display driver.
The main routines that need to be adapted are _SetPixellndex() and _GetPixellndex(). If the
display is not readable, a display data cache should be implemented instead of using the
_GetPixellndex() function.

GUI_X.c or GUIL_X_OS.c

e GUI_X.c for single task execution:

“Single task” means that the project uses STemWin only from within one single task. The
main purpose is to supply STemWin with a timing base. OS_TimeMS needs to be
incremented each ms.

e GUI_X_0OS.c for multitask execution:

If STemWin is used in a multitasking system, this file contains additional routines required
for synchronizing tasks (for this purpose, the file GUI_X_FreeRTOS.c can be used as a
template).

GUI initialization

To initialize the STemWin internal data structures and variables, GUI_Init() should be used.

Note that before initializing the GUI, the CRC module (in RCC peripheral clock enable
register) should be enabled

A simple “Hello world” program illustrates this initialization, as shown below.

“Hello world” example:

void Main (void) {

int xPos, yPos;

RCC_AHBlPeriphClockCmd (RCC_AHBlPeriph_ CRC, ENABLE) ;
GUI_Init();

xPos = LCD_GetXSize() / 2;
yPos = LCD_GetYSize() / 3;
GUI_SetFont (GUI_FONT_COMIC24B_ASCII);

3

DoclD024959 Rev 3

AN4323 How to use STemWin Library step by step
GUI_DispStringHCenterAt ("Hello world!", xPos, yPos);
while (1) ;

}

3.3 Core functions

3.31 Image file display
STemWin currently supports the BMP, JPEG, GIF and PNG file formats. The library includes
rich APIs for each one of these image formats (fully documented in the STemWin User
Manual). An approximation of the memory resources needed for each image type is given in
Section 4: Performance and footprint.

3.3.2 Bidirectional text
Drawing Arabic or Hebrew text with STemWin is quite easy and is supported automatically
in each text-based function. It only needs to be enabled once by using the following
command:
GUI_UC_EnableBIDI ()

3.33 Alpha blending
Alpha blending is a method combining the alpha channel with other layers in an image in
order to create the appearance of semi-transparency (see Figure 4).

Figure 4. Alpha blending effect

The user can enable automatic alpha blending using the following command:
GUI_EnableAlpha()
He can also give an alpha value to determine how much of a pixel should be visible and how
much of the background should show through:
GUI_SetUserAlpha()

3.34 Sprites and cursors

3

A sprite is an image which can be shown above all other graphics on the screen.

A sprite preserves the screen area it covers. It can be moved or removed at any time, fully
restoring the screen content. Animation by use of multiple images is also possible.

DoclD024959 Rev 3 15/31

How to use STemWin Library step by step AN4323

3.4

16/31

Figure 5. Animated sprites

ouZmEted

Sprites can be animated (Figure 5) by calling GUT_SPRITE_CreateAnim().

Note that sprites manage the background automatically.

STemWin also includes a system-wide cursor (Figure 6), which can also be animated by
using GUI_CURSOR_SetAnim (). Cursors are actually based on sprites.

Figure 6. Cursors

L\S[}g[% &\k
it e

Although the cursor always exists, it is hidden by default. It is not visible until a call is made
to show it (GUI_CURSOR_Show ()), and may be hidden again at any point
(GUI_CURSOR_Hide()).

Memory devices

A memory device is a hardware-independent destination device for drawing operations.

If a memory device is created (by calling GUI_MEMDEV_Create ()) then validated (by
calling GUI_MEMDEV_Select ()), all drawing operations are executed in memory. The final
result is displayed on the screen only when all operations have been finished. This action is
done by calling GUI_MEMDEV_CopyToLCD ().

Memory devices can be used:

e to prevent flickering effect (due to direct drawing on the display),

e as containers for decompressed images,

e forrotating (GUI_MEMDEV_Rotate ()) and scaling operations (Figure 7),

e for fading operations,

e for window animations,

e for transparency effects.

3

DoclD024959 Rev 3

AN4323

How to use STemWin Library step by step

3.5

3.6

3

Figure 7. Scaling and rotation effect using memdev

Since memory devices need a considerable amount of memory (see component “Memory
Device” in Table 7), it is advised to use an external memory if available.

Antialiasing

Antialiasing smoothes curves and diagonal lines by “blending” the background color with the
foreground one. This is done by adding intermediate colors between object and
background.

Shape antialiasing

STemWin supports antialiased drawing of:

e Text (Font Converter is required to create AA fonts)

e Arcs (GUI_AA_DrawArc())

e Circles (GUI_AA_FillCircle())

e Lines (GUI_AA_ DrawLine())

e Polygons (GUI_AA_DrawPolyOutline() and GUI_AA_FillPolygon())

Figure 8. Shape antialiasing

+

Window Manager

Window Manager can be described as:
e A management system for a hierarchic window structure:

— Each layer has its own desktop window. Each desktop window can have its own
hierarchic tree of child windows.

e A callback mechanism-based system:

— Communication is based on an event-driven callback mechanism. All drawing
operations should be done within the WM_PAINT event.

e The foundation of the widget library:
— All widgets are based on the functions of the Window Manager.

DoclD024959 Rev 3 17/31

How to use STemWin Library step by step AN4323

3.7

3.8

18/31

Widget library

Widgets (Window + Gadget) are windows with object-type properties. They require the
Window Manager.

A list of all widgets available in STemWin Library can be found at: http://www.segger.com
Once a widget is created, it is treated just like any other window. The Window Manager
ensures that it is properly displayed (and redrawn) whenever necessary.

Figure 9. Widget examples

2011
24 September | 2012
25 QOctober | 2013

August

Widget creation

Creating a widget can be done with one line of code.

There are basically two ways of creating a widget:
e Direct creation:

Creation functions exist for each widget:
— <WIDGET>_CreateEx (): creation without user data.
— <WIDGET>_CreateUser (): creation with user data.
e Indirect creation:
“Indirect” means here using a dialog box creation function and a

GUI_WIDGET_CREATE_INFO structure which contains a pointer to the indirect creation
routine:

— <WIDGET>_CreateIndirect (): creation by dialog box creation function.

VNC server

VNC stands for “Virtual Network Computing”. The VNC server is used to connect the
embedded target to a network PC via TCP/IP, which allows to:

e view the LCD content on the distant PC monitor, and to
e control the embedded environment using the mouse.
In other words, the display contents of the embedded device are visible on the screen of the

machine running the client (for example, a network PC); the mouse and keyboard can then
be used to control the target.

DoclD024959 Rev 3 ‘Yl

AN4323

How to use STemWin Library step by step

3.8.1

3

Figure 10. VNC server usage

VNC Server VNC Viewer

VNC Protocol

Target Hardware Supervising PC

Requirements

An STM32 device with embedded Ethernet IP, such as STM32F107xx, STM32F2x7xx
or STM32F4x7xx.

A TCP/IP stack should be present in the target. In the delivered demo, LwlIP is used.

The VNC server should run as a separate thread. Therefore, a multitasking system is

required to use the emWin VNC server. In our case, the demo package runs with
FreeRTOS.

A VNC viewer (such as RealVNC, TightVNC, UltraVNC...) should be present in the
supervising PC.

DoclD024959 Rev 3 19/31

How to use STemWin Library step by step AN4323

3.8.2

Note:

20/31

Process description

e Connect the target hardware to the network (or to the PC, if a local connection is
needed) via an Ethernet cable.

e Run the demo.
— The VNC_Server_task is a sub-task of the Background_Task.

— After hardware (LEDs, Touch Screen, SRAM...) and GUI initialization, the TCP/IP
(LwlIP) stack is also initialized.

— Then GUI_VNC_X_StartServer() is called to:
a) initialize the VNC context and attach it to a layer,

b) create a task for the VNC server, which listens on port 5900 until an incoming
connection is detected and then runs the actual server (by calling
GUI_VNC_Process ()).

e IfDHCP is enabled (“#define USE_DHCP” in main.h):

— Wait for the IP address to be assigned by the DHCP server; it will be displayed in
the “WVNC Server” page (just after the “Intro” page).

— Ifitis impossible to retrieve any IP address (DHCP timeout), a predefined static IP
address is assigned and displayed.

e If DHCP is disabled (or in case of DHCP timeout):
— Wait for a static IP address to be displayed.

— Configure the IP address and the subnet mask of the PC with the same class
address as used in the target hardware.

e Start the VNC viewer.
— Connect to the IP address of the target hardware (see Figure 11).
— The demo is then displayed on the PC.
e Using the VNC viewer, the user can:
— Watch the running demo on the PC monitor (live streaming);
— Control the target hardware from the PC (using the mouse);
— Take screenshots of the demo (if needed for a manual, for example).

Breaking the viewer's connection to the server and then reconnecting does not result in any
loss of data.

Figure 11. VNC client

GOl vNC Server: 192.168.0.10] =
= , _
2%, O Encyption: |LetVNC Server choose |

3

DoclD024959 Rev 3

AN4323 How to use STemWin Library step by step
3.9 Fonts
The most common fonts are included in STemWin Library as a standard font package. All of
them contain the ASCII character set and most of them also the ISO 8859-1 characters.
A complete list of the embedded fonts is shown below (taken from GUL.h).
Note: The STemWin Library default font is GUI_Font6x8.

3

Fonts included in STemWin library

/7

// Proportional fonts

/7

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

//

GUI_FONT_8_ASCII
GUI_FONT_8_1
GUI_FONT_10S_ASCII
GUI_FONT_10S_1
GUI_FONT_10_ASCII
GUI_FONT_10_1
GUI_FONT_13_ASCII
GUI_FONT_13_1
GUI_FONT_13B_ASCII
GUI_FONT_13B_1
GUI_FONT_13H_ASCII
GUI_FONT_13H_1
GUI_FONT_13HB_ASCII
GUI_FONT_13HB_1
GUI_FONT_16_ASCII
GUI_FONT 16_1
GUI_FONT_16_HK
GUI_FONT_16_1HK
GUI_FONT_16B_ASCII
GUI_FONT_16B_1
GUI_FONT_20_ASCII
GUI_FONT_ 20_1
GUI_FONT_20B_ASCII
GUI_FONT_20B_1
GUI_FONT_24_ASCII
GUI_FONT_24_1
GUI_FONT_24B_ASCII
GUI_FONT_24B_1
GUI_FONT_32_ASCII
GUI_FONT_32_1
GUI_FONT_32B_ASCII
GUI_FONT_32B_1

&GUI_Font8_ASCII
&GUI_Font8_1
&GUI_Fontl0S_ASCII
&GUI_Fontl0S_1
&GUI_Fontl0_ASCII
&GUI_Fontl0_1
&GUI_Fontl3_ASCII
&GUI_Fontl3_1
&GUI_Fontl3B_ASCII
&GUI_Fontl13B_1
&GUI_Fontl3H_ASCII
&GUI_Fontl3H_1
&GUI_Fontl3HB_ASCII
&GUI_Fontl3HB_1
&GUI_Fontl6_ASCII
&GUI_Fontl6_1
&GUI_Fontl6_HK
&GUI_Fontl6_1HK
&GUI_Fontl6B_ASCIT
&GUI_Fontl6B_1
&GUI_Font20_ASCII
&GUI_Font20_1
&GUI_Font20B_ASCII
&GUI_Font20B_1
&GUI_Font24_ASCII
&GUI_Font24_1
&GUI_Font24B_ASCII
&GUI_Font24B_1
&GUI_Font32_ASCII
&GUI_Font32_1
&GUI_Font32B_ASCIIT
&GUI_Font32B_1

DoclD024959 Rev 3

21/31

How to use STemWin Library step by step

AN4323

// Proportional fonts, framed
//

#define GUI_FONT_20F_ASCII

/7

// Monospaced

/7

#define GUI_FONT_4X6
#define GUI_FONT_6X8
#define GUI_FONT_6X8_ASCII
#define GUI_FONT_6X8_1
#define GUI_FONT_6X9
#define GUI_FONT_8X8
#define GUI_FONT_8X8_ASCII
#define GUI_FONT_8X8_1
#define GUI_FONT_8X9
#define GUI_FONT_8X10_ASCII
#define GUI_FONT_8X12_ASCIT
#define GUI_FONT_8X13_ASCII
#define GUI_FONT_8X13_1
#define GUI_FONT_8X15B_ASCII
#define GUI_FONT_8X15B_1
#define GUI_FONT_8X16
#define GUI_FONT_8X17
#define GUI_FONT_8X18
#define GUI_FONT_8X16X1X2
#define GUI_FONT_8X16X2X2
#define GUI_FONT_8X16X3X3
#define GUI_FONT_8X16_ASCII
#define GUI_FONT_8X16_1

/7

// Digits

/7

#define GUI_FONT_D24X32
#define GUI_FONT_D32
#define GUI_FONT_D36X48
#define GUI_FONT_D48
#define GUI_FONT_D48X64
#define GUI_FONT_D64
#define GUI_FONT_D60X80
#define GUI_FONT_DS8O0

//

// Comic fonts

22/31

DoclD024959 Rev 3

&GUI_Font20F_ASCII

&GUI_Font4dx6
&GUI_Font6x8
&GUI_Font6x8_ASCII
&GUI_Font6x8_1
&GUI_Font6x9
&GUI_Font8x8
&GUI_Font8x8_ ASCII
&GUI_Font8x8_1
&GUI_Font8x9
&GUI_Font8x10_ASCII
&GUI_Font8x12_ASCII
&GUI_Font8x13_ASCII
&GUI_Font8x13_1
&GUI_Font8x15B_ASCII
&GUI_Font8x15B_1
&GUI_Font8x16
&GUI_Font8x17
&GUI_Font8x18
&GUI_Font8x1l6x1x2
&GUI_Font8x16x2x2
&GUI_Font8x16x3x3
&GUI_Font8x16_ASCII
&GUI_Font8x16_1

&GUI_FontD24x32
&GUI_FontD32
&GUI_FontD36x48
&GUI_FontD48
&GUI_FontD48x64
&GUI_FontD64
&GUI_FontD60x80
&GUI_FontD80

3

AN4323

How to use STemWin Library step by step

3

//

#define GUI_FONT_COMIC18B_ASCII &GUI_FontComicl8B_ASCIT

#define GUI_FONT_COMIC18B_1

&GUI_FontComicl8B_1

#define GUI_FONT_COMIC24B_ASCII &GUI_FontComic24B_ASCIT

#define GUI_FONT_COMIC24B_1

&GUI_FontComic24B_1

In most cases, those fonts are found sufficient. However, if needed, STemWin also supports

several external font formats:

e System Independent Font (SIF) format
e External Bitmap Font (XBF) format
e TrueType Font (TTF) format

For those, STemWin Library includes a rich font API. See Table 4.

Table 4. Font API

Routine

Description

C file related font functions

GUI_SetDefaultFont()

Sets the default font.

GUI_SetFont()

Sets the current font.

SIF’ file related font functions

GUI_SIF_CreateFont()

Creates and selects a font by passing a pointer to system-
independent font data.

GUI_SIF_DeleteFont()

Deletes a font previously created by GUI_SIF_CreateFont().

"TTF’ file related font functions

GUI_TTF_CreateFont()

Creates a GUI font from a TTF font file.

GUI_TTF_DestroyCache()

Destroys the cache of the TTF engine.

GUI_TTF_Done()

Frees all dynamically allocated memory of the TTF engine.

GUI_TTF_GetFamilyName()

Returns the family name of the font.

GUI_TTF_GetStyleName()

Returns the style name of the font.

GUI_TTF_SetCacheSize()

Can be used to set the default size of the TTF cache.

"XBF’ file related font functions

GUI_XBF_CreateFont()

Creates and selects a font by passing a pointer to a callback
function, which then extracts data from the XBF font file.

GUI_XBF_DeleteFont()

Deletes a font previously created by GUI_XBF_CreateFont().

Common font-related functions

GUI_GetCharDistX()

Returns the width in pixels (X-size) of a specified character in
the current font.

GUI_GetFont()

Returns a pointer to the currently selected font.

GUI_GetFontDistY()

Returns the Y-spacing of the current font.

GUI_GetFontinfo()

Returns a structure containing font information.

GUI_GetFontSizeY()

Returns the height in pixels (Y-size) of the current font.

DoclD024959 Rev 3 23/31

How to use STemWin Library step by step AN4323

3.10

24/31

Table 4. Font API (continued)

Routine Description

GUI_ GetLeadingBlankCols() Returns the number of leading blank pixel columns of the given

character.
GUI_GetStringDistX() Returns the X-size of a text using the current font.
GUI_GetTextExtend() Evaluates the size of a text using the current font
GUI_GetTrailingBlankCols() S:at:gr;tsetrhe number of trailing blank pixel columns of the given
GUI_GetYDistOfFont() Returns the Y-spacing of a particular font.
GUI_GetYSizeOfFont() Returns the Y-size of a particular font.

Evaluates whether a specified character belongs to a particular

GUL_lIsInFont() font

GUI_SetDefaultFont() Sets the default font to be used after GUI_Init().

GUIBuilder

The GUIBuilder is a tool for easily creating dialogs: instead of writing source code, the user
can place and size widgets by drag and drop. Additional properties can be added via a pop-
up menu. Fine tuning can be done by editing the properties of the widgets.

The GUIBuilder then generates some dialog C code that can be either customized or
integrated as is in the project.

Figure 12. The GUIBuilder application

.
-
S P ——
[| Bt (77 | | o Skl | i 1
BERGEE EEEEEEEE

- GUIBuilder

g ol . e o

Velan Zmih m

e ——
== o
= -
| ox caneal
i L A | [4
s

3

DoclD024959 Rev 3

AN4323

How to use STemWin Library step by step

3.10.1

3.10.2

3.10.3

Note:

3.10.4

3

Basic usage of the GUIBuilder

e Start with the FRAMEWIN or WINDOW widget: only those widgets are able to serve as
parent windows for a dialog.

e Place the widgets within the parent window: the widgets can be placed and sized by
moving them with the mouse and/or by editing the properties in the property window.

e Configure the widgets: the pop-up menu shows the available options.

e Save the dialog: each dialog is saved in a separate file. The filenames are generated
automatically, based on the name of the parent window.

Creation routine

The file generated using GUIBuilder contains a creation routine for the dialog. The routine
name includes the name of the parent window: WM_HWIN Create<WindowName> (void);

Simply call the following routine to create the dialog:

hWwin = CreateFramewin() ;

User-defined code

The generated code contains a couple of comments to add user code between them. To be
able to read back the file with the GUIBuilder, the code must be between these comments.

Adding code outside the user code comments makes the file unreadable for the GUIBuilder.

Callback routine

The main part of the generated file is the callback routine. It normally contains the following
message handlers:

e WNM_INIT_DIALOG

The widget initialization is done here immediately after creating all widgets of the dialog. The
user code area can be used to add further initialization.

e WM_NOTIFY_PARENT

It contains (empty) message handlers to be filled with user code. For each notification of the

widget, there is one message handler. Further reactions on notification messages can be
added.

DoclD024959 Rev 3 25/31

Performance and footprint

AN4323

4

4.1

26/31

Performance and footprint

LCD driver performance

Table 5 lists a set of tests used to measure the speed of the display driver.

Table 5. Speed test list

with an 8 bpp bitmap.

Test name Description
Test 1- Fillin Measures the speed of filling. An area of 64 * 64 pixels is filled with
’ 9 different colors.
. Measures the speed of small character output. An area of 60 * 64 pixels is
Test 2: Small fonts filed with small-character text.
Test 3: Biq fonts Measures the speed of big character output. An area of 65 * 48 pixels is
- B9 filled with big-character text.
. Measures the speed of 1 bpp bitmaps. An area of 58 * 8 pixels is filled
Test 4: Bitmap 1 bpp with a 1 bpp bitrFr:ap. PP i P
. Measures the speed of 2 bpp bitmaps. An area of 32 * 11 pixels is filled
Test 5: Bitmap 2 bpp with a 2 bpp bitr?wap. PP P i
. Measures the speed of 4 bpp bitmaps. An area of 32 * 11 pixels is filled
Test 6: Bitmap 4 bpp with a 4 bpp bitr?wap. PP P P
Test 7- Bitmao 8 b Measures the speed of 8 bpp bitmaps. An area of 32 * 11 pixels is filled
' P cbpp with an 8 bpp bitmap.
Test 8: Bitmap 16 bpp Measures the speed of 16 bpp bitmaps. An area of 64 * 8 pixels is filled

The tests were done on the STM324xG-EVAL and STM324x9I-EVAL boards using

respectively FlexColor and Lin drivers.

The results are shown in Table 6.

Table 6. Speed test for the FlexColor and Lin drivers

Test name FlexColor Lin
Test 1: Filling 748 M 73.47 M
Test 2: Small fonts 1.57 M 416 M
Test 3: Big fonts 2.35M 5.96 M
Test 4: Bitmap 1bpp 3.23 M 881 M
Test 5: Bitmap 2bpp 228 M 6.29 M
Test 6: Bitmap 4bpp 222M 6.13 M
Test 7: Bitmap 8bpp 117 M 9.71 M
Test 8: Bitmap 16bpp 557 M 455M

M=megapixels/second

DoclD024959 Rev 3

3

AN4323

Performance and footprint

4.2

)

STemWin footprint

The operation area of STemWin varies widely, depending primarily on the application and
features used. In the following sections, memory requirements of various modules are
listed, as well as the memory requirements of example applications.

The following table shows the memory requirements of the main components of STemWin.
These values depend a lot on the compiler options, the compiler version and the used CPU.
Note that the listed values are the requirements of the basic functions of each module.

Table 7. Module footprint
Component ROM RAM Description

Additional memory requirements of
Windows Manager 6.2 Kbytes 2.5 Kbytes basic application when using the
Window Manager.

Additional memory requirements of a

Memory Devices 4.7 Kbytes 7 Kbytes basic application when using memory
devices.
Antialiasing 4.5 Kbytes 2*LcD_xsize |Additional memory requirements for

the antialiasing software item.

The memory requirements of the driver
depend on the configured driver and
Driver 2 — 8 Kbytes 20 bytes whether a data cache is used or not.
With a data cache, the driver requires
more RAM.

If working with a multi layer or a multi
display configuration, additional
Multilayer 2 — 8 Kbytes - memory is required for each additional
layer, because each requires its own
driver.

Memory requirements of a typical

Core 5.2 Kbytes 80 bytes application without using additional
software items.
JPEG 12 Kbytes 38 Kbytes Basic routines for drawing JPEG files.
GIF 3.3 Kbytes 17 Kbytes Basic routines for drawing GIF files.
Sprites 4.7 Kbytes 16 bytes Routines for drawing sprites and
cursors.
Font 1 —4 Kbytes - Depends on the font size to be used.

DoclD024959 Rev 3 27/31

Performance and footprint AN4323
Table 8. Widget footprint
Component ROM RAM Description
BUTTON 1 Kbyte 40 bytes *1
CHECKBOX 1 Kbyte 52 bytes *1
DROPDOWN 1.8 Kbytes 52 bytes *1
EDIT 2.2 Kbytes 28 bytes *1
FRAMEWIN 2.2 Kbytes 12 bytes *1
GRAPH 2.9 Kbytes 48 bytes *1
GRAPH_DATA_XY 0.7 Kbytes - *1
GRAPH_DATA_YT 0.6 Kbytes - *1
HEADER 2.8 Kbytes 32 bytes *1
LISTBOX 3.7 Kbytes 56 bytes *1
LISTVIEW 3.6 Kbytes 44 bytes *1
MENU 5.7 Kbytes 52 bytes *1
MULTIEDIT 7.1 Kbytes 16 bytes *1
MULTIPAGE 3.9 Kbytes 32 bytes *1
PROGBAR 1.3 Kbytes 20 bytes *1
RADIOBUTTON 1.4 Kbytes 32 bytes *1
SCROLLBAR 2 Kbytes 14 bytes *1
SLIDER 1.3 Kbytes 16 bytes *1
TEXT 1 Kbyte 16 bytes *1
CALENDAR 0.6 Kbyte 32 bytes *1

28/31

DoclD024959 Rev 3

3

AN4323

FAQs (Frequently Asked Questions)

5

3

FAQs (Frequently Asked Questions)

This section gathers some of the most frequent questions STemWin Library package users
may ask, and provides some solutions and tips.

Table 9. FAQs

No.

Question

Answer/solution

Are all the STemWin features
included in the package?

Yes. The delivered locked binaries where compiled with
all the features enabled.

What is the STemWin Library
configuration (during the binary
generation)?

The file GUIConf.h (located under
Libraries\STemWinLibraryXYZ\Config\) was used to
generate the STemWin binaries.

The content of that file is as follows:

#define GUI_NUM_LAYERS (2)
#define GUI_DEFAULT_FONT &GUI_Font6x8
#define GUI_SUPPORT_TOUCH (1)
#define GUI_SUPPORT_MOUSE (1)
#define GUI_SUPPORT_UNICODE (1)
#define GUI_WINSUPPORT (1)
#define GUI_SUPPORT_MEMDEV (1)
#define GUI_SUPPORT_AA (1)
#define WM_SUPPORT_STATIC_MEMDEV (1)

Isn’t the delivered binary too
large?

No. It depends on the application. The compiler
considers only called parts from the external functions;
thus, non-used resources are not included in the final
application size.

How can a new LCD controller be
supported?

To support any kind of LCD controller, the user should
implement two configuration files:

LCDConf.c/.h
GUIConf.c/.h
Section 3.1 describes in detail the content of those files.

Is it mandatory to use the
FreeRTOS operating system?

No. Any other operating system can be used. But then a
corresponding GUI_X_OS.c file is needed (see
Section 3.1.3).

The project is compiled without
errors but, when running the
application, the display does not
work.

This issue may be caused by one of the following:
Stack size is too low.
Wrong initialization of the display controller.
Wrong configuration of the display interface.

DoclD024959 Rev 3

29/31

Revision history

AN4323

6

30/31

Revision history

Table 10. Document revision history

Date Revision Changes
19-Jul-2013 1 Initial release.
07-Feb-2014 5 - The use of STemWin generic version (XYZ).
- The support of STM324x9I-EVAL board.
20-Mar-2014 3 - Added reference to STM32CubeF2 and

STM32CubeF4

DoclD024959 Rev 3

3

AN4323

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

‘Yl DoclD024959 Rev 3 31/31

	Table 1. Applicable Software
	1 Library and package presentation
	1.1 Licensing information
	1.2 Library description
	Figure 1. STemWin layers
	Table 2. Supported LCD controllers

	1.3 Package organization
	Figure 2. Project tree

	1.4 Delivered binaries

	2 Supported EVAL boards and examples
	Table 3. Supported EVAL boards and examples
	Figure 3. Structure of the STemWin Library examples

	3 How to use STemWin Library step by step
	3.1 Configuration
	3.1.1 GUIConf_stm32xxx_eval.c
	3.1.2 LCDConf_stm32xxx_eval.c
	3.1.3 GUI_X.c or GUI_X_OS.c

	3.2 GUI initialization
	3.3 Core functions
	3.3.1 Image file display
	3.3.2 Bidirectional text
	3.3.3 Alpha blending
	Figure 4. Alpha blending effect

	3.3.4 Sprites and cursors
	Figure 5. Animated sprites
	Figure 6. Cursors

	3.4 Memory devices
	Figure 7. Scaling and rotation effect using memdev

	3.5 Antialiasing
	Figure 8. Shape antialiasing

	3.6 Window Manager
	3.7 Widget library
	Figure 9. Widget examples

	3.8 VNC server
	Figure 10. VNC server usage
	3.8.1 Requirements
	3.8.2 Process description
	Figure 11. VNC client

	3.9 Fonts
	Table 4. Font API

	3.10 GUIBuilder
	Figure 12. The GUIBuilder application
	3.10.1 Basic usage of the GUIBuilder
	3.10.2 Creation routine
	3.10.3 User-defined code
	3.10.4 Callback routine

	4 Performance and footprint
	4.1 LCD driver performance
	Table 5. Speed test list
	Table 6. Speed test for the FlexColor and Lin drivers

	4.2 STemWin footprint
	Table 7. Module footprint
	Table 8. Widget footprint

	5 FAQs (Frequently Asked Questions)
	Table 9. FAQs

	6 Revision history
	Table 10. Document revision history

