
October 2007 Rev 2 1/38

AN2585
Application note

Application examples of the STM32F101xx
and STM32F103xx core and system peripherals

Introduction
The STM32F10xxx is built around the latest Cortex™-M3 core from ARM® designed for
advanced microcontrollers. Its specific Thumb®-2 instruction set delivers 32-bit
performance using 16-bit code density.

The STM32F10xxx has three low-power modes with a fast startup capability using the
embedded 8 MHz RC oscillator. The STM32F10xxx also embeds a real-time clock running
from either an internal 40 kHz RC or an external quartz oscillator.
In addition, the STM32F10xxx has the VBAT function that allows it to operate from the
battery for portable applications and ultralow power consumption.
Security and safety are also key features of the STM32F10xxx owing to an embedded reset
circuitry, a dual watchdog architecture (including an independent watchdog running from its
own clock source), a backup clock in case of main oscillator failure, and anti-tamper and
backup register functions.

This application note is intended to provide practical application examples of the different
STM32F10xxx features listed above. The Cortex-M3 and a number of peripherals are
addressed: the NVIC, SysTick, DMA, RCC, EXTI, PWR, BKP, RTC, Flash memory, IWDG
and WWDG.

This document, its associated firmware, and other such application notes are written to
accompany the STM32F10xxx firmware library. These are available for download from the
STMicroelectronics website: www.st.com.

www.st.com

http://www.st.com

Contents AN2585 - Application note

2/38

Contents

1 Cortex™-M3 core . 6

1.1 How to use Cortex™-M3 bit-band access . 6

1.1.1 Overview . 6

1.1.2 Firmware description . 7

1.2 How to modify the Cortex-M3 Privileged Thread mode and the stack used 7

1.2.1 Overview . 7

1.2.2 Firmware description . 7

2 NVIC application examples . 8

2.1 STM32F10xxx NVIC: preemption and subpriority handling 8

2.1.1 Hardware description . 8

2.1.2 Firmware description . 9

2.2 STM32F10xxx NVIC: IRQ channel interrupts . 10

2.2.1 Hardware description . 10

2.2.2 Firmware description . 10

2.3 STM32F10xxx NVIC: system handlers . 11

2.3.1 Hardware description . 11

2.3.2 Firmware description . 11

2.4 STM32F10xxx NVIC: WFE and WFI modes . 12

2.4.1 Hardware description . 12

2.4.2 Firmware description . 13

2.5 STM32F10xxx NVIC: DMA in WFI mode . 15

2.5.1 Hardware description . 15

2.5.2 Firmware description . 15

2.6 STM32F10xxx NVIC: vector table implementation with offset 16

2.6.1 Hardware description . 16

2.6.2 Firmware description . 16

3 How to use the STM32F10xxx SysTick . 17

3.1 Hardware description . 17

3.2 Firmware description . 17

4 DMA application examples . 18

AN2585 - Application note Contents

 3/38

4.1 STM32F10xxx Flash to RAM data transfer using DMA 18

4.1.1 Hardware description . 18

4.1.2 Firmware description . 18

4.1.3 Conclusion . 18

4.2 STM32F10xxx I2C-to-I2C communication using DMA 19

4.2.1 Hardware description . 19

4.2.2 Firmware description . 19

4.2.3 Conclusion . 19

4.3 STM32F10xxx full-duplex, SPI-to-SPI communication using DMA 20

4.3.1 Hardware description . 20

4.3.2 Firmware description . 20

4.3.3 Conclusion . 21

4.4 STM32F10xxx peripheral-to-peripheral data transfer using DMA 21

4.4.1 Hardware description . 21

4.4.2 Firmware description . 21

4.4.3 Conclusion . 21

5 RCC application examples . 22

5.1 How to use the STM32F10xxx RCC . 22

5.1.1 Hardware description . 22

5.1.2 Firmware description . 22

6 How to use the STM32F10xxx EXTI controller 23

6.1 Hardware description . 23

6.2 Firmware description . 23

6.3 Conclusion . 23

7 PWR application examples . 24

7.1 STM32F10xxx Stop mode . 24

7.1.1 Hardware description . 24

7.1.2 Firmware description . 24

7.2 STM32F10xxx Standby mode . 25

7.2.1 Hardware description . 25

7.2.2 Firmware description . 26

8 BKP application examples . 27

Contents AN2585 - Application note

4/38

8.1 How to write/read data to/from Backup data registers 27

8.1.1 Hardware description . 27

8.1.2 Firmware description . 27

8.2 How to store user data into the Backup data registers 28

8.2.1 Hardware description . 28

8.2.2 Firmware description . 28

9 RTC application examples . 30

9.1 STM32F10xxx RTC and backup (BKP) domain . 30

9.1.1 Hardware description . 30

9.1.2 Firmware description . 31

10 Flash memory application examples . 32

10.1 How to program the STM32F10xxx Flash memory 32

10.1.1 Firmware description . 32

10.2 How to enable and disable the STM32F10xxx Flash memory
write protection . 32

10.2.1 Firmware description . 32

10.2.2 Enable Write protection . 33

10.2.3 Disable Write protection . 33

11 How to use the STM32F10xxx IWDG . 34

11.1 Hardware description . 34

11.2 Firmware description . 34

12 How to use the STM32F10xxx WWDG . 35

12.1 Hardware description . 35

12.2 Firmware description . 35

13 Conclusion . 36

14 Revision history . 37

AN2585 - Application note List of figures

 5/38

List of figures

Figure 1. STM32F10xxx NVIC hardware connection - example 1 . 8
Figure 2. STM32F10xxx NVIC hardware connection - example 2 . 10
Figure 3. STM32F10xxx NVIC hardware connection - example 3 . 11
Figure 4. STM32F10xxx NVIC hardware connection - example 4 . 12
Figure 5. STM32F10xxx NVIC hardware connection - example 5 . 15
Figure 6. STM32F10xxx NVIC hardware connection - example 6 . 16
Figure 7. STM32F10xxx example LED connection . 17
Figure 8. STM32F10xxx I2C-I2C communication . 19
Figure 9. STM32F10xxx full-duplex SPI-SPI communication . 20
Figure 10. STM32F10xxx ADC_IN14 connection . 21
Figure 11. STM32F10xxx RCC example hardware connection . 22
Figure 12. STM32F10xxx EXTI Line connection . 23
Figure 13. STM32F10xxx Stop mode example hardware connection . 24
Figure 14. STM32F10xxx Standby mode example hardware connection . 25
Figure 15. STM32F10xxx ANTI_TAMP connection . 27
Figure 16. Example connection to store user data into the Backup data registers 28
Figure 17. STM32F10xxx RTC hardware configuration. 30
Figure 18. STM32F10xxx IWDG example hardware connection. 34
Figure 19. STM32F10xxx WWDG example hardware connection. 35

Cortex™-M3 core AN2585 - Application note

6/38

1 Cortex™-M3 core

Section 1 provides practical information on how to use some of the Cortex-M3™ core
special features.

1.1 How to use Cortex™-M3 bit-band access

1.1.1 Overview

The Cortex-M3 memory map includes two bit-band regions. These regions map each word
in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the
alias region has the same effect as a read-modify-write operation on the targeted bit in the
bit-band region.

In the STM32F10xxx, the peripheral registers and the SRAM are mapped in a bit-band
region. This allows atomic bit-band write and read operations to be performed.

A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:

where:

● bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit

● bit_band_base is the starting address of the alias region

● byte_offset is the number of the byte in the bit-band region that contains the targeted bit

● bit_number is the bit position (0-31) of the targeted bit

The following example shows how to map bit 2 of the byte at SRAM address 0x20000300 in
the alias region:

0x2200 6008 = 0x2200 0000 + (0x300 × 32) + (2 × 4)

Writing to address 0x2200 6008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM address 0x2000 0300.

Reading address 0x2200 6008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM
address 0x2000 0300 (0x01: bit set; 0x00: bit reset).

bit_word_addr bit_band_base byte_offset 32×() bit_number 4×()+ +=

AN2585 - Application note Cortex™-M3 core

 7/38

1.1.2 Firmware description

This example shows how to use Cortex-M3 bit-band access to perform atomic read-modify-
write and read operations on a variable in SRAM.

The associated program declares three macros used to manipulate the variable bit: reset,
set and read a specific bit using bit-band access:

#define RAM_BASE 0x20000000
#define RAM_BB_BASE 0x22000000

#define Var_ResetBit_BB(VarAddr, BitNumber) \
(*(vu32 *) (RAM_BB_BASE I ((VarAddr - RAM_BASE) << 5) I ((BitNumber) << 2)) = 0)

#define Var_SetBit_BB(VarAddr, BitNumber) \
(*(vu32 *) (RAM_BB_BASE I ((VarAddr - RAM_BASE) << 5) I ((BitNumber) << 2)) = 1)

#define Var_GetBit_BB(VarAddr, BitNumber) \
(*(vu32 *) (RAM_BB_BASE I ((VarAddr - RAM_BASE) << 5) I ((BitNumber) << 2)))

As an example, a variable is declared and its value is changed using the above defined
macros.

This firmware is provided as Cortex-M3 example 1 in the STM32F10xxx firmware library,
available from the STMicroelectronics microcontrollers website.

1.2 How to modify the Cortex-M3 Privileged Thread mode and
the stack used

1.2.1 Overview

This example shows how to modify the Cortex-M3 Thread mode’s Privileged access and
stack.

1.2.2 Firmware description

Cortex-M3 Thread mode is entered on Reset, and can be entered as a result of an
exception return.

The associated program is used to:

● Switch the Thread mode stack from Main stack to Process stack

● Switch the Thread mode from Privileged to Unprivileged

● Switch the Thread mode from Unprivileged back to Privileged

To monitor the stack used and the privileged or unprivileged access level of code in Thread
mode, a set of variables is available within the program. It is also possible to use the 'Cortex
register' window of the debugger.

This firmware is provided as CortexM3 example 2 in the STM32F10xxx firmware library,
available from the STMicroelectronics microcontrollers website.

NVIC application examples AN2585 - Application note

8/38

2 NVIC application examples

Section 2 provides practical application examples of the STM32F10xxx NVIC peripheral
use.

2.1 STM32F10xxx NVIC: preemption and subpriority handling
This section describes how to use the NVIC (nested vector interrupt controller) firmware
library to demonstrate the Cortex-M3™ priority mechanism (preemption priority and
subpriority). An example is given, that uses some of the NVIC driver functionality: Enable,
Set priority, Get Active IRQ status, Clear IRQ pending bit, etc.

2.1.1 Hardware description

Figure 1 shows the example hardware connection used.

Figure 1. STM32F10xxx NVIC hardware connection - example 1

STM32F10xxx

PC7

PC9

PC6

PC8

PA0

3.3 V

4.7 KΩ

100 Ω

100 nF

600 Ω

600 Ω

600 Ω

600 Ω

ai14361

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF

AN2585 - Application note NVIC application examples

 9/38

2.1.2 Firmware description

The provided firmware includes the NVIC driver that supports all Cortex-M3 exception and
IRQ channel handlers through a set of functions. An example of use for most of these
functions is provided. In this example, two EXTI lines (Line0 & Line9) and the SysTick
Handler are used. An interrupt is generated on each falling edge of the EXTI lines.

These interrupts are configured with the following parameters:

● EXTI Line0

– PreemptionPriority = PreemptionPriorityValue

– SubPriority = 0

● EXTI Line9

– PreemptionPriority = 0

– SubPriority = 1

● SysTick Handler

– PreemptionPriority = !PreemptionPriorityValue

– SubPriority = 0

First, PreemptionPriorityValue is equal to 0 then EXTI Line0 has a higher preemption priority
than the SysTick handler.

In the EXTI Line9 interrupt routine, the EXTI Line0 and SysTick preemption priorities are
inverted. In the EXTI Line0 interrupt routine, the pending bit of the SysTick interrupt is set.
This causes SysTick ISR to preempt the EXTI Line0 ISR only if it has a higher preemption
priority.

The system behaves as follows:

1. The first time the EXTI Line9 interrupt occurs, the SysTick preemption becomes higher
than that of EXTI Line0. So when the EXTI Line0 interrupt occurs, the SysTick ISR is
executed and the PreemptionOccured variable becomes TRUE, causing the four LEDs
connected to the PC6, PC7, PC8 and PC9 pins to start toggling.

2. When the next EXTI Line9 interrupt occurs, the SysTick preemption becomes lower
than that of EXTI Line0. So when the EXTI Line0 interrupt occurs, the
PreemptionOccured variable becomes FALSE, causing the four LEDs connected to the
PC6, PC7, PC8 and PC9 pins to stop toggling.

The above described system behavior (1. and 2.)is then repeated in an infinite loop.

This firmware is provided as NVIC example 1 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

NVIC application examples AN2585 - Application note

10/38

2.2 STM32F10xxx NVIC: IRQ channel interrupts
This section describes how to use the NVIC firmware library so as to implement several IRQ
channels with different priorities.

2.2.1 Hardware description

Figure 2 shows the example hardware connection used.

Figure 2. STM32F10xxx NVIC hardware connection - example 2

2.2.2 Firmware description

The provided firmware includes the NVIC driver that supports all Cortex-M3 exception and
IRQ channel handlers through a set of functions. An example of use for most of these
functions is provided.

In the example, three IRQ channels are used: TIM2, TIM3 and TIM4 interrupt handlers.
These three timers are configured to generate an interrupt on each counter update event.
The IRQ channels have an ascending IRQ preemption priority, that is, TIM2 has a
preemption priority of 0 and TIM4 has a preemption priority of 2.

In each interrupt routine:

● TIM2 toggles the LED connected to the PC6 pin every 1 s

● TIM3 toggles the LED connected to the PC7 pin every 2 s

● TIM4 toggles the LED connected to the PC8 pin every 3 s

This firmware is provided as NVIC example 2 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC6

PC8

600 Ω

600 Ω

600 Ω

ai14335

AN2585 - Application note NVIC application examples

 11/38

2.3 STM32F10xxx NVIC: system handlers
This section describes how to use the NVIC firmware library so as to implement several
system handlers with different priorities.

2.3.1 Hardware description

Figure 3 shows the example hardware connection used.

Figure 3. STM32F10xxx NVIC hardware connection - example 3

2.3.2 Firmware description

The provided firmware includes the NVIC driver that supports all Cortex-M3 exception and
IRQ channel handlers through a set of functions. An example of use for most of these
functions is provided.

In this example, fours system handlers are used: NMI, PSV, SVCall and SysTick handlers.
These handlers are called in cascade mode from the SysTick handler, which is the handler
mode entry point.

The handler priorities are configured as follows:

● NMI has –1 preemption priority (Fixed priority)

● PSV has 0 preemption priority

● SVCall has 1 preemption priority

● SysTick has 2 preemption priority

The SysTick timer is configured to generate an interrupt every 1 s.

In the SyStick handler routine, the LED connected to the PC6 pin toggles every 1 s and the
SVC instruction is executed. This activates the SVCall handler to preempt the current
instruction stream. In the SVCall handler routine, the LED connected to the PC7 pin toggles
and the pending bit of the PSV handler is set by software. PSV, that has a higher preemption
priority, preempts the SVCall handler and toggles the LED connected to the PC8 pin. Also, in
this handler routine, the NMI pending bit is set, which activates the NMI handler and causes
the LED connected to the PC9 pin to toggle.

This firmware is provided as NVIC example 3 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC6

PC8

600 Ω

600 Ω

600 Ω

ai14336

PC9

NVIC application examples AN2585 - Application note

12/38

2.4 STM32F10xxx NVIC: WFE and WFI modes
This section describes how to use the NVIC firmware library to demonstrate the Cortex-M3
low-power mode capabilities: WFE (wait for event) and WFI (wait for interrupt).

2.4.1 Hardware description

Figure 4 shows the example hardware connection used.

Figure 4. STM32F10xxx NVIC hardware connection - example 4

STM32F10xxx

PC9

PC6

PC8

PA0

3.3 V

4.7 KΩ

100 Ω

100 nF

600 Ω

600 Ω

600 Ω

ai14368

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF

3.3 V

4.7 KΩ

100 Ω

100 nF

PC13

AN2585 - Application note NVIC application examples

 13/38

2.4.2 Firmware description

The provided firmware includes the NVIC driver that supports all Cortex-M3 exception and
IRQ channel handlers through a set of functions. An example of use for most of these
functions is provided.

In this example, three EXTI lines (Line0, Line9 & Line13) are used. An interrupt or event is
generated on each falling edge. EXTI Line0 and Line13 are configured in Interrupt mode
and EXTI Line9 is configured in Event mode. The user must select which low-power mode
will be executed through five define statements in the main code. The choice is:

● Wait For Interrupt (WFI) Sleep On Exit: in this case, the Cortex-M3 automatically
enters the WFI mode on an exception return and the WFI instruction is not needed. The
exception is executed if it has a high enough priority to run and the Cortex-M3 returns
to the WFI mode. To obtain this behavior, the procedure is as follows:

– Choose the #WFISLEEPONEXIT define statement and comment other define
statements

– Run the example

– The first time the EXTI Line13 event occurs, the Cortex-M3 SLEEPONEXIT bit is
set. As a result the Cortex-M3 enters the WFI mode on an exception return.

– Each time the EXTI Line0 event occurs, the LED connected to PC8 pin toggles.

Any falling edge on EXTI Line0 or Line13 will execute the EXTI interrupt. On exiting the
ISR, the Cortex-M3 enters the WFI mode. Whenever the EXTI Line 0 is pulled low, the
Cortex-M3 exits the WFI mode, the LED connected to PC8 is toggled and the Cortex-
M3 reverts to the WFI mode. This behavior is repeated in an infinite loop.

● Wait For Interrupt (WFI) Sleep Now: in this mode the WFI instruction is directly
executed. To obtain this behavior, the procedure is as follows:

– Choose the #WFISLEEPNOW define statement and comment other define
statements

– Run the example

– In the EXTI Line13 routine, the LED connected to PC6 is toggled and the Cortex-
M3 enters the WFI mode.

– To wake up the Cortex-M3, use the push-button connected to EXTI Line0, it will
toggle the LED connected to PC8

This behavior is repeated in an infinite loop.

NVIC application examples AN2585 - Application note

14/38

● Wait For Event (WFE) SEV ON PEND: in this mode, the WFE instruction is directly
executed and the main instruction stream is boosted by the PRIMASK register (main
priority = 0). To obtain this behavior, the procedure is as follows:

– Choose the #WFESEVONPEND define statement and comment other define
statements

– Run the example

– In the EXTI Line13 routine, the execution priority is boosted to 0 (no other interrupt
is executed once the priority has been boosted), the LED connected to PC6 is
toggled and the Cortex-M3 enters the WFE mode.

– Use the push-button connected to EXTI Line0 to wake up the Cortex-M3. It will not
toggle the LED connected to PC8 but will wake up the Cortex-M3 from WFE (SEV
ON PEND). The EXTI Line0 interrupt passes from nonpending state to pending
state, thus waking up the Cortex-M3 from WFE (the EXTI Line0 interrupt has not
enough priority to run because the main execution priority is boosted to 0 using
the PRIMASK register).

– The push-button connected to EXTI Line9 configured in event mode can also be
used to wake up the Cortex-M3.

– If the #RTC_Alarm_WFEWakeUp define statement is enabled, the RTC alarm
wakes up the Cortex-M3 after 6 seconds (if neither EXTI Line0 nor EXTI Line9 is
used to wake up the Cortex-M3 during this time)

● Wait For Event (WFE) SEV ON EVENT: in this mode the WFE instruction is directly
executed. To obtain this behavior, the procedure is as follows:

– Choose the #WFESEVONEVENT define statement and comment the other define
statements

– Run the example

– In the EXTI Line13 routine the LED connected to PC6 is toggled and the Cortex-
M3 enters the WFE mode.

– Use the push-button connected to EXTI Line0 to wake up the Cortex-M3. It will
toggle the LED connected to PC8.

– The push-button connected to EXTI Line9 configured in event mode can also be
used to wake up the Cortex-M3.

– If the #RTC_Alarm_WFEWakeUp define statement is enabled, the RTC alarm
wakes up the Cortex-M3 after 6 seconds (if neither EXTI Line0 nor EXTI Line9 is
used to wake up the Cortex-M3 during this time)

This behavior is repeated in an infinite loop.

The LED connected to PC9 toggles to indicate that the Cortex-M3 is in the Run mode and
not in a low-power mode.

This firmware is provided as NVIC example 4 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

AN2585 - Application note NVIC application examples

 15/38

2.5 STM32F10xxx NVIC: DMA in WFI mode
This section describes how to enter the WFI mode with DMA transfer enabled and wakeup
from this mode by the DMA End of Transfer interrupt.

2.5.1 Hardware description

Figure 5 shows four LEDs connected to the STM32F10xxx. The USART1 signals (Rx, Tx)
must be connected to the DB9 connector using a RS232 transceiver. Connect a null-modem
female/female RS232 cable between the DB9 connector (CN6 on the STM3210B-EVAL
board) and the PC serial port.

Figure 5. STM32F10xxx NVIC hardware connection - example 5

2.5.2 Firmware description

The provided firmware includes the NVIC driver that supports all Cortex-M3 exception and
IRQ channel handlers through a set of functions. An example of use for most of these
functions is provided.

In the associated firmware, the system clock is set to 72 MHz, DMA Channel5 is configured
to transfer 10 pieces of data from the USART1 data register to a predefined buffer,
DST_Buffer, and to generate an interrupt at the end of the transfer.

USART1 receives data from the HyperTerminal.

The LED connected to the PC6 pin is toggled at a frequency depending on the system clock.
It indicates whether the MCU is in WFI or Run mode.

A falling edge on EXTI Line 9 puts the Cortex-M3 in the WFI mode, causing the PC6 pin to
stop toggling. To wake up the Cortex-M3 from the WFI mode, a sequence has to be sent
from the HyperTerminal to USART1: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. These bytes are then
transferred by the DMA from the USART1 receive data register to the predefined buffer. An
interrupt is then generated that causes the system to exit the WFI mode.

As a result, the LED connected to the PC6 pin starts toggling again. Likewise the LED
connected to PC7 starts toggling if the buffer is correctly received, else it is the LED
connected to PC8 that starts toggling.

This firmware is provided as NVIC example 5 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

USART1_TX

PC6

PC8

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF

600 Ω

600 Ω

600 Ω

ai14337

USART
transceiver

DB9
connectorUSART1_RX

to PC HyperTerminal

NVIC application examples AN2585 - Application note

16/38

2.6 STM32F10xxx NVIC: vector table implementation with offset
This section describes how to use the NVIC firmware library to relocate the CortexM3 vector
table to a specific address that is not the default address.

2.6.1 Hardware description

Figure 6 shows the example hardware connection used.

Figure 6. STM32F10xxx NVIC hardware connection - example 6

2.6.2 Firmware description

The provided firmware describes how to use the NVIC firmware library to relocate the
CortexM3 vector table to a specific address.

This can be used to build a program that will be loaded into the Flash memory by an
application previously programmed in the sector0 of the Flash memory.

Such applications can be in-application programming (IAP, through USART) or device
firmware upgrade (DFU, through USB). They are available for download from the
STMicroelectronics microcontrollers website.

The associated program implements a Delay function based on the SysTick end of count
interrupt. It toggles four LEDs connected to the PC6, PC7, PC8 and PC9 pins with a timing
defined by the Delay function.

When using IAP to load your program, the vector table must be relocated to address
0x0800 2000.

When using DFU to load your program, the vector table must be relocated to address
0x0800 3000.

This firmware is provided as NVIC example 6 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC6

PC8

600 Ω

600 Ω

600 Ω

ai14336

PC9

AN2585 - Application note How to use the STM32F10xxx SysTick

 17/38

3 How to use the STM32F10xxx SysTick

This section describes how to configure the Cortex-M3™ system timer (SysTick) to
generate a time base. An example is given that uses most of the SysTick driver functionality:
set reload value, enable and disable counter, interrupt request enable.

3.1 Hardware description
Figure 7 shows the example hardware connection used.

Figure 7. STM32F10xxx example LED connection

3.2 Firmware description
The provided firmware includes the SysTick driver that supports all SysTick features through
a set of functions. An example of use for most of these functions is provided.

This example shows how to configure the SysTick to generate a time base equal to 1 ms.
The system clock is set to 72 MHz, the SysTick is clocked by the AHB clock (HCLK) divided
by 8.

A Delay function is implemented based on the SysTick end-of-count event.

Four LEDs connected to the PC6, PC7, PC8 and PC9 pins are toggled with a timing defined
by the Delay function.

This firmware is provided as SysTick example in the STM32F10xxx firmware library,
available from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC6

PC8

600 Ω

600 Ω

600 Ω

ai14336

PC9

DMA application examples AN2585 - Application note

18/38

4 DMA application examples

Section 4 provides practical application examples of the STM32F10xxx DMA peripheral use.

4.1 STM32F10xxx Flash to RAM data transfer using DMA
This section describes how to transfer the data buffer contents from the Flash memory to
the RAM using DMA.

4.1.1 Hardware description

No hardware connection needed.

4.1.2 Firmware description

The provided firmware includes the DMA driver that supports all DMA functionalities through
a set of functions.

DMA Channel6 is configured to transfer the contents of a 32-word data buffer stored in
Flash memory to the reception buffer declared in RAM. Trigger is done by software. DMA
Channel6 memory-to-memory transfer is enabled. Source and destination address
incrementing is also enabled. The transfer is started by setting the Channel enable bit for
DMA Channel6. At the end of the transfer a Transfer Complete interrupt is generated if
enabled. In the routine, the remaining data to be transferred is read, it must be equal to 0.
The Transfer Complete Interrupt pending bit is then cleared. A comparison between the
source buffer and the destination buffer is done to check that all data have been correctly
transferred.

This firmware is provided as DMA example 1 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

4.1.3 Conclusion

The use of DMA facilitates the transfer of data from memory to memory, in terms of code
size and execution time. Up to 65536 pieces of data can be transferred using only one DMA
channel with a start of transfer triggered by software.

AN2585 - Application note DMA application examples

 19/38

4.2 STM32F10xxx I2C-to-I2C communication using DMA
This section describes how to set an I2C-to-2C communication using DMA for transmission
and reception.

4.2.1 Hardware description

Figure 8 shows a typical connection between STM32F10xxx I2C1 and I2C2. The I2C1 and
I2C2 data (SDA) pins are connected together. The I2C1 and I2C2 clock (SCL) pins are also
connected together. A pull-up resistor is connected to each line (SDA and SCL).

Figure 8. STM32F10xxx I2C-I2C communication

4.2.2 Firmware description

The provided firmware includes the DMA and I2C drivers that support all DMA functionalities
and I2C communications through a set of functions.

I2C1 is set as the master transmitter and I2C2, as the slave receiver. DMA Channel5 is
configured to store the data received from I2C2 into the I2C2 Rx buffer (reception buffer).
DMA Channel6 is configured to transfer data from the I2C1 Tx buffer (transmission buffer) to
the I2C1 DR register for transmission to I2C2. After the Start condition and once the slave
address has been acknowledged, DMA is enabled on both I2C1 and I2C2. As soon as the
two I2C DMAEN bits are set in the I2C1_CR2 and I2C2_CR2 registers, the transmission of
the I2C1 Tx buffer is started by DMA Channel5 and at the same time the data received on
I2C2 is transferred by DMA Channel6 to the I2C2 Rx buffer. The transmitted buffer and the
received buffer are compared to check that all data have been correctly transferred.

This firmware is provided as DMA example 2 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

4.2.3 Conclusion

The use of DMA in I2C communication reduces the execution time and the code size as
there is no flag check and no (read or write) access to any DR register.

STM32F10xxx

I2C1_SDA

3.3 V

4.7 KΩ

ai14326

I2C1_SCL

I2C2_SDA

I2C2_SCL

3.3 V

4.7 KΩ

DMA application examples AN2585 - Application note

20/38

4.3 STM32F10xxx full-duplex, SPI-to-SPI communication using
DMA
This section explains how to set an SPI-to-SPI full-duplex communication using DMA,
followed by an automatic CRC transmission with DMA.

4.3.1 Hardware description

Figure 9 shows a typical connection between STM32F10xxx SPI1 and SPI2. The SPI1 and
SPI2 data inputs (MISO) are connected together. The SPI1 and SPI2 data outputs (MOSI)
are connected together. And the SPI1 and SPI2 clock inputs (SCK) are also connected
together. The SPI1 and SPI2 NSS pins are kept unconnected thanks to the software NSS
management.

Figure 9. STM32F10xxx full-duplex SPI-SPI communication

4.3.2 Firmware description

The provided firmware includes the DMA and SPI drivers that support all DMA
functionalities and SPI communications through a set of functions.

The NSS pins are configured by software to set SPI1 as the master and SPI2, as the slave.
DMA Channel2 and Channel4 are configured to store the data received from SPI1 into the
SPI1 Rx buffer and the data received from SPI2 into the SPI2 Rx buffer. DMA Channel3 is
configured to transfer data from the SPI1 Tx buffer to the SPI1_DR register for transmission
to SPI2. DMA Channel5 is configured to transfer data from the SPI2 Tx buffer to the
SPI2_DR register for transmission to SPI1.

As soon as the two SPI TxDMAEN and RxDMAEN bits are set in the SPI1_CR2 and
SPI2_CR2 registers, DMA Channel3 and Channel5 start transmitting the SPI1 and SPI2 Tx
buffers, respectively, at the same time. At the same moment, the data received on SPI1 and
SPI2 are transferred by DMA Channel2 and Channel4 to the SPI1 and SPI2 Rx buffers,
respectively. Then the system checks that all the data were transmitted and received by the
DMA Channels. The last received data on SPI1 and SPI2 are the CRC values sent by SPI2
and SPI1, respectively. The transmitted buffer and the received buffer are compared to
check that all data have been correctly transferred.

This firmware is provided as DMA example 3 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

SPI1_MOSI

ai14327

SPI1_MISO

SPI1_SCK

SPI1_MOSI

SPI1_MISO

SPI1_SCK

SPI2_MOSI

SPI2_MISO

SPI2_SCK

AN2585 - Application note DMA application examples

 21/38

4.3.3 Conclusion

The use of DMA in SPI communication reduces the execution time and the code size as
there is no flag check and no (read or write) access to any DR register. When DMA is used,
the CRC is transmitted automatically at the end of the data buffer transfer.

4.4 STM32F10xxx peripheral-to-peripheral data transfer using
DMA
This section describes how to transfer data between two peripherals using DMA: data
transferred from ADC_DR register to TIM1_CCR1 register.

4.4.1 Hardware description

Figure 10 shows a typical connection between a potentiometer and ADC_IN14. The TIM
channel output pin (TIM1_CH1) is connected to an oscilloscope to display the signal duty
cycle variation as a function of the ADC_IN14 analog input.

Figure 10. STM32F10xxx ADC_IN14 connection

4.4.2 Firmware description

The provided firmware includes the DMA, ADC and TIM1 drivers that support all DMA, ADC
and TIM1 functionalities through a set of functions.

ADC_IN14 is configured to be converted continuously. TIM1_CH1 is configured to generate
a PWM signal on its output. DMA Channel5 is configured to transfer the converted value of
ADC_IN14 in circular mode, from ADC1_DR to TIM1_CCR1. This regular transfer
continuously updates the duty cycle value of TIM1_CH1 to the converted value of
ADC_IN14.

This firmware is provided as DMA example 4 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

4.4.3 Conclusion

DMA can be used to transfer data from one peripheral to another, provided that both
peripherals support DMA transfer. This reduces the code density and execution time, and
makes it easy for the user to transfer data between peripherals. DMA circular mode also
allows continuous data transfer without any user intervention.

STM32F10xxx

ADC_IN14

3.3 V

10 KΩ

ai14328

TIM1_CH1 Oscilloscope

RCC application examples AN2585 - Application note

22/38

5 RCC application examples

Section 5 provides practical application examples of the STM32F10xxx RCC (reset and
clock control) peripheral use.

5.1 How to use the STM32F10xxx RCC
This section describes how to configure the system clock source and the AHB, APB2 and
APB1 prescalers. An example is given that uses most of the RCC driver functionality.

5.1.1 Hardware description

Figure 11 shows the example hardware connection used.

Figure 11. STM32F10xxx RCC example hardware connection

5.1.2 Firmware description

The provided firmware includes the RCC driver that supports all RCC features through a set
of functions. An example of use for most of these functions is provided. It shows how to
configure the system clock source as well as the AHB, APB2 and APB1 prescalers. The
system clock frequency is set to 72 MHz using the PLL.

For debugging purposes, the example also shows how to use the RCC_GetClocksFreq
function to retrieve the current statuses and frequencies of the different on-chip clocks. The
RCC_ClockFreq structure, which contains the frequencies of the different on-chip clocks,
can be seen using a toolchain debugger.

This example also demonstrates the high-speed external clock (HSE) failure detection:
when the HSE clock disappears (broken or disconnected external quartz), the HSE clock
and the PLL are disabled (but the PLL configuration is unchanged), the HSI clock is selected
as the system clock source and an interrupt (NMI) is generated. In the NMI interrupt service
routine (ISR), the HSE and the HSE ready interrupt are enabled. When the HSE clock is
recovered, the HSERDY interrupt is generated and, in the RCC ISR, the system clock is
configured back to its previous state (before the HSE clock failure). The HSE clock can be
monitored on the MCO pin (PA8).
Four LEDs connected to the PC6, PC7, PC8 and PC9 pins are toggled at a frequency that
depends on the system clock.

This firmware is provided as RCC example in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC9

PC6

PC8

PA8 (MCO)

600 Ω

600 Ω

600 Ω

600 Ω

ai14340

Oscilloscope

AN2585 - Application note How to use the STM32F10xxx EXTI controller

 23/38

6 How to use the STM32F10xxx EXTI controller

This section describes how to configure a GPIO pin as an external interrupt, and how to
toggle an LED, using the EXTI firmware library. An example is given that uses most of the
EXTI driver functionality: configuration, enable, software pending bit, get the EXTI line
status, clear the pending bit.

6.1 Hardware description
Figure 12 shows how to connect a push-button to an EXTI Line, and an LED to any GPIO
pin. The push-button is used to generate edges on the selected EXTI Line and the LED is
used as an indicator.

Figure 12. STM32F10xxx EXTI Line connection

6.2 Firmware description
The provided firmware includes the EXTI driver that supports all EXTI features through a set
of functions. An example of use for most of these functions is provided.

In this example, the EXTI Line9 is configured to generate an interrupt on each falling edge.
In the interrupt routine the LED connected to PC6 is toggled after a software interrupt is
generated on EXTI Line9, and then at each falling edge.

This firmware is provided as EXTI example in the STM32F10xxx firmware library, available
from the STMicroelectronics website.

6.3 Conclusion
To use the EXTI controller, all that is needed is a simple hardware connection and a simple
software configuration.

STM32F10xxx
PC6

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF

600 Ω

ai14329

PWR application examples AN2585 - Application note

24/38

7 PWR application examples

Section 7 provides practical application examples of the STM32F10xxx PWR peripheral
use.

7.1 STM32F10xxx Stop mode
This section describes how to use the PWR firmware library to make the system enter the
Stop mode and to wake it up using EXTI Line interrupts. An example is given that uses most
of the PWR driver functionality.

7.1.1 Hardware description

Figure 13 shows the example hardware connection used.

Figure 13. STM32F10xxx Stop mode example hardware connection

7.1.2 Firmware description

The provided firmware includes the PWR driver that supports all PWR features through a
set of functions. An example of use for most of these functions is provided.

This example shows how to make the system enter and wake up from the Stop mode using
EXTI Line interrupts. The EXTI Line sources are PB9 and the RTC Alarm. EXTI Line9 (PB9)
is configured to generate an interrupt on its falling edge. EXTI Line17 (RTC Alarm) is
configured to generate an interrupt on its rising edge and the RTC time base is set to 1
second using the low-speed external oscillator (LSE). The system clock is set to 72 MHz
using the high-speed external oscillator (HSE).

The system enters and exits the Stop mode as described below:

After 2 seconds from the system startup, the RTC is configured to generate an Alarm event
after 3 seconds, then the system enters the Stop mode. To wake up the system from the
Stop, a rising edge has to be applied on EXTI Line9, otherwise the RTC Alarm wakes up the
system after 3 seconds. Once the Stop mode is exited, the system clock is reconfigured to
its previous state (as the HSE and PLL are disabled in the Stop mode).

Then after a delay, the system enters the Stop mode again and exits it as described above.
This behavior is repeated in an infinite loop.

STM32F10xxx

PC7

PC9

PC6

PC8

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF 600 Ω

600 Ω

600 Ω

600 Ω

ai14338

LD1

LD2

LD3

LD4

AN2585 - Application note PWR application examples

 25/38

Four LEDs connected to the PC6 (LD1), PC7 (LD2), PC8 (LD3) and PC9 (LD4) pins are
used to monitor the system state as follows:

● LD1 on / LD4 off: system is in Run mode

● LD1 off / LD4 on: system is in Stop mode

● LD2 toggles if EXTI Line9 is used to exit the Stop mode

● LD3 toggles if EXTI Line17 (RTC Alarm) is used to exit the Stop mode

This firmware is provided as PWR example1 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

7.2 STM32F10xxx Standby mode
This section describes how to use the PWR firmware library to make the system enter the
Standby mode and to wake it up using the external RESET, RTC Alarm or WKUP pin. An
example is given that uses most of the PWR driver functionality.

7.2.1 Hardware description

Figure 14 shows the example hardware connection used.

Figure 14. STM32F10xxx Standby mode example hardware connection

STM32F10xxx

PC7

PC6

PA0

3.3 V

4.7 KΩ

100 Ω

100 nF

600 Ω

600 Ω

ai14339

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF

PWR application examples AN2585 - Application note

26/38

7.2.2 Firmware description

The provided firmware includes the PWR driver that supports all PWR features through a
set of functions. An example of use for most of these functions is provided.

This example shows how to make the system enter and wake up from the Standby mode
using the external RESET, RTC Alarm or WKUP pin.

In the associated firmware, the system clock is set to 72 MHz, EXTI Line9 (PB9) is
configured to generate an interrupt on its falling edge and SysTick is programmed to
generate an interrupt every 250 ms. In the SysTick interrupt handler, the LED connected to
PC6 pin is toggled to indicate whether the MCU is in Standby or Run mode.

When a falling edge is detected on EXTI Line9, an interrupt is generated. In the EXTI
handler routine, the RTC is configured to generate an Alarm event after 3 seconds, then the
system enters the Standby mode, causing the PC6 pin to stop toggling.

A rising edge on the WKUP pin or an external RESET will wake up the system from the
Standby mode. If within 3 seconds neither of them occurs, the RTC Alarm wakes up the
system.

After wakeup from the Standby mode, the program execution restarts in the same way as
after a RESET, the PC6 pin restarts toggling, the PC7 pin is set to high and the RTC
configuration (clock source, enable, prescaler, etc.) is unchanged. As a result, there is no
need to configure the RTC.

Two LEDs connected to the PC6 (LD1) and PC7 (LD2) pins are used to monitor the system
state as described below:

● LD1 toggling: system is in Run mode

● LD1 off / LD2 off: system is in Standby mode

● LD2 on: system wakes up from Standby mode

This firmware is provided as PWR example2 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

AN2585 - Application note BKP application examples

 27/38

8 BKP application examples

Section 8 provides practical application examples of the STM32F10xxx BKP peripheral use.

8.1 How to write/read data to/from Backup data registers
This section describes how to write/read data to/from Backup data registers. An example is
given that uses most of the BKP driver functionality.

8.1.1 Hardware description

Figure 15 shows an example hardware connection.

Figure 15. STM32F10xxx ANTI_TAMP connection

8.1.2 Firmware description

The provided firmware includes the BKP driver that supports all BKP features through a set
of functions. An example of use for most of these functions is provided that shows how to
write/read data to/from Backup data registers. It also demonstrates the Tamper detection
feature.

The associated firmware performs the following:

● It configures the ANTI_TAMP pin to be active low, and enables the Tamper interrupt.

● It writes the data to all Backup data registers, then check whether the data were
correctly written. If yes, the LED connected to PC6 turns on, otherwise the LED
connected to PC7 turns on.

● On applying a low level on the ANTI_TAMP pin (PC13), the Backup data registers are
reset and the Tamper interrupt is generated. The corresponding ISR then checks
whether the Backup data registers are cleared. If yes, the LED connected to PC8 turns
on, otherwise the LED connected to PC9 is turns on.

This firmware is provided as BKP example1 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC9

PC6

PC8

PC13 (ANTI_TAMP)

3.3 V

4.7 KΩ

100 Ω

100 nF

600 Ω

600 Ω

600 Ω

600 Ω

ai14324

BKP application examples AN2585 - Application note

28/38

8.2 How to store user data into the Backup data registers
This section describes how to store user data in the Backup data registers. An example is
given that uses most of the BKP driver functionality.

8.2.1 Hardware description

Figure 16 shows an example hardware connection.

Figure 16. Example connection to store user data into the Backup data registers

8.2.2 Firmware description

The provided firmware includes the BKP driver that supports all BKP features through a set
of functions. An example of use for most of these functions is provided, that shows how to
store user data in the Backup data registers.

As the Backup (BKP) domain is still powered by VBAT when VDD is switched off, its contents
are not lost if a battery is connected to the VBAT pin.

The program behaves as follows:

● After startup the program checks if the board has been powered up. If yes, the values in
the BKP data registers are checked:

– if a battery is connected to the VBAT pin, the values in the BKP data registers are
retained

– if no battery is connected to the VBAT pin, the values in the BKP data registers are
lost

● After an external reset, the BKP data registers’ contents are not checked.

STM32F10xxx

PC7

PC9

PC6

PC8

VBAT

600 Ω

600 Ω

600 Ω

600 Ω

ai14325

3 V

LD1

LD2

LD3

LD4

AN2585 - Application note BKP application examples

 29/38

Four LEDs connected to the PC6 (LD1), PC7 (LD2), PC8 (LD3) and PC9 (LD4) pins are
used to monitor the system state as follows:

● LD3 on / LD1 on: a Power On Reset occurred and the values in the BKP data registers
are correct

● LD3 on / LD2 on: a Power On Reset occurred and the values in the BKP data registers
are not correct or they have not yet been programmed (if it is the first time the program
is executed)

● LD3 off / LD1 off / LD2 off: no Power On Reset occurred

● LD4 on: program is running

This firmware is provided as BKP example2 in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

RTC application examples AN2585 - Application note

30/38

9 RTC application examples

Section 9 provides practical application examples of the STM32F10xxx RTC peripheral use.

9.1 STM32F10xxx RTC and backup (BKP) domain
This section describes and explains how to use the RTC peripheral. As an application
example, it demonstrates how to setup the RTC peripheral, in terms of prescaler and
interrupts, to be used to keep time and to generate a second interrupt.

9.1.1 Hardware description

Figure 17 shows a typical RTC hardware configuration: external quartz, battery. A
connected LED is used to indicate seconds.

Figure 17. STM32F10xxx RTC hardware configuration

STM32F10xxx

VBAT

USART1_TX

PC6

600 Ω

ai14342

USART
transceiver

DB9
connectorUSART1_RX

to PC HyperTerminal

OSC32K_IN
6 pF

3 V

OSC32K_OUT
6 pF32.768 kHz

AN2585 - Application note RTC application examples

 31/38

9.1.2 Firmware description

The provided firmware includes the RTC driver that supports all RTC functionalities through
a set of functions. An example of use for most of these functions is provided.

The low-speed external (LSE) clock is used as the RTC clock source. The RTC clock can be
output on the TAMPER pin (PC13). To enable this functionality, uncomment the
corresponding line: RTCClockOutput_Enable in the main.c file.

The RTC is in the backup (BKP) domain, still powered by VBAT when VDD is switched off, so
the RTC configuration is not lost if a battery is connected to the VBAT pin. A key value is
written in backup data register1 (BKP_DR1) to indicate if the RTC is already configured.

The program behaves as follows:

1. After startup the program checks the backup data register1 value:

– register1 value not correct: (BKP_DR1 value is not correct or has not yet been
programmed when the program is executed for the first time) the RTC is
configured and the user is asked to set the time (entered on HyperTerminal).

– register1 value correct: this means that the RTC is configured and the time is
displayed on HyperTerminal.

2. When a External Reset occurs the BKP domain is not reset and the RTC configuration
is not lost.

3. When power on reset occurs:

– If a battery is connected to the VBAT pin: the BKP domain is not reset and the RTC
configuration is not lost.

– If no battery is connected to the VBAT pin: the BKP domain is reset and the RTC
configuration is lost.

In the RTC interrupt service routine, the LED connected to PC6 toggles every 1 s.

The C library printf function is retargeted to the USART1, that is, the printf message is
output to the HyperTerminal using USART1.

This firmware is provided as RTC example in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

Flash memory application examples AN2585 - Application note

32/38

10 Flash memory application examples

Section 10 provides practical application examples of the STM32F10xxx Flash memory use.

10.1 How to program the STM32F10xxx Flash memory
This section describes how to use the Flash memory firmware library to program the
STM32F10xxx Flash memory.

10.1.1 Firmware description

The provided firmware includes the Flash memory driver that supports all Flash memory
features through a set of functions. An example of use for most of these functions is
provided.

After Reset, the Flash memory Program/Erase Controller is locked. To unlock it, the
FLASH_Unlock function is used.

Before programming the desired addresses, an erase operation is performed using the
Flash memory Page Erase feature. The erase process starts with the calculation of the
number of pages to be used. The pages to be used are then erased one by one by calling
the FLASH_ErasePage function.

Once this operation is finished, the programming operation is performed by using the
FLASH_ProgramWord function. The written data is then checked and the result of the
programming operation is stored into the MemoryProgramStatus variable.

This firmware is provided as FLASH example 1 in the STM32F10xxx firmware library,
available from the STMicroelectronics microcontrollers website.

10.2 How to enable and disable the STM32F10xxx Flash memory
write protection
This section describes how to use the Flash memory firmware library to enable and disable
the write protection for the STM32F10xxx Flash memory.

10.2.1 Firmware description

The provided firmware includes the Flash memory driver that supports all Flash memory
features through a set of functions. An example of use for most of these functions is
provided.

AN2585 - Application note Flash memory application examples

 33/38

10.2.2 Enable Write protection

First, uncomment the #define WriteProtection_Enable line to Enable the Write
Protection.

To protect a set of pages, the user has to call the FLASH_EnableWriteProtection
function.

The parameter of this function defines the number of pages to be protected. Here, eight
pages from page 24 to page 31 are to be protected. The parameter therefore is:
FLASH_WRProt_Pages24to27 | FLASH_WRProt_Pages28to31.

To load the new option byte values, a system Reset is necessary. The
NVIC_GenerateSystemReset() function is used for that purpose.

10.2.3 Disable Write protection

First, uncomment the line #define WriteProtection_Disable to disable the write
protection.

To disable the write protection of the STM32F10xxx Flash memory, it is necessary to erase
the small information block. This operation is supported by the
FLASH_EraseOptionBytes function.

To load the new option byte values, a system Reset is required. The
NVIC_GenerateSystemReset() function is used for that purpose.

If the desired pages are not write-protected, they are erased and then written.

This firmware is provided as FLASH example 2 in the STM32F10xxx firmware library,
available from the STMicroelectronics microcontrollers website.

How to use the STM32F10xxx IWDG AN2585 - Application note

34/38

11 How to use the STM32F10xxx IWDG

This section describes how to configure the independent watchdog (IWDG) to reload the
IWDG counter at regular time intervals. An example is given that uses most of the IWDG
driver functionality.

11.1 Hardware description
Figure 18 shows the example hardware connection.

Figure 18. STM32F10xxx IWDG example hardware connection

11.2 Firmware description
The provided firmware includes the IWDG driver that supports all IWDG features through a
set of functions. The example provided shows how to reload the IWDG counter at regular
time intervals using the system tick timer interrupt, SysTick. The IWDG timeout is set to
280 ms (the timeout may vary due to LSI RC frequency dispersion).

SysTick is configured to generate an interrupt every 250 ms. In the SysTick interrupt service
routine (ISR), the IWDG counter is reloaded to prevent an IWDG reset, and the LED
connected to PC7 is toggled.
EXTI Line9 is connected to the PB9 pin and configured to generate an interrupt on its falling
edge.
In the NVIC, the EXTI line[9:5] interrupt vector is enabled with a priority equal to 0, and the
SysTick interrupt vector priority is set to 1 (EXTI IT > SysTick IT).

The EXTI Line9 is used to simulate a software failure: when the EXTI Line9 event is
triggered (by pressing the Key push-button on the STM3210B-EVAL board), the
corresponding interrupt is served. In the ISR, the LED connected to PC7 turns off and the
EXTI line9 pending bit is not cleared. So the CPU executes the EXTI line9 ISR indefinitely
and the SysTick ISR is never entered (IWDG counter not reloaded). As a result, when the
IWDG counter reaches 00h, the IWDG generates a reset.
If the EXTI Line9 event does not occur, the IWDG counter is indefinitely reloaded in the
SysTick ISR, which prevents any IWDG reset.
If the IWDG reset is generated, the LED connected to PC6 turns on after the system
resumes operation.

In this example the system is clocked by the high-speed external (HSE) clock (8 MHz). This
firmware is provided as IWDG example in the STM32F10xxx firmware library, available from
the STMicroelectronics microcontrollers website.

STM32F10xxx

PC7

PC6

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF
600 Ω

600 Ω

ai14332

AN2585 - Application note How to use the STM32F10xxx WWDG

 35/38

12 How to use the STM32F10xxx WWDG

This section describes how to configure the WWDG to update the WWDG counter at regular
time intervals. An example is given that uses most of the WWDG driver functionality.

12.1 Hardware description
Figure 19 shows the example hardware connection used.

Figure 19. STM32F10xxx WWDG example hardware connection

12.2 Firmware description
The provided firmware includes the WWDG driver that supports all WWDG features through
a set of functions. An example of use for most of these functions is provided. The example
shows how to update the WWDG counter at regular time intervals, using the early wakeup
interrupt (EWI).
The WWDG timeout is set to 262 ms, the refresh window is set to 41h and the EWI is
enabled. When the WWDG counter reaches 40h, the EWI is generated. In the WWDG ISR,
the counter is refreshed to prevent a WWDG reset and the LED connected to PC7 is
toggled.

EXTI Line9 is connected to the PB9 pin, and configured to generate an interrupt on the
falling edge of the signal.
In the NVIC (nested vectored interrupt controller), the EXTI Line[9:5] interrupt vector is
enabled with a priority equal to 0 and the WWDG interrupt vector is enabled with a priority
equal to 1 (EXTI IT > WWDG IT).

EXTI Line9 is used to simulate a software failure: once the EXTI Line9 event occurs (by
pressing the Key push-button on the STM3210B-EVAL board), the corresponding interrupt
is served. In the ISR, the LED connected to PC7 is turned off and the EXTI Line9 pending
bit is not cleared. So the CPU executes the EXTI Line9 ISR indefinitely and the WWDG ISR
is never executed (the WWDG counter is not updated). As a result, when the WWDG
counter falls to 3Fh, the WWDG reset occurs.

If the EXTI Line9 event does not occur, the WWDG counter is indefinitely refreshed in the
WWDG ISR, and there is no WWDG reset.
If the WWDG reset is generated, after the system resumes from reset, the LED connected
to PC6 turns on.

STM32F10xxx

PC7

PC6

PB9

3.3 V

4.7 KΩ

100 Ω

100 nF
600 Ω

600 Ω

ai14359

Conclusion AN2585 - Application note

36/38

In this example the system is clocked by HSE, the high-speed external clock (8 MHz). This
firmware is provided as WWDG example in the STM32F10xxx firmware library, available
from the STMicroelectronics microcontrollers website.

13 Conclusion

The examples described in this application note, provided with the STM32F10xxx firmware
library, make it easer for the user to understand the product system peripherals. They also
remove the user's need for dealing with peripheral low-level registers and bits.

AN2585 - Application note Revision history

 37/38

14 Revision history

Table 1. Document revision history

Date Revision Changes

10-Jul-2007 1 Initial release.

09-Oct-2007 2

Internal RC frequency updated to 40 kHz instead of 32 kHz.
Program modified in Section 1.1.2: Firmware description.

DMA Channel5 (not Channel1) configured to transfer the converted
value of ADC_IN14 in circular mode (see Section 4.4.2: Firmware
description).
LSE is the RTC clock source (see Section 9.1.2: Firmware
description).
IWDG timeout setting modified in Section 11.2: Firmware
description.

AN2585 - Application note

38/38

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Cortex™-M3 core
	1.1 How to use Cortex™-M3 bit-band access
	1.1.1 Overview
	1.1.2 Firmware description

	1.2 How to modify the Cortex-M3 Privileged Thread mode and the stack used
	1.2.1 Overview
	1.2.2 Firmware description

	2 NVIC application examples
	2.1 STM32F10xxx NVIC: preemption and subpriority handling
	2.1.1 Hardware description
	Figure 1. STM32F10xxx NVIC hardware connection - example 1

	2.1.2 Firmware description

	2.2 STM32F10xxx NVIC: IRQ channel interrupts
	2.2.1 Hardware description
	Figure 2. STM32F10xxx NVIC hardware connection - example 2

	2.2.2 Firmware description

	2.3 STM32F10xxx NVIC: system handlers
	2.3.1 Hardware description
	Figure 3. STM32F10xxx NVIC hardware connection - example 3

	2.3.2 Firmware description

	2.4 STM32F10xxx NVIC: WFE and WFI modes
	2.4.1 Hardware description
	Figure 4. STM32F10xxx NVIC hardware connection - example 4

	2.4.2 Firmware description

	2.5 STM32F10xxx NVIC: DMA in WFI mode
	2.5.1 Hardware description
	Figure 5. STM32F10xxx NVIC hardware connection - example 5

	2.5.2 Firmware description

	2.6 STM32F10xxx NVIC: vector table implementation with offset
	2.6.1 Hardware description
	Figure 6. STM32F10xxx NVIC hardware connection - example 6

	2.6.2 Firmware description

	3 How to use the STM32F10xxx SysTick
	3.1 Hardware description
	Figure 7. STM32F10xxx example LED connection

	3.2 Firmware description

	4 DMA application examples
	4.1 STM32F10xxx Flash to RAM data transfer using DMA
	4.1.1 Hardware description
	4.1.2 Firmware description
	4.1.3 Conclusion

	4.2 STM32F10xxx I2C-to-I2C communication using DMA
	4.2.1 Hardware description
	Figure 8. STM32F10xxx I2C-I2C communication

	4.2.2 Firmware description
	4.2.3 Conclusion

	4.3 STM32F10xxx full-duplex, SPI-to-SPI communication using DMA
	4.3.1 Hardware description
	Figure 9. STM32F10xxx full-duplex SPI-SPI communication

	4.3.2 Firmware description
	4.3.3 Conclusion

	4.4 STM32F10xxx peripheral-to-peripheral data transfer using DMA
	4.4.1 Hardware description
	Figure 10. STM32F10xxx ADC_IN14 connection

	4.4.2 Firmware description
	4.4.3 Conclusion

	5 RCC application examples
	5.1 How to use the STM32F10xxx RCC
	5.1.1 Hardware description
	Figure 11. STM32F10xxx RCC example hardware connection

	5.1.2 Firmware description

	6 How to use the STM32F10xxx EXTI controller
	6.1 Hardware description
	Figure 12. STM32F10xxx EXTI Line connection

	6.2 Firmware description
	6.3 Conclusion

	7 PWR application examples
	7.1 STM32F10xxx Stop mode
	7.1.1 Hardware description
	Figure 13. STM32F10xxx Stop mode example hardware connection

	7.1.2 Firmware description

	7.2 STM32F10xxx Standby mode
	7.2.1 Hardware description
	Figure 14. STM32F10xxx Standby mode example hardware connection

	7.2.2 Firmware description

	8 BKP application examples
	8.1 How to write/read data to/from Backup data registers
	8.1.1 Hardware description
	Figure 15. STM32F10xxx ANTI_TAMP connection

	8.1.2 Firmware description

	8.2 How to store user data into the Backup data registers
	8.2.1 Hardware description
	Figure 16. Example connection to store user data into the Backup data registers

	8.2.2 Firmware description

	9 RTC application examples
	9.1 STM32F10xxx RTC and backup (BKP) domain
	9.1.1 Hardware description
	Figure 17. STM32F10xxx RTC hardware configuration

	9.1.2 Firmware description

	10 Flash memory application examples
	10.1 How to program the STM32F10xxx Flash memory
	10.1.1 Firmware description

	10.2 How to enable and disable the STM32F10xxx Flash memory write protection
	10.2.1 Firmware description
	10.2.2 Enable Write protection
	10.2.3 Disable Write protection

	11 How to use the STM32F10xxx IWDG
	11.1 Hardware description
	Figure 18. STM32F10xxx IWDG example hardware connection

	11.2 Firmware description

	12 How to use the STM32F10xxx WWDG
	12.1 Hardware description
	Figure 19. STM32F10xxx WWDG example hardware connection

	12.2 Firmware description

	13 Conclusion
	14 Revision history
	Table 1. Document revision history

