

July 2009 Doc ID 14156 Rev 1 1/83

AN2662
Application note

STM32F105xx and STM32F107xx system memory boot mode

Introduction
This application note describes the bootloader stored in the system memory of the
STM32F105xx and STM32F107xx Connectivity Line Microcontrollers. All STM32F105xx
and STM32F107xx in production (rev. Z) include the bootloader detailed in this application
note.

The bootloader is used to program the application into the internal Flash memory. For more
information about the Flash module organization, refer to the STM32F10xxx Flash
programming manual (PM0042).

The specifications cover the architectural model of the bootloader for the STM32F105xx and
STM32F107xx family, but the low-level communication software supports all the
microcontroller families that implement the bootloader.

www.st.com

http://www.st.com

Contents AN2662

2/83 Doc ID 14156 Rev 1

Contents

1 Bootloader description . 7

1.1 Bootloader introduction . 7

1.2 Bootloader activation . 7

1.3 Hardware requirements . 9

1.4 Bootloader selection . 9

1.5 Exiting System Memory boot mode . 12

2 USART bootloader . 13

2.1 Bootloader code sequence . 13

2.2 Choosing the USARTx baud rate . 13

2.3 Minimum baud rate . 14

2.4 Maximum baud rate . 14

2.5 Bootloader command set . 14

2.6 Get command . 15

2.7 Get Version & Read Protection Status command 17

2.8 Get ID command . 19

2.9 Read Memory command . 21

2.10 Go command . 23

2.11 Write Memory command . 25

2.12 Erase Memory command . 29

2.13 Write Protect command . 32

2.14 Write Unprotect command . 33

2.15 Readout Protect command . 35

2.16 Readout Unprotect command . 36

3 CAN bootloader . 38

3.1 Bootloader code sequence . 38

3.2 CAN settings . 40

3.3 Bootloader command set . 41

3.4 Get command . 42

3.5 Get Version & Read Protection Status command 45

AN2662 Contents

Doc ID 14156 Rev 1 3/83

3.6 Get ID command . 47

3.7 Speed command . 48

3.8 Read Memory command . 50

3.9 Go command via CAN . 52

3.10 Write Memory command via CAN . 53

3.11 Erase Memory command via CAN . 57

3.12 Write Protect command . 58

3.13 Write Unprotect command . 60

3.14 Readout Protect command . 62

3.15 Readout Unprotect command . 64

4 DFU bootloader . 67

4.1 Bootloader code sequence . 67

4.2 USB DFU Bootloader requests . 68

4.3 DFU bootloader commands . 69

4.4 DFU_UPLOAD request commands . 69

4.4.1 Read memory . 69

4.4.2 Get commands . 70

4.5 DFU_DNLOAD request commands . 72

4.5.1 Write memory . 75

4.5.2 Set Address Pointer command . 76

4.5.3 Erase command . 77

4.5.4 Read Unprotect command . 78

4.5.5 Leave DFU mode . 79

Revision history . 82

List of tables AN2662

4/83 Doc ID 14156 Rev 1

List of tables

Table 1. Boot pin configuration . 7
Table 2. STM32F105xx and STM32F107xx configuration in System memory boot mode 8
Table 3. Bootloader commands . 14
Table 4. Bootloader commands . 41
Table 5. DFU Class requests:. 68
Table 6. Summary of DFU Class-Specific requests . 69
Table 7. Document revision history . 82

AN2662 List of figures

Doc ID 14156 Rev 1 5/83

List of figures

Figure 1. Bootloader selection . 11
Figure 2. Bootloader for STM32F105xx and STM32F107xx with USART1/USART2. 13
Figure 3. Get command: host side. 16
Figure 4. Get command: device side . 16
Figure 5. Get Version & Read Protection Status command: host side . 18
Figure 6. Get Version & Read Protection Status command: device side. 19
Figure 7. Get ID command: host side . 20
Figure 8. Get ID command: device side. 20
Figure 9. Read Memory command: host side . 22
Figure 10. Read Memory command: device side . 23
Figure 11. Go command: host side . 24
Figure 12. Go command: device side . 25
Figure 13. Write Memory command: host side . 27
Figure 14. Write Memory command: device side. 28
Figure 15. Erase Memory command: host side . 30
Figure 16. Erase Memory command: device side . 31
Figure 17. Write Protect command: host side . 32
Figure 18. Write Protect command: device side . 33
Figure 19. Write Unprotect command: host side . 34
Figure 20. Write Unprotect command: device side . 34
Figure 21. Readout Protect command: host side. 35
Figure 22. Readout Protect command: device side . 36
Figure 23. Readout Unprotect command: host side . 37
Figure 24. Readout Unprotect command: device side. 37
Figure 25. Bootloader for STM32F105xx and STM32F107xx withCAN2 . 38
Figure 26. Check HSE frequency value. 39
Figure 27. CAN frame . 40
Figure 28. Get command via CAN: Host side . 43
Figure 29. Get command via CAN: Device side . 44
Figure 30. Get Version & Read Protection Status command: Host side . 45
Figure 31. Get Version & Read Protection Status command: device side. 46
Figure 32. Get ID command: host side . 47
Figure 33. Get ID command: device side. 48
Figure 34. Speed command via CAN: Host side . 49
Figure 35. Speed command via CAN: Device side . 50
Figure 36. Read memory command via CAN: Host side . 51
Figure 37. Read memory command via CAN: Device side . 51
Figure 38. Go command via CAN: Host side . 52
Figure 39. Go command via CAN: Device side . 53
Figure 40. Write Memory command via CAN: Host side . 54
Figure 41. Write memory command via CAN: Device side . 56
Figure 42. Erase Memory command via CAN: Host side. 57
Figure 43. Erase Memory command via CAN: Device side . 58
Figure 44. Write Protect command via CAN: Host side . 59
Figure 45. Write Protect command via CAN: device side . 60
Figure 46. Write Unprotect command: Host side . 61
Figure 47. Write Unprotect command: device side . 62
Figure 48. Readout Protect command via CAN: Host side . 63

List of figures AN2662

6/83 Doc ID 14156 Rev 1

Figure 49. Readout Protect command via CAN: device side . 64
Figure 50. Readout Unprotect command via CAN: Host side. 65
Figure 51. Readout Unprotect command via CAN: device side. 66
Figure 52. Bootloader for STM32F105xx and STM32F107xx with USB DFU 67
Figure 53. DFU_UPLOAD request: Device side . 71
Figure 54. DFU_UPLOAD request: Host side . 71
Figure 55. Download request: Device side . 73
Figure 56. Download request: Host side . 74
Figure 57. Write Memory: Device side. 76
Figure 58. Set Address Pointer Command: Device side . 77
Figure 59. Erase Command: Device side . 78
Figure 60. Read Unprotect Command: Device side . 79
Figure 61. Leave DFU operation: Device side . 81

AN2662 Bootloader description

Doc ID 14156 Rev 1 7/83

1 Bootloader description

1.1 Bootloader introduction
The bootloader is stored in the internal boot ROM memory (system memory), and its main
task is to download the application program to the internal Flash memory through one of the
following communication interfaces: USART1, USART2 (remapped), CAN2 (remapped) or
USB OTG FS in Device mode (DFU: device firmware upgrade).

The main features of the bootloader are the following:

● It uses an embedded communication peripheral to download the code

● It transfers and updates the Flash memory code, the data, and the vector table sections

Note: The protocol used for STM32F105xx and STM32F107xx's USART1/2 bootloader is fully
compatible with the protocol used for the USART1 bootloader in STM32 Low-, Medium- and
High-density devices (as described in AN2606.)

1.2 Bootloader activation
The bootloader is automatically activated by configuring the BOOT0 and BOOT1 pins in the
specific “System memory” configuration (see Table 1) and then by applying a reset.

Depending on the used pin configuration, the Flash memory, system memory or SRAM is
selected as the boot space, as shown in Table 1 below.

Table 1 shows that the STM32F105xx and STM32F107xx enters the System memory boot
mode if the BOOT pins are configured as follows:

● BOOT0 = 1

● BOOT1 = 0

The values on the BOOT pins are latched on the fourth rising edge of SYSCLK after a reset.

Table 1. Boot pin configuration

Boot mode selection pins
Boot mode Aliasing

BOOT1 BOOT0

X 0 User Flash memory User Flash memory is selected as the boot space

0 1 System memory System memory is selected as the boot space

1 1 Embedded SRAM Embedded SRAM is selected as the boot space

Bootloader description AN2662

8/83 Doc ID 14156 Rev 1

Table 2. STM32F105xx and STM32F107xx configuration in System memory boot mode

Bootloader Feature/Peripheral State Comment

Common to
all
bootloaders

Clock source

HSI enabled

The system clock frequency is 24 MHz using the PLL. This is
used only for USART1 and USART2 bootloaders and during
CAN2, USB detection for CAN and DFU bootloaders (Once
CAN or DFU bootloader is selected, the clock source will be
derived from external crystal).

HSE
enabled

The external clock is mandatory only for DFU and CAN
bootloaders and it must provide one of the following frequencies:
8 MHz, 14.7456 MHz or 25 MHz.

For CAN Bootloader, the PLL is used only to generate 48 MHz
when 14.7456 MHz is used as HSE.

For DFU Bootloader, the PLL is used to generate a 48 MHz
system clock from all supported external clock frequencies

System memory -
18 Kbytes starting from address 0x1FFF F000, contain the
bootloader firmware

RAM -
4 Kbytes starting from address 0x2000 0000 are used by the
bootloader firmware.

USART1
bootloader

USART1 Enabled
Once initialized the USART1 configuration is: 8-bits, even parity
and 1 Stop bit

USART1_RX pin Input PA10 pin: USART1 receive

USART1_TX pin Output PA9 pin: USART1 transmit

USART1 and
USART2
bootloaders

SysTick timer Enabled
Used to automatically detect the serial baud rate from the host
for USARTx bootloader.

USART2
bootloader

USART2 Enabled
Once initialized the USART2 configuration is: 8-bits, even parity
and 1 Stop bit. The USART2 uses its remapped pins.

USART2_RX pin Input PD6 pin: USART2 receive (remapped pin)

USART2_TX pin Output PD5 pin: USART2 transmit (remapped pin)

CAN2
bootloader

CAN2 Enabled
Once initialized the CAN2 configuration is: Baudrate 125 kbps,
11-bit identifier.

Note: CAN2 uses remapped pins.

CAN2_RX pin Input PB5 pin: CAN2 receive (remapped pin)

CAN2_TX pin Output PB6 pin: CAN2 transmit (remapped pin)

DFU
bootloader

USB OTG FS Enabled Once initialized the USB configuration is: Device

USB_VBUS Input Power supply voltage line

USB_ID Input ID line (used only for dual role devices)

USB_DM
Alternate
Function

USB Send-Receive data line

USB_DP
Alternate
Function

USB Send-Receive data line

Interrupts Enabled
USB_OTG_FS interrupt vector is enabled and used for USB
DFU communication.

AN2662 Bootloader description

Doc ID 14156 Rev 1 9/83

The system clock is derived from the embedded internal high-speed RC for USARTx
bootloader. This internal clock is used also for DFU and CAN bootloaders but only for the
selection phase. An external clock (8 MHz, 14.7456 MHz or 25 MHz.) is required for DFU
and CAN bootloader execution after the selection phase.

The clock security system (CSS) interrupt is enabled for CAN and DFU bootloaders. Any
failure (or removal) of the external clock will generate system reset.

In the Bootloader firmware, the Independent Watchdog (IWDG) prescaler is configured to its
maximum value and is periodically refreshed to prevent watchdog reset (in case when the
hardware IWDG option was previously enabled by the user).

After downloading the application binary, if the user chooses to execute the GO command
and in his application the IWDG is being used, the IWDG prescaler value has to be adapted
to meet the requirements of the application (since the prescaler was set to its maximum
value by the Bootloader).

1.3 Hardware requirements
The hardware required to put the STM32F105xx and STM32F107xx into System memory
boot mode consists of any circuitry, switch or jumper, capable of holding the BOOT0 pin high
and the BOOT1 pin low during reset.

To connect to the STM32F105xx and STM32F107xx during System memory boot mode,
user use:

– An RS232 serial interface (example, ST3232 RS232 transceiver) has to be directly
connected to the USART1_RX (PA10) and USART1_TX (PA9) pins when USART1 is
used or connected to the USART2_RX (PD6) and USART2_TX (PD5) pins when
USART2 is used.

– A CAN interface (CAN transceiver) has to be directly connected to the CAN2_RX
(PB5) and CAN2_TX (PB6) pins

– A certified USB cable has to be connected to the microcontroller through a USB
Micro-AB receptacle and optionally an ESD protection circuitry.

The USART1_CK, USART1_CTS and USART1_RTS pins are not used, therefore the
application can use these pins for other peripherals or GPIOs. The same note is applicable
for USART2.

Once the USB Device is enabled, all its related pins are dedicated to USB communication
only, and cannot be used for other application purposes.

The user can control the BOOT0 and Reset pins from a PC serial applet using the RS232
serial interface which controls BOOT0 through the CTS line and Reset through the DCD
line. The user must use a full null modem cable. The necessary hardware to implement for
this control exists in the STM3210C-EVAL board. For more details about this, refer to
document: “STM3210C-EVAL board user manual”, available from the STMicroelectronics
website: www.st.com.

1.4 Bootloader selection
The STM32F105xx and STM32F107xx embedded bootloader supports four peripherals
interfaces: USART1, USART2, CAN2 and DFU (USB). Any one of these peripheral

Bootloader description AN2662

10/83 Doc ID 14156 Rev 1

interfaces can be used to communicate with the bootloader and download the application
code to the internal Flash.

The embedded bootloader firmware is able to auto-detect the peripheral interface to be
used. In an infinite loop, it detects any communication on the supported bootloader
interfaces.

To use the USART bootloader on USART1 or USART2, connect the serial cable to the
desired interface. Once the bootloader detects the data byte 0x7F on this interface, the
bootloader firmware executes the autobaudrate sequence and then enters a loop, waiting
for any USART bootloader command.

To use the CAN2 interface, connect the CAN cable to CAN2. Once the bootloader detects a
falling edge on the CAN2_RX pin (PB5), the bootloader firmware enters a CAN loop and starts
to check the external clock frequency value, if the HSE is 8 MHz, 14.7456 MHz or 25 MHz
CAN bootloader firmware enters an infinite loop and waits until it receives a message,
otherwise a system reset is generated.

If a USB cable is plugged into the microcontroller’s USB interface at any time during the
bootloader firmware selection sequence, the bootloader then enters the DFU bootloader
loop waiting for any DFU bootloader command.

To use the USART or the CAN bootloader, it is mandatory that no USB cable is connected to
the USB peripheral during the selection phase. Once the USART or CAN bootloader is
selected, the user can plug a USB cable without impacting the selected bootloader
execution except commands which generate a system reset.

Once one interface is selected for the bootloader, all other interfaces are disabled.

AN2662 Bootloader description

Doc ID 14156 Rev 1 11/83

Figure 1. Bootloader selection

BL reset

Configure internal RC mode

0x7F received on
USART2

Yes

No

0x7F received on
USART1

Yes

No
Configure USART1

Configure USART2

Configure USART1 and USART2 pins

Configure CAN2

Configure USB

CAN2_RX pin is low
level

No

Execute
BL_USART_Loop for

USART1

Execute
BL_USART_Loop for

USART2

Yes

Execute
BL_CAN_Loop for

CAN2

USB cable

detection

No

Yes

Reconfigure system
clock to 48 MHz and
USB clock to 48 MHz

Execute DFU boot-
loader using USB

interrupts

HSE = 8 MHz,
14.7456 MHz or

25 MHz

Yes

No

HSE = 8 MHz,
14.7456 MHz or

25 MHz

Yes

No

Bootloader description AN2662

12/83 Doc ID 14156 Rev 1

1.5 Exiting System Memory boot mode
System Memory boot mode must be exited in order to start execution of the application
program. This can be done by applying a hardware reset. During reset, the BOOT pins
(BOOT0 and BOOT1) must be set at the proper levels to select the desired boot mode (see
Table 1). Following the reset, the CPU starts code execution from the boot memory located
at the bottom of the memory address space starting from 0x0000 0000.

AN2662 USART bootloader

Doc ID 14156 Rev 1 13/83

2 USART bootloader

2.1 Bootloader code sequence

Figure 2. Bootloader for STM32F105xx and STM32F107xx with USART1/USART2

Once System memory boot mode is entered and the microcontroller has been configured as
described above, the bootloader code begins to scan the USARTx_RX line pin, waiting to
receive the 0x7F data frame: one start bit, 0x7F data bits, even parity bit and one stop bit.

The duration of this data frame is measured using the Systick timer. The count value of the
timer is then used to calculate the corresponding baud rate factor with respect to the current
system clock.

Next, the code initializes the serial interface accordingly. Using this calculated baud rate, an
acknowledge byte (0x79) is returned to the host, which signals that the STM32F105xx and
STM32F107xx is ready to receive user commands.

2.2 Choosing the USARTx baud rate
The calculation of the serial baud rate for USARTx, from the length of the first byte that is
received, is used to operate the bootloader within a wide range of baud rates. However, the
upper and lower limits have to be kept, in order to ensure proper data transfer.

For a correct data transfer from the host to the microcontroller, the maximum deviation
between the internal initialized baud rate for USARTx and the real baud rate of the host
should be below 2.5%. The deviation (fB, in percent) between the host baud rate and the

USART bootloader AN2662

14/83 Doc ID 14156 Rev 1

microcontroller baud rate can be calculated using the formula below:

, where fB ≤ 2.5%.

This baud rate deviation is a nonlinear function depending on the CPU clock and the baud
rate of the host. The maximum of the function (fB) increases with the host baud rate. This is
due to the smaller baud rate prescale factors, and the implied higher quantization error.

2.3 Minimum baud rate
The lowest tested baud rate (BLow) is 1200. Baud rates below BLow would cause the SysTick
timer to overflow. In this event, USARTx would not be correctly initialized.

2.4 Maximum baud rate
BHigh is the highest baud rate for which the deviation still does not exceed the limit. All baud
rates between BLow and BHigh are below the deviation limit.
The highest tested baud rate (BHigh) is 115 200.

2.5 Bootloader command set
The supported commands are listed in Table 3 below. Each command is further described in
this section.

fB
STM32Fxxx baud rate Host baud rate–

STM32Fxxx baud rate
-- 100%×=

Table 3. Bootloader commands

Command(1) Command
code

Command description

Get(2) 0x00
Gets the version and the allowed commands
supported by the current version of the bootloader

Get Version & Read Protection
Status(2) 0x01

Gets the bootloader version and the Read
Protection status of the Flash memory

Get ID(2) 0x02 Gets the chip ID

Read Memory 0x11
Reads up to 256 bytes of memory starting from an
address specified by the user

Go 0x21
Jumps to an address specified by the user to
execute (a loaded) code

Write Memory 0x31
Writes up to 256 bytes to the RAM or Flash memory
starting from an address specified by the user

Erase 0x43 Erases from one to all the Flash memory pages

Write Protect(3) 0x63 Enables the write protection for some sectors

Write Unprotect(3) 0x73
Disables the write protection for all Flash memory
sectors

AN2662 USART bootloader

Doc ID 14156 Rev 1 15/83

Communication safety

All communications from the programming tool (PC) to the device are verified by:

1. checksum: all received bytes are XORed. A byte containing the computed XOR of all
previous bytes is added to the end of each communication (checksum byte). By
XORing all received bytes, data + checksum, the result at the end of the packet must
be 0x00.

2. for each command the host sends a byte and its complement (XOR = 0x00)

3. UART: parity check active (even parity)

Each packet is either accepted (ACK answer) or discarded (NACK answer):

● ACK = 0x79

● NACK = 0x1F

2.6 Get command
The Get command allows the user to get the version of the bootloader and the supported
commands. When the bootloader receives the Get command, it transmits the bootloader
version and the supported command codes to the host, as described in Figure 3.

Readout Protect(2) 0x82 Enables the read protection

Readout Unprotect(2) 0x92 Disables the read protection

1. If a denied command is received or an error occurs during the command execution, the bootloader sends
NACK byte and goes back to command checking.

2. Read protection – When the RDP (read protection) option is active, only this limited subset of commands is
available. All other commands are NACKed and have no effect on the device. Once the RDP has been
removed, the other commands become active.

3. On the STM32F105xx and STM32F107xx , the sector size is 4 KBytes (2 pages) for the Write Protect and
Write Unprotect commands.

Table 3. Bootloader commands (continued)

Command(1) Command
code

Command description

USART bootloader AN2662

16/83 Doc ID 14156 Rev 1

Figure 3. Get command: host side

Figure 4. Get command: device side

Send 0x00 + 0xFF

Start Get

Wait for ACK
or NACK

Receive the number of bytes
(version+commands)

Receive the bootloader version

Receive the supported commands

Wait for ACK
or NACK

End of Get

NACK

ACK

ai14631

NACK

ACK

Send ACK byte

Start Get

Received
byte = 0x00+0xFF?

Send the number of bytes
(version+commands)

Send the bootloader version

Send the supported commands

End of Get

No

Yes

ai14632

Send NACK byte

Send ACK byte

AN2662 USART bootloader

Doc ID 14156 Rev 1 17/83

The STM32F105xx and STM32F107xx sends the bytes as follows:

2.7 Get Version & Read Protection Status command
The Get Version & Read Protection Status command is used to get the bootloader version
and the read protection status. When the bootloader receives the command, it transmits the
information described below (version, read protection: number of times it was enabled and
disabled) to the host.

Byte 1: ACK

Byte 2: N = 11 = the number of bytes to follow – 1 except current and ACKs.

Byte 3: Bootloader version (0 < Version < 255): 0x10 = Version 1.0

Byte 4: 0x00 – Get command

Byte 5: 0x01 – Get Version and Read Protection Status

Byte 6: 0x02 – Get ID

Byte 7: 0x11 – Read Memory command

Byte 8: 0x21 – Go command

Byte 9: 0x31 – Write Memory command

Byte 10: 0x43 – Erase command

Byte 11: 0x63 – Write Protect command

Byte 12: 0x73 – Write Unprotect command

Byte 13: 0x82 – Readout Protect command

Byte 14: 0x92 – Readout Unprotect command

Last byte (15): ACK

USART bootloader AN2662

18/83 Doc ID 14156 Rev 1

Figure 5. Get Version & Read Protection Status command: host side

1. GV = Get Version & Read Protection Status.

Wait for ACK
or NACK

Receive the number of times the
read protection was disabled

Receive the bootloader version

Wait for ACK
or NACK

End of GV(1)

NACK

ACK

ai14633

Send 0x01+0xFE

Start GV(1)

Receive the number of times the
read protection was enabled

NACK

ACK

AN2662 USART bootloader

Doc ID 14156 Rev 1 19/83

Figure 6. Get Version & Read Protection Status command: device side

1. GV = Get Version & Read Protection Status.

The STM32F105xx and STM32F107xx sends the bytes as follows:

2.8 Get ID command
The Get ID command is used to get the version of the chip ID (identification). When the
bootloader receives the command, it transmits the product ID to the host.

The STM32F105xx and STM32F107xx sends the bytes as follows:

Byte 1: ACK

Byte 2: The version of the bootloader (0 < Version ≤ 255)): 0x10 = Version 1.0

Byte 3: Option byte 1: 0x00 to keep the compatibility with generic bootloader protocol

Byte 4: Option byte 2: 0x00 to keep the compatibility with generic bootloader protocol

Byte 5: ACK

Send ACK byte

Start GV(1)

Received
byte = 0x01+0xFE?

Send the bootloader version

Option byte 2

End of GV(1)

No

Yes

ai14634

Send NACK byte

Send ACK byte

Option byte 1

Byte 1: ACK

Byte 2: N = the number of bytes – 1 (N = 1 for STM32F105xx and STM32F107xx),
except for current byte and ACKs.

Bytes 3-4: PID(1) byte 3 = 0x04, byte 4 = 0x1X

1. PID: is the product ID, which may be 0x0410, 0x0412, 0x0414 or 0x0418 according to the STM32F105xx
and STM32F107xx product.

Byte 5: ACK

USART bootloader AN2662

20/83 Doc ID 14156 Rev 1

Figure 7. Get ID command: host side

1. GID = Get ID.

Figure 8. Get ID command: device side

1. GID = Get ID.

Wait for ACK
or NACK

Receive N = number of bytes – 1

Wait for ACK
or NACK

End of GID(1)

NACK

ACK

ai14633

Send 0x02+0xFD

Start GID(1)

Receive PID

NACK

ACK

Send ACK byte

Start GID(1)

Received
byte = 0x02+0xFD?

Send N = number of bytes – 1

End of GID(1)

No

Yes

ai14636

Send NACK byte

Send ACK byte

Send product ID

AN2662 USART bootloader

Doc ID 14156 Rev 1 21/83

2.9 Read Memory command
The Read Memory command is used to read data from any memory address in RAM
(starting from address 0x20001000), Flash memory and information block (System memory
or option byte areas).
When the bootloader receives the Read Memory command, it transmits the ACK byte to the
user. After the transmission of the ACK byte, the bootloader waits for an address (4 bytes,
byte 1 is the address MSB and byte 4 is the LSB) and a checksum byte, then it checks the
received address. If the address is valid and the checksum is correct, the bootloader
transmits an ACK byte, otherwise it transmits a NACK byte and aborts the command.
When the address is valid and the checksum is correct, the bootloader waits for the number
of bytes to be transmitted (N bytes) and for its complemented byte (checksum). If the
checksum is correct it then transmits the needed data ((N + 1) bytes) to the user, starting
from the received address. If the checksum is not correct, it sends a NACK before aborting
the command.

The host sends the bytes to the STM32F105xx and STM32F107xx as follows:

Bytes 1-2: 0x11+0xEE

Wait for ACK

Bytes 3 to 6: start address

● byte 3: MSB

● byte 6: LSB

Byte 7: Checksum: XOR (byte 3, byte 4, byte 5, byte 6)

Wait for ACK

Byte 8: The number of bytes to be read – 1 (0 < N ≤ 255);

Byte 9: Checksum: XOR byte 8 (complement of byte 8)

USART bootloader AN2662

22/83 Doc ID 14156 Rev 1

Figure 9. Read Memory command: host side

1. RM = Read Memory.

Wait for ACK
or NACK

Send the start address (4 bytes) with
checksum

Wait for ACK
or NACK

End of RM(1)

NACK

ACK

ai14637

Send 0x11+0xEE

Start RM(1)

Send the number of bytes to be read (1 byte)
and a checksum (1 byte)

Wait for ACK
or NACK

Receive data from the BL

NACK

ACK

NACK

ACK

AN2662 USART bootloader

Doc ID 14156 Rev 1 23/83

Figure 10. Read Memory command: device side

1. RM = Read Memory.

2.10 Go command
The Go command is used to execute the downloaded code or any other code by branching
to an address specified by the user. When the bootloader receives the Go command, it
transmits the ACK byte to the user. After the transmission of the ACK byte, the bootloader
waits for an address (4 bytes, byte 1 is the address MSB and byte 4 is LSB) and a checksum
byte, then it checks the received address. If the address is valid and the checksum is
correct, the bootloader transmits an ACK byte, otherwise it transmits a NACK byte and
aborts the command.

ROP active

Receive the start address (4 bytes)
with checksum

Checksum OK?

End of RM(1)

ai14638

Start RM(1)

Receive the number of bytes to be read (1 byte)
and a checksum (1 byte)

Address valid &
checksum OK?

Send data to the host

Received byte =
0x11+0xEE

Send ACK byte

Send ACK byte

Send ACK byte Send NACK byte

No

Yes

No

Yes

No

Yes

No

Yes

USART bootloader AN2662

24/83 Doc ID 14156 Rev 1

When the address is valid and the checksum is correct, the program counter of the CPU
automatically jumps to the address.

Figure 11. Go command: host side

Note: 1 Valid addresses are RAM (starting from 0x2000 1000 to the end of the RAM) or Flash
memory (starting from 0x800 0000 to the end of the Flash memory) addresses. All other
addresses are considered not valid and will be NACKed by the device.

2 When an application is loaded into RAM and then a jump is made to it, the program must be
configured to run with an offset of at least 0x1000 to avoid overlapping with the first 0x1000
RAM memory used by the bootloader firmware.

3 The Go command must be used after loading an application into RAM or user Flash
memory. It will initialize the main stack pointer and jump to the loaded code.

4 The Jump to the application works only if the user application sets the vector table correctly
to point to the application address.

5 When performing a jump from the Bootloader to a loaded application code which uses the
USB IP, the user application has to disable all pending USB interrupts and reset the core
before enabling interrupts. Otherwise, a pending interrupt (issued from the bootloader code)
may interfere with the user code and cause a functional failure. This procedure is not
needed after exiting system memory boot mode.

Wait for ACK
or NACK

Send the start address (4 bytes) &
checksum

Wait for ACK
or NACK

End of Go

NACK

ACK

ai14639

Send 0x21+0xDE

Start Go

NACK

ACK

AN2662 USART bootloader

Doc ID 14156 Rev 1 25/83

Figure 12. Go command: device side

The host sends the bytes as follow to the STM32F105xx and STM32F107xx :

2.11 Write Memory command
The Write Memory command is used to write data to any memory address of RAM starting
from 0x2000 1000, Flash memory, or Option byte area. Refer to the STM32F10xxx Flash
programming manual (PM0042). When the bootloader receives the Write Memory
command, it transmits the ACK byte to the user. After the transmission of the ACK byte, the
bootloader waits for an address (4 bytes, byte 1 is the address MSB and byte 4 is the LSB)
and a checksum byte, it then checks the received address. For the Option byte area, the

Byte 1: 0x21

Byte 2: 0xDE

Wait for ACK

Byte 3 to Byte 6: start address

byte3: MSB

byte6: LSB

Byte 7: checksum: XOR (byte 3, byte 4, byte 5, byte 6)

ai14640b

Received bytes =
0x21+0xDE?

Start Go

ROP active

Send ACK byte

Send ACK byte

Receive the start address (4 bytes) &
checksum

Address valid &
checksum OK?

Send ACK byte

Jump to address

Send NACK byte

No

Yes

No

Yes

No

End of Go

USART bootloader AN2662

26/83 Doc ID 14156 Rev 1

start address must be 0x1FFFF800 to avoid writing inopportunely in this area.
If the received address is valid and the checksum is correct, the bootloader transmits an
ACK byte, otherwise it transmits a NACK byte and aborts the command. When the address
is valid and the checksum is correct, the bootloader:

● gets a byte, N, which contains the number of data bytes to be received

● receives the user data ((N + 1) bytes) and the checksum (XOR of N and of all data
bytes)

● programs the user data to memory starting from the received address

● at the end of the command, if the write operation was successful, the bootloader
transmits the ACK byte; otherwise it transmits a NACK byte to the user and aborts the
command

The maximum length of the block to be written for the STM32F105xx and STM32F107xx is
256 bytes.

If the Write Memory command is issued to the Option byte area, all options are erased
before writing the new values, and at the end of the command the bootloader generates a
system Reset to take into account the new configuration of the option byte.

Note: When writing to the RAM, care must be taken to avoid overlapping the first 4 Kbytes
(0x1000) in RAM because they are used by the bootloader firmware.

Note: No error is returned when performing write operations on write protected sectors.

Write operations to FLASH/SRAM must be word aligned, if less data are written the
remaining bytes should be filled by 0xFF.

AN2662 USART bootloader

Doc ID 14156 Rev 1 27/83

Figure 13. Write Memory command: host side

1. WM = Write Memory.

Note: If the start address is invalid, the command is NACKed by the device.

Wait for ACK
or NACK

Wait for ACK
or NACK

End of WM(1)

NACK

ACK

ai14641

Send 0x31+0xCE

Start WM(1)

Wait for ACK
or NACK

Send the start address (4 bytes)
& checksum

Send the number of bytes to be written
(1 byte), the data (N + 1) bytes) & checksum

NACK

ACK

NACK

ACK

USART bootloader AN2662

28/83 Doc ID 14156 Rev 1

Figure 14. Write Memory command: device side

1. WM = Write Memory.

ROP inactive?

Receive the start address (4 bytes) &
checksum

Flash memory
address?

No

Yes

ai14642b

Start WM(1)

Receive the number of bytes to be written
(1 byte), the data (N + 1 bytes) & the checksum

Checksum OK?
No

Yes

Received byte =
0x31+0xCE?

Send ACK byte

Send ACK byte

Write the received data to Flash
memory from the start address

Send
ACK
byte

End of WM(1)

No

Yes

No

Yes

Checksum OK?
No

Yes

RAM address?
Write the received data to RAM

from the start address

Yes

Yes

Option
byte address?
& address =

0x1FFF F800?

Write the received data to
Option byte area from start address

Yes

Yes

Write the Keys for Option byte
area access

Generate system reset

Send
NACK
byteSend ACK byte

AN2662 USART bootloader

Doc ID 14156 Rev 1 29/83

The host sends the bytes to the STM32F105xx and STM32F107xx as follows:

2.12 Erase Memory command
The Erase Memory command allows the host to erase Flash memory pages. When the
bootloader receives the Erase Memory command, it transmits the ACK byte to the host.
After the transmission of the ACK byte, the bootloader receives one byte (number of pages
to be erased), the Flash memory page codes and a checksum byte; if the checksum is
correct then bootloader erases the memory and sends an ACK byte to the host, otherwise it
sends a NACK byte to the host and the command is aborted.

Erase Memory command specifications:

1. the bootloader receives one byte that contains N, the number of pages to be erased –
1.
N = 255 is reserved for global erase requests. For 0 ≤ N ≤ 254, N + 1 pages are erased.

2. the bootloader receives (N + 1) bytes, each byte containing a page number

Note: No error is returned when performing erase operations on write protected sectors.

Byte 1: 0x31

Byte 2: 0xCE

Wait for ACK

Byte 3 to byte 6:start address

byte 3: MSB

byte 6: LSB

Byte 7: Checksum: XOR (Byte3, Byte4, Byte5, Byte6)

Wait for ACK

Byte 8: Number of bytes to be received (0 < N ≤ 255)

N +1 data bytes:(Max 256 bytes)

Checksum byte: XOR (N, N+1 data bytes)

USART bootloader AN2662

30/83 Doc ID 14156 Rev 1

Figure 15. Erase Memory command: host side

1. ER = Erase Memory.

Wait for ACK
or NACK

Wait for ACK
or NACK

End of ER(1)

NACK

ACK

ai14643b

Send 0x43+0xBC

Start ER(1)

Global
Erase?

NoYes

Send 0xFF

Send 0x00

Send the number of pages
to be erased (1 byte)

Send the page numbers

Send checksum

NACK

ACK

AN2662 USART bootloader

Doc ID 14156 Rev 1 31/83

Figure 16. Erase Memory command: device side

1. ER = Erase Memory.

The host sends the bytes to the STM32F105xx and STM32F107xx as follows:

Byte 1: 0x43

Byte 2: 0xBC

Wait for ACK

Byte 3: 0xFF or number of pages to be erased (0 ≤ N ≤ maximum number of pages)

Byte 0x00 or (N + 1 bytes (page numbers) and then the checksum for byte 3 and
the following bytes)

ROP active

Receive the number of pages
to be erased (1 byte)

No

Yes

ai14642b

Start ER(1)

No

Received bytes =
0x43+0xBC?

Send ACK byte

Receive the page codes

Checksum
OK?

Send NACK byte

End of ER(1)

No

Yes

No

Yes

0xFF received?

Receive the checksum

Erase the corresponding pages

Send ACK byte

Yes

No

Yes

Start Global Erase
(Mass Erase)

USART bootloader AN2662

32/83 Doc ID 14156 Rev 1

2.13 Write Protect command
The Write Protect command is used to enable the write protection for some or all Flash
memory sectors. When the bootloader receives the Write Protect command, it transmits the
ACK byte to the host. After the transmission of the ACK byte, the bootloader waits for the
number of bytes to be received (sectors to be protected) and then receives the Flash
memory sector codes from the user.

At the end of the Write Protect command, the bootloader transmits the ACK byte and
generates a system Reset to take into account the new configuration of the option byte.

Note: On the STM32F105xx and STM32F107xx , the sector size is 4 Kbytes (2 pages) for the
Write Protect command.

The Write Protect command sequence is as follows:

● the bootloader receives one byte that contains N, the number of sectors to be write-
protected – 1 (0 ≤ N ≤ 255)

● the bootloader receives (N + 1) bytes, each byte contains a sector code

Note: The total number of sectors and the sector number to be protected are not checked, this
means that no error is returned when a command is passed with a wrong number of sectors
to be protected or a wrong sector number.

Note: If a second Write Protect command is executed, the Flash memory sectors that had been
protected by the first command become unprotected and only the sectors passed within the
second Write Protect command become protected.

Figure 17. Write Protect command: host side

1. WP = Write Protect.

Wait for ACK
or NACK

Wait for ACK
or NACK

End of WP(1)

NACK

ACK

ai14645b

Send 0x63+0x9C

Start WP(1)

Send the number of sectors
to be protected (1 byte)

Send the sector codes

Send checksum

NACK

ACK

AN2662 USART bootloader

Doc ID 14156 Rev 1 33/83

Figure 18. Write Protect command: device side

1. WP = Write Protect.

2.14 Write Unprotect command
The Write Unprotect command is used to disable the write protection of all the Flash
memory sectors. When the bootloader receives the Write Unprotect command, it transmits
the ACK byte to the host. After the transmission of the ACK byte, the bootloader disables the
write protection of all the Flash memory sectors. After the unprotection operation the
bootloader transmits the ACK byte.

At the end of the Write Unprotect command, the bootloader transmits the ACK byte and
generates a system Reset to take into account the new configuration of the option byte.

ROP active

Receive the number of sectors
to be protected (1 byte)

No

Yes

ai14646b

Start WP(1)

No

Received bytes =
0x63+0x9C?

Send ACK byte

Receive the sector codes

Checksum
OK?

Send NACK byte

End of WP(1)

Yes

No

Yes

Receive the checksum

Write-protect the requested sectors

Send ACK byte

Generate system reset

USART bootloader AN2662

34/83 Doc ID 14156 Rev 1

Figure 19. Write Unprotect command: host side

1. WPUN = Write Unprotect.

Figure 20. Write Unprotect command: device side

1. WPUN = Write Unprotect.

Wait for ACK
or NACK

Wait for ACK
or NACK

End of WPUN(1)

NACK

ACK

ai14647

Send 0x73+0x8C

Start WPUN(1)

NACK

ACK

ROP active

Remove the protection for the
entire Flash memory

No

Yes

ai14648b

Start WPUN(1)

Received bytes =
0x73+0x8C?

Send ACK byte

Send NACK byte

End of WPUN(1)

No

Yes

Send ACK byte

Generate system reset

AN2662 USART bootloader

Doc ID 14156 Rev 1 35/83

2.15 Readout Protect command
The Readout Protect command is used to enable the Flash memory read protection. When
the bootloader receives the Readout Protect command, it transmits the ACK byte to the
host. After the transmission of the ACK byte, the bootloader enables the read protection for
the Flash memory.

At the end of the Readout Protect command, the bootloader transmits the ACK byte and
generates a system Reset to take into account the new configuration of the option byte.

Figure 21. Readout Protect command: host side

1. RDP_PRM = Readout Protect.

Wait for ACK
or NACK

Wait for ACK
or NACK

End of RDP_PRM(1)

NACK

ACK

ai14649

Send 0x82+0x7D

Start RDP_PRM(1)

NACK

ACK

USART bootloader AN2662

36/83 Doc ID 14156 Rev 1

Figure 22. Readout Protect command: device side

1. RDP_PRM = Readout Protect.

2.16 Readout Unprotect command
The Readout Unprotect command is used to disable the Flash memory read protection.
When the bootloader receives the Readout Unprotect command, it transmits the ACK byte
to the host. After the transmission of the ACK byte, the bootloader erases all the Flash
memory sectors and it disables the read protection for the entire Flash memory. If the erase
operation is successful, the bootloader deactivates the RDP.

If the erase operation is unsuccessful, the bootloader transmits a NACK and the read
protection remains active.

At the end of the Readout Unprotect command, the bootloader transmits an ACK and
generates a system Reset to take into account the new configuration of the option byte.

ROP active

Activate Read protection for Flash
memory

No

Yes

ai14650b

Start RDP_PRM(1)

Received bytes =
0x82+0x7D?

Send ACK byte

Send NACK byte

End of RDP_PRM(1)

No

Yes

Send ACK byte

Generate system reset

AN2662 USART bootloader

Doc ID 14156 Rev 1 37/83

Figure 23. Readout Unprotect command: host side

1. RDU_PRM = Readout Unprotect.

Figure 24. Readout Unprotect command: device side

1. RDU_PRM = Readout Unprotect.

Wait for ACK
or NACK

Wait for ACK
or NACK

End of RDU_PRM(1)

NACK

ACK

ai14651

Send 0x92+0x6D

Start RDU_PRM(1)

NACK

ACK

CAN bootloader AN2662

38/83 Doc ID 14156 Rev 1

3 CAN bootloader

3.1 Bootloader code sequence

Figure 25. Bootloader for STM32F105xx and STM32F107xx withCAN2

Once System memory boot mode is entered and the microcontroller has been configured as
described above, the bootloader code waits for a falling edge on the CAN2_Rx pin. When a
detection occurs the CAN Bootloader firmware starts to check the external clock frequency,
Figure 26 shows the flowchart of the frequency check.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 39/83

Figure 26. Check HSE frequency value

CAN bootloader AN2662

40/83 Doc ID 14156 Rev 1

Next, the code initializes the serial interface accordingly. Using this calculated baud rate, an
acknowledge byte (0x79) is returned to the host, which signals that the STM32F105xx and
STM32F107xx is ready to receive user commands.

3.2 CAN settings
The STM32F105xx and STM32F107xx CAN2 is compliant with the 2.0A and B (active)
specifications with a bitrate up to 1Mbit/s. It can receive and transmit standard frames with
11-bit identifiers as well as extended frames with 29-bit identifiers.

Figure 27 shows a CAN frame that uses the standard identifier only.

Figure 27. CAN frame

In this application, the CAN 2 settings are

● Standard identifier (not extended)

● Bit rate: At the beginning it is 125 kbps; during run time it can be changed via the speed
command to achieve a maximum bit rate of 1 Mbps.

The transmit settings (from STM32F105xx and STM32F107xx to the host) are:

● Tx mailbox0: On

● Tx mailbox1 and Tx mailbox2: Off

● Tx identifier: (0x00, 0x01, 0x02, v03, 0x11, 0x21, 0x31, 0x43, 0x63, 0x73, 0x82, 0x92).

The receive settings (from the host to STM32F105xx and STM32F107xx) are:

● Synchronization byte, 0x79, is in the RX identifier and not in the data field.

● RX identifier depends on the command (0x00, 0x01, 0x02, 0x03, 0x11, 0x21, 0x31,
0x43, 0x63, 0x73, 0x82, 0x92).

● Error checking: If the error field (bit [6:4] in the CAN_ESR register) is different from
000b, the message is discarded and a NACK is sent to the host.

● In FIFO overrun condition, the message is discarded and a NACK is sent to the host.

● Incoming messages can contain from 1 to 8 data bytes.

The CAN2 peripheral is accessible via pins PB6 (TX) and PB5 (RX)

Note: CAN1 is clocked during CAN bootloader execution because in STM32F105xx and
STM32F107xx CAN1 manages the communication between CAN2 and SRAM.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 41/83

Note: The CAN Bootloader firmware supports only one node at the same time. This means that
CAN Network Management is not supported by the firmware.

3.3 Bootloader command set
The supported commands are listed in Table 3 below. Each command is further described in
this section.

Communication safety

Each packet is either accepted (ACK answer) or discarded (NACK answer):

● ACK message = 0x79

● NACK message = 0x1F

Table 4. Bootloader commands

Command
Command

code
Command description

Get(1)

1. Read protection – When the RDP (read protection) option is active, only this limited subset of commands is
available. All other commands are NACKed and have no effect on the device. Once the RDP has been
removed, the other commands become active.

0x00
Gets the version and the allowed commands
supported by the current version of the bootloader

Get Version & Read Protection
Status(2) 0x01

Gets the bootloader version and the Read
Protection status of the Flash memory

Get ID(2) 0x02 Gets the chip ID

Speed 0x03
The speed command allows the baud rate for CAN
run-time to be changed.

Read Memory 0x11
Reads up to 256 bytes of memory starting from an
address specified by the user

Go 0x21
Jumps to an address specified by the user to
execute (a loaded) code

Write Memory 0x31
Writes up to 256 bytes to the RAM or Flash memory
starting from an address specified by the user

Erase(3) 0x43 Erases from one to all the Flash memory sectors

Write Protect(2)

2. On the STM32F105xx and STM32F107xx , the sector size is 4 Kbytes (2 pages) for the Write Protect,
Write Unprotect and Erase commands.

0x63 Enables the write protection for some sectors

Write Unprotect(3) 0x73
Disables the write protection for all Flash memory
sectors

Readout Protect(2) 0x82 Enables the read protection

Readout Unprotect(2) 0x92 Disables the read protection

CAN bootloader AN2662

42/83 Doc ID 14156 Rev 1

3.4 Get command
The get command allows the host to get the version of the bootloader and the supported
commands. When the bootloader receives the get command, it transmits the bootloader
version and the supported command codes to the host.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 43/83

Figure 28. Get command via CAN: Host side

CAN bootloader AN2662

44/83 Doc ID 14156 Rev 1

The host sends the messages as follows

Command message: Std ID = 0x00, data length code (DLC) = ‘not important’.

Figure 29. Get command via CAN: Device side

The STM32F105xx and STM32F107xx sends the messages as follows

Message 1: Std ID = 0x00, DLC = 1, data = 0x79 - ACK

Message 2: Std ID = 0x00, DLC = 1 data = N = 12 = the number of bytes to be sent -1
(1 <= N +1 <= 256)

Message 3: Std ID = 0x00, DLC = 1, data = bootloader version (0 < version <= 255)

Message 4: Std ID = 0x00, DLC = 1, data = 0x00 - Get command

Message 5: Std ID = 0x00, DLC = 1, data = 0x01 - Get Version & Read Protection

Status command

Message 6: Std ID = 0x00, DLC = 1, data = 0x02 - Get ID command

Message 7: Std ID = 0x00, DLC = 1, data = 0x03 - Speed command

Message 8: Std ID = 0x00, DLC = 1, data = 0x11 - Read memory command

Message 9: Std ID = 0x00, DLC = 1, data = 0x21 - Go command

Message 10: Std ID = 0x00, DLC = 1, data = 0x31 - Write memory command

Message 11: Std ID = 0x00, DLC = 1, data = 0x43 - Erase memory command

AN2662 CAN bootloader

Doc ID 14156 Rev 1 45/83

Message 12: Std ID = 0x00, DLC = 1, data = 0x63 - Write Protect command

Message 13: Std ID = 0x00, DLC = 1, data = 0x73 - Write Unprotect command

Message 14: Std ID = 0x00, DLC = 1, data = 82h - Readout Protect command

Message 15: Std ID = 0x00, DLC = 1, data = 92h - Readout Unprotect command

Message 1: Std ID = 0x00, DLC = 1, data = 0x79 - ACK

3.5 Get Version & Read Protection Status command
The Get Version & Read Protection Status command is used to get the bootloader version
and the read protection status. When the bootloader receives the command, it transmits the
information described below (version, read protection: number of times it was enabled and
disabled) to the host.

Figure 30. Get Version & Read Protection Status command: Host side

1. GV = Get Version & Read Protection Status.

The host sends the messages as follows

Command message: Std ID = 0x01, data length code (DLC) = ‘not important’.

ACK Message contain: Std ID = 0x01, DLC = 1, data = 0x79 - ACK

CAN bootloader AN2662

46/83 Doc ID 14156 Rev 1

Figure 31. Get Version & Read Protection Status command: device side

1. GV = Get Version & Read Protection Status.

The STM32F105xx and STM32F107xx sends the messages as follows:

Message 1: Std ID = 0x01, DLC = 1, data = ACK

Message 2: Std ID = 0x01, DLC = 1, data[0] = bootloader version (0 < version <= 255):
0x10 = Version 1.0

Message 3: Option message 1: Std ID = 0x01, DLC = 2, data = 0x00(byte1 and byte2)

Message 4: Std ID = 0x01, DLC = 1, data = ACK

AN2662 CAN bootloader

Doc ID 14156 Rev 1 47/83

3.6 Get ID command
The Get ID command is used to get the version of the chip ID (identification). When the
bootloader receives the command, it transmits the product ID to the host.

Figure 32. Get ID command: host side

1. GID = Get ID.

2. PID: is the product ID, which may be 0x0410, 0x0412, 0x0414 or 0x0418 according to the STM32F105xx
and STM32F107xx product. byte 1 is the MSB and byte 2 is LSB of the address.

The host sends the messages as follows

Command message: Std ID = 0x02, data length code (DLC) = ‘not important’.

ACK Message contain: Std ID = 0x02, DLC = 1, data = 0x79 - ACK

CAN bootloader AN2662

48/83 Doc ID 14156 Rev 1

Figure 33. Get ID command: device side

1. GID = Get ID.

2. PID: is the product ID, which may be 0x0410, 0x0412, 0x0414 or 0x0418 according to the STM32F105xx
and STM32F107xx product. byte 1 is the MSB and byte 2 is LSB of the address.

The STM32F105xx and STM32F107xx sends the bytes as follows:

3.7 Speed command
The speed command allows the baud rate for CAN run-time to be changed. It can be used
only if CAN is the peripheral being used.

A system reset is generated if CAN2 receives the correct message but the operation to set
the new baudrate fails, which prevents it from entering or leaving initialization mode.

Message 1: Std ID = 0x02, DLC = 1, data = ACK with DLC except for current message
and ACKs.

Message 2: Std ID = 0x02, DLC = N (the number of bytes – 1. For STM32F105xx and
STM32F107xx , N = 1), data = PID with byte 0 is MSB and byte N is the LSB
of the product ID

Message 3: Std ID = 0x02, DLC = 1, data = ACK = 0x79

AN2662 CAN bootloader

Doc ID 14156 Rev 1 49/83

Figure 34. Speed command via CAN: Host side

1. After setting the new baud rate, the bootloader sends the ACK message. Therefore, the host sets its baud
rate while waiting for the ACK.

The host sends the message as follows

Command message: Std ID = 0x03, DLC = 0x01, data[0] = XXh where XXh takes the
following values depending on the baud rate to be set:

● 0x01 -> baud rate = 125 kbps

● 0x02 -> baud rate = 250 kbps

● 0x03 -> baud rate = 500 kbps

● 0x04 -> baud rate = 1 Mbps

CAN bootloader AN2662

50/83 Doc ID 14156 Rev 1

Figure 35. Speed command via CAN: Device side

The STM32F105xx and STM32F107xx sends the bytes as follows:

3.8 Read Memory command
The Read Memory command is used to read data from any memory address in RAM
(starting from address 0x20001000), Flash memory and information block (System memory
or option byte areas)

When the bootloader receives the Read Memory command, it starts to verify the contents of
the message:

● ID of the command is correct or not

● ReadOutProtection is disabled or enabled

● Address to be read is valid or not

If the message content is correct it transmits an ACK message otherwise it transmits a
NACK message.

Message 1: Std ID = 0x03, DLC = 1, data[0] = ACK= 0x79: with old baudrate if the receive
message is correct else data[0] = NACK= 0x1F

Message 2: Std ID = 0x02, DLC = 1, data[0] = ACK = 0x79 with new baudrate

AN2662 CAN bootloader

Doc ID 14156 Rev 1 51/83

After sending an ACK message, then it transmits the required data to the user ((N + 1)
bytes) via (N+1) messages /8 (since each message contains 8 bytes), starting from the
received address.

Figure 36. Read memory command via CAN: Host side

The host sends the messages as follows

Command message: Std ID = 0x11, DLC = 0x05, data[0] = 0xXX: MSB of the address ...
data[3] = 0xYY: LSB of the address, data[4] = N: number of bytes to be read (where 0 < N
<= 255).

Figure 37. Read memory command via CAN: Device side

CAN bootloader AN2662

52/83 Doc ID 14156 Rev 1

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x11, DLC = 1, data[0] = ACK if content of the command is correct
else data[0] = NACK

Data message (N+1) / 8: Std ID = 0x11, DLC = Number of Byte, data[0] = 0xXX ...
data[Number of Byte - 1] = 0xYY

ACK message: Std ID = 0x11, DLC = 1, data[0] = ACK

3.9 Go command via CAN
The Go command is used to execute the downloaded code or any other code by branching
to an address specified by the user. When the bootloader receives the Go command, it
starts if the message contains the following valid information:

● ID of the command is correct or not

● ReadOutProtection is disabled or enabled

● Branch destination address is valid or not(data[0] is the address MSB and data[3] 4 is
LSB

if the message content is correct it transmits an ACK message otherwise it transmits a
NACK message.

After sending an ACK message to the user the CPU program counter automatically jumps to
the address.

Note: 1 The Jump to the application works only if the user application sets the vector table correctly
to point to the application address.

2 When performing a jump from the Bootloader to a loaded application code which uses the
USB IP, the user application has to disable all pending USB interrupts and reset the core
before enabling interrupts. Otherwise, a pending interrupt (issued from the bootloader code)
may interfere with the user code and cause a functional failure. This procedure is not
needed after exiting system memory boot mode.

Figure 38. Go command via CAN: Host side

1. See product datasheet for valid addresses.

The host sends the bytes as follows

Go command message: Std ID = 0x21, DLC = 0x04, data[0] = 0xXX: MSB address,...data[3]
= 0xYY LSB address.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 53/83

Figure 39. Go command via CAN: Device side

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x21, DLC = 1, data[0] = ACK if content of the command is correct
else data[0] = NACK

3.10 Write Memory command via CAN
The Write Memory command is used to write data to any memory address of RAM starting
from 0x2000 1000, Flash memory, or Option byte area. Refer to the STM32F10xxx Flash
programming manual (PM0042). When the bootloader receives the Write Memory
command, (message with 5 bytes data length, data[0] is the address MSB, data[3] is the
LSB and data[4] is the number of data bytes to be received), it then checks the received
address. For the Option byte area, the start address must be 0x1FFFF800 to avoid writing
unintentionally in this area.
If the received address is valid, the bootloader transmits an ACK message, otherwise it
transmits a NACK message and aborts the command. When the address is valid, the
bootloader:

● Receives the user data ((N + 1) bytes) so the device receive (N + 1)/8 messages (each
message contains 8 data bytes)

● Programs the user data into memory starting from the received address

● At the end of the command, if the write operation was successful, the bootloader
transmits the ACK message; otherwise it transmits a NACK message to the user and
aborts the command

The maximum length of the block to be written for the STM32F105xx and STM32F107xx is
256 bytes.

If the Write Memory command is issued to the Option byte area, all options are erased
before writing the new values, and at the end of the command the bootloader generates a
system Reset to take into account the new configuration of the option byte.

CAN bootloader AN2662

54/83 Doc ID 14156 Rev 1

Note: When writing to the RAM, care must be taken to avoid overlapping the first 4Kbytes
(0x1000) in RAM because they are used by the bootloader firmware.

Note: No error is returned when performing write operations on write protected sectors.

Write operations to FLASH/SRAM must be word aligned, if less data are written the
remaining bytes must be filled with 0xFF.

Figure 40. Write Memory command via CAN: Host side

Note: If the start address is invalid, the command is NACKed by the device.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 55/83

The host sends the messages as follows

Command message: Std ID = 0x31, DLC = 0x05, data[0] = 0xXX: MSB address,... , data[3]
= 0xYY: LSB address, data[4] = N(number of bytes to be written), 0 < N <= 255).

then the host send N/8 message

Data message: Std ID = 0x31, DLC_1 = to 8, data = byte_11, … byte_18…

Data message_M: Std ID = 0x04, DLC_M = 1 to 8, data = byte_m1, …, byte_M8

Note: 1 DLC_1 + DLC_2 + ... DLC_M = 256 maximum

2 After each message the host receives the ACK or NACK message from the device

3 The bootloader does not check the standard ID of the data, so any ID from 0h to 0xFF can
be used. It is recommended to use 0x04.

CAN bootloader AN2662

56/83 Doc ID 14156 Rev 1

Figure 41. Write memory command via CAN: Device side

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x31, DLC = 1, data[0] = ACK if the content of the command is
correct else data[0] = NACK

AN2662 CAN bootloader

Doc ID 14156 Rev 1 57/83

3.11 Erase Memory command via CAN
The Erase Memory command allows the host to erase Flash memory pages. When the
bootloader receives the Erase Memory command and ROP is disabled, it transmits the ACK
message to the host. After the transmission of the ACK message, the bootloader checks if
the message that contain data[0].

Erase Memory command specifications:

1. The bootloader receives one message that contains N, the number of pages to be
erased – 1.
N = 255 is reserved for global erase requests. For 0 ≤ N ≤ 254, N + 1 pages are erased.

2. The bootloader receives (N + 1) bytes, each byte containing a page number

Note: No error is returned when performing erase operations on write protected sectors.

Figure 42. Erase Memory command via CAN: Host side

The host sends the message as follows

The ID contains the command type (0x43):

● Total erase message: Std ID = 0x43, DLC = 0x01, data = 0xFF.

● Erase sector by sector message: Std ID = 0x43, DLC = 0x01 to 0x08, data = see
product datasheet.

CAN bootloader AN2662

58/83 Doc ID 14156 Rev 1

Figure 43. Erase Memory command via CAN: Device side

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x43, DLC = 1, data[0] = ACK if content of the command is correct
and ROP is not active else data[0] = NACK

3.12 Write Protect command
The Write Protect command is used to enable the write protection for some or all Flash
memory sectors. When the bootloader receives the Write Protect command, it transmits the
ACK message to the host if ROP is disabled else it transmits NACK.

After the transmission of the ACK byte, the bootloader waits to receive the Flash memory
sector codes from the user.

At the end of the Write Protect command, the bootloader transmits the ACK message and
generates a system Reset to take into account the new configuration of the option byte.

Note: On the STM32F105xx and STM32F107xx , the sector size is 4 Kbytes (2 pages) for the
Write Protect command.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 59/83

Note: The total number of sectors and the sector number to be protected are not checked, this
means that no error is returned when a command is passed with a wrong number of sectors
to be protected or a wrong sector number.

If a second Write Protect command is executed, the Flash memory sectors that were
protected by the first command become unprotected and only the sectors passed within the
second Write Protect command become protected.

Figure 44. Write Protect command via CAN: Host side

1. WP = Write Protect.

The host sends the messages as follows

Command message: Std ID = 0x63, DLC = 0x01, data[0] = N (where 0 < N <= 255).

Command message: Std ID = 0x63, DLC = 0x01..08, data[0] = N (where 0 < N <= 255).

CAN bootloader AN2662

60/83 Doc ID 14156 Rev 1

Figure 45. Write Protect command via CAN: device side

1. WP = Write Protect

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x43, DLC = 1, data[0] = ACK if the content of the command is
correct and ROP is not active else data[0] = NACK.

3.13 Write Unprotect command
The Write Unprotect command is used to disable the write protection of all the Flash
memory sectors. When the bootloader receives the Write Unprotect command, it transmits
the ACK message to the host if ROP is disabled else it transmits NACK. After the
transmission of the ACK message, the bootloader disables the write protection of all the
Flash memory sectors.

At the end of the Write Unprotect command, the bootloader transmits the ACK message and
generates a system Reset to take into account the new configuration of the option byte.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 61/83

Figure 46. Write Unprotect command: Host side

1. WPUN = Write Unprotect.

The host sends the messages as follows

Command message: Std ID = 0x73, DLC = 0x01, data = 00.

CAN bootloader AN2662

62/83 Doc ID 14156 Rev 1

Figure 47. Write Unprotect command: device side

1. WPUN = Write Unprotect.

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x73, DLC = 1, data[0] = ACK if the content of the command is
correct and ROP is not active else data[0] = NACK.

3.14 Readout Protect command
The Readout Protect command is used to enable the Flash memory read protection. When
the bootloader receives the Readout Protect command, it transmits the ACK message to the
host if ROP is disabled else it transmits NACK. After the transmission of the ACK message,
the bootloader enables the read protection for the Flash memory.

At the end of the Readout Protect command, the bootloader transmits the ACK message
and generates a system Reset to take into account the new configuration of the option byte.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 63/83

Figure 48. Readout Protect command via CAN: Host side

1. RDP_PRM = Readout Protect.

The host sends the messages as follows

Command message: Std ID = 0x82, DLC = 0x01, data[0] = 00.

CAN bootloader AN2662

64/83 Doc ID 14156 Rev 1

Figure 49. Readout Protect command via CAN: device side

1. RDP_PRM = Readout Protect

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x82, DLC = 1, data[0] = ACK if the content of the command is
correct and ROP is not active else data[0] = NACK.

3.15 Readout Unprotect command
The Readout Unprotect command is used to disable the Flash memory read protection.
When the bootloader receives the Readout Unprotect command, it transmits the ACK
message to the host. After the transmission of the ACK message, the bootloader erases all
the Flash memory sectors and it disables the read protection for the entire Flash memory. If
the erase operation is successful, the bootloader deactivates the RDP.

At the end of the Readout Unprotect command, the bootloader transmits an ACK message
and generates a system Reset to take into account the new configuration of the option
bytes.

AN2662 CAN bootloader

Doc ID 14156 Rev 1 65/83

Figure 50. Readout Unprotect command via CAN: Host side

1. RDU_PRM = Readout Unprotect.

The host sends the messages as follows

Command message: Std ID = 0x92, DLC = 0x01, data = 00.

CAN bootloader AN2662

66/83 Doc ID 14156 Rev 1

Figure 51. Readout Unprotect command via CAN: device side

1. RDU_PRM = Readout Unprotect.

The STM32F105xx and STM32F107xx sends the messages as follows:

ACK message: Std ID = 0x92, DLC = 1, data[0] = ACK if the content of the command is
correct and ROP is not active else data[0] = NACK.

AN2662 DFU bootloader

Doc ID 14156 Rev 1 67/83

4 DFU bootloader

4.1 Bootloader code sequence

Figure 52. Bootloader for STM32F105xx and STM32F107xx with USB DFU

1. After system reset, the device may return to the BL_DFU loop, enter the USART or CAN bootloader loops
or execute code from Flash/RAM depending on the connection states and the boot pins status.

2. Leave DFU is achieved by a 0 Data Download request followed by GetStatus request and Device Reset.

3. After six trials (the three clock configurations are tested twice), a System Reset is generated.

BL_DFU

Received
correct Packet?

No (Timeout)

Yes

Configure external oscillator
mode and re-initialize USB

Enumeration Phase

Enter DFU Mode

Wait for
Host commands

DFU Request
routines

DFU requests

Jump to

Leave DFU
routine

Leave DFU

Generate System

and exit DFU mode

Need reset ?

Reset 1) Application Address

Yes

No

 Mode 2)

Configure internal oscillator
mode and re-initialize USB

USB Device
connected

No

Yes

Device USB reset

Clock Detection
Phase3)

Increment TrialNum

TrialNum > 6

Generate System
Reset

DFU bootloader AN2662

68/83 Doc ID 14156 Rev 1

Once System Memory boot mode is entered and the STM32F105xx and STM32F107xx
has been configured as described above, the bootloader code configures the USB and its
interrupts and waits for the “enumeration done” interrupt.

Once this interrupt is detected (A Host is present, has connected the device and
enumerated it), the system is configured in External Oscillator mode and the USB device is
re-initialized.

The device first tries the 25 MHz configuration, then, if it fails, the 14.7456 MHz
configuration, then, if it fails, the 8 MHz configuration. If it fails, this operation is repeated
with a large timeout value (the three configurations are re-tested). If the second trial also
fails, a system reset is then generated.

Note: Independently of the initial USB cable status (plugged or unplugged) when the
STM32F105xx and STM32F107xx enters the Bootloader application, it configures the
USB. The enumeration is performed as soon as the USB cable is plugged (or immediately if
the cable is already plugged). If you do not want the STM32F105xx and STM32F107xx to
enter the USB DFU bootloader application, the USB cable has to be unplugged before reset.

4.2 USB DFU Bootloader requests
USB DFU Bootloader supports DFU protocol and requests compliant with the “Universal
Serial Bus Device Upgrade Specification for Device Firmware Upgrade” Version 1.1, Aug
5,2004. For more details concerning these requests refer to this specification document.

Table 5 and Table 6 enumerate the DFU Class-Specific requests and their parameters.

Table 5. DFU Class requests:

Request
Request

Code
Request description

DFU_DETACH 0x00
Requests the device to leave DFU mode and enter
the application.

DFU_DNLOAD 0x01
Requests data transfer from Host to the device in
order to load them into device internal Flash.
Includes also erase commands.

DFU_UPLOAD 0x02
Requests data transfer from device to Host in order
to load content of device internal Flash into a Host
file.

DFU_GETSTATUS 0x03

Requests device to send status report to the Host
(including status resulting from the last request
execution and the state the device will enter
immediately after this request).

DFU_CLRSTATUS 0x04
Requests device to clear error status and move to
next step.

DFU_GETSTATE 0x05
Requests the device to send only the state it will
enter immediately after this request.

DFU_ABORT 0x06
Requests device to exit the current state/operation
and enter idle state immediately.

AN2662 DFU bootloader

Doc ID 14156 Rev 1 69/83

Note: The Detach request is not meaningful in the case of the bootloader. The bootloader is
started by a system reset depending on the boot mode configuration settings, which means
that no other application is running at this time.

Communication safety

The communication between Host and Device is secured by the embedded USB protection
mechanisms (CRC checking, Acknowledgements ...). No further protection is performed for
transferred data or for bootloader specific commands/data.

4.3 DFU bootloader commands
The DFU_DNLOAD and DFU_UPLOAD requests are mainly used to perform simple Write
Memory and Read Memory operations. They are also used to initiate the integrated
bootloader commands (write, read unprotect, erase, set address ...). The DFU_GETSTATUS
command then triggers the command execution.

The selection of a command through the DFU download request is done through the wValue
parameter in the USB request structure. If wValue = 0 then the data sent by the Host after the request
is a bootloader command code. The first byte is the command code and the other bytes (if any) are the
data related to this command.

The selection of a command through the DFU upload request is done through the wValue
parameter in the USB request structure. If wValue = 0 then Get Command is selected and performed.

4.4 DFU_UPLOAD request commands
The upload request allows different commands to be performed. The command selection is
done through the value of parameter wValue in the USB request structure. The operations
described in Section 4.4.1 to Section 4.5.5 are supported.

4.4.1 Read memory

The Read operation is selected when wValue > 1.

Table 6. Summary of DFU Class-Specific requests

bmRequest bRequest wValue wIndex wLength Data

00100001b DFU_DETACH wTimeout Interface Zero None

00100001b DFU_DNLOAD wBlockNum Interface Length Firmware

10100001b DFU_UPLOAD Zero Interface Length Firmware

00100001b DFU_GETSTATUS Zero Interface 6 Status

00100001b DFU_CLRSTATUS Zero Interface Zero None

00100001b DFU_GETSTATE Zero Interface 1 State

00100001b DFU_ABORT Zero Interface Zero None

DFU bootloader AN2662

70/83 Doc ID 14156 Rev 1

The host requests the device to send a specified number of data bytes (wLength) from
Internal Flash, Embedded RAM (starting from 0x2000 1000 address), System Memory or
from Option Bytes. The allowed number of bytes to be read depends on the memory target:

● For internal Flash, embedded RAM and System Memory: read size can be from 2 to
2048 bytes.

● For Option Bytes: read size should be 16 bytes.

The address, from which the Host requests to read data, is computed using the value of
wBlockNumber (wValue) and the Address Pointer according to the following formula:

Address = ((wBlockNum - 2) * wTransferSize) + Address_Pointer.

Where wTransferSize is the length of the requested data buffer.

The Address Pointer should have been previously specified through a Set Address Pointer
command (using a DFU_DNLOAD request). Otherwise (if no address is previously
specified) the device assumes that it will be the internal Flash start address (0x08000000).

If the Flash Read Protection is enabled, the Read operation is not performed and the device
status returned is (Status = dfuERROR, State = errVENDOR) whatever the target (internal
Flash, embedded RAM, System Memory or Option Bytes).

4.4.2 Get commands

This command is selected when wValue = 0.

The Host requests to read the commands supported by the bootloader. After receiving this
command, the device returns N bytes representing the command codes.

The STM32F105xx and STM32F107xx sends the bytes as follows (N = 4):

The processing of DFU_UPLOAD command is shown in Figure 53 and Figure 54.

Byte 1: 0x00 - Get command

Byte 2: 0x21 - Set Address Pointer

Byte 3: 0x41 - Erase

Byte 4: 0x92 - Read Unprotect

AN2662 DFU bootloader

Doc ID 14156 Rev 1 71/83

Figure 53. DFU_UPLOAD request: Device side

Figure 54. DFU_UPLOAD request: Host side

DFU_UPLOAD request

No

Yes

Send the supported

wBlockNum == 0 ?

ROP Active?
No

Yes

Status = errVENDOR
Send the requested
number of data bytes

No

Yes

wBlockNum > 1?

command codes

Stall

State = dfuERROR

Current status is
dfuIDLE or dfuUPLOAD-IDLE

Stall

No

Acknowledge
the request

Yes

DFU_UPLOAD request

No

Yes

Get Device Status

Request acknowledged?

Read Protection
Read the requested

number of data bytes

No
Status == errVENDOR

?

Is active
Error

DFU bootloader AN2662

72/83 Doc ID 14156 Rev 1

Note: Before issuing an Upload request, the host has to check that the device is in a correct state
(dfuIDLE or dfuUPLOAD-IDLE state) and that there is no error reported in the status. If the
Device is not in the required state/status, the Host has to clear any error (DFU_CLRSTATUS
request) and get the new status till the Device returns to dfuIDLE state.

4.5 DFU_DNLOAD request commands
The download request allows to perform different commands. The command selection is
done through the value of parameter wValue in the USB request structure. The following operations
are supported:

● Write Memory (wValue > 1)

● Set Address Pointer (wValue = 0 and First Byte = 0x21)

● Erase (wValue = 0 and First Byte = 0x41)

● Read Unprotect (wValue = 0 and First Byte = 0x92)

● Leave DFU (leave DFU mode and Jump to application)

AN2662 DFU bootloader

Doc ID 14156 Rev 1 73/83

Figure 55. Download request: Device side

1. This routine can be used to reset the device to be reset or to jump to the application.

Download request

Erase
command

Set Address

No

Yes

Decode the command
(First byte of the received buffer)

Set Address
Pointer routine

Read Unprotect

wBlockNum == 0 ?

 Pointer command
Unsupported
command

Erase
routine

State = dfuERROR
Status = errSTALLEDPKT

Read Unprotect
routine

command

Write Memory
routine

No

Yes

wBlockNum > 1?

Stall

Wait for data stage

Return Status:
dfuDNBUSY

Current status is
dfuIDLE or dfuDNLOAD-IDLE

Stall

No

Acknowledge
the request

Yes

Receive data
buffer

Wait for Get Status

wLength > 0

Yes

No

routine 1)
Leave DFU

DFU bootloader AN2662

74/83 Doc ID 14156 Rev 1

Figure 56. Download request: Host side

1. Operations needing System Reset are: Read Unprotect command and Write operations to the
Option Bytes.

2. After returning dfuDNBUSY state, the Device executes the requested operation and performs a
System Reset. The Host may simply wait for next enumeration or perform Get status again but
the device won’t be able to respond, unless it fails to execute the requested operation.

Note: Before issuing a Download request, the host has to check that the device is in a correct
state: dfuIDLE or dfuDNLOD-IDLE, and that there is no error reported in the status. If the

Download request

No

Error

Send Data Buffer

Packet Acked?

Yes

Packet Acked?

YesError

Get Status

State == dfuDNBUSY?

Yes

Get Status

State == dfuDNLOAD-IDLE?
No

Error

Yes
Status == errVENDOR?

No

Yes

ROP Active

Download

Status == errTARGET?No

Address not allowed

Yes

Operation needs SystemNo

Yes

successful

Expect Device

optional

Leave DFU routine

Reset2)

State == dfuManifest?
No

Yes

Expect Device
disconnect

No

Error

No

Error

Write/Set Address Pointer/
Erase/Read Unprotect routines

 Reset?1)

AN2662 DFU bootloader

Doc ID 14156 Rev 1 75/83

Device is not in the required state/status, the Host has to clear any error (DFU_CLRSTATUS
request) and get again the status till the Device returns to dfuIDLE state.

4.5.1 Write memory

The Write Memory operation is selected when wValue > 1.

The host requests the device to receive a specified number of data bytes (wLength) to load
them into internal Flash, embedded RAM (starting from 0x2000 1000) or into Option Bytes.
The allowed number of bytes to be written depends on the memory target:

● For internal Flash and embedded RAM: write size can be from 2 to 2048 Bytes.

● For Option Bytes: write size should be 16 Bytes.

Note: A different write size is possible for the Option Bytes but it is recommended to write the
entire block (16 bytes) at one time in order to insure data integrity. When the target is the
Option Byte area, the Address pointer must always be the start address of the Option Bytes,
otherwise, the request is not performed.

The Write operation is effectively executed only when a DFU_GETSTATUS request is
issued by the Host. If the status returned by the device is other than dfuDNBUSY, then an
error has occurred.

A second DFU_GETSTATUS request is needed to check if the command has been correctly
executed, except when the destination is the Option Bytes area (in this case the device will
immediately reset after write operation completion). If the received address is wrong or
unsupported, the device status will then be (Status = dfuERROR, State = errTARGET).

The address, to which the Host requests to write data, is computed using the value of
wBlockNumber (wValue) and the Address Pointer according to the same formula as for an
upload request:

Address = ((wBlockNum - 2) * wTransferSize) + Addres_Pointer.

Where wTransferSize is the length of the data buffer sent by the host and wBlockNumber is
the value of wValue parameter.

If the Flash Read Protection is enabled, the Write operation is not performed and the device
status returned is (Status = dfuERROR, State = errVENDOR) whatever the target (internal
Flash, embedded RAM or Option Bytes).

If the Write Memory command is issued to the Option byte area, all options are erased
before writing the new values, and at the end of the command the bootloader generates a
system Reset to take into account the new configuration of the option byte

Note: When writing to the RAM, care must be taken to avoid overlapping the first 4 Kbytes
(0x1000) in RAM because they are used by the bootloader firmware.

Note: No error is returned when performing write operations on write protected sectors.

DFU bootloader AN2662

76/83 Doc ID 14156 Rev 1

Figure 57. Write Memory: Device side

4.5.2 Set Address Pointer command

The Set Address Pointer command is selected when wValue = 0 and the first byte of the
buffer sent by the Host is 0x21. The Buffer length should be 5 (the four remaining bytes are
the address bytes, LSB first (32-bit address format)).

The Host sends a DFU_DNLOAD request with the parameters above to set the Address
Pointer value used for computing the start address for Read and Write operations.

The STM32F105xx and STM32F107xx receives the bytes as follows:

After sending Set Address Pointer command, the host has to send DFU_GETSTATUS
request.

The Set AddressPointer command is effectively executed only when a DFU_GETSTATUS
request is issued by the Host. If the status returned by the device is other than dfuDNBUSY,
then an error has occurred.

Write Memory

No

Yes

Write the received buffer
to the destination address

Address allowed?

ROP active?

Yes

No

State = dfuERROR
Status = errVENDOR

Compute
address

State = dfuERROR
Status = errTARGET

State = dfuDNLOAD-IDLE
Status = OK

No

Yes

Destination == Option
Bytes?

System Reset

Byte 1: 0x21 - Set Address Pointer command

Byte 2: A[7:0] - LSB of the Address Pointer

Byte 3: A[15:8] - Second Byte of the Address Pointer

Byte 4: A[22:16] - Third Byte of the Address Pointer

Byte 4: A[31:23] - MSB of the address Pointer

AN2662 DFU bootloader

Doc ID 14156 Rev 1 77/83

A second DFU_GETSTATUS request is needed to check if the command has been correctly
executed. If the received address is wrong or unsupported, the device status will then be
(Status = dfuERROR, State = errTARGET).

The allowed locations for Address Pointer values are:

● Internal Flash and embedded RAM addresses.

● System Memory addresses

● Option Byte addresses

Note: The Set Address Pointer command is allowed and executed when the Flash Read
Protection is enabled.

Figure 58. Set Address Pointer Command: Device side

4.5.3 Erase command

The Erase command is selected when wValue = 0 and the first byte of the buffer sent by the
Host is 0x41. The Buffer length may be 5 bytes (the four remaining bytes are the address
bytes, LSB first) for the page erase operation or only 1 byte (only the command byte) for the
Mass erase operation.

The Host sends a DFU_DNLOAD request with the above parameters to erase one page of
the internal Flash memory or to perform a mass erase of this Flash.

The STM32F105xx and STM32F107xx receives the bytes as follows (Page erase):

Or, if a 1-byte command is received:

Set Address Pointer
command

No

Yes

Set the new value of
address pointer

Address allowed?

Compute
address

State = dfuERROR
Status = errTARGET

State = dfuDNLOAD-IDLE
Status = OK

Byte 1: 0x41 - Erase command

Byte 2: A[7:0] - LSB of the Page address

Byte 3: A[15:8] - Second byte of the Page address

Byte 4: A[22:16] - Third byte of the Page address

Byte 4: A[31:23] - MSB of the Page address

DFU bootloader AN2662

78/83 Doc ID 14156 Rev 1

The STM32F105xx and STM32F107xx receives the bytes as follows (Mass Erase):

After sending an Erase command, the host has to send a DFU_GETSTATUS request.

The Erase command is effectively executed only when a DFU_GETSTATUS request is
issued by the Host. If the status returned by the device is other than dfuDNBUSY, then an
error has occurred.

A second DFU_GETSTATUS request is needed to check if the command has been correctly
executed. If the received page address is wrong or unsupported, the device status will then
be (Status = dfuERROR, State = errTARGET). If the Flash Read Protection is active, then
the device returns the status (Status = dfuERROR, State = errVENDOR) and the erase
operation is ignored by the device.

The allowed values for Erase page address are:

● Internal Flash memory addresses.

Note: No error is returned when performing erase operations on write protected sectors.

Figure 59. Erase Command: Device side

4.5.4 Read Unprotect command

The Read Unprotect command is selected when wValue = 0 and the first byte of the buffer
sent by the Host is 0x92. The Buffer length should be only 1 byte (only the command byte).

Byte 1: 0x41 - Erase command

Erase
Command

Mass Erase

No

Yes

Data Length = 1?

Flash

No

Yes

Erase the related Flash
Page

Address allowed?

ROP Active ?

Yes

No

State = dfuERROR
Status = errVENDOR

Compute
address

State = dfuERROR
Status = errTARGET

State = dfuDNLOAD-IDLE
Status = OK

AN2662 DFU bootloader

Doc ID 14156 Rev 1 79/83

The Host sends a DFU_DNLOAD request with the above parameters to remove the read
protection of the internal Flash memory.

The STM32F105xx and STM32F107xx receives the byte as follows:

After sending a Read Unprotect command, the Host has to send a DFU_GETSTATUS
request.

The Read Unprotect command is effectively executed only when a DFU_GETSTATUS
request is issued by the Host. If the status returned by the device is other than dfuDNBUSY,
then an error has occurred. After this operation, the device removes the Read Protection
and, consequently, both Internal Flash and Embedded RAM are fully erased.

Hence, just after executing this command, the device disconnects itself and executes a
System Reset. In this case, the device is not able to respond to a second Get Status
request. And the Host may wait till the Device is enumerated again.

A second DFU_GETSTATUS request may also be issued (if the device is still connected) to
check if the command has been correctly executed. If the device fails to execute the
command it will return an error status (depending on the error type).

Figure 60. Read Unprotect Command: Device side

4.5.5 Leave DFU mode

It is possible to exit DFU mode (and bootloader) and jump to a loaded application (in the
internal Flash or in the embedded RAM) using the DFU download request.

The Host sends a DFU_DNLOAD request with 0 data length (no data stage after the
request) in order to inform the device that it will have to exit DFU mode. The device
acknowledges this request if the current state is dfuDNLOAD-IDLE or dfuIDLE.

Byte 1: 0x92 - Read Unprotect command

Read Unprotect
Command

System Reset

Remove Read Protection

Disconnect USB device

Erase the embedded
RAM

Operation done?

Yes

No

State = dfuERROR
Status = errUNKOWN

DFU bootloader AN2662

80/83 Doc ID 14156 Rev 1

The DFU Leave operation is effectively executed only when a DFU_GETSTATUS request is
issued by the Host. If the status returned by the device is other than dfuMANIFEST, then an
error has occurred. After this operation, the device frees all used resources, disconnects
itself and jumps to the destination given by the Address Pointer in order to execute the code
loaded in this address.

The Address Pointer has to be set (using Set Address Pointer command) before launching
the Leave DFU routine, otherwise, the bootloader will jump to the default address (internal
Flash memory start address: 0x08000000).

The Address Pointer can also be set through the last Write Memory operation: if a download
operation is performed, the Address Pointer used for this download will be stored and used
later for the jump.

Note: If the Address Pointer points to an address that doesn’t contain executable code, then the
device will be reset and, depending on the state of the boot pins, may re-enter bootloader
mode.

Since the Bootloader DFU application is not manifestation-tolerant, the device will not be
able to respond to Host requests after a manifestation phase is completed.

A second DFU_GETSTATUS request may also be issued (if the device is still connected) to
check if the command has been correctly executed. If the device fails to execute the
command it will return an error status (depending on the error type).

Note: 1 The Jump to application works only if the user application sets the vector table correctly to
point to the application address

2 When performing a jump from the Bootloader to a loaded application code which uses the
USB IP, the user application has to disable all pending USB interrupts and reset the core
before enabling interrupts. Otherwise, a pending interrupt (issued from the bootloader code)
may interfere with the user code and cause a functional failure. This procedure is not
needed after exiting system memory boot mode.

AN2662 DFU bootloader

Doc ID 14156 Rev 1 81/83

Figure 61. Leave DFU operation: Device side

1. This status depends on the error origin and the current status.

DFU Leave routine

Wait for Get Status

Return state:
dfuMANIFEST

Free resources
and disconnect device

Manifestation initiated?

Jump to application
address

Return error status1)

Yes

No

Revision history AN2662

82/83 Doc ID 14156 Rev 1

Revision history

Table 7. Document revision history

Date Revision Changes

08-Jul-2009 1 Initial release.

AN2662

Doc ID 14156 Rev 1 83/83

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Bootloader description
	1.1 Bootloader introduction
	1.2 Bootloader activation
	Table 1. Boot pin configuration
	Table 2. STM32F105xx and STM32F107xx configuration in System memory boot mode

	1.3 Hardware requirements
	1.4 Bootloader selection
	Figure 1. Bootloader selection

	1.5 Exiting System Memory boot mode

	2 USART bootloader
	2.1 Bootloader code sequence
	Figure 2. Bootloader for STM32F105xx and STM32F107xx with USART1/USART2

	2.2 Choosing the USARTx baud rate
	2.3 Minimum baud rate
	2.4 Maximum baud rate
	2.5 Bootloader command set
	Table 3. Bootloader commands

	2.6 Get command
	Figure 3. Get command: host side
	Figure 4. Get command: device side

	2.7 Get Version & Read Protection Status command
	Figure 5. Get Version & Read Protection Status command: host side
	Figure 6. Get Version & Read Protection Status command: device side

	2.8 Get ID command
	Figure 7. Get ID command: host side
	Figure 8. Get ID command: device side

	2.9 Read Memory command
	Figure 9. Read Memory command: host side
	Figure 10. Read Memory command: device side

	2.10 Go command
	Figure 11. Go command: host side
	Figure 12. Go command: device side

	2.11 Write Memory command
	Figure 13. Write Memory command: host side
	Figure 14. Write Memory command: device side

	2.12 Erase Memory command
	Figure 15. Erase Memory command: host side
	Figure 16. Erase Memory command: device side

	2.13 Write Protect command
	Figure 17. Write Protect command: host side
	Figure 18. Write Protect command: device side

	2.14 Write Unprotect command
	Figure 19. Write Unprotect command: host side
	Figure 20. Write Unprotect command: device side

	2.15 Readout Protect command
	Figure 21. Readout Protect command: host side
	Figure 22. Readout Protect command: device side

	2.16 Readout Unprotect command
	Figure 23. Readout Unprotect command: host side
	Figure 24. Readout Unprotect command: device side

	3 CAN bootloader
	3.1 Bootloader code sequence
	Figure 25. Bootloader for STM32F105xx and STM32F107xx withCAN2
	Figure 26. Check HSE frequency value

	3.2 CAN settings
	Figure 27. CAN frame

	3.3 Bootloader command set
	Table 4. Bootloader commands

	3.4 Get command
	Figure 28. Get command via CAN: Host side
	Figure 29. Get command via CAN: Device side

	3.5 Get Version & Read Protection Status command
	Figure 30. Get Version & Read Protection Status command: Host side
	Figure 31. Get Version & Read Protection Status command: device side

	3.6 Get ID command
	Figure 32. Get ID command: host side
	Figure 33. Get ID command: device side

	3.7 Speed command
	Figure 34. Speed command via CAN: Host side
	Figure 35. Speed command via CAN: Device side

	3.8 Read Memory command
	Figure 36. Read memory command via CAN: Host side
	Figure 37. Read memory command via CAN: Device side

	3.9 Go command via CAN
	Figure 38. Go command via CAN: Host side
	Figure 39. Go command via CAN: Device side

	3.10 Write Memory command via CAN
	Figure 40. Write Memory command via CAN: Host side
	Figure 41. Write memory command via CAN: Device side

	3.11 Erase Memory command via CAN
	Figure 42. Erase Memory command via CAN: Host side
	Figure 43. Erase Memory command via CAN: Device side

	3.12 Write Protect command
	Figure 44. Write Protect command via CAN: Host side
	Figure 45. Write Protect command via CAN: device side

	3.13 Write Unprotect command
	Figure 46. Write Unprotect command: Host side
	Figure 47. Write Unprotect command: device side

	3.14 Readout Protect command
	Figure 48. Readout Protect command via CAN: Host side
	Figure 49. Readout Protect command via CAN: device side

	3.15 Readout Unprotect command
	Figure 50. Readout Unprotect command via CAN: Host side
	Figure 51. Readout Unprotect command via CAN: device side

	4 DFU bootloader
	4.1 Bootloader code sequence
	Figure 52. Bootloader for STM32F105xx and STM32F107xx with USB DFU

	4.2 USB DFU Bootloader requests
	Table 5. DFU Class requests:
	Table 6. Summary of DFU Class-Specific requests

	4.3 DFU bootloader commands
	4.4 DFU_UPLOAD request commands
	4.4.1 Read memory
	4.4.2 Get commands
	Figure 53. DFU_UPLOAD request: Device side
	Figure 54. DFU_UPLOAD request: Host side

	4.5 DFU_DNLOAD request commands
	Figure 55. Download request: Device side
	Figure 56. Download request: Host side
	4.5.1 Write memory
	Figure 57. Write Memory: Device side

	4.5.2 Set Address Pointer command
	Figure 58. Set Address Pointer Command: Device side

	4.5.3 Erase command
	Figure 59. Erase Command: Device side

	4.5.4 Read Unprotect command
	Figure 60. Read Unprotect Command: Device side

	4.5.5 Leave DFU mode
	Figure 61. Leave DFU operation: Device side

	Revision history
	Table 7. Document revision history

