
November 2009 Doc ID 15021 Rev 3 1/18

AN2824
Application note

STM32F10xxx devices:
advanced I²C examples

Introduction
The aim of this application note is to:

● Provide I2C firmware examples based on polling, interrupts and DMA, covering the four
I2C communication modes available in the STM32F10xxx, that is, slave transmitter,
slave receiver, master transmitter and master receiver.

● Provide recommendations on the correct use of the I2C peripheral.

This application note applies to STM32F101xx and STM32F103xx medium- and high-
density microcontrollers that feature two I2C interfaces (controllers). Throughout this
document, these devices are referred to collectively as STM32F10xxx.

The application note is organized in three parts. The first part gives an overview of I2C
events and some recommendations on using the I2C efficiently. The second part describes
I2C firmware examples using polling, interrupts and DMA. The third part provides an
example using DMA and other STM32F10xxx-controlled resources (multislave
communication, ADC conversion, temperature sensor).

www.st.com

http://www.st.com

Contents AN2824

2/18 Doc ID 15021 Rev 3

Contents

1 I2C events overview . 5

1.1 Slave mode . 5

1.2 Master mode . 6

1.2.1 Closing communications safely when STM32™ is master receiver 8

1.3 Some recommendations . 9

2 I2C firmware configuration for different
communication modes (polling, DMA and interrupts) 10

2.1 Overview . 10

2.2 Hardware environment . 10

2.3 I2C firmware description . 11

2.4 How to use the firmware . 11

3 Example using DMA . 13

3.1 Overview . 13

3.2 Hardware environment . 13

3.3 Example description . 14

3.4 Firmware details . 16

3.5 How to use the example . 16

4 Revision history . 17

AN2824 List of tables

Doc ID 15021 Rev 3 3/18

List of tables

Table 1. List of functions. 11
Table 2. Document revision history . 17

List of figures AN2824

4/18 Doc ID 15021 Rev 3

List of figures

Figure 1. Slave transmitter transfer sequencing . 5
Figure 2. Slave receiver transfer sequencing . 6
Figure 3. Master transmitter transfer sequencing . 7
Figure 4. Master receiver transfer sequencing . 8
Figure 5. Hardware connection . 10
Figure 6. Hardware connection . 13
Figure 7. Example_DMA description . 15

AN2824 I2C events overview

Doc ID 15021 Rev 3 5/18

1 I2C events overview

1.1 Slave mode
Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(EV1, EV3 in Figure 1: Slave transmitter transfer sequencing).

When the acknowledge pulse is received, the TxE bit is set by hardware with an interrupt if
the ITEVFEN and the ITBUFEN bits are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

Figure 1. Slave transmitter transfer sequencing

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from
I2C_SR1 followed by a read from the I2C_DR register, stretching SCL low (see Figure 2:
Slave receiver transfer sequencing).

I2C events overview AN2824

6/18 Doc ID 15021 Rev 3

Figure 2. Slave receiver transfer sequencing

Closing slave communication

After the last data byte is transferred, a Stop Condition is generated by the master. The
interface detects this condition, sets the STOPF bit and generates an interrupt if the
ITEVFEN bit is set.

Then the interface waits for a read from the SR1 register followed by a write to the CR1
register, stretching SCL low (EV4 in Figure 2: Slave receiver transfer sequencing).

1.2 Master mode
Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (EV8_1 in Figure 3: Master
transmitter transfer sequencing).

When the acknowledge pulse is received, the TxE bit is set by hardware and an interrupt is
generated if the ITEVFEN and ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a read from I2C_SR1
followed by a write to I2C_DR, stretching SCL low

Closing the communication

After writing the last byte to the DR register, the STOP bit is set by software to generate a
Stop condition (EV8_2 in Figure 3: Master transmitter transfer sequencing). The interface
goes automatically back to slave mode (M/SL bit cleared).

AN2824 I2C events overview

Doc ID 15021 Rev 3 7/18

Figure 3. Master transmitter transfer sequencing

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

● An acknowledge pulse if the ACK bit is set

● The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (EV7 in Figure 4: Master receiver transfer sequencing).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the SR1 register followed by a read in the DR register, stretching SCL low.

Closing the communication

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Re-Start condition.

● In order to generate the non-acknowledge pulse after the last received data byte, the
ACK bit must be cleared just after reading the second last data byte (after second last
RxNE event).

● In order to generate the Stop/Re-Start condition, software must set the STOP/START
bit just after reading the second last data byte (after the second last RxNE event).

● In case a single byte is to be received, the Acknowledge disable and the Stop condition
generation are made just after EV6 (in EV6_1, just after ADDR is cleared).

After the Stop condition generation, the interface goes automatically back to slave mode
(M/SL bit cleared).

I2C events overview AN2824

8/18 Doc ID 15021 Rev 3

Figure 4. Master receiver transfer sequencing

In Master receiver mode, it could happen that the application software does not clear the
ACK bit before the last byte acknowledge pulse is received. To handle this case, a
procedure is proposed in Section 1.2.1.

1.2.1 Closing communications safely when STM32™ is master receiver

In the case where the STM32 is Master Receiver and application software does not
guarantee that the acknowledge is disabled before the slave sends the last byte, it is
recommended not to read DataN_2, so that after DataN_1, the communication is stretched
(both RxNE and BTF are set). Then, clear the ACK bit before reading DataN-2 in DR to
ensure it will be cleared before the DataN acknowledge pulse. After that, just after reading
DataN_2, set the STOP/ START bit and read DataN_1. After RxNE is set, read DataN.

This is illustrated below:

When 3 bytes remain to be read:

– RxNE = 1 => Nothing (DataN-2 not read)

– DataN-1 received

– BTF = 1 because both Shift and DR registers are full: DataN-2 in DR and DataN-1
in the shift register => SCL tied low: no other data will be received on the bus.

– Clear ACK bit

– Read DataN-2 in DR => This will launch the DataN reception in the shift register

– DataN received (with a NACK)

– Program START/STOP

– Read DataN-1

– RxNE = 1

– Read DataN

This procedure ensures that ACK is cleared before the DataN acknowledge pulse. It is
implemented in the software provided with this application note.

AN2824 I2C events overview

Doc ID 15021 Rev 3 9/18

The procedure described above is valid for N>2. Cases where a single byte or two bytes are
to be received should be handled differently.

Case of a single byte to be received:

– In the ADDR event, clear the ACK bit

– Clear ADDR

– Program the STOP/START bit.

– Read the data after the RxNE flag is set.

Case of two bytes to be received:

With POS= 1, you can program NACK during first byte reception, that is, after clearing
ADDR. The NACK should be programmed before the end of first byte reception.

– Set POS and ACK

– Wait for the ADDR flag to be set

– Clear ADDR

– Clear ACK

– Wait for BTF to be set

– Program STOP

– Read DR twice

The procedures described above can be implemented using either polling or interrupts,
taking into account that most I2C firmware events should be managed before the end of
transfer of the current byte.

If two or more bytes are to be received by the master, DMA can be used to automatically
generate the NACK on the last received byte.

1.3 Some recommendations
● In Slave mode, it is not recommended to use polling because the Slave does not know

in advance when it will be addressed by the Master and how many data bytes it will
receive or transmit from/to the Master.

● In Slave Transmitter/Receiver mode, when using DMA, if you want to disable the DMA
in order to update the DMA counter for example, this should be done between the
ADDR event (ADDR is set) and clearing the ADDR flag. This is the only period when
the Slave has control of the line (SCL is stretched). Otherwise, there is a risk of
stopping DMA while the Master is transmitting or receiving data.

● In Slave Transmitter/Receiver mode, when using DMA, you should make sure that the
number of bytes written in the DMA channel counter register is greater than the number
of bytes to be transmitted or received by the Master.

● When using DMA, Master reception of a single byte is not supported.

● When using I2C with interrupts, the I2C interrupts should have the highest priority in the
application in order to make them uninterruptible.

I2C firmware configuration for different communication modes (polling, DMA and interrupts)

10/18 Doc ID 15021 Rev 3

2 I2C firmware configuration for different
communication modes (polling, DMA and interrupts)

2.1 Overview
The purpose of this section is to provide an example of I2C firmware using polling, interrupts
and DMA.

In this software, I2C communication is set up between two STM32F10xxx devices. The first
device operates as a master transmitter/receiver and the second one, as a slave
transmitter/receiver.

“STM32F10xxx I2C1” or “I2C1” is used here to refer to the I2C1 interface of the device while
“STM32F10xxx I2C2” or “I2C2” refers to the I2C2 interface.

For more details, please refer to the medium- and high-density STM32F101xx and
STM32F103xx datasheets and reference manual available from: http://www.st.com.

2.2 Hardware environment
Figure 5 shows the hardware connection between the I2C1 of an STM32F10xxx and the
I2C2 of another STM32F10xxx. The I2C1 and I2C2 data lines (SDA) are connected
together. The I2C1 and I2C2 clock (SCL) lines are also connected together. A pull-up
resistor is connected to each line (SDA and SCL).

There are no specific boards (single printed-circuit board) fitted with two STM32F10xxx
devices, so we simply connected two STM3210B-EVAL boards together as shown in
Figure 5: Hardware connection.

Figure 5. Hardware connection

Ω Ω

AN2824 I2C firmware configuration for different communication modes (polling, DMA and inter-

Doc ID 15021 Rev 3 11/18

2.3 I2C firmware description
The FirmwareExamples folder is structured as follows:

● src subfolder: contains the source files

– driver.c: file containing the I2C1 master and I2C2 slave read and write routines
(using DMA and polling) and DMA1 Channels configured for I2C1 and I2C2
transmission/reception. See list of functions in Table 1.

– main.c: file in which the system clocks, I2C1 master, I2C2 slave and interrupts are
configured

– stm32f10x_it.c: file in which the I2C1 and I2C2 events (master/slave
transmitter/receiver) and error (acknowledge failure, bus error, overrun, arbitration
loss) interrupts are handled.

● inc subfolder: contains the header files

– driver.h: Header file for driver.c. It contains also the defined I2C clock, the defined
slave address and which mode is used (master transmitter using polling, slave
receiver using DMA etc...see Section 2.4)

– stm32f10x_it.h: Headers of the interrupt handlers

– stm32f10x_conf.h: configuration file

● EWARMv5, RVMDK and RIDE subfolders: contain tool-dependent preconfigured
projects and workspaces.

2.4 How to use the firmware
In the driver.h header file, just uncomment one of the following lines:

#define DMA_Master_Transmit: in order to use the STM32 I2C1 as Master Transmitter
using DMA.

Table 1. List of functions

Software routine Purpose

 I2C_Master_BufferRead
Master receives a buffer of bytes from the slave using
DMA or Polling

I2C_Master_BufferWrite
Master sends a buffer of bytes into the slave suing DMA or
polling mode.

I2C_Master_BufferRead1Byte Master receives 1 byte from the slave using polling.

I2C_Master_BufferRead2Byte Master receives 2 bytes from the slave using polling.

I2C_Slave_BufferRead
Slave receives a buffer of bytes from the master using
DMA.

I2C_Slave_BufferWrite Slave sends a buffer of bytes to the master using DMA.

DMA_Channel7_Configuration DMA1 Channel 7 configured for I2C1 master reception.

DMA_Channel6_Configuration
DMA1 Channel 6 configured for I2C1 master
transmission.

DMA_Channel5_Configuration DMA1 Channel 5 configured for I2C2 slave reception.

DMA_Channel4_Configuration DMA1 Channel 4 configured for I2C2 slave transmission.

I2C firmware configuration for different communication modes (polling, DMA and interrupts)

12/18 Doc ID 15021 Rev 3

#define DMA_Master_Receive: in order to use the STM32 I2C1 as Master Receiver
using DMA.

#define DMA_Slave_Transmit: in order to use the STM32 I2C2 as Slave Transmitter
using DMA.

#define DMA_Slave_Receive: in order to use the STM32 I2C2 as Slave Receiver using
DMA.

#define IT_Master_Transmit: in order to use the STM32 I2C1 as Master Transmitter
using Interrupts.

#define IT_Master_Receive: in order to use the STM32 I2C1 as Master Receiver
using Interrupts.

#define IT_Slave_Receive: in order to use the STM32 I2C2 as Slave Receiver using
Interrupts.

#define IT_Slave_Transmit: in order to use the STM32 I2C2 as Slave Transmitter
using Interrupts.

#define Polling_Master_Transmit: in order to use the STM32 I2C1 as Master
Transmitter using Polling.

#define Polling_Master_Receive: in order to use the STM32 I2C1 as Master
Receiver using Polling.

The BufferSize is fixed to 6 and the I2C Clock is fixed to 400 kHz.

The BufferSize is used when operating in Master mode. It is not needed in slave mode
because the slave will send or receive the number of bytes fixed by the Master.

In slave mode using DMA, the DMA counter register is initialized to 255. It can be any other
value which is greater than the number of bytes to be transmitted/received by the Master.

AN2824 Example using DMA

Doc ID 15021 Rev 3 13/18

3 Example using DMA

3.1 Overview
In this example, I2C communication is performed between three STM32F10xxx
microcontrollers. One device is operating as the Master receiver and the other two are
operating as Slave transmitters.

As mentioned in Section 2.1: Overview, “STM32F10xxx I2C1” or “I2C1” is used to refer to
the I2C1 interface of an STM32F10xxx microcontroller with two I2C controllers and
“STM32F10xxx I2C2” or “I2C2” refers to the I2C2 interface of another STM32F10xxx
microcontroller also featuring two I2C controllers.

3.2 Hardware environment
Figure 6: Hardware connection shows the connection between an STM32F10xxx I2C1 and
two STM32F10xxx I2C2s.

The I2C1 and I2C2 data (SDA) lines are connected together. The I2C1 and I2C2 clock
(SCL) lines are also connected together. A pull-up resistor is connected to each line (SDA
and SCL).

Like in the case of example 1, there is no a specific board (single PCB) fitted with three
STM32F10xxx devices, so we chose to connect an STM3210B-EVAL board (Master) to two
other STM3210B-EVAL boards operating as slaves.

Figure 6. Hardware connection

Ω Ω

Example using DMA AN2824

14/18 Doc ID 15021 Rev 3

3.3 Example description
Slave 1 sends the converted values (just the least significant byte) of ADC1 channel 14
(ADC1_CH14) to the Master. ADC1_CH14 is connected to the potentiometer on the board.

Slave 2 sends the temperature values to the Master, using the on-chip temperature sensor
that is internally connected to ADC1_CH16.

The Start condition is generated within a timer interrupt triggered once every 3 milliseconds.
Consequently, both Slaves send data alternately every 3 milliseconds, approximately. Once
the Master has generated the Start condition and sent the Slave address:

– If Slave1 is addressed, ADC1_CH14 conversions are launched. The number of
conversions is to be fixed by the user. In the example, 6 conversions are carried out.
DMA1 channel 1 is used to transfer the data to the Slave_Buffer_Tx buffer, which is
then sent to the Master.

– If Slave2 is addressed, ADC1_CH16 conversions are launched. The number of
conversions is to be fixed by the user. In the example, 6 conversions are carried out.
DMA1 channel 1 is used to transfer the data to a table named Buffer. Then the
Slave_Buffer_Tx buffer is filled with the temperature values using elements in the
Buffer table and the formula provided in the device reference manual.
Slave_Buffer_Tx buffer is then sent to the Master.

AN2824 Example using DMA

Doc ID 15021 Rev 3 15/18

Figure 7. Example_DMA description

Timer interrupt is triggered

The master generates the Start condition

Slave 1 sends a buffer of 6 bytes, which
corresponds to the values converted by
ADC1 CH14

The timer interrupt is triggered again (Master)

The master generates the Start condition
and sends Slave 2 address for a read operation

Slave 2 sends a buffer of 6 bytes, which
corresponds to the chip temperature
(obtained from the on-chip temperature sensor)

and sends Slave 1 address for a read operation

Example using DMA AN2824

16/18 Doc ID 15021 Rev 3

3.4 Firmware details
The DMA example is structured as follows:

● src subfolder: contains the source files

– driver.c: file containing the I2C1 master and I2C2 slave read and write routines
and DMA1 channels configured for I2C1 and I2C2 transmission/reception.

– main.c: file in which the system clocks, I2C1 master, I2C2 slave and interrupts are
configured

– stm32f10x_it.c: interrupt handler for the I2C1 and I2C2 events (master/slave
transmitter/receiver) and errors (acknowledge failure, bus error, overrun,
arbitration loss).

● inc subfolder: contains the header files

– driver.h: header file for driver.c. It also contains the definitions for the I2C clock, the
slave address and the mode to be used (master transmitter using polling, slave
receiver using DMA etc...see Section 2.4)

– stm32f10x_it.h: headers of the interrupt handlers

– stm32f10x_conf.h: configuration file

● EWARMv5, RVMDK and RIDE subfolders: contain tool-dependent preconfigured
projects and workspaces.

3.5 How to use the example
In order to compile the project for slave1, just:

● Uncomment #define slave1 in main.h header file.

● Uncomment #define DMA_Slave_Transmit in driver.h header file.

● Define the slave address as 0x28 in driver.h header file.

In order to compile the project for slave2, just:

● Uncomment #define slave2 in main.h header file.

● Uncomment #define DMA_Slave_Transmit in driver.h header file.

● Define the slave address as 0x30 in driver.h header file.

In order to compile the project for master, just:

● Uncomment #define master in main.h header file.

● Uncomment #define DMA_Master_Receive in driver.h header file.

To run the example successfully, perform the following steps:

● Load the code compiled for slave1 into board 1

● Load the code compiled for slave2 into board 2

● Load the code compiled for master into board 3

● Run the code in board 1

● Run the code in board 2

● Run the code in board 3

The user can then use an oscilloscope to display the I2C data transmitted alternately by
slave1 and slave2 to the master.

AN2824 Revision history

Doc ID 15021 Rev 3 17/18

4 Revision history

Table 2. Document revision history

Date Revision Changes

18-Sep-2008 1 Initial release.

04-Mar-2009 2

Added Section 1.3 recommendations for I2C use.
Content added to Section 2: I2C firmware configuration for different
communication modes (polling, DMA and interrupts).
Added Section 3 example using DMA.

03-Nov-2009 3
This application note applies to the whole STM32F10xxx family.
Subfolder descriptions modified in Section 2.3: I2C firmware
description and Section 3.4: Firmware details.

AN2824

18/18 Doc ID 15021 Rev 3

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 I2C events overview
	1.1 Slave mode
	Figure 1. Slave transmitter transfer sequencing
	Figure 2. Slave receiver transfer sequencing

	1.2 Master mode
	Figure 3. Master transmitter transfer sequencing
	Figure 4. Master receiver transfer sequencing
	1.2.1 Closing communications safely when STM32™ is master receiver

	1.3 Some recommendations

	2 I2C firmware configuration for different communication modes (polling, DMA and interrupts)
	2.1 Overview
	2.2 Hardware environment
	Figure 5. Hardware connection

	2.3 I2C firmware description
	Table 1. List of functions

	2.4 How to use the firmware

	3 Example using DMA
	3.1 Overview
	3.2 Hardware environment
	Figure 6. Hardware connection

	3.3 Example description
	Figure 7. Example_DMA description

	3.4 Firmware details
	3.5 How to use the example

	4 Revision history
	Table 2. Document revision history

