Micripm

Empowering Embedded Systems

LC/LIB

V1.19

User’'s Manual

www.Micrium.com




Disclaimer

Specifications written in this manual are believed to be accurate, but are not guaranteed to
be entirely free of error. Specifications in this manual may be changed for functional or
performance improvements without notice. Please make sure your manual is the latest
edition. While the information herein is assumed to be accurate, Micrium assumes no
responsibility for any errors or omissions and makes no warranties. Micrium specifically
disclaims any implied warranty of fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of Micrium. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2004-2006 Micrium, Weston, Florida 33327-1848, U.S.A.

Trademarks
Names mentioned in this manual may be trademarks of their respective companies. Brand
and product names are trademarks or registered trademarks of their respective holders.

Registration

Please register the software via email. This way we can make sure you will receive updates
or notifications of updates as soon as they become available. For registration please
provide the following information:

e Your full name and the name of your supervisor
* Your company name

= Your job title

e Your email address and telephone number

< Company name and address

* Your company's main phone number

e Your company's web site address

< Name and version of the product

Please send this information to: licensing@micrium.com

Contact address

Micrium

949 Crestview Circle

Weston, FL 33327-1848

U.S.A.

Phone : +1 954 217 2036

FAX :+1954 217 2037

WEB : www.micrium.com
Email : support@micrium.com



mailto:licensing@micrium.com
http://www.micrium.com/
mailto:support@micrium.com

Manual versions
If you find any errors in this document, please inform us and we will make the appropriate

corrections for future releases.

Manual Version | Date By | Description
V1.18 2005/08/30 | ITJ Manual Created
V1.19 2006/04/25 | JJL Updated




Table Of Contents

1.1
1.2
1.3
1.4
1.5

1.6

1.00

2.00.01
2.00.02
2.00.03
2.00.04
2.00.05
2.10
2.10.01.01
2.10.01.02
2.10.01.03
2.10.01.04
2.10.01.05
2.10.01.06
2.10.01.07
2.10.01.08
2.10.01.09
2.10.02.01
2.10.02.02
2.10.02.03

INEFOAUCTION ...ttt bbb bbb bbb n et b st 6
oo - o] [OOSR 6
(@00 ) 1T U T o] -SSR 6
(@000 100 I =T o T o SRR 6
IMIISRA € et bbbt bbb bbbt b e s bbbt b e s bbbt r e 6
Safety Critical CertifiCation ...........coiiiiiiiiie s 7
(OO I = I o =L o] PSSR 7
Getting Started WIth LIC/LIB.......coieise s 8
INSTAIIING [LC/LLIB ...ttt e b e bbbt et e e b e b b e nbesbe et e et enee e 8
HC/LIB Constant and Macro LiDrary ... 11
BOO0IEAN CONSTANTS. ...ttt sttt b et s b et s b et e b et ebesb et et nb et et b neeee 11
B CONSIANTS ..ttt b et b et b et b et bbb bbbt r et 11
OCTEE CONSTANTS ...ttt bbb bt se e Rt bbb e e b e n et n e b e e 11
1=t T=T G O] 011 g €SS 11
THME CONSEANTS ...ttt b bbb bbbt bbb s bt s e bt s et et n bt st ann 12
Y Tl 0L SRR 13
[ = I OSSOSO 13
DEF _BIT MASKU() cvevettiteiietestesiee ettt sttt st te st st te st et tesb et te st et te s b et besae s abe st et atesbe e atesbene e 14
DEF_BIT _FIELD()tevetiterieeite it sttt sttt sttt sttt sbe sttt sbe st st sttt bt tesneneees 15
DEF _BIT _SET() vetiteteeiterieestesieestestetesteseetestesastestesastestesassesbesaatesseseasessessssessessasessessasessessasessensns 16
DEF_BIT _CLR() tetttttietiteiiee sttt sttt sttt sttt sttt sb et sb et bbbttt e et b et b s e 17
DEF_BIT IS _SET() evetierieesterieiesie et ste e e ste e stesesteste st sbe st tesbe et sbe e tesae st sbe st stesbenestesnenenes 18
DEF_BIT IS CLR()tttttiterieeiteriee st sieteste et ste sttt ste ettt tesbe et sbe et sbe st sbe st et sbe e st sneneene 19
DEF_BIT IS _SET_ANY () ietierietiieriet st seee ettt sttt sttt s sttt sttt b et b s s 20
DEF_BIT_IS_CLR_ANY () ettt sttt st et 21
DEF_IMIN() ottt ettt sttt bbbt s b et b et et s b et et bbbt 22
DEF_IMAX() cte ittt ettt sttt b etk bbbt bbbt h et et bt 23
DEF _ABS() it iteieteite ittt ettt ettt sttt h et h et b e et b et et e bt et b et te et be bt te bt et ae e e 24



3.00

3.10.01
3.10.02
3.10.03
3.10.04
3.20

3.20.01

4.00

4.10.01
4.10.02
4.10.03
4.10.04
4.10.05
4.10.06
4.10.07
4.10.08
4.10.09

HC/LIB MemMOKY LIDIArY ..ottt 25

HC/LIB Memory Library Configuration ............cccvviviiiieiice et nne 25
V1T o T 1 [ OSSOSO 26
1T T 1= OSSOSO 27
1= 0 T O] o)/ ) ISV 28
1= o T O ] o OSSPSR 29
HC/LIB Memory Library OptimizZation.........ccooooiieiiieiieierese e 30
Mem_Copy() OPLIMIZATION .......ciiviiiiiieiiiee bbbt 30
HC/LIB STFrNG LIDFAIY ..ot e 31
HC/LIB String Library Configuration ... 31
ST LIN() ¢ttt bbb bbb e b b ekt bt b e bttt b e et b nrere s 32
ST COPY() - vevereereire ettt ettt bbb bbbk bt bbbt b ekt b bbbttt b e et ar e b 33
R (O L T OO PP OO PP PR PP PRTPPRPRPPOPON 34
Y L O 1010 ISR UR P 35
Y L O 10 T AN TSSO PO URUP 36
Y L O 4 T OSSPSR PSP 37
Y O o L I ) PSSR 38
Y L] () PSSR 39
Y L 10N o] S 7 ) PSSR 40
HC/LIB LICENSING POLICY ..ottt 42



Introduction

Designed with Micrium's renowned quality, scalability and reliability, the purpose of LC/LIB is to provide a clean,
organized ANSI C implementation of the most common standard library functions, macros, and constants.

1.1 Portable

LC/LIB was designed for the vast variety of embedded applications. The source code for L C/LIB is designed to
be independent of and used with any processor (CPU) and compiler.

1.2 Configurable

The memory footprint of LC/LIB can be adjusted at compile time based on the features you need and the desired
level of run-time performance.

1.3 Coding Standards

Coding standards have been established early in the design of L/C/LIB and include the following:

- Ccoding style

- Naming convention for #define constants, macros, variables and functions
- Commenting

- Directory structure

1.4 MISRA C

The source code for puC/LIB follows the Motor Industry Software Reliability Association (MISRA) C Coding
Standards. These standards were created by MISRA to improve the reliability and predictability of C programs in
critical automotive systems. Members of the MISRA consortium include Delco Electronics, Ford Motor Company,
Jaguar Cars Ltd., Lotus Engineering, Lucas Electronics, Rolls-Royce, Rover Group Ltd., and other firms and
universities dedicated to improving safety and reliability in automotive electronics. Full details of this standard can
be obtained directly from the MISRA web site, http://www.misra.org.uk.



http://www.misra.org.uk/

1.5 Safety Critical Certification

LC/LIB has been designed and implemented with safety critical certification in mind. L C/LIB is intended for use
in any high-reliability, safety-critical systems including avionics RTCA DO-178B and EUROCAE ED-12B, medical
FDA 510(k), and IEC 61058 transportation and nuclear systems.

For example, the FAA (Federal Aviation Administration) requires that ALL the source code for an application be
available in source form and conforming to specific software standards in order to be certified for avionics systems.

Since most standard library functions are provided by compiler vendors in uncertifiable binary format, nC/LIB
provides its library functions in certifiable source-code format.

If your product is NOT safety critical, you should view the software and safety-critical standards as proof that
LC/LIB is a very robust and highly-reliable software module.

1.6 pC/LIB Limitations

By design, we have limited some of the feature of uC/LIB. Table I-1 describes those limitations.

Does not support variable argument library functions

Table I-1, pC/LIB limitations for current software version



Chapter 1

Getting Started with uC/LIB

This chapter provides information on the distribution and installation of LC/LIB.

1.00 Installing nC/LIB

The distribution of uC/LIB is typically included in a ZIP file called: uC-L1B-Vxyy.zip. pC/LIB could also
have been included in the distribution of another Micrium ZIP file (UC/OS-II, pC/TCP-IP, LC/FS). The ZIP
file contains all the source code and documentation for L C/LIB as well as all other required software modules. All
modules are placed in their respective directories as shown in Figure 1-1.

=l (£ MICRIUM
= £ SOFTWARE
= 3 uC-cPU
= £ uCIB

i) Doc
=l ) Ports

Figure 1-1, uC/LIB Module Directories

\uC-CPU This directory contains CPU-specific code which depends on the processor and compiler used.
The directory contains additional sub-directories specific for each processor/compiler combination
organized as follows :

\MICRIUM\SOFTWARE\UC-CPU\<CPU Type>\<Compiler>
The pC/CPU directory contains one master CPU file :
\MICRIUM\SOFTWARE\UC-CPU\cpu_def.h
cpu_def.h

This file declares #define constants for CPU word sizes, endianess, critical section methods,
and other processor configuration.



\uC-LIB

Each sub-directory contains source files specific for each processor/compiler combination :

\MICRIUM\SOFTWARE\UC-CPU\<CPU Type>\<Compiler>\cpu.h
\MICRIUM\SOFTWARE\UC-CPU\<CPU Type>\<Compiler>\cpu_a.asm

cpu.h

This file contains configuration specific to the processor, such as data type definitions, processor
address and data word sizes, endianess, and critical section implementation. The data type
definitions are declared so as to be independent of processor and compiler word sizes.

cpu_a.asm
This file contains assembly code to enable/disable interrupts, implement critical section methods,
and any other code specific to the processor.

This directory contains the LC/LIB library source files common to many Micrium products and is
shown in Figure 1-2.

= [ MICRIUM
El ) SOFTWARE
B I ucLIB
I3 Doc
=l ) Ports
[Z] lib_def.h

lib_mem.c

n
B

n
B

lib_mem.h
lib_str.c
lib_str.h

n
B

n
B

Figure 1-2, uC/LIB Library Files

lib_def.h

This file declares #define constants for many common values such as TRUE/FALSE,
YES/NO, ENABLED/DISABLED, as well as for integer, octet, and bit values. This file also
contains macros for common mathematical operations like min()/max(), abs(),
bit set()/bit_clr(). See Chapter 2 for more details.

lib_mem.cand lib_mem.h

These files contain source code to replace standard library functions memclr(), memset(),
memcpy (), memcmp(), etc. These functions are replaced with Mem_Clr(), Mem_Set(),
Mem_Copy(), and Mem_Cmp (), respectively. See Chapter 3 for more details.

lib_str.cand lib_str.h

These files contain source code to replace standard library functions strlen(), strcpy(Q),
strcmp(), etc.  These functions are replaced with Str_Len(), Str_Copy(), and
Str_Cmp(Q), respectively. See Chapter 4 for more details.



\Application

This directory represents the application's directory or directory tree. Application files which
intend to make use of pC/LIB constants, macros, or functions should #include the desired
LC/LIB header files.

app_cfg.h
This application-specific configuration file declares #deFfine constants used to configure

Micrium products and/or non-Micrium-related application files. This file is required by pC/LIB
to #deFine its configuration constants.

10



Chapter 2

LC/LIB Constant and Macro Library

L C/LIB contains many standard constants and macros. Common constants include Boolean, bit-mask, and integer

values; common macros include minimum, maximum, and absolute value operations. All uC/LIB constants and
macros are prefixed with DEF__ to provide a consistent naming convention and to avoid namespace conflicts with
other constants and macros in your application. These constants and macros are defined in Iib_def_h.

2.00.01 Boolean Constants

pC/LIB  contains many Boolean constants such as DEF_TRUE/DEF_FALSE, DEF_YES/DEF_NO,
DEF_ON/DEF_OFF, and DEF_ENABLED/DEF _DISABLED. These constants should be used to configure,
assign, and test Boolean values or variables.

2.00.02 Bit Constants

pC/LIB contains bit constants such as DEF_BIT_00, DEF_BIT_07, and DEF_BIT_15, which define

values corresponding to specific bit positions. Currently, LC/LIB supports bit constants up to 32-bits
(DEF_BIT_31). These constants should be used to configure, assign, and test appropriately-sized bit-field or
integer values or variables.

2.00.03 Octet Constants

L C/LIB contains octet constants such as DEF_OCTET_NBR_BITS and DEF_OCTET_MASK which define octet or
octet-related values. These constants should be used to configure, assign, and test appropriately-sized, octet-related
integer values or variables.

2.00.04 Integer Constants

pHC/LIB  contains octet constants such as DEF_INT_08_ MASK, DEF_INT_16U_ MAX VAL, and
DEF_INT_32S MIN_VAL which define integer-related values. These constants should be used to configure,
assign, and test appropriately-sized, octet-related integer values or variables.

11



2.00.05 Time Constants

LC/LIB contains time constants such as DEF_TIME_NBR_HR_PER_DAY, DEF_TIME_NBR_SEC_PER_MIN,
and DEF_TIME_NBR_mS_PER_SEC which define time or time-related values. These constants should be used to
configure, assign, and test time-related values or variables.

12



2.10 Macros

LC/LIB contains many common bit and arithmetic macros. Bit macros modify or test values based on bit masks.
Arithmetic macros perform simple mathematical operations or tests.

2.10.01.01 DEF_BIT()

This macro is called to create a bit mask based on a single bit-number position.

Prototype

DEF_BIT(bit)

Arguments

bit This is the bit number of the bit mask to set.

Returned Value

Bit mask with the single bt number position set.

Notes / Warnings

None

Example

void AppFnct (void)

CPU_INT16U mask;

mask = DEF_BIT(12);

13



2.10.01.02 DEF_BIT_MASK()

This macro is called to shift a bit mask.

Prototype

DEF_BIT_MASK(bit_mask, bit_shift)

Arguments
bit _mask This is the bit mask to shift.
bit_shift This is the number of bit positions to left-shift the bit mask.

Returned Value

bit_mask left-shifted by bit_shift number of bits.

Notes / Warnings

None

Example

void AppFnct (void)

CPU_INT16U mask;
CPU_INT16U mask_hi;

ﬁask = 0x0064;
mask_hi = DEF_BIT_MASK(mask, 8);

14



2.10.01.03 DEF_BIT_FIELD()

This macro is called to create a contiguous, multi-bit bit field.

Prototype

DEF_BIT_FIELD(bit_field, bit_shift)

Arguments
bit field This is the number of contiguous bits to set in the bit field.
bit_shift This is the number of bit positions to left-shift the bit field.

Returned Value

Contiguous bit field of bit_Ffield number of bits left-shifted by bit_shift number of bits.

Notes / Warnings

None

Example

void AppFnct (void)

CPU_INTO8U upper_nibble;

upper_nibble = DEF_BIT_FIELD(4, 4):

15



2.10.01.04 DEF_BIT_SET()

This macro is called to set the appropriate bits in a value according to a specified bit mask.

Prototype

DEF_BIT_SET(val, mask)

Arguments
val This is the value to modify by setting the specified bits.
mask This is the mask of bits to set in the value.

Returned Value

Modified value with specified bits set.

Notes / Warnings

None
Example
void AppFnct (void)
{
CPU_INT16U flags;
CPU_INT16U flags_alarm;
%Iags = 0x0000;
flags_alarm = DEF_BIT_0OO | DEF_BIT_03;
DEF_BIT_SET(flags, flags_alarm);
¥

16



2.10.01.05 DEF_BIT_CLR()

This macro is called to clear the appropriate bits in a value according to a specified bit mask.

Prototype

DEF_BIT_CLR(val, mask)

Arguments
val This is the value to modify by clearing the specified bits.
mask This is the mask of bits to clear in the value.

Returned Value

Modified value with specified bits clear.

Notes / Warnings

None
Example
void AppFnct (void)
{
CPU_INT16U flags;
CPU_INT16U flags_alarm;
%Iags = OXOFFF;
flags_alarm = DEF_BIT_0OO | DEF_BIT_03;
DEF_BIT_CLR(flags, flags_alarm);
¥

17



2.10.01.06 DEF_BIT_IS_SET()

This macro is called to determine if all the specified bits in a value are set according to a specified bit mask.

Prototype

DEF_BIT_IS_SET(val, mask)

Arguments
val This is the value to test if the specified bits are set.
mask This is the mask of bits to check if set in the value.

Returned Value
DEF_YES, if ALL the bits in the bit mask are set in val.

DEF_NO, if ALL the bits in the bit mask are NOT set in val.

Notes / Warnings

None

Example
void AppFnct (void)
{

CPU_INT16U flags;
CPU_INT16U flags_mask;
CPU_BOOLEAN flags_set;

%Iags

= 0x0369;
flags_mask = DEF_BIT_08 | DEF_BIT_09;
= DEF_BIT_IS_SET(flags, flag_mask);

flags_set

18



2.10.01.07 DEF_BIT_IS_CLR()

This macro is called to determine if all the specified bits in a value are clear according to a specified bit mask.

Prototype

DEF_BIT_IS_CLR(val, mask)

Arguments
val This is the value to test if the specified bits are clear.
mask This is the mask of bits to check if clear in the value.

Returned Value
DEF_YES, if ALL the bits in the bit mask are clear in val.

DEF_NO, if ALL the bits in the bit mask are NOT clear in val.

Notes / Warnings

None

Example
void AppFnct (void)
{

CPU_INT16U alarms;
CPU_INT16U alarms_mask;
CPU_BOOLEAN alarms_clr;

alarms
alarms_mask
alarms_clr

0Ox07F0;
DEF_BIT_04 | DEF_BIT_03;
DEF_BIT_IS_CLR(alarms, alarms_mask);

19



2.10.01.08 DEF BIT_IS_SET_ANY()

This macro is called to determine if any of the specified bits in a value are set according to a specified bit mask.

Prototype

DEF_BIT_IS_SET_ANY(val, mask)

Arguments
val This is the value to test if any of the specified bits are set.
mask This is the mask of bits to check if set in the value.

Returned Value
DEF_YES, if ANY of the bits in the bit mask are set in val.

DEF_NO, if ALL the bits in the bit mask are NOT set in val.

Notes / Warnings

None

Example
void AppFnct (void)
{

CPU_INT16U flags;
CPU_INT16U flags_mask;
CPU_BOOLEAN flags_set;

%Iags

= 0x0369;
flags_mask = DEF_BIT_08 | DEF_BIT_09;
= DEF_BIT_IS_SET_ANY(flags, flag_mask);

flags_set

20



2.10.01.09 DEF_BIT_IS_CLR_ANY()

This macro is called to determine if any of the specified bits in a value are clear according to a specified bit mask.

Prototype

DEF_BIT_IS_CLR_ANY(val, mask)

Arguments
val This is the value to test if any of the specified bits are clear.
mask This is the mask of bits to check if clear in the value.

Returned Value
DEF_YES, if ANY of the bits in the bit mask are clear in val.

DEF_NO, if ALL the bits in the bit mask are NOT clear in val.

Notes / Warnings

None

Example
void AppFnct (void)
{

CPU_INT16U alarms;
CPU_INT16U alarms_mask;
CPU_BOOLEAN alarms_clr;

alarms
alarms_mask
alarms_clr

0Ox07F0;
DEF_BIT_04 | DEF_BIT_03;
DEF_BIT_IS_CLR_ANY(alarms, alarms_mask);

21



2.10.02.01 DEF_MIN()

This macro is called to determine the minimum of two values.

Prototype

DEF_MIN(a, b)

Arguments
a First value in minimum comparison.
b Second value in minimum comparison.

Returned Value

The lesser of the two values, a or b.

Notes / Warnings

None

Example

void AppFnct (void)

CPU_INT16S X;
CPU_INT16S vy;
CPU_INT16S z;

100;
-101;
DEF_MIN(X, Y);

X
y
z

22



2.10.02.02 DEF_MAX()

This macro is called to determine the maximum of two values.

Prototype

DEF_MAX(a, b)

Arguments
a First value in maximum comparison.
b Second value in maximum comparison.

Returned Value

The greater of the two values, a or b.

Notes / Warnings

None

Example

void AppFnct (void)

CPU_INT16S X;
CPU_INT16S vy;
CPU_INT16S z;

100;
-101;
DEF_MAX(X, Y);

X
y
z

23



2.10.02.03  DEF_ABS()

This macro is called to determine the absolute value of a value.

Prototype

DEF_ABS(a)

Arguments

a Value to calculate absolute value.

Returned Value

The absolute value of a.

Notes / Warnings

None

Example

void AppFnct (void)
CPU_INT16S y;
CPU_INT16S z;

-101;
DEF_ABS(Y);

y
z

24



Chapter 3

LUC/LIB Memory Library

HC/LIB contains library functions that replace standard library memory functions such as memclr(),
memset(), memcpy (), memcmp(), etc. These functions are defined in lib_mem.c.

3.00 pC/LIB Memory Library Configuration

The following pC/LIB memory library configuration may be optionally configured in app_cfg.h:

uC_CFG_OPTIMIZE_ASM_EN Implement certain functionality in assembly-optimized files
(see Section 3.20).

25



3.10.01 Mem_Clr()

This function is called to clear a memory buffer. In other words, set all octets in the memory buffer to a value of '0".

Prototype
void Mem_Clr (void *pmem,
CPU_SIZE T size);
Arguments
pmem This is the pointer to the memory buffer to be clear.
size This is the number of memory buffer octets to clear.

Returned Value

None

Notes / Warnings

1) Zero-sized clears allowed.

Example

void AppFnct (void)
{

CPU_CHAR AppBuf[10];

Mem_Clr((void *)&AppBUF[0],
(CPU_SIZE_T) sizeof(AppBuf));

26



3.10.02 Mem_Set()

This function is called to fill a memory buffer with a specific value. In other words, set all octets in the memory
buffer to the specific value.

Prototype
void Mem_Set (void *pmem,
CPU_INTO8U data val,
CPU_SIZE T size);
Arguments
pmem This is the pointer to the memory buffer to be set with a specific value.
data val This is the value to set.
size This is the number of memory buffer octets to set.

Returned Value

None

Notes / Warnings

1) Zero-sized sets allowed.

Example

void AppFnct (void)

CPU_CHAR AppBuf[10];

Mem_Set((void *)&AppBuf[0],
(CPU_INTO8U) 0x64,
(CPU_SIZE_T) sizeof(AppBuf));

27



3.10.03 Mem_Copy()

This function is called to copy values from one memory buffer to another memory buffer.

Prototype
void Mem_Copy (void *pdest,

void *psrc,

CPU_SIZE T size);
Arguments
pdest This is the pointer to the memory buffer to copy octets into.
psrc This is the pointer to the memory buffer to copy octets from.
size This is the number of memory buffer octets to copy.

Returned Value

None

Notes / Warnings

1) Zero-sized copies allowed.

2) Memory buffers NOT checked for overlapping.

3) This function can be configured to build an assembly-optimized version (see Sections 3.00 and 3.20.01).
Example

void AppFnct (void)
{

CPU_CHAR AppBuf[10];

Mem_Copy((void *)&AppBuf[0],
(void *)"ABCD",
(CPU_SIZE_T) sizeof(""ABCD™));

28



3.10.04 Mem_Cmp()

This function is called to compare values from two memory buffers.

Prototype
CPU_BOOLEAN Mem_Copy (void *pl_mem,

void *p2_mem,

CPU_SIZE. T size);
Arguments
pl_mem This is the pointer to the first memory buffer to compare.
p2_mem This is the pointer to the second memory buffer to compare.
size This is the number of memory buffer octets to compare.

Returned Value
DEF_YES, if size number of octets are identical in both memory buffers.

DEF_NO, otherwise.

Notes / Warnings

1) Zero-sized compares allowed; DEF_YES returned for identical NULL compare.
Example
void AppFnct (void)
{
CPU_CHAR AppBuf[10];
CPU_BOOLEAN cmp;
Mem_Copy((void *)&AppBuf[0],
(void *)"ABCD",
(CPU_SIZE_T) sizeof("'ABCD™));
cmp = Mem_Cmp((void *)&AppBuf[2],
(void *)"CD",
(CPU_SIZE_T) sizeof(*'CD™));
}

29



3.20 pC/LIB Memory Library Optimization

All pC/LIB memory functions have been C-optimized for improved run-time performance, independent of
processor or compiler optimizations. This is accomplished by performing memory operations on CPU-aligned
word boundaries whenever possible.

In addition, some L C/LIB memory functions have been assembly-optimized for certain processors/compilers. If
These optimizations are defined in assembly files found in appropriate port directories for each specific
processor/compiler combination. See Figure 3-1 for an example port directory :

= 3 MICRIUM
= ) SOFTWARE
=l £ uC4IB

) noc
=l ) Ports
= 5 ARM

3 GNU
lib_mem_a.s
3 18R

I'%’l lib_mem_a.asm

Figure 3-1, uC/LIB Example Port Directory

3.20.01 Mem_Copy() Optimization

Future Release

30



Chapter 4

UC/LIB String Library

HC/LIB contains library functions that replace standard library string functions such as strlen(),
strcpy(), strcemp(), etc. These functions are defined in lib_str.c.

4.00 LC/LIB String Library Configuration

The following L C/LIB string library configuration may be optionally configured in app_cfg.h:

LIB_STR_CFG_FP_EN Enable floating-point string conversion functions (see
Section 4.10.09).

31



4.10.01 Str_Len()

This function is called to determine the length of a string.

Prototype

CPU_SIZE_ T Str_Len (CPU_CHAR *pstr);

Arguments

pstr This is the pointer to the string.

Returned Value

Length of string in number of characters in string before but NOT including the terminating NULL character.

Notes / Warnings
1) String buffer NOT modified.

2) String length calculation terminates if string pointer points to or overlaps the NULL address.

Example

void AppFnct (void)

CPU_INT16U len;

ien = (CPU_INT16U)Str_Len('Hello World.™);

32



4.10.02 Str_Copy()

This function is called to copy string character values from one string memory buffer to another memory buffer.

Prototype

CPU_CHAR *Str_Copy (CPU_CHAR *pdest,
CPU_CHAR *psrc):

Arguments
pdest This is the pointer to the string memory buffer to copy string characters into.
psrc This is the pointer to the string memory buffer to copy string characters from.

Returned Value
Pointer to copied destination string, if NO errors.

Pointer to NULL, otherwise.

Notes / Warnings

1) Destination buffer size NOT validated; buffer overruns MUST be prevented by caller.
2) String copy terminates if either string pointer points to or overlaps the NULL address.
Example

void AppFnct (void)
CPU_CHAR  AppBuf[20];
CPU_CHAR “*pstr;

éstr = Str_Copy(&AppBuf[0], "Hello World!');

33



4.10.03 Str_Cat()

This function is called to concatenate a string to the end of another string.

Prototype

CPU_CHAR *Str_Cat (CPU_CHAR *pdest,
CPU_CHAR *pstr_cat);

Arguments
pdest This is the pointer to the string memory buffer to append string characters into.
pstr_cat This is the pointer to the string to concatenate onto the destination string.

Returned Value
Pointer to concatenated destination string,  if NO errors.

Pointer to NULL, otherwise.

Notes / Warnings

1) Destination buffer size NOT validated; buffer overruns MUST be prevented by caller.
2) String concatenation terminates if either string pointer points to or overlaps the NULL address.
Example
void AppFnct (void)
{
CPU_CHAR  AppBuf[30];
CPU_CHAR “*pstr;
[.JStI’ = Str_Copy(&AppBuf[0], "Hello World!');
pstr = Str_Cat (&AppBuf[0], "Goodbye World!');
¥

34



4.10.04 Str_Cmp()

This function is called to determine if two strings are identical.

Prototype

CPU_INT16S Str_Cmp (CPU_CHAR *pl_str,

Arguments
pl_str

p2_str

Returned Value
Zero value,

Positive value,

Negative value,

Notes / Warnings

CPU_CHAR *p2_str);

This is the pointer to the first string.

This is the pointer to the second string.

if strings are identical; i.e. both strings are identical in length and ALL characters.

if p1_str is greater than p2_str; i.e. p1_str points to a character of higher value
than p2_str for the first non-matching character found.

if p1_str is less than p2_str; i.e. pl_str points to a character of lesser value
than p2_str for the first non-matching character found.

1) String buffers NOT modified.
2) String comparison terminates if either string pointer points to or overlaps the NULL address.
3) Since 16-bit signed arithmetic is performed to calculate a non-identical comparison return value,

CPU_CHAR native data type size MUST be 8-bit.

Example

void AppFnct (void)

CPU_INT16S cmp;

émp = Str_Cmp("'Hello World!", "Hello World.");

35



4.10.05 Str_ Cmp_N()

This function is called to determine if two strings are identical for a specified length of characters.

Prototype

CPU_INT16S Str_Cmp_N (CPU_CHAR  *pil_str,

Arguments
pl_str
p2_str

len

Returned Value
Zero value,

Positive value,

Negative value,

Notes / Warnings

CPU_CHAR  *p2_str,
CPU_SIZE T len):

This is the pointer to the first string.
This is the pointer to the second string.

This is the maximum number of string characters to compare.

if strings are identical; i.e. both strings are identical for the specified length of characters.

if p1_str is greater than p2_str; i.e. p1_str points to a character of higher value
than p2_str for the first non-matching character found.

if p1_str is less than p2_str; i.e. p1_str points to a character of lesser value
than p2_str for the first non-matching character found.

1) String buffers NOT modified.

2) String comparison terminates if either string pointer points to or overlaps the NULL address.

3) Since 16-bit signed arithmetic is performed to calculate a non-identical comparison return value,
CPU_CHAR native data type size MUST be 8-bit.

Example

void AppFnct (void)

CPU_INT16S cmp;

cmp = Str_Cmp_N('Hello World!*", *"Hello World.', 10);

36



4.10.06 Str_Char()

This function is called to find the first occurrence of a specific character in a string.

Prototype

CPU_CHAR *Str_Char (CPU_CHAR *pstr,
CPU_CHAR srch_char);

Arguments
pstr This is the pointer to the string to search for the specified character.
srch_char This is the character to search for in the string.

Returned Value
Pointer to first occurrence of character in string, if NO errors.

Pointer to NULL, otherwise.

Notes / Warnings
1) String buffer NOT modified.

2) String search terminates if string pointer points to or overlaps the NULL address.

Example

void AppFnct (void)

CPU_CHAR *pstr;

bstr = Str_Char('Hello World!", "1%);

37



4.10.07 Str_Char_Last()

This function is called to find the last occurrence of a specific character in a string.

Prototype

CPU_CHAR *Str_Char_Last (CPU_CHAR *pstr,
CPU_CHAR srch_char);

Arguments
pstr This is the pointer to the string to search for the specified character.
srch_char This is the character to search for in the string.

Returned Value
Pointer to first occurrence of character in string, if NO errors.

Pointer to NULL, otherwise.

Notes / Warnings
1) String buffer NOT modified.

2) String search terminates if string pointer points to or overlaps the NULL address.

Example

void AppFnct (void)

CPU_CHAR *pstr;

pstr = Str_Char_Last("'Hello World!"™, "1%);

38



4.10.08 Str_Str()

This function is called to find the first occurrence of a specific string within another string.

Prototype

CPU_CHAR *Str_Str (CPU_CHAR “*pstr,
CPU_CHAR *psrch_str);

Arguments
pstr This is the pointer to the string to search for the specified string.
psrch_str This is the pointer to the string to search for in the string.

Returned Value
Pointer to first occurrence of search string in string, if NO errors.

Pointer to NULL, otherwise.

Notes / Warnings

1) String buffers NOT modified.
2) String search terminates if string pointer points to or overlaps the NULL address.
Example

void AppFnct (void)

CPU_CHAR *pstr;

pstr = Str_Str("'Hello World!", "10");

39



4.10.09 Str_FmtNbr_32()

This function is called to convert & format a 32-bit number into a string.

Prototype
CPU_CHAR *Str_FmtNbr_32 (CPU_FP32 nbr,
CPU_INTO8U nbr_dig,
CPU_INTO8U nbr_dp,
CPU_BOOLEAN lead zeros,
CPU_BOOLEAN nul,
CPU_CHAR *pstr_fmt);
Arguments
nbr This is the number to format into a string.
nbr_dig This is the number of integer digits to format into the number string.
nbr_dp This is the number of decimal digits to format into the number string.
lead zeros Option to prepend leading zeros into the formatted number string (see Note #2).
nul Option to NULL-terminate the formatted number string (see Note #3).
pstr_fmt This is the pointer to the string memory buffer to return the formatted number string

(see Note #4).

Returned Value
Pointer to formatted number string, if NO errors.

Pointer to NULL, otherwise.

Notes / Warnings
1) This function enabled ONLY if LIB_STR_CFG_FP_EN enabled in app_cfg-h (see Section 4.00).

2) a) Leading zeros option prepends leading '0's prior to the first non-zero digit. The number of leading
zeros is such that the total number integer digits is equal to the requested number of integer digits to
format (nbr_dig).

b) 1) If leading zeros option DISABLED,
2) ... number of digits to format is non-zero,
3) ... & the integer value of the number to format is zero;
4) ... then one digit of '0" value is formatted.

This is NOT a leading zero; but a single integer digit of ‘0" value.

40



3) a) NULL-character terminate option DISABLED prevents overwriting previous character array
formatting.

b) WARNING: Unless pstr_fmt character array is pre-/post-terminated, NULL-character terminate
option DISABLED will cause character string run-on.

4) a) Format buffer size NOT validated; buffer overruns MUST be prevented by caller.
b) To prevent character buffer overrun :

Character array size MUST be >= (nbr_dig +
nbr_dp +
1 negative sign +
1 decimal point +
1 NUL terminator) characters

Example

void AppFnct (void)

CPU_CHAR  AppBuf[20];
CPU_CHAR *pstr;

pstr = Str_FmtNbr_32((CPU_FP32 )-1234.5678,
(CPU_INTO8U ) 5,
(CPU_INTO8U ) 2,
(CPU_BOOLEAN) DEF_YES,
(CPU_BOOLEAN) DEF_YES,
(CPU_CHAR  *)&AppBuf[0]);

41



Appendix A

LC/LIB Licensing Policy

You need to obtain an 'Object Code Distribution License' to embed 1 C/LIB in a product that is sold with the intent
to make a profit. Each 'different’ product (i.e. your product) requires its own license but, the license allows you to
distribute an unlimited number of units for the life of your product. Please indicate the processor type(s) (i.e.
ARM7, ARM9, MCF5272, MicroBlaze, Nios Il, PPC,etc.) that you intend to use.

For licensing details, contact us at:

Micrium

949 Crestview Circle
Weston, FL 33327-1848
U.S.A.

Phone :+1954 217 2036
FAX  :+1954 217 2037

WEB : www.micrium.com
Email : licensing@micrium.com

42


http://www.micrium.com/
mailto:licensing@micrium.com

	Introduction
	I.1  Portable
	I.2  Configurable
	I.3  Coding Standards
	I.4  MISRA C
	 I.5  Safety Critical Certification
	I.6  µC/LIB Limitations
	Getting Started with µC/LIB
	1.00  Installing µC/LIB
	µC/LIB Constant and Macro Library
	2.00.01  Boolean Constants
	2.00.02  Bit Constants
	2.00.03  Octet Constants
	2.00.04  Integer Constants
	2.00.05  Time Constants
	 2.10  Macros
	2.10.01.01  DEF_BIT()
	 2.10.01.02  DEF_BIT_MASK()
	 2.10.01.03  DEF_BIT_FIELD()
	 2.10.01.04  DEF_BIT_SET()
	 2.10.01.05  DEF_BIT_CLR()
	 2.10.01.06  DEF_BIT_IS_SET()
	 2.10.01.07  DEF_BIT_IS_CLR()
	 2.10.01.08  DEF_BIT_IS_SET_ANY()
	 2.10.01.09  DEF_BIT_IS_CLR_ANY()
	 2.10.02.01  DEF_MIN()
	 2.10.02.02  DEF_MAX()
	 2.10.02.03  DEF_ABS()
	µC/LIB Memory Library
	3.00  µC/LIB Memory Library Configuration
	 3.10.01  Mem_Clr()
	 3.10.02  Mem_Set()
	 3.10.03  Mem_Copy()
	 3.10.04  Mem_Cmp()
	 3.20  µC/LIB Memory Library Optimization
	3.20.01  Mem_Copy() Optimization
	µC/LIB String Library
	4.00  µC/LIB String Library Configuration
	 4.10.01  Str_Len()
	 4.10.02  Str_Copy()
	 4.10.03  Str_Cat()
	 4.10.04  Str_Cmp()
	 4.10.05  Str_Cmp_N()
	 4.10.06  Str_Char()
	 4.10.07  Str_Char_Last()
	 4.10.08  Str_Str()
	 4.10.09  Str_FmtNbr_32()
	µC/LIB Licensing Policy

