

Cortex-A94コアS5P4418ボードNanoPi2 簡易マニュアル

株式会社日昇テクノロジー http://www.csun.co.jp info@csun.co.jp 作成日 2016/1/27

HIC SUN	
	不可能への挑戦

• 修止腹腔	・修正履歴
--------	-------

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2015/11/20
2	Ver1.1	・Android 5.1.1 にバージョンアップ	2015/12/14
		・新しいイメージファイルでは LCD 検索	
		をサポートしますので、元の LCD と HDMI	
		二つ分けているのを一つのイメージファ	
		イルになる	
		・Android ソースコードのダウンロード	
		ルートを nanopi2-lollipop-mr1 に変更	
		・LCD 表示をサポートする Debian の	
		uImage のコンパイル方法を追加	
3	Ver1.2	カメラモジュール、TF カードに関する説	2016/1/27
		明分の追加	

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。 最新版は弊社ホームページからご参照ください。「http://www.csun.co.jp」 ※ (株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に 禁じられています。

ホームページ : <u>http://www.csun.co.jp</u> メール:info@csun.co.jp

目次

1	紹介	5
2	主な仕様	5
3	インターフェースの配置及びサイズ	7
	3.1 インターフェースの配置	7
	3.1.1 GPIO1 ピン定義	7
	3.1.2 Debug Port CON1 (UARTO)	9
	3.1.3 DVP Camera IF ピン定義	9
	3.1.4 RGB LCD IF ピン定義	10
	3.2 PCB サイズ	
4	クイックスタート	13
	4.1 ハードウェアの準備	13
	4.3 実行システムを持つ microSD カードを作成する	13
	4.3.1 Windows 環境での作成	13
	4.3.2 Linux Desktop 環境での作成	14
	4.4 パソコンで SD カード上のシステムの更新	15
	4.5 Android または Debian を実行する	15
	4.6 VNC と SSH 経由で Debian にログイン	16
5	Debain システム	16
	5.1 無線ネットワークに接続する	16
	5.2 Wi-Fi 無線ホットスポットの配置	
	5.3 Bluetoothを使ってファイルを転送する	
	5.4 Debian のパッケージソフトをインストールする	19
6	システムのコンパイル方法	20
	6.1 クロスコンパイラをインストールする	20
	6.2 U-Boot のコンパイル	20
	6.3 mkimage を用意する	21
	6.4 Linux kernel のコンパイル	21
	6.4.1 カーネルのコンパイル	21
	6.4.2 カーネルモジュールのコンパイル	22
	6.5 Andriod システムのコンパイル	22

-		
	6.5.1 コンパイル環境の構築	22
	6.5.2 ソースコードをダウンロードする	22
	6.5.3 システムをコンパイルする	23
7	カメラモジュールを接続する	23
8	NanoPi2のTF カードのセクションを拡張	24
	8.1 Debian 用	24
	8.2 Android 用	24

1 紹介

NanoPi2はIoT設計のために開発された高性能のARMマスタコントロールボードである。 Samsungの Cortex-A9クアッド4コア S5P4418、1.4GHz、SoC 1G 32ビット DDR3を備えている。NanoPi2は802.11 b/g/n とBluetooth4.0をサポートするWiFiとBluetoothを内蔵している。TFカードからandroidと Debianシステム を実行することができ、HMDIとLCD I/Fを搭載している。Raspberry PiのGIPOと互換性がある。 PCBの寸法 は75×40mmである。

2 主な仕様

Comparision of Interfaces/Ports : Raspberry Pi 2, BeagleBone Black, NanoPi 2

Model	Raspberry Pi 2	BeagleBone Black	NanoPi 2
CPU Vendor	Broadcom	TI	Samsung
CPU Model	BCM2836	Sitara AM335x	S5P4418
CPU Core	Quad Core Cortex-A7	Single Core Cortex-A8	Quad Core Cortex-A9
CPU Clock	900MHz	1GHz	1.4GHz
GPU	VideoCore IV	PowerVR SGX530	Mali-400
Video Decoder	VideoCore IV 1080p video decoding for H.264, MPEG2* and VC1*1080p video encoding (H.264)* Extra license required	N/A	Max 1080P video decoding for H.264, VC-1, MPEG 1/2, MPEG-4, H.263P3, VP8, Meora, AVS, RV-8/9/10 and JPEG(8192 x 8192) Max 1080P video encoding for H.264, MPEG-4, H.263 and JPEG(8192 x 8192)
RAM	1GB DDR2	512M DDR3	1GB DDR3
eMMC	N/A	2/4GB	N/A
Ethernet	10/100M (USB to Ethernet chipset)	10/100M (Supported by SoC)	N/A
WiFi	N/A	N/A	Built-in 802.11 b/g/n
Bluetooth	N/A	N/A	Built-in Bluetooth 4.0
Antenna	N/A	N/A	Porcelain with IPEX socket
LCD Interface	Stand-alone MIPI Interface	RGB Interface (When connected to an HDMI monitor, it cannot connect to an LCD)	Stand-alone RGB Interface
Camera	CSI Interface 8MD-0.0mm-15pin	N/A	DVP Interface SMD-0.5mm-24pin
HDMI	HDMI – A	HDMI – A	HDMI – A
Audio	Wia HDMI Audio Jack	Via HDMI	Via HDMI
USB Høst	4 x USB 2.0 Host (USB-A)	1 x USB 2.0 Host (USB-A)	1 x USB 2.0 Host (USB-A)
USB Client	N/A	1 x USB 2.0 Client (mini USB)	1 x USB 2.0 Client (micro USB)
Serial Debug	N/A	6 Pin single row pin header(6 x 2.54mm)	4 Pin single row pin header(4 x 2.54mm)
Micro SD	1 x Slot	1 x Slot	2 x Slot
Power Interface	Micro Usb	DC power jack	Micro USB for both power supply and data transmission
uboot	N/A	Open Source	Open Source
Android	N/A	Yes	Speedy
Debian/Linux	Yes	Yes	Yes
Dimension	Credit card sized 85.60 × 53.98 mm	Credit card sized 86.36 x 54.61mm	2/3 of credit card sized 75 X 40mm
Weight	45g	39.68g	22g
Language support			

6

3 インターフェースの配置及びサイズ

3.1 インターフェースの配置

3.1.1 GPI01 ピン定義

13	GPIOB30	14	DGND
15	GPIOB31	16	PWM2
17	VDD_SYS_3.3V	18	GPIOB27
19	SPI0_MOSI	20	DGND
21	SPI0_MISO	22	PWMO
23	SPI0_CLK	24	SPI0_CS
25	DGND	26	PWM1
27	I2C1_SDA	28	I2C1_SCL
29	GPIOC8	30	DGND
31	SPI2_CLK	32	GPIOC28
33	SPI2_CS	34	DGND
35	SPI2_MOST	36	GPIOC7
37	SPI2_MISO	38	ALIVEGPI02
39	DGND	40	ALIVEGPI03

3.1.2 Debug Port CON1 (UARTO)

Pin#	Name
1	DGND
2	VDD_5V
3	TXDO
4	RXDO

3.1.3 DVP Camera IF ピン定義

Pin#	Name
1, 2	VDD_SYS_3. 3V
7, 9, 13, 15, 24	DGND
3	SCLO
4	SDAO
5	GPIOB14
6	GPIOB16
8, 10	NC

11	VSYNC
12	HREF
14	PCLK
16-23	Data bit7-0

3.1.4 RGB LCD IF ピン定義

Pin#	Name
1, 2	VDD_5V
11, 20, 29, 37, 38, 39, 40, 45	DGND
3-10	Blue LSB to MSB
12-19	Green LSB to MSB
21-28	Red LSB to MSB
30	GPIOB25
31	GPIOC15
32	XnRSTOUT Form CPU
33	VDEN

34	VSYNC
35	HSYNC
36	LCDCLK
41	SCL2
42	SDA2
43	GPIOC16
44	NC

説明

- 1. VDD_SYS_3.3V:3.3V電源の出力
- 2. VDD_5V: 5 V電源入力/出力。電圧がMicroUSBより高い場合、ボードに給電、そうでない場合、ボードは MicroUSBから電源を取る。入力範囲: 4.7~5.6V。
- 3. 更に詳しい情報については回路図:<u>NanoPi-2-1507-Schematic.pdf</u> をチェックしてください。

3.2 PCB サイズ

4 クイックスタート

4.1 ハードウェアの準備

- ・NanoPi2ボード
- ・microSDカード/ TFカード: Class10以上の8GB SDHCカードが必要
- ・microUSBインタフェースの外部電源、5V/2A
- ・HDMI入力サポートするディスプレイ或いはTV、或いはオプションのLCD液晶
- ・USBキーボード、USBマウス、同時に使う場合はUSB HUBも必要

・Linuxを実行するコンピュータ1台、オンラインネットワーキング、Ubuntu 14.04 64ビットシステムの 使用を推奨

4.2 TFカードでテストする

NanoPiを起動させたTFカードを作る時、クラス10かそれ以上の8GB SDHDカードを推奨する。以下は試験実績のある高速TFカード。

・Sandisk TF 8G クラス10 Micro/Sd高速TFカード SanDisk 闪迪

4.3 実行システムを持つ microSD カードを作成する

4.3.1 Windows 環境での作成

弊社HPからイメージファイル及びツールをダウンロードする。 Win32DiskImager.exeを右クリックして[管理者として実行(A)…]をクリックする。

名前 開く(O	
□ README.txt ●● 管理者。	、 として実行(A)
Changelog.txt 互換性(のトラブルシューティング(Y)
Win32DiskImager.exe 7-Zip	*
Vin32 Disk Imager	
Image File	Device
l	
MD5 Hack	
Progress	
Version: 0.7 Cancel Read Write Exit	
Image FileとDeviceのドライブを選択して、「Write]をクリックする。	
下記URLからイメージファイル及びソースコードをダウンロードする。	
https://drive.google.com/folderview?id=0BwAxPf5UWtWBNzNLRnNyRVN2V3c&usp=sharing	
LCD 或いは HDMI の出力は下記のイメージファイルを使用	
nanoni2-dobian-sd4g img zin	Debian 13-STZ14
hanopiz debran surg. ing. zip	
nanopi2-android-sd4g.img.zip	Android のイメージファイル
ボードのみで使用するユーザーは下記のファイルを使用	
	Debian イメージファイル (デフォルトで WiFi ホットスポットサー
nanopi2-debian-sd4g-wifiap.img.zip	ビスが記動 ユーザーけ VNC またけ SSH 経中でログインできる)

4.3.2 Linux Desktop 環境での作成

1)microSDをUbuntuのパソコンに挿入 以下のコマンドでSDカードのデバイス名をチェックする

dmesg | tail

dmesgが「sdc:sdc1 sdc2」と類似した情報を出力する時、SDカード対応デバイス名は/dev/sdcになる。コ マンドcat /proc/partitionsでも確認できる。

2) ファームウェアをダウンロードする

git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git

<mark>czd</mark> sd-fuse_nanopi2

3) Androidの実行カードを作成する

su

./fusing.sh /dev/sdx

(注:/dev/sdxを実際のSDカードのデバイスファイル名に変えてください)

初めて使う際、ダウンロードするか確認が必要。Yを押してダウンロードし、N或いは10秒間入力無い場合 は取り消しする。

4) Debianの実行カードを作成する

./fusing.sh /dev/sdx debian

4.4 パソコンで SD カード上のシステムの更新

システムを実行する前に、少し変更したい場合は、本節の内容をご参照ください。

作成したmicroSDカードをLinuxのパソコンに挿入して、SDカードのboot、rootfsをマウントして内容を変 更できる。下記の場合変更が必要:

1) カーネルのコマンドラインパラメータを更新したい場合は、「sd-fuse_nanopi2/tools」の下にある、 「fw_setenv」ツールを使用することができる。例えば、LCDがHD700であれば下記の方法で変更することが できる。

現在のコマンドラインを確認する。

cd sd-fuse_nanopi2/tools
./fw_printenv /dev/sdc | grep bootargs

現在の Android 5.1.1_r6 により SELinux が有効になる。デフォルトモードは enforcing となり、Command Line を通して変更することが可能。

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

直ぐに、permissive チードに変更でき、[XXX]は元の bootargs に置き換える必要がある。

2)カーネルの更新

新バージョンのUbootが起動時にLCDを認識した場合、SDカードのブートパーティションのuImage.hdmiを読み取る。

Androidにおいては、同じファイルであるため、直接新しいコンパイラのuImageで、SDカードのブートパー ティションのファイルに交換する。

Debianにおいては、2つのファイルが異なるため、新しいコンパイラをサポートするLCD uImageで、直接 SDカードのブートパーティションのファイルに交換する。HDMIのカーネルをサポートする場合は、 uImage.hdmiに交換する。

4.5 Androidまたは Debian を実行する

microSDカードをNanoPi2に挿入し、HDMIモニターと接続して、電源(5V/2A)に接続すると、NanoPi2は自動 的に起動する。青色LEDライトの点灯でシステムが起動していることが確認でき、またHDMIモニターには起 動画面が表示される。

HDMIモニターで操作したい場合、USBマウス、キーボードが必要である。もしLCDと接続していれば、タッチ パネルで操作可能。

カーネルを開発する場合、シリアルデバッグポート接続すれば、端末からNanoPi2を操作できる。 パスワード入力の提示がある場合、Debianのrootユーザーのデフォルトのパスワードは[fa]である。

4.6 VNC と SSH 経由で Debian にログイン

NanoPi2をLCD・HDMIに接続せずに、[-wifiap.img]のイメージファイルを実行した場合、WIFI 経由で携 帯等の他のデバイスから [nanopi2-wifiap]の NanoPi2 にログインできる。ホットスポット wifiap のデフォ ルトパスワードは[123456789]。正常に NanoPi2 に接続した後、以下の <u>URL</u>から[VNCViewer]をダウンロード &インストールできる。VNC 経由で NanoPi2 にログインするには、IP アドレスとポートを 192.168.8.1:5901 に設定する必要がある。ディフォルトのパスワードは[fa123456]。

ユーザーログイン後のスクリーンショット

[SSH-1 root 192.168.8.1] 経由でもログイン可能。[root]のデフォルトパスワードは[fa]である。SSH をスムーズにするには、WIFIの省電力モードをオフする。

iwconfig wlan0 power off

5 Debainシステム

5.1 無線ネットワークに接続する

Debianがロードされた後、GUIの右上にあるネットワークアイコンをクリックすると、自動的に近くの WiFiホットスポットが検索される。リストからスポットを選択し、[Properties]をクリックする。 パスワードを入力、保存し、Connectをクリックする。

次の内容は[-wifiap.img]ファイルで実行されるNanoPi2のみに適用される。 デフォルトではWiFiのAP(ア クセスポイント)モードはオンになっているため、無線ルーターに接続できない。以下の手順でWiFiのAPモ ードをオフにする。

接続する対象となる WiFi ルーターを設定する(SSH 経由で NanoPi にログイン)。次のコマンドを実行し、 WiFi デバイスを確認する。[wlan] で始まるものが WiFi デバイスである。

ifconfig -a

デフォルトで[wlan0]は、WiFi デバイスである。[/etc/network/interfaces.d/]内に同じ名前のコンフィ ギュレーションファイル(例:[wlan0]ファイル等]を作成する必要があります。

vi /etc/network/interfaces.d/wlan0

wlan0の内容は次のようになる。 auto lo iface lo inet loopback auto wlan0 iface wlan0 inet dhcp wpa-driver wext wpa-ssid YourWiFiESSID wpa-ap-scan 1 wpa-proto RSN wpa-pairwise CCMP wpa-group CCMP wpa-key-mgmt WPA-PSK wpa-psk YourWiFiPassword

上記の中で、[YourWiFiESSID]と[YourWiFiPassword]を実際のESSIDとパスワードに置き換える必要がある。 最後に、下記コマンドでホットスポットモードをオフにする。rootユーザーとして実行する必要。コマンド

実行後ボードを再起動する。再起動したら、上記設定の通り自動的にWiFiに接続する。 su

turn-wifi-into-apmode no

5.2 Wi-Fi 無線ホットスポットの配置

WiFiホットスポットの配置を以下の手順で行う。

turn-wifi-into-apmode **yes**

システムを再起動する。デフォルトのホットスポット名は[nanopi2-wifiap]で、パスワードは123456789。 PCホストから[nanopi2-wifiap]に接続可能になる。接続が成功すれば、SSHをを介して192.168.8.1でNanoPi2 に登録できる。

<mark>ssh</mark> root@192.168.8.1

パスワードは[fa]である。次のコマンドで無線LANモードを確認できる。

cat /sys/module/bcmdhd/parameters/op_mode

出力する数字が2であれば、現在無線ホットスポットモードとして機能していることを示す。 ステーションモードに切り替えたい場合、以下のコマンドを入力する。:

turn-wifi-into-apmode no

5.3 Bluetoothを使ってファイルを転送する

GUIの右上にあるBuluetoothのアイコンをクリックすると、メニューが表示される。[Make Discoverable]に よってNanoPi2 が他のBuluetoothデバイスから検出可能になる。Devices...は検索画面を開き、近くの Bluetoothデバイスを検索する([Make Discoverable]は先に有効にする必要がある)。[Send Files to Divices] でNanoPi2が別のBuluetoothデバイス (NanoPI2とペア) にファイルを送ることができる。

5.4 Debian のパッケージソフトをインストールする

提供しているのは標準的なDebian jessieシステムである。apt-getなどのコマンドでパッケージソフトを インストールすることができる。初めてインストールする場合、まず以下のコマンドでパッケージソフトリ ストを更新する必要がある。

apt-get update

その後、パッケージソフトをインストールすることができる。例えばFTPサーバーをインストールするには 以下のコマンドを使用する。

apt-get install vsftpd

/etc/apt/sources.listを編集することで、ダウンロードサーバーを変更することができる。 <u>http://www.debian.org/mirror/lishyb</u>全てのサーバーリストが取得可能。 [armhf]が付くリストを選択す ることが必要。

6 システムのコンパイル方法

6.1 クロスコンパイラをインストールする

先ず、コンパイラをダウンロードして解凍する。 git clone https://github.com/friendlyarm/prebuilts.git

sudo mkdir -p /opt/FriendlyARM/toolchain

sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz-C/opt/FriendlyARM/toolchain

コンパイラのパスをPATHに追加する。viでvi[~]/.bashrcを実行して、末尾に以下の内容を追加する。 export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:\$PATH export GCC_COLORS=auto

`/.bashrcスクリプトを実行してカレントshellで有効にする。"."の後ろにスペースがある。 . ~/.bashrc

コンパイラは64ビットのため、32ビットのLinuxでは実行できない。

インストールの完了後、インストールが成功したかを確認できる。

arm-linux-gcc -v

Using built-in specs.

COLLECT_GCC=arm-linux-gcc

COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/libexec/gcc/arm-cortexa9-linux-gnueabihf/4.9.3/lto-wrapper

Target: arm-cortexa9-linux-gnueabihf

Configured with: /work/toolchain/build/src/gc<mark>c-4.9.3/c</mark>onfigure --build=x86_64-build_pc-linux-gnu

--host=x86_64-build_pc-linux-gnu --target=arm-cortexa9-linux-gnueabihf --prefix=/opt/FriendlyARM/toolchain/4.9.3 --with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root --enable-languages=c,c++ --with-arch=armv7-a --with-tune=cortex=a9 --with-fpu=vfpv3 --with-float=hard

. . .

Thread model: posix

gcc version 4.9.3 (etng-1.21.0-229g-FA)

6.2 U-Boot のコンパイル

U-Bootソースコードをダウンロードし、コンパイルする。ブランチは[nanopi2-lollipop-mr1]であること に注意する。

git clone https://github.com/friendlyarm/uboot_nanopi2.git
cd uboot_nanopi2
git checkout nanopi2-lollipop-mr1
make s5p4418_nanopi2_config
make CROSS_COMPILE=arm-linux-

コンパイルに成功した後、u-boot.binを取得する。Fastbootで、NanoPi2のSDカードのUbootを更新する。

手順は下記の通り:

1) PCでコマンド [sudo apt-get install android-tools-fastboot]でfastbootツールをインストールする。

2)シリアルデバッグセットでNanoPi2とPCを接続する。起動後2秒以内、シリアル端末でEnterを押して、 u-bootのコマンドラインモードに入る。

3) u-bootのコマンドラインモードでfastbootコマンドを入力し、Enterを押してfastbootモードに入る。

4) microUSBケーブルでNanoPi2とPCを接続する。PC側で下記コマンドを入力してu-boot.binを書き込む。 fastboot flash bootloader u-boot.bin

注意点:直接ddコマンドでSDカードを更新してはいけない。正常に起動できなくなる可能性がある。

6.3 mkimage を用意する

カーネルをコンパイルするには u-boot の mkimage ツールが必要。因って、カーネル uImage をコンパイル する前に、PC 側で実行できることの確認が必要。

直接 sudo apt-get install u-boot-tools コマンドでインストールできる。或いは自分でコンパイルして

インストールする。

cd uboot_nanopi2

make CROSS_COMPILE=arm-linux- tools

sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin

6.4 Linux kernel のコンパイル

6.4.1 カーネルのコンパイル

1) カーネルのソースコードをダウンロードする。

NanoPi2のカーネルのソースコードは[nanopi2-lollipop-mr1]ブランチにある。

git clone https://github.com/friendlyarm/linux-3.4.y.git

cd linux-3.4.y

git checkout nanopi2-lollipop-mrl

2) Androidカーネルをコンパイルする。 make nanopi2_android_defconfig touch.scmversion make ulmage

3) Debianカーネルをコンパイルする。 make nanopi2_linux_defconfig touch .scmversion make uImage

コンパイル成功後、新しく生成したファイルはarch/arm/boot/uImage、HDMI出力をサポートする。SDカードのbootセクションにある同じファイル名のファイルと置き換えれば良い。

LCD表示をサポートするイメージファイルを作成するには設定を変更する必要。

touch .scmversion make nanopi2_linux_defconfig make menuconfig Device Drivers --> Graphics support --> Nexell Graphics --> [*] LCD [] HDMI make uImage

6.4.2 カーネルモジュールのコンパイル

Androidはカーネルモジュールを含んでいる。場所はsystemセクションの/lib/modules/である。新しいカ ーネルモジュール或いはカーネルモジュールの設定が変更した場合、再コンパイルが必要である。 先ず、カーネルソースのモジュールをコンパイルする。

cd linux-3.4.y

make CROSS_COMPILE=arm-linux- modules

またAndroidのソースに2つのカーネルモジュールのソースがある。下記コマンドでコンパイルする:

cd /opt/FriendlyARM/s5p4418/android

./vendor/friendly-arm/build/common/build-modules.sh

"/opt/FriendlyARM/s5p4418/android"はAndroidのソースのTOPフォルダである、[-h]パラメータでヘル プ内容を確認できる。

コンパイル成功した後、生成したカーネルモジュールが表示される。

6.5 Andriod システムのコンパイル

6.5.1 コンパイル環境の構築

64ビットのUbuntu 14.04を推奨する。必要なパッケージをインストールすれば良い。

sudo apt-get install zliblg-dev:i386

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom

詳細内容は下記URL をご参照ください。 https://source.android.com/source/initializing.html

6.5.2 ソースコードをダウンロードする

Android のソースコードをダウンロードするには repo が必要、インストール方法及び使用方法は下記 URL をご参照ください。<u>https://source.android.com/source/downloading.html</u>

mkdir android && cd android

repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1 repo sync 上記の"android"はワークフォルダーの事である。

6.5.3 システムをコンパイルする

source build/envsetup.sh lunch aosp_nanopi2-userdebug make -j8

コンパイル終了後、out/target/product/nanopi2/のフォルダにイメージファイルが生成される。

7 カメラモジュールを接続する

500 万画素 ov5640 カメラモジュールを繋ぐ。 Android5.1 システムを実行して "camera" アイコンをクリックする。

8 NanoPi2のTFカードのセクションを拡張

8.1 Debian 用

PC ホストの端末に以下のコマンドを実行する。

sudo umount /dev/sdx
sudo parted /dev/sdx unit % resizepart 2 100 unit MB print
sudo resize2fs -f /dev/sdx2

8.2 Android 用

PC ホストの端末に以下のコマンドを実行する。 sudo umount /dev/sdx sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print sudo resize2fs -f /dev/sdx7

