



# Cortex-A53 8 コア S5P6818 ボード NanoPi-Fire3 簡易マニュアル

# 株式会社日昇テクノロジー

https://www.csun.co.jp info@csun.co.jp 作成日 2020/1/20

# copyright@2020





|    |        | • 修  | ◎正履歴      |
|----|--------|------|-----------|
| NO | バージョン  | 修正内容 | 修正日       |
| 1  | Ver1.0 | 新規作成 | 2020/1/20 |
|    |        |      |           |
|    |        |      |           |
|    |        |      |           |
|    |        |      |           |
|    |        |      |           |
|    |        |      |           |
|    |        |      |           |
|    |        |      |           |

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。最新版は弊 社ホームページからご参照ください。「https://www.csun.co.jp」

※(株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に禁じられて います。





株式会社日昇テクノロジー

# 目 次

| 1 | 紹介                                                              | 5  |
|---|-----------------------------------------------------------------|----|
| 2 | 主な仕様                                                            | 5  |
| 3 | インターフェースの配置及びサイズ                                                | 6  |
|   | 3.1 インターフェースの配置                                                 |    |
|   | 3.1.1 40Pin GPIO ピン定義                                           | 7  |
|   | 3.1.2 4 ピン DebugPort (UARTO) インターフェイス ピン定義                      | 9  |
|   | 3.1.3 DVP カメラ IF ピン定義                                           | 9  |
|   | 3.1.4 RGB LCD IF ピン定義                                           | 10 |
|   | 3.1.5 Power Key                                                 | 11 |
|   | 3. 1. 6 RTC                                                     | 11 |
|   | 3. 1. 7 USB 2. 0 HOST                                           | 11 |
|   | 3.1.8 その他                                                       | 12 |
|   | 3.2 PCB サイズ                                                     | 12 |
| 4 | ・クイックスタート                                                       | 12 |
|   | 4.1 ハードウェアの準備                                                   | 12 |
|   | 4.2 SD カードから起動                                                  | 12 |
|   | 4.3 Linux Desktop 環境で起動カードの作成                                   | 13 |
|   | 4.4 TF カードパーティションの追加                                            | 14 |
|   | 4.5 LCD/HDMIの解像度                                                | 14 |
|   | 4.6 パソコンで SD カード上の起動パラメータの変更                                    | 14 |
| 5 | Android システム                                                    | 15 |
|   | 5.1 Android7 で 4G モジュール EC20 を使用する                              | 15 |
|   | 5.2 Android 起動時の Logo の変更                                       | 15 |
| 6 | システムのコンパイル                                                      | 16 |
|   | 6.1 クロスコンパイラをインストールする                                           | 16 |
|   | 6.2 FriendlyCore/Lubuntu/EFlasher のカーネルのソースのコンパイル               | 16 |
|   | 6.3 Android7 kernel のコンパイル                                      | 17 |
| • | 6.4 Android7/FriendlyCore/Lubuntu/EFlasher のU-Boot ソースコードをコンパイル | 17 |
|   | 6.5 Andriod7.1.2 システムのコンパイル                                     | 17 |
|   | 6.5.1 コンパイル環境の構築                                                | 17 |



| 6.5.2 ソースコードをダウンロードする             |  |
|-----------------------------------|--|
| 6.5.3 システムをコンパイルする                |  |
| 7 拡張モジュール                         |  |
| 7.1 USB(FA-CAM202)200 万画素カメラモジュール |  |
| 7.2 OV5640 CMOS 500 万画素カメラモジュール   |  |
| 7.3 OpenCV を使用して USB カメラにアクセスする   |  |



#### 1 紹介

NanoPC-T3はSamsungのオクタコア・Cortex-A53・S5P6818 SoCを備えている。本ボードはCMOSカメライン ターフェース、RGB LCD表示インターフェース、MicroHDMIビデオ出力ポートを備えており、USB2.0、MicroSD、 ギガバイトイーサネットポートなどの一般的な標準インターフェースを備えている。またデバッグ シリア ル ポート、40 Pinラズベリーパイ互換拡張ポートがある。RTCをサポートし、RTCのインターフェースピン を搭載。本ボードはFriendlyCore, Debian, AndroidのOSをサポートしている。Qt-5.9及びOpenGL ES1.1/2.0、 ビデオハードウェアデコード等のグラフィックス処理ライブラリをサポートする。

#### 2 主な仕様

・SoC: Samsung S5P6818オクタコアのCortex-A53、400MHz~1.4GHz ・電力マネージメントユニット: ARM® Cortex®-MOを搭載して、ソフトウェアのパワーオフとウェイクアッ プをサポートする。 ・システムメモリ: 1 GB 32ビットDDR3 RAM USB2.0ホスト:1×Aタイプ ・MicroUSB: 1×MicroUSB2.0クライアント ・ストレージ: 1×MicroSD カードソケット ・イーサネット: Gbit イーサネットポート (RTL8211E) ・LCDインターフェイス:0.5 mmピッチFPCコネクタ、フルカラ→(RGB:8-8-8) • HDMI : 1.4A、 1 × MicroHDMI (Type-D)、 1080P ・DVPカメラ :  $1 \times DVP$  カメラインターフェース (0.5mm  $e^{-1} y \neq FPC$ コネクタ) ・GPIO: 2.54ミリピッチ、40ピンヘッダー、ラズベリーパイのGPIOとコンパチ、UART, SPI, I2C, PWM, IO 等合む 4ピンヘッダー ・シリアルデバッグポート:2.54ミリピッチ、 ・ユーザーキー:パワー、リセット ・LED: 電源LED×1、システム指示LED×1 ・RTCバッテリー:RTCバッテリーシート ・ヒートシンク:2×ヒートシンク取付け穴付き ・給電:DC 5V/2A • PCBサイズ: 75mm × 40mm ・OS/ソフトウェア: Android、Debian、UbuntuCore+Qt



低価格、高品質が不可能? 日昇テクノロジーなら可能にする





低価格、高品質が不可能? 日昇テクノロジーなら可能にする





| 5  | I 2CO_SCL         | 6  | DGND              |  |
|----|-------------------|----|-------------------|--|
| 7  | GPIOD8/PPM        | 8  | UART3_TXD/GPI0D21 |  |
| 9  | DGND              | 10 | UART3_RXD/GPI0D17 |  |
| 11 | UART4_TX/GP10B29  | 12 | GPIOD1/PWMO       |  |
| 13 | GP10B30           | 14 | DGND              |  |
| 15 | GPI0B31           | 16 | GPIOC14/PWM2      |  |
| 17 | SYS_3. 3V         | 18 | GP10B27           |  |
| 19 | SPIO_MOSI/GPIOC31 | 20 | DGND              |  |
| 21 | SPIO_MISO/GPIODO  | 22 | UART4_RX/GP10B28  |  |
| 23 | SPI0_CLK/GPI0C29  | 24 | SPI0_CS/GPI0C30   |  |
| 25 | DGND              | 26 | GP10B26           |  |
| 27 | I 2C1_SDA         | 28 | I2C1_SCL          |  |
| 29 | GP10C8            | 30 | DGND              |  |
| 31 | GP10C7            | 32 | GP10C28           |  |
| 33 | GPIOC13/PWM1      | 34 | DGND              |  |





| 35 | SPI2_MISO/GPIOC11 | 36 | SPI2_CS/GPI0C10   |
|----|-------------------|----|-------------------|
| 37 | AliveGPI03        | 38 | SPI2_MOSI/GPI0C12 |
| 39 | DGND              | 40 | SPI2_CLK/GPI0C9   |

3.1.2 4 ピン DebugPort (UARTO) インターフェイス ピン定義

| ピン | 名前        | ピン | 名前        |
|----|-----------|----|-----------|
| 1  | DGND      | 2  | VDD_5V    |
| 3  | UART_TXDO | 4  | UART_RXD0 |

3.1.3 DVP カメラ IF ピン定義

|   | ピン               | 名前        |
|---|------------------|-----------|
|   | 1、2              | SYS_3. 3V |
|   | 7, 9, 13, 15, 24 | DGND      |
|   | 3                | I2CO_SCL  |
| X | 4                | 12CO_SDA  |
|   | 5                | GPIOB14   |



| 6     | GPIOB16      |  |
|-------|--------------|--|
| 8     | GPIOC13/PWM1 |  |
| 10    | NC           |  |
| 11    | VSYNC        |  |
| 12    | HREF         |  |
| 14    | PCLK         |  |
| 16-23 | データ bit7-0   |  |

#### 3.1.4 RGB LCD IF ピン定義

| ピン番号                              | 名前                  | 説明                                  |
|-----------------------------------|---------------------|-------------------------------------|
| 1, 2                              | VDD_5V              | 5V 出力 – LCD モジュールに電源を供給するために使うことが可能 |
| 11, 20, 29, 37, 38,<br>39, 40, 45 | DGND                | グランド                                |
| 3–10                              | Blue LSB to<br>MSB  | RGB のブルー信号                          |
| 12–19                             | Green LSB to<br>MSB | RGB のグリーン信号                         |
| 21–28                             | Red LSB to MSB      | RGB の赤信号                            |



低価格、高品質が不可能? 日昇テクノロジーなら可能にする

| 30 | GPI0B25              | 汎用 GPIO、ユーザーがコントロール可能                                             |
|----|----------------------|-------------------------------------------------------------------|
| 31 | GPIOC15              | LCD モジュールと制御バックライトを認識し、抵抗式タッチを実現す<br>るワンワイヤ信号、システム専用、ユーザーは設定できない。 |
| 32 | XnRSTOUT Form<br>CPU | システムがリセットされる時、出力のレベルは低い                                           |
| 33 | VDEN                 | RGB 信号が有効な信号であることを示す                                              |
| 34 | VSYNC                | 垂直同期                                                              |
| 35 | HSYNC                | 水平同期                                                              |
| 36 | LCDCLK               | LCD クロック、ピクセル周波数                                                  |
| 41 | 12C2_SCL             | 静電容量式タッチのデータ伝送のための I202 クロック信号                                    |
| 42 | 12C2_SDA             | 静電容量式タッチのデータ伝送のための I202 データ信号                                     |
| 43 | GPIOC16              | 静電容量式タッチ用のピンを中断・I2C2 と使用される                                       |
| 44 | NC                   | 接続されていない                                                          |

3.1.5 Power Key

Power Key Jumper より外部キーに接続して、Power Key 機能を実現可能。

#### 3.1.6 RTC

RTC バックアップ用バッテリーインタフェースを搭載、3V ボタン電池を直結可能。電流は約 3. 35uA。外部電 源接続してない時だけ RTC はボタン電池で給電される。

#### 3.1.7 USB 2.0 HOST

#### 1A 電流制限保護





#### 3.1.8 その他

- 1. VDD\_SYS\_3.3V:3.3V電源の出力
- VDD\_5V: 5 V電源入力/出力。電圧がMicroUSBより高い場合、ボードに給電、そうでない場合、ボードは MicroUSBから電源を取る。入力範囲: 4.7~5.6V。
- 3. 更に詳しい情報については回路図をチェックしてください。

#### 3.2 PCB サイズ



次のファイルをHPからダウンロードしてください。 ・8G以上SDHCカードを用意し、そのデータをバックアップする。



Image Files

| s5p6818-sd-friendlycore-xenial-4.4-armhf-YYYYMMDD.img.zip    | 32bit FriendlyCore システムイメー<br>ジ (Qt 5.10.0を内蔵), Ubuntu core<br>を基づく   |
|--------------------------------------------------------------|-----------------------------------------------------------------------|
| s5p6818-sd-friendlycore-xenial-4.4-arm64-YYYYMMDD.img.zip    | 64 bit FriendlyCore システムイメ<br>ージ (Qt 5.10.0 を内蔵), Ubuntu core<br>を基づく |
| s5p6818-sd-lubuntu-desktop-xenial-4.4-armhf-YYYYMMDD.img.zip | LUbuntu システムイメージ,XWindow<br>のGUI 付き                                   |
| s5p6818-sd-friendlywrt-4.4-YYYYMMDD.img.zip                  | <u>FriendlyWrt</u> システムイメージ<br>(OpenWrt よりカスタマイズ)                     |
| s5p6818-sd-android7-YYYYMMDD.img.zip                         | Android7 システムイメージ(4G LTE<br>をサポート)                                    |
| s5p6818-sd-android-lollipop-YYYYMMDD.img.zip                 | Android5.1 システムイメージ                                                   |
| フラッシュユーティリティ                                                 | <u>.</u>                                                              |
| win32diskimager.rar                                          | Windows ユーティリティ。Linux でユー<br>ザーは"dd"を使用できる。                           |

・これらのファイルを解凍する。SDカードをWindowsのPCに挿入し、win32diskimager ユーティリティを管 理者として起動させる。ユーティリティのメインウィンドウでSDカードのドライブとイメージファイルを選 択し、SDカードを点滅させるために【Write】をクリックする。

・このカードをNanoPC-T3のブートソケットに挿入し、ブートキーを押して保持し、電源をオンにする(5V/2Aの電源)。PWR LEDがオンでLED1が点滅している場合、NanoPC-T3が正常に起動していることを示します。

#### 4.3 Linux Desktop 環境で起動カードの作成

1)microSDをUbuntuのパソコンに挿入 以下のコマンドでSDカードのデバイス名をチェックする dmesg | tail

dmesgが「sdc:sdc1 sdc2」と類似した情報を出力する時、SDカード対応デバイス名は/dev/sdcになる。コ



マンドcat /proc/partitionsでも確認できる。

2)Linuxのスクリプトをダウンロードする

git clone <a href="https://github.com/friendlyarm/sd-fuse\_s5p6818.git">https://github.com/friendlyarm/sd-fuse\_s5p6818.git</a>

cd sd-fuse\_s5p6818

3)下記コマンドでLubuntu desktopを起動するSDカードを作成する

sudo ./fusing.sh /dev/sdx lubuntu

(注:/dev/sdxを実際のSDカードのデバイスファイル名に変えてください)

初めて使う際、ダウンロードするか確認が必要。Yを押してダウンロードし、N或いは10秒間入力無い場合 は取り消しする。

4) イメージファイルだけ生成する場合:

<mark>sudo</mark> ./mkimage.sh lubuntu

#### 4.4 TF カードパーティションの追加

Debian/Ubuntu システムでは自動で SD カードパーティションを追加する。初めて起動の際、パーティションとルートファイルシステムを自動的に生成する。

Android システムでは PC で下記コマンドを実行する:

sudo umount /dev/sdx?

sudo parted /dev/sdx unit % resizepart 4 100 resizepart 7 100 unit MB print

<mark>sudo</mark> resize2fs -f /dev/sdx7

#### 4.5 LCD/HDMI の解像度

システムが起動すると、ubootがLCDに接続されているかをチェックする。ubootがLCDを認識した場合には、 その解像度を設定する。デフォルトでは、ubootはHDM1720Pへのディスプレイを設定する。LCDの解像度をリ セットしたい場合は、 カーネル内の[arch/arm/plat-s5p6818/nanopi3/lcds.c] ファイルを修正し、再コン パイルできる。HDMIモニターに接続され、Androidを起動した場合、「EDID」をチェックすることで自動的 に適切なHDMIモードに解像度を設定する。Debianを起動した場合、デフォルトでHDMI720Pへの解像度をセッ トする。この場合、カーネルの設定を変更することで1080Pに設定できる。

#### 4.6 パソコンで SD カード上の起動パラメータの変更

システムを実行する前に、少し変更したい場合は、本節の内容をご参照ください。

作成したmicroSDカードをLinuxのパソコンに挿入して、SDカードのboot、rootfsをマウントして内容を変 更できる。Kernel Command Lineのパラメータを更新したい場合は、「fw\_setenv」ツールを使用することが できる。

#### 現在のカーネルの起動パラメータを確認する。

git clone <u>https://github.com/friendlyarm/sd-fuse\_s5p6818.git</u> cd\_sd-fuse\_s5p6818/tools ./fw\_printenv /dev/sdx | grep bootargs

例えば Android の SELinux を変更したい場合

./fw\_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

上記コマンドで permissive モードに変更できる。[XXX]は元の bootargs に置き換える必要がある。



#### 5 Android システム

#### 5.1 Android7 で 4G モジュール EC20 を使用する

USB to miniPCIe 変換ボードを経由して EC20 モジュールを本ボードの USB Host I/F と繋ぐ。 他に設定する必要なく、Android を起動するだけで 4G でインターネットに接続する。



### 5.2 Android 起動時の Logo の変更

下記フォルダにあるlogo.bmpを交換する

/opt/FriendlyARM/smart4418/android/device/friendlyelec/nanopi3/boot/logo.bmp /opt/FriendlyARM/smart4418/android/device/friendlyelec/nanopi2/boot/logo.bmp ースユードをコンパイルする。



6 システムのコンパイル
6.1 クロスコンパイラをインストールする
aarch64-linux-gcc 6.4 をインストールする

先ず、コンパイラをダウンロードして解凍する。 git clone https://github.com/friendlyarm/prebuilts.git -b master --depth 1 cd prebuilts/gcc-x64 cat toolchain-6.4-aarch64.tar.gz\* | sudo tar xz -C /

コンパイラのパスをPATHに追加する。viでvi<sup>~</sup>/.bashrcを実行して、末尾に以下の内容を追加する。 export PATH=/opt/FriendlyARM/toolchain/6.4-aarch64/bin:\$PATH export GCC\_COLORS=auto

~/. bashrcスクリプトを実行してカレントshellで有効にする。"."の後ろにスペースがある。 . ~/. bashrc

コンパイラは64ビットのため、32ビットのLinuxでは実行できない

インストールの完了後、インストールが成功したかを確認できる。

aarch64-linux-gcc -v

Using built-in specs.

COLLECT\_GCC=aarch64-linux-gcc

COLLECT\_LTO\_WRAPPER=/opt/FriendlyARM/toolchain/6.4-aarch64/libexec/gcc/aarch64-cortexa53-linux-

gnu/6.4.0/Ito-wrapper

Target: aarch64-cortexa53-linux-gnu

Configured with: /work/toolchain/build/aarch64-cortexa53-linux-gnu/build/src/gcc/configure --build=x86 64-build pc-linux-gnu

--host=x86\_64-build\_pc-linux-gnu --target=aarch64-cortexa53-linux-gnu

--prefix=/opt/FriendlyARM/toolchain/6.4-aarch64

--with-sysroot=/opt/FriendlyARM/toolchain/6.4-aarch64/aarch64-cortexa53-linux-gnu/sysroot --enable-languages=c.c++

--enable-fix-cortex-a53-8<mark>3576</mark>9 --enable-fix-cortex-a53-843419 --with-cpu=cortex-a53

. . .

Thread model: posix gcc version 6.4.0 (ctng-1.23.0-150g-FA)

6.2 FriendlyCore/Lubuntu/EFlasher のカーネルのソースのコンパイル

ソースコードをダウンロードする。

git\_cfone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1

cd linux

ブランチは[nanopi2-v4.4.y]であることに注意する。

Ubuntuカーネルをコンパイルする。

touch .scmversion

make ARCH=arm64 nanopi3\_linux\_defconfig



make ARCH=arm64

コンパイルに成功した後、arch/arm64/boot/Imageイメージファイルが生成する。 arch/arm64/boot/dts/nexell/フォルダに新しいDTBファイル(s5p6818-nanopi3-rev\*.dtb)も含まれる。SDカ ードのbootパーティションのファイルを切り替える。

#### 6.3 Android7 kernel のコンパイル

Android 7.1.2ソースコードにカーネル済みのを含まれているが、カスタマイズ必要な場合、下記方法でコンパイルできる。

git clone https://github.com/friendlyarm/linux.git -b nanopi2-v4.4.y --depth 1

**cd** linux

touch .scmversion

make ARCH=arm64 nanopi3\_nougat\_defconfig

make ARCH=arm64

コンパイル後arch/arm64/boot/Imageが生成される。arch/arm64/boot/dts/nexell/フォルダに新しいDTBフ ァイル(s5p6818-nanopi3-rev\*.dtb)も含まれる。カーネルをデバッグするだけの場合、adbで素早く更新で きる。

adb root; adb shell mkdir /storage/sdcard1/; adb shell mount -t ext4 /dev/block/mmcblkOp1 /storage/sdcard1/;

adb push arch/arm64/boot/Image arch/arm64/boot/dts/nexell/s5p6818-nanopi3-rev\*.dtb /storage/sdcard1/

カーネル開発/デバッグ完了後、書き込み用のboot.imgを生成したい場合、カーネルImage及びDTBファイル をAndroid7ソースコードフォルダdevice/friendlyelec/nanopi3/bootにコピーして、Android7をコンパイル する。

#### 6.4 Android7/FriendlyCore/Lubuntu/EFlasherのU-Boot ソースコードをコンパイル

U-Boot v2016.01 ソースコードをダウンロードしてコンパイルする。ブランチは nanopi2-v2016.01。 git clone https://github.com/friendlyarm/u-boot.git

**cd** u-boot

git checkout nanopi2-v2016.01

make s5p6818\_nanopi3\_config

make CROSS\_COMPILE=aarch64-linux-

コンパイル後、fip-nonsecure.img が生成される。 For Android7: fip-nonsecure.img を Android7 ソースコードフォルダ device/friendlyelec/nanopi3/boot にコピーし、Android7 をコンパイルする。

#### 6.5 Andriod7.1.2 システムのコンパイル

#### 6.5.1 コンパイル環境の構築

▶64ビットのUbuntu 16.04を推奨する。下記パッケージをインストール必要。 <mark>sudo apt-get install bison</mark> g++-multilib git gperf libxml2-utils make python-networkx zip sudo apt-get install flex curl libncurses5-dev libssl-dev zlib1g-dev gawk minicom sudo apt-get install openjdk-8-jdk



sudo apt-get install exfat-fuse exfat-utils device-tree-compiler liblz4-tool

詳細内容は下記 URL をご参照ください。 https://source.android.com/source/initializing.html

6.5.2 ソースコードをダウンロードする

Android のソースコードをダウンロードするには repo が必要、インストール方法及び使用方法は下記 URL をご参照ください。<u>http://download.friendlyarm.com/NanoPiFire3</u>

tar xvf /path/to/netdisk/sources/s5pxx18-android-7.git-YYYYMMDD.tar
cd s5pxx18-android-7
./sync.sh

Gitからコピーする。

**git clone** https://gitlab.com/friendlyelec/s5pxx18-android-7.git-b master Android7 のソースコードのサイズ(8.2GB)が大きいので、暫く待つ必要。

6.5.3 システムをコンパイルする

**cd** s5pxx18-android-7 **source** build/envsetup.sh lunch aosp\_nanopi3-userdebug **make** -j8

コンパイル終了後、out/target/product/nanopi3/のフォルダにイメージファイルが生成される。

| filename          | partition | Description                         |
|-------------------|-----------|-------------------------------------|
| bl1-mmcboot.bin   | raw       | boot firmware                       |
| fip-loader.img    | raw       | boot firmware                       |
| fip-secure.img    | raw       | boot firmware                       |
| fip-honsecure.img | raw       | uboot-v2016.01                      |
| env. conf         | _         | Uboot 環境変数、Android カーネルコマンドパラメータを含む |



| boot.img     | boot     | -              |    |
|--------------|----------|----------------|----|
| cache.img    | cache    | _              |    |
| userdata.img | userdata | -              | -  |
| system.img   | system   | -              | -) |
| partmap.txt  | -        | partition file |    |

#### 7 拡張モジュール

- 7.1 USB (FA-CAM202) 200 万画素カメラモジュール
- 1、Debain システムを起動する。
- 2、左下のメニューから"Other"->"xawtv"をクリックする。
- 3、"Welcome to xawtv!"ダイアログから"OK"をクリックすると画像摂取が出来る。



"Camera"をクリックする。

2、



7.3 OpenCV を使用して USB カメラにアクセスする OpenCV はオーブンソースのコンピュータ向けライブラリ であり、クロスプラットフォーム・ビジョンライ

ブラリである。

NanoPi-Fire3 が実行されると、Debian ユーザーはUSB カメラデバイスにアクセスするために OpenCV の API を使用することができる。

次に紹介しているのは NanoPi-Fire3 に C++で OpenCV を使用する方法についてのガイドラインである。
 ・先ず、NanoPi-Fire3 がシリアル端末または SSH 経由で internet. Login に接続されていることを確認する
 必要がある。ログイン後、ユーザーネーム (root) とパスワード (fa) を入力する。

・次のコマンドを実行する。

apt-get update apt-get install libcv-dev libopencv-dev

2. USB カメラが NanoPi-Fire3 で作動していることを確認する。NanoPi-Fire3 のカメラテストプログラムを 使用し、カメラのテストができます。

使用しているカメラのデバイスを確認する。

ls /dev/video\*

注意 : videoOがUSBカメラデバイス。

 OpenCVのコードサンプル(C++における公式コード)は/home/fa/Documents/opencv-demoの下にある。 次のコマンドでコードサンプルをコンパイルする。

cd /home/fa/Documents/opencv-demo



#### make

正常にコンパイルが完了した[demo] 実行ファイルが生成される。

5. NanoPi-Fire3 に USB キーボードを接続し、次のコマンドを実行する。

./demo

