

Cortex-A9 4 コア S5P4418 ボード NanoPC-T2 簡易マニュアル

株式会社日昇テクノロジー

http://www.csun.co.jp info@csun.co.jp 作成日 2016/3/17

copyright@2016

修正層爾

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2016/3/17

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。最新版は弊 社ホームページからご参照ください。「http://www.csun.co.jp」

※(株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に禁じられています。

ホームページ: <u>http://www.csun.co.jp</u> メール: info@csun.co.jp

	目次	
1	紹介	5
2	主な仕様	5
3	インターフェースの配置及びサイズ	6
	3.1 インターフェースの配置	6
	3.1.1 30Pin GPIO ピン定義	7
	3.1.2 20 ピン LVDS インターフェイス ピン定義	8
	3.1.3 DVP カメラ IF ピン定義	9
	3.1.4 RGB LCD IF ピン定義	9
	3.1.5 MIPI-CSI インタフェース ピン定義	13
	3.2 PCB サイズ	15
4	クイックスタート	16
	4.1 ハードウェアの準備	16
	4.2 実行システムを持つ microSD カードを作成する	16
	4.2.1 SD カードから NanoPC-T2 を高速でスタート	16
	4.2.2 eMMC から NanoTC-2 を起動する	16
	4.2.3 Linux Desktop 環境での作成	18
	4.2.4 LCD/HDMI の解像度	18
	4.3 パソコンで SD カード上のイメージファイルの更新	18
	4.4 Android または Debianを実行する	19
	4.5 VNC と SSH 経由で Debian に ロダイン	20
5	Debain システム	20
	5.1 イーサネットに接続する。	20
	5.2 無線ネットワークに接続する	20
	5.3 Wi-Fi 無線ホットスポットの配置	22
	5.4 Bluetooth を使ってファイルを転送する	22
	5.5 Debian のパッケージソフトをインストールする	23
6	システムのコンパイル方法	24
	6.1 クロスコンパイラをインストールする	24
	6.2 U-Boot のコンパイル	24
	6.3 mkimage を用意する	25

6.4 Linux kernel のコンパイル	6.4
6.4.1 カーネルのコンパイル25	
6.4.2 カーネルモジュールのコンパイル26	
6.5 Andriod システムのコンパイル26	6.5
6.5.1 コンパイル環境の構築	
6.5.2 ソースコードをダウンロードする26	
6.5.3 システムをコンパイルする27	
カメラモジュールを接続する	7 カ
7.1 NanoPC-T2 を USB(FA-CAM202)に接続する	7.1
7.2 NanoPC-2 を CMOS 5M ピクセルのカメラに接続する28	7.2
7.3 OpenCV を使用して USB カメラにアクセスする29	7.3
NanoPC-T2 の SD カードパーティションを拡張	8.Na
8.1.Debian 用	8.1
8.2.Android 用	8.2

1 紹介

NanoPC-T2はIoT設計者やビジネスユーザーのために設計・開発したクワッドコア・Cortex9のシングルボ ードである。 Samsungのクアッドコア・Cortex-A9・S5P4418 SoC、1.4GHzを備えている。既存の4418ベース のボードNanoPi2に比べて、NanoPC-T2は、8G eMMCが組み込まれており、オーディオジャック、ビデオ入力 /出力インターフェースが搭載されている。前のNanoPCT1と比較すると、NanoPCT2はWiFiとBluetooth、Gbps イーサネット・ポートを搭載している。また、NanoPC-T2は パワーマネージメント機能をそなえている

(NanoPC-T1 がサポートしない)。オーバーヒートの問題を避けるために、NanoPC-T2は取り付け穴付きヒートシンクを備えている。

・NanoPC-T2は豊富なビデオインターフェースとHDMI1080用のサポートは人気のあるディスプレイデバイスのみならず、抵抗式タッチと静電容量式タッチの様々なLCDを作動させる。

2 主な仕様

・SoC:動作周波数1.4GHzまでスケールアップするSamsung S5P4418クアッドコデのCortex-A9

・電力マネージメントユニット: AXP228 PMU ソフトウェアのパワーオフとウェイクアップをサポートす

る。

- ・システムメモリ:1GB32ビットDDR RAM
- ・SDIO WiFi/Bluetoothモジュール
- ・USB2.0 タイプA x1
- eMMC : 8GB
- ・ストレージ: 1 x SD カードソケット
- ・イーサネット: Gbps イーサネットポート (RTL8211E)
- •WiFi: 802.11b/g/n
- ・Bluetooth: 4.0 デュアルモード
- ・アンテナ:磁器アンテナ IPXインタープ
- ・ビデオ入力: DVP カメラ/MIPI-CSI (2つのカメラインターフェース)
- ・ビデオ出力:HDMIタイプA/LVDS/LCD/MIPI DSI(4つのビデオ出力インターフェイス)
- ・オーディオ: 3.5ミリオーディオジャック/HDMI経由
- ・マイク:オンボードマイクx1
- ・USB: USB2. 0ホスト×4、標準タイプAポート×2と2. 54ミリピッチのピンヘッダ×2
- ・LCDインターフェイス:0.5 mmピッチ45ピンFPCシート、フルカラー (RGB:8-8-8)
- ・マイクロUSB: 1×マイクロUSB2.0クライアント、タイプA
- ・HDMI: 1.4A、タイプA、1080P
- ・DVPカメラ: 0.5ミリピッチ、45ピン、FPC用シート
- ・GPI0: 2.54ミリピッチ、30ピンヘッダー
- ・シリアルデバッグポート: 2.54ミリピッチ、4ピンヘッダー
- ・LED: 電源LED×1、GPI0 LEDx2
- ・PCB:6層
- PCBサイズ: 100mm×60mm
- ・OS/ソフトウェア:Uブート、Android5.1、Debian 8

3.1.1 30Pin GPIO ピン定義

ピン	名前	ピン	名前
1	SYS_3. 3V	2	DGND
3	UART2_TX/GPIOD20	4	UART2_RX/GPIOD16
5	I2C0_SCL	6	I2C0_SDA
7	SPIO_MOSI/GPIOC3 1	8	SPI0_MISO/GPI0D0
9	SPI0_CLK/GPI0C29	10	SPI0_CS/GPI0C30
11	UART3_TX/GPIOD21	12	UART3_RX/GP10D17
13	UART4_TX/GPI0B29	14	UART4_RX/GPI0B28
15	GPIOB31	16	GPIOB30
17	GPIOC4	18	GPI0C7
19	GPIOC8	20	GPI0C24
21	GPIOC28	22	GPI0B26
23	GPIOD1/PWM0	24	GPIOD8/PPM
25	GPIOC13/PWM1	26	AliveGPI03

27	GPIOC14/PWM2	28	AliveGPI05
29	VDD_5V	30	DGND

3.1.2 20 ピン LVDS インターフェイス ピン定義

ピン	名前	ピン	名前	
1	SYS_3. 3V	2	SYS_3. 3V	
3	GPIOC16	4	GPIOB18	
5	DGND	6	DGND	
7	LVDS_DO-	8	LVDS_D0+	
9	LVDS_D1-	10	LVDS_D1+	
11	LVDS_D2-	12	LVDS_D2+	
13	DGND	14	DGND	
15	LVDS_CLK-	16	LVDS_CLK+	
17	LVDS_D3-	18	LVDS_D3+	
19	I2C2_SCL	20	I2C2_SDA	

3.1.3 DVP カメラ IF ピン定義

ピン	名前
1, 2	SYS_3. 3V
7, 9, 13, 15, 24	DGND
3	I2C0_SCL
4	I2CO_SDA
5	GPIOB14
6	GPIOB16
8,10	NC
11	VSYNC
12	HREF
14	PCLK
16-23	データ bit7-0

3.1.4 RGB LCD IF ピン定義

ピン番号	名前	説明
1, 2	VDD_5V	5V 出力 ― LCD モジュールに電源を供給するために使うこと が可能

11, 20, 29, 37, 38, 39, 40, 45	DGND	グランド
3-10	ブルーの LSB から MSB へ	RGB のブルー信号
12-19	グリーンの LSB から MSB へ	RGB のグリーン信号
21-28	赤の LSB から MSB へ	RGB の赤信号
30	GPIOB25	ユーザーがコントロール可能
31	GPIOC15	LCD モジュールと制御バックライトを認識し、抵抗式タッチを実 現するワンワイヤ技術はユーザーに適用できない。
32	XnRSTOUT Form CPU	システムがリセットされる時、出力のレベルは低い
33	VDEN	RGB 信号が有効な信号であることを示す
34	VSYNC	垂直同期
35	HSYNC	水平同期
36	LCDCLK	LCD クロック,ピクセル周波数
41	I2C2_SCL	静電容量式タッチのデータ伝送のための I2C2 クロック信号
42	I2C2_SDA	静電容量式タッチのデータ伝送のための I2C2 データ信号

43	GPIOC16	静電容量式タッチ用のピンを中断・I2C2 と使用される
44	NC	接続されていない

• 3.1.4 MIPI-DSI インタフェース ピン定義

ピン番号	名前	
1、2、3	VDD_5V	
4	DGND	
5	I2C2_SDA	
6	I2C2_SCL	
7	DGND	
8	GPIOC0	
9	DGND	
10	GPIOC1	
11	DGND	
12	GPIOA28	
13	nRESETOUT	

14、15	DGND	
16	MIPIDSI_DN3	
17	MIPIDSI_DP3	
18	DGND	
19	MIPIDSI_DN2	
20	MIPIDSI_DP2	
21	DGND	
22	MIPIDSI_DN1	
23	MIPIDSI_DP1	
24	DGND	
25	MIPIDSI_DNO	
26	MIPIDSI_DPO	
27	DGND	
28	MIPIDSI_DNCLK	
29	MIPIDSI_DPCLK	

30 DGND

3.1.5 MIPI-CSI インタフェース ピン定義

16	MIPIDSI_DN3	
17	MIPIDSI_DP3	
18	DGND	
19	MIPIDSI_DN2	
20	MIPIDSI_DP2	
21	DGND	
22	MIPIDSI_DN1	
23	MIPIDSI_DP1	
24	DGND	
25	MIPIDSI_DNO	
26	MIPIDSI_DPO	
27	DGND	
28	MIPIDSI_DNCLK	
29	MIPIDSI_DPCLK	
30	DGND	

- 1. VDD_SYS_3.3V:3.3V電源の出力
- 2. VDD_5V: 5 V電源入力/出力。電圧がMicroUSBより高い場合、ボードに給電、そうでない場合、ボードは MicroUSBから電源を取る。入力範囲: 4.7~5.6V。
- 3. 更に詳しい情報については回路図をチェックしてください。

3.2 PCB サイズ

4 クイックスタート

4.1 ハードウェアの準備

- ・NanoPC-T2ボード
- ・SDカード/ TFカード: Class10以上の8GBのSDHCカードが必要
- ・DCインタフェースの外部電源、5V/2A
- ・HDMI入力サポートするディスプレイまたはモニタ(またはLCD)
- ・USBキーボード、USBマウス、同時に使う場合はUSB HUB (またはシリアルボードへのTTL)
- ・Ubuntu 14.04 64ビットシステムを推奨する。

4.2 実行システムを持つ microSD カードを作成する

4.2.1 SD カードから NanoPC-T2 を高速でスタート

次のファイルをダウンロードしてください。

LCD または HDMI 出力の場合は、次のファイルを使用してください:				
nanopi2-debian-sd4g.img.zip	Debian のイメージファイル			
nanopi2-android-sd4g.img.zip	Android のイメージファイル			
フラッシュユーティリティ:				
win32diskimager.zip	Windows ユーティリティ。Linux でユーザーは"dd"を使用できる。			

・これらのファイルを解凍する。SDカードをWindowsのPCに挿入し、win32diskimager.exeを右クリックして「管理者として実行」をクリックして起動する。ユーティリティのメインウィンドウでSDカードのドライブとイメージファイルを選択し、【Write】をクリックする。

・このカードをNanoPC-T2のブートソケットに挿入し、ブートキーを押して保持し、電源をオンにする(5V/2Aの電源)。PWR LEDがオンでLED1が点滅している場合、NanoPC-T2が正常に起動していることをし示します。

4.2.2 eMMCから NanoTC-2 を起動する

・RAW Image をダウンロードする

イメージファイル【nanopi2-eflasher-sd4g.img.zip】とウィンドウズユーティリティ【win32diskimager.zip】 を取得する。

・RAWImageをSDカードにフラッシュする

WindowsPCにSDカード(4G以上)を挿入し、 win32diskimager.exeを右クリックして「管理者として実行」 をクリックして起動する。ユーティリティのメイン画面で、あなたのSDカードのドライブとイメージファイ ルを選択し、 [Write]をクリックする。

AndroidとDebianのイメージファイル (System-image-files-for-eMMC) をダウンロードする。ダウンロード

した後、 ".tgz" 圧縮フォルダを解凍し、それをSDカードにコピーする。

0S	Image	Files	コピー先
Android 5.1	android-lollipop-images.tgz android-lollipop-images.tgz.hash.md5	boot.img system.img userdata.img cache.img partmap.txt	images¥android
Debian (Jessie)	debian-jessie-images.tgz debian-jessie-images.tgz.hash.md5	boot.img rootfs.img partmap.txt	images¥debian

・OSを指定する

デフォルトではSDカードの設定フィル[images¥FriendlyARM.ini]はAndroidがEMMCにフラッシュされるよう に指定する。Debian をインストールしたい場合は次のように変更する。

OS = Debian

#はコメント

・NanoPC-T2のEMMCにImageをフラッシュする

このカードをあなたのNanoPC-T2のeMMCに挿入する。ボードをHDMIまたはLCDに接続し、ブートキーを押した ままにし、インストールを始めるためにボードの電源をオンにする(5V/2A電源)。HDMIまたはLCDからイン トールの全過程をみることができる。次のメッセージがポップアップされた場合、インストールは成功した ことになる。

Android is fused successfully.

All done.

インストールが完了したら、eMMC

からのボードを起動するために、[リセット]あるいはボードの電源をオフにする。

インストールの過程をモニターするためにLEDのステータスもチェックできる。

ED ステータス	インストールステータス
LED1 が連続で2回点 滅 LED2 はオフ	電源がオンの正常な状態 インストールが実行されず、LED1 がこのような状態を保持する場合は、LED は OFF となる。」will keep behaving this way and LED2 will be off

LED1 と LED2 は三秒ご とに交互に点滅	インストール実行中
LED1 と LED2 が 1.2 秒 ごとに交互に点滅	インストール成功
LED1 と LED2 が同時に 点滅	インストール失敗

4.2.3 Linux Desktop 環境での作成

1)microSDをUbuntuのパソコンに挿入 以下のコマンドでSDカードのデバイス名をチェックする

dmesg | tail

dmesgが「sdc:sdc1 sdc2」と類似した情報を出力する時、SDカード対応デバイス名は/dev/sdcになる。コ マンドcat /proc/partitionsでも確認できる。

2)Linuxのスクリプトをダウンロードする

git clone https://github.com/friendlyarm/sd-fuse_nanopi2.git

czd sd-fuse_nanopi2

3)AndroidのSDカードを作成する

su

./fusing.sh /dev/sdx

(注:/dev/sdxを実際のSDカードのデバイスファイル名に変えてください)

初めて使う際、ダウンロードするか確認が必要。Yを押してダウンロードし、N或いは10秒間入力無い場合 は取り消しする。

4)DebianのSDカードを作成する

./fusing.sh /dev/sdx/debian

4.2.4 LCD/HDMI の解像度

システムが起動すると、ubootがLCDに接続されているかをチェエクする。ubootがLCDを認識した場合には、 その解像度を設定する。デフォルトでは、ubootはHDMI720Pへのディスプレイを設定する。LCDの解像度をリ セットしたい場合は、カーネル内の[arch/arm/plat-s5p4418/nanopi2/lcds.c] ファイルを修正し、再コン パイルできる。NanoPC-T2がHDMIモニターに接続され、Androidを起動した場合、「EDID」をチェックするこ とで自動的に適切なHDMIモードに解像度を設定する。NanoPC-T2がHDMIモニターに接続され、Debianを起動 した場合、デフォルトでHDMI720Pへの解像度をセットする。この場合、カーネルの設定を変更することで 1080Pまでセットできる。

4.3 パソコンで SD カード上のイメージファイルの更新

システムを実行する前に、少し変更したい場合は、本節の内容をご参照ください。

作成したmicroSDカードをLinuxのパソコンに挿入して、SDカードのboot、rootfsをマウントして内容を変 更できる。下記の場合変更が必要:

1) カーネルのコマンドラインのパラメータを更新したい場合は、[sd-fuse_nanopi2/tools」の下にある、

「fw_setenv」ツールを使用することができる。例えば、LCDがHD700であれば下記の方法で変更することができる。

現在のコマンドラインを確認する。

cd sd-fuse_nanopi2/tools
./fw_printenv /dev/sdc | grep bootargs

現在の Android 5.1.1_r6 により SELinux が有効になる。デフォルトモードは enforcing となり、Command Line を通して変更することが可能。

./fw_setenv /dev/sdc bootargs XXX androidboot.selinux=permissive

直ぐに、permissive モードに変更でき、[XXX]は元の bootargs に置き換える必要がある。 2)カーネルの更新

新バージョンのUbootが起動時にLCDを認識した場合、SDカードのブートパーティションのuImage.hdmiを読み取る。

Androidにおいては、同じファイルであるため、直接新しいコンパイラのuImageで、SDカードのブートパー ティションのファイルに交換する。

Debianにおいては、2つのファイルが異なるため、新しいコンパイラをサポートするLCD uImageで、直接 SDカードのブートパーティションのファイルに交換する。HDMIのカーネルをサポートする場合は、 uImage.hdmiに交換する。

4.4 Android または Debian を実行する

microSDカードをNanoPC-T2に挿入し、HDMIモニターと接続して、電源(5V/2A)に接続すると、NanoPC-T2はSDカードから起動する。PWRLEDとLED1が点滅でシステムが起動していることが確認でき、またHDMIモニターにはAndroidとDebainが確認できる。

1) NanoPC-T2をHDMIモニターに接続したい場合、USBマウス、キーボードが必要である。もしLCDと接続していれば、タッチパネルで操作可能。

2)カーネルを開発する場合、シリアルデバッグポートに接続すれば、端末からNanoPC-T2を操作できる。 シリアルケーブル経由でUbuntuとMinicomoの実行しているPCにNanoPC-T2を接続する場合は次のようになり ます。

Debianでの[root]のパスワードは[fa]である。

4.5 VNC と SSH 経由で Debian にログイン

NanoPC-T2をLCD・HDMIに接続せずに、[-wifiap.img]のイメージファイルを実行した場合、WIFI 経由で 携帯等の他のデバイスから NanoPC-T2の [nanopi2-wifiap]の NanoPi2 にログインできる。ホットスポット wifiap のデフォルトパスワードは[123456789]。正常に NanoPC-T2 に接続した後、以下の<u>URL</u>から[VNCViewer] をダウンロード&インストールできる。VNC 経由で NanoPi2 にログインするには、IP アドレスとポートを 192.168.8.1:5901 に設定する必要がある。ディフォルトのパスワードは[fa123456]。

ユーザーログイン後のスクリーンショット

[SSH-1 root 192. 168.8.1] 経由でもログイン可能。[root]のデフォルトパスワードは[fa]である。SSH をスムーズにするには、WIFIの省電力モードをオフする。

iwconfig wlan0 power off

5 Debain システム

5.1 イーサネットに接続する。

NanoPC-T2 が電源を入れる前にイーサネット経由でネット接続された場合、電源をいれた後、PC-T2 は自動的に IP を取得する。

5.2 無線ネットワークに接続する

次のセクションはHDMIまたはLCDに接続されたNanoPC-T2にのみ適用する。

Debianがロードされた後、GUIの右上にあるネットワークアイコンをクリックすると、自動的に近くの WiFiホットスポットが検索される。リストからスポットを選択し、[Properties]をクリックする。

パスワードを入力、保存し、[Connect]をクリックする。

次の内容は[-wifiap.img]ファイルで実行されるNanoPC-T2のみに適用される。デフォルトではWiFiのAP(ア クセスポイント)モードはオンになっているため、無線ルーターに接続できない。以下の手順でWiFiのAPモ ードをオフにする。

接続する対象となる WiFi ルーターを設定する (SSH 経由で NanoPC-2 にログイン)。次のコマンドを実行し、 WiFi デバイスを確認する。[wlan] で始まるものが WiFi デバイスである。

ifconfig -a

デフォルトで[wlan0]は、WiFiデバイスである。[/etc/network/interfaces.d/]内に同じ名前のコンフィ ギュレーションファイル(例:[wlan0]ファイル等]を作成する必要がある。

上記の中で、[YourWiFiESSID]と[YourWiFiPassword]を実際のESSIDとパスワードに置き換える必要がある。 最後に、下記コマンドでホットスポットモードをオフにする。rootユーザーとして実行する必要。コマンド 実行後ボードを再起動する。再起動したら、上記設定の通り自動的にWiFiに接続する。

su

turn-wifi-into-apmode no

5.3 Wi-Fi 無線ホットスポットの配置

WiFiホットスポットの配置を以下の手順で行う。

turn-wifi-into-apmode <mark>yes</mark>

システムを再起動する。デフォルトのホットスポット名は[nanopi2-wifiap]で、パスワードは123456789。 PCホストから[nanopi2-wifiap]に接続可能になる。接続が成功すれば、SSHをを介して192.168.8.1でNanoPi2 に登録できる。

ssh root@192.168.8.1

パスワードは[fa]である。次のコマンドで無線LANモードを確認できる。

sshののログインをスムーズ、且つ速くするために次のコマンドを起動し、WiFi無線のパワーセービング モードをオフにする。

iwconfig wlan0 power off

次のコマンドでWiFiモードをチェックできる cat /sys/module/bcmdhd/parameters/op_mode

出力する数字が2であれば、現在無線ホットスポットモードとして機能していることを示す。 ステーションモードに切り替えたい場合、以下のコマンドを入力する。:

turn-wifi-into-apmode no

5.4 Bluetoothを使ってファイルを転送する

GUIの右上にあるBuluetoothのアイコンをクリックすると、メニューが表示される。[Make Discoverable]に よってNanoPC-T2 が他のBuluetoothデバイスから検出可能になる。Devices...は検索画面を開き、近くの Bluetoothデバイスを検索する([Make Discoverable]は先に有効にする必要がある)。[Send Files to Divices] でNanoPi2が別のBuluetoothデバイス(NanoPC-T2とペア)にファイルを送ることができる。

5.5 Debian のパッケージソフトをインストールする

提供しているのは標準的なDebian jessieシステムである。apt-getなどのコマンドでパッケージソフトを インストールすることができる。初めてインストールする場合、まず以下のコマンドでパッケージソフトリ ストを更新する必要がある。

apt-get update

その後、パッケージソフトをインストールすることができる。例えばFTPサーバーをインストールするには 以下のコマンドを使用する。

apt-get install vsftpd

/etc/apt/sources.listを編集することで、ダウンロードサーバーを変更することができる。

<u>http://www.debian.org/mirror/lisから</u>全てのサーバーリストが取得可能。 [armhf]が付くリストを選択す ることが必要。

6 システムのコンパイル方法
6.1 クロスコンパイラをインストールする
先ず、コンパイラをダウンロードして解凍する。
git clone https://github.com/friendlyarm/prebuilts.git
sudo mkdir -p /opt/FriendlyARM/toolchain
sudo tar xf prebuilts/gcc-x64/arm-cortexa9-linux-gnueabihf-4.9.3.tar.xz -C
/opt/FriendlyARM/toolchain
コンパイラのパスをPATHに追加する。viでvi~/.bashrcを実行して、末尾に以下の内容を追加する。
export PATH=/opt/FriendlyARM/toolchain/4.9.3/bin:\$PATH
export GCC_COLORS=auto
~/.bashrcスクリプトを実行してカレントshellで有効にする。″.″の後ろにスペースがある。
. ~/. bashrc
コンパイラは64ビットのため、32ビットのLinuxでは実行できない。
インストールの完了後、インストールが成功したかを確認できる。
arm-linux-gcc -v
Using built-in specs.
COLLECT_GCC=arm-linux-gcc
COLLECT_LTO_WRAPPER=/opt/FriendlyARM/toolchain/4.9.3/l <mark>i</mark> bexec/gcc/arm-cortexa9-linux-gnueabihf/4
.9.3/lto-wrapper
Target: arm-cortexa9-linux-gnueabihf
Configured with: /work/toolchain/build/ <mark>s</mark> rc/gc <mark>c</mark> -4.9.3/configurebuild=x86_64-build_pc-linux-gnu
host=x86_64-build_pc-linux-gnutarget=arm-cortexa9-linux-gnueabihf
prefix=/opt/FriendlyARM/toolchain/4.9.3
with-sysroot=/opt/FriendlyARM/toolchain/4.9.3/arm-cortexa9-linux-gnueabihf/sys-root
enable-languages=c, c++
with-arch=armv7-awith-tune=cortex-a9with-fpu=vfpv3with-float=hard
Thread model: posix
gcc version 4.9.3 (ctng-1.21.0-229g-FA)
6.2 U-Boot の エンパイル
U-Bootソース → ドをダウンロードし、コンパイルする。ブランチは[nanopi2-lollipop-mr1]であること
に注意する。
git clone https://github.com/friendlyarm/uboot_nanopi2.git

git clone https://github.com/friendlyarm/uboot_nanopi2.g
cd uboot_nanopi2
git checkout nanopi2-lollipop-mr1
make s5p4418_nanopi2_config
make CROSS_COMPILE=arm-linux-

コンパイルに成功した後、u-boot.binを取得する。Fastbootで、NanoPi2のSDカードのUbootを更新する。 手順は下記の通り:

1) PCでコマンド [sudo apt-get install android-tools-fastboot]でfastbootツールをインストールする。

2)シリアルデバッグセットでNanoPC-T2とPCを接続する。起動後2秒以内、シリアル端末でEnterを押して、u-bootのコマンドラインモードに入る。

3) u-bootのコマンドラインモードでfastbootコマンドを入力し、Enterを押してfastbootモードに入る。

4) microUSBケーブルでNanoPC-T2とPCを接続する。PC側で下記コマンドを入力してu-boot.binを書き込む。

fastboot flash bootloader u-boot.bin

注意点:直接ddコマンドでSDカードを更新してはいけない。正常に起動できなくなる可能性がある。

6.3 mkimage を用意する

カーネルをコンパイルするには u-boot の mkimage ツールが必要。因って、カーネル uImage をコンパイル する前に、PC 側で実行できることの確認が必要。

直接 sudo apt-get install u-boot-tools コマンドでインストールできる。或いは自分でコンパイルして

インストールする。

cd uboot_nanopi2

make CROSS_COMPILE=arm-linux- tools

sudo mkdir -p /usr/local/sbin && sudo cp -v tools/mkimage /usr/local/sbin

6.4 Linux kernel のコンパイル

6.4.1 カーネルのコンパイル

1) カーネルのソースコードをダウンロードする

NanoPC-T2のカーネルのソースコードは[nanopi2-lollipop-mr1]ブランチにある。

git clone https://github.com/friendlyarm/linux-3.4.y.git

cd linux-3.4.y

git checkout nanopi2-lollipop-mr1

- 2) Androidカーネルをコンパイルする。 make nanopi2_android_defconfig touch .scmversion make uImage
- 3) Debianカーネルをコンパイルする。 make nanopi2_linux_defconfig touch .scmversion make uImage

コンパイル成功後、新しく生成したファイルはarch/arm/boot/uImage、HDMI出力をサポートする。SDカードのbootセクションにある同じファイル名のファイルと置き換えれば良い。

LCD表示をサポートするイメージファイルを作成するには設定を変更する必要。

touch .scmversion

make nanopi2_linux_defconfig

make menuco	onfig
Device Dr	ivers>
Graphic	s support>
Nexel	1 Graphics>
[*]	LCD
[]	HDMI
make uImage	

6.4.2 カーネルモジュールのコンパイル

Androidはカーネルモジュールを含んでいる。場所はsystemセクションの/lib/modules/である。新しいカ ーネルモジュール或いはカーネルモジュールの設定が変更した場合、再コンパイルが必要である。 先ず、カーネルソースのモジュールをコンパイルする。

cd linux-3.4.y

make CROSS_COMPILE=arm-linux- modules

またAndroidのソースに2つのカーネルモジュールのソースがある。下記コマンドでコンパイルする:

cd /opt/FriendlyARM/s5p4418/android

./vendor/friendly-arm/build/common/build-modules.sh

"/opt/FriendlyARM/s5p4418/android"はAndroidのソースのTOPフォルダである、[-h]パラメータでヘル プ内容を確認できる。

コンパイル成功した後、生成したカーネルモジュールが表示される。

6.5 Andriod システムのコンパイル

6.5.1 コンパイル環境の構築

64ビットのUbuntu 14.04を推奨する。必要なパッケージをインストールすれば良い。

sudo apt-get install zlib1g-dev:i386

sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zip sudo apt-get install flex libncurses5-dev zlib1g-dev gawk minicom

詳細内容は下記 URL をご参照ください。

https://source.android.com/source/initializing.html

6.5.2 ソースコードをダウンロードする

Android のソースコードをダウンロードするには repo が必要、インストール方法及び使用方法は下記 URL をご参照ください。<u>https://source.android.com/source/downloading.html</u>

mkdir android && cd android

repo init -u https://github.com/friendlyarm/android_manifest.git -b nanopi2-lollipop-mr1 repo sync

上記の "android" はワークフォルダーのことである。

6.5.3 システムをコンパイルする

source build/envsetup.sh lunch aosp_nanopi2-userdebug make -j8

コンパイル終了後、out/target/product/nanopi2/のフォルダにイメージファイルが生成される。

7 カメラモジュールを接続する

7.1 NanoPC-T2をUSB(FA-CAM202)に接続する

このケースでは、NanoPC-T2 は Debian を実行する。Debian が完全にロードされた後、NanoPC-T2 を当社の LCD または HDMI モニターに接続する場合は、GUI の左下のメニューボタン上の[other(その他)] \rightarrow [xawtv9] をクリックする。USB カメラのアプリケーションが起動し始める。[welcome to rawtv!]を入力後、写真を撮 るために[OK]をクリックする。

NanoPi 2接LCD屏使用USB Camera拍照

7.2 NanoPC-2をCMOS 5Mピクセルのカメラに接続する

この場合は NanoPC-T2 は Android5.1 を実行する。あなたの NanoPC-T2 に LCD または HDMI モニターを接続し、[Camera (カメラ)]のアイコンをクリックすると、アプリケーションがスタートする。

7.3 OpenCV を使用して USB カメラにアクセスする OpenCV はオープンソースのコンピュータ向けライブラリ であり、クロスプラットフォーム・ビジョンライ ブラリである。 NanoPC-T2 が実行されると、Debian ユーザーは USB カメラデバイスにアクセスするために OpenCV の API を 使用することができる。

1. 次に紹介しているのは NanoPC-T2 に C++で OpenCV を使用する方法についてのガイドラインである。

・先ず、NanoPC-T2 がシリアル端末または SSH 経由で internet. Login に接続されていることを確認する必要がある。ログイン後、ユーザーネーム (root) とパスワード (fa) を入力する。

・次のコマンドを実行する。

apt-get update apt-get install libcv-dev libopencv-dev

- 2. USB カメラが NanoPC-T2 で作動していることを確認する。NanoPC-T2 のカメラユーティリティを使用し、 カメラのテストができます。
- 3. 使用しているカメラのデバイスを確認する。

ls /dev/video*

注意:弊社のテストケースにおいて、video9に利用可能でvideo0からvideo8は専有された

4. OpenCV のコードサンプル (C++における公式コード) は/home/fa/Documents/opencv-demo の下にある。 次のコマンドでコードサンプルをコンパイルする。

cd /home/fa/Documents/opencv-demo

make

正常にコンパイルが完了した[demo] 実行ファイルが生成される。

- 5. 注意: NanoPC-T2 には9つのビデオデバイスがある。しかし、この Open CV のコードサンプルは最大8 台までしかアクセスできないため、一台のビデオを取り除く必要がある。次のように video0 を削除した。 rm /dev/video0
- mv /dev/video9 /dev/video0
- 6. NanoPC-T2をUSBキーボードに接続し、次のコマンドを実行する。

