

USB PIC18F14K50

開発ボード

マニュアル

株式会社日昇テクノロジー

http://www.csun.co.jp

info@csun.co.jp

2010/06/19

copyright@2010

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2010/06/19

• 修正履歴

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることが あります。最新版は弊社ホームページからご参照ください。

[<u>http://www.csun.co.jp</u>]

※(株)日昇テクノロジーの書面による許可のない複製は、いかなる形態におい ても厳重に禁じられています。

目次

第一章 概要	. 4
1.1 主な特徴	. 4
第二章 回路の説明	. 5
2.1 Power Supply	. 5
2.2 USB Device	. 5
2.3 RS232	. 5
2.4 LED	. 6
2.5 BUTTON	. 6
2.6 AD ボリューム調整	. 6
2.7 拡張 I0	. 7
第三章 開発環境	. 8
3.1 MPLAB IDE のインストール	. 8
3.2 MPLAB C コンパイラーのインストール	. 8
第四章 書込器で書き込む	. 9
第五章 内蔵 USB ブートローダで書き込む	10
5.1 書込器で書き込む時とブートローダで書き込む時の区別	10
5.2 ブートローダの書き込み	10
5.3 USB ブートローダで書き込む	10
第六章 サンプルソースの説明	13
6.1 CODE¥Microchip Solutions Boot¥USB Device - HID - Mouse	13
6.2 CODE¥Microchip Solutions Boot¥USB Device - HID - Keyboar	13
6.3 CODE¥Microchip Solutions Boot¥USB Device - HID - Joystick	14
6.4 CODE¥Microchip Solutions Boot¥USB Device - HID - Custom Demos	15
6.5 CODE¥Microchip Solutions Boot¥USB Device - CDC - Basic Demo	16

第一章 概要

Microchip 社 nanoWatt XLP シリーズの超省電力マイコン PIC18F14K50、最高周波数 48MHz。 USB 端子付で PIC 内蔵の USB インターフェースを活用できる。

1.1 主な特徴

- □ 超省電力マイコンPIC18F14K50、最高周波数48MHz
- 🗆 16kB Flash, 768B SRAM, 256B EEPROM
- □ 動作電圧:1.8v~5.5v
- □ USB 2.0 デバイス、低速(1.5 Mb/s)と全速(12 Mb/s)モードをサポート
- □ JTAGインタフェース、5pinタイプ
- □ フル機能のRS232
- □ AD可変ポテンショメータ
- □ ユーザーLED x 2
- □ ユーザーボタンx2
- □ USBポートで給電
- □ CPU のすべての IO を 2.54mm 拡張ピンヘッダで引き出されている
- □ 外形寸法: 68×32(mm) ※突起物は除く

※出荷時USB Bootloader書き込み済みなので、ツールなして書き込みできる。

第二章 回路の説明

2.1 Power Supply 動作電圧:1.8v[~]5.5v。 USBポートで給電。

2.2 USB Device

□ D+、D-は普通の IO としても利用できる。

2.3 RS232

クロスケーブルで他のデバイスと接続する。

2.4 LED

2.6 AD ボリューム調整

R6は10Kの精密抵抗。

2.7 拡張 IO

本ボードはCPUの全てのIOを引き出して、デバッグに利用できる。間隔は2.54mm

第三章 開発環境

3.1 MPLAB IDE のインストール

弊社 HP から TOOL¥MPLAB_8.30.zip から Install_MPLAB_8_30.exe を取得するか、或いは次の URL から最新版をダウンロードできます。

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDoc Name=en019469&part=SW007002#P143_5526

3.2 MPLAB C コンパイラーのインストール

弊社 HP から下記ファイルを取得してインストールする。 TOOL¥C18_Ful1_Version.zipにある MPLAB-C18-v2_40-win32.exe TOOL¥MPLAB-C18-Upgrade-v3_31.exe

第四章 書込器で書き込む

ICD2或いはPICkit2の書込器が使える。

1、任意の"Low Pin Count USB Development Kit"が付いているプロジェクトファイルを

開いて Build All Build Allでビルドする。

2、書込器をボードのJTAGインタフェースと繋ぐ。 この場合は書込器でボードに給電するので、USBは接続しないでください。 同時にUSBを接続している場合、下記の様なエラーになる:

Initializing PICkit 2 version 0.0.3.63+

Found PICkit 2 - Operating System Version 2.32.0+

PK2Error0023: Target Vdd measured at 4.73V which is outside the programmable range of this device (<u>1.88V</u> - <u>3.60V</u>)+

<u>PICkit</u> 2 Ready⊬

3、書込器を選択する。

Output

BuildVersion ControlFind in FilesPICkit 2Initializing PICkit 2 version 0.0.3.63Found PICkit 2 - Operating System Version 2.32.0Target power not detected - Powering from PICkit 2 (3.30V)PIC18F14K50 found (Rev 0x5)PICkit 2 Ready

4、"Program"をクリックしてアプリプログラムをボードに書き込む。

Programmer	<u>T</u> ools	<u>C</u> onfi	gure	<u>W</u> in
Select <u>P</u> r	ogramme	er 🕨	ase	- C
Program				_
Rea <u>d</u>				
<u>V</u> erify				
<u>E</u> rase				

第五章 内蔵 USB ブートローダで書き込む

5.1 書込器で書き込む時とブートローダで書き込む時の区別 両方の区別としては、マッピングアドレスの違いである。
書込器で書き込む時のマッピングアドレス:
#define REMAPPED_RESET_VECTOR_ADDRESS 0x00
#define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x08
#define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x18
ブートローダで書き込む時のマッピングアドレス:
#define REMAPPED_RESET_VECTOR_ADDRESS 0x1000
#define REMAPPED_HIGH_INTERRUPT_VECTOR_ADDRESS 0x1008
#define REMAPPED_LOW_INTERRUPT_VECTOR_ADDRESS 0x1018
ブートローダの方が0x1000をシフトされる。0x00-0xFFFはUSB HID Bootloaderのプログラムエリア。
上記機能を実現するにはusb_config.hに下記定義を追加する必要:

#define PROGRAMMABLE_WITH_USB_LEGACY_CUSTOM_CLASS_BOOTLOADER

5.2 ブートローダの書き込み

出荷時既にブートローダは書き込み済みなので、普段は5.2を参照してプログラムを書き込みできます。

再度ブートローダを書き込み必要な場合は下記手順で書き込む:

Bootloaderは¥CODE¥Microchip Solutions¥USB Device - Bootloaders¥HID - Bootloaderフ オルダに置いている。

HID Bootloader - Firmware for PIC18 Non-J DevicesフォルダにあるHID Bootloader PIC18 Non J.mcpファイルを開いて、次は第四章の手順で書き込む。

5.3 USB ブートローダで書き込む

HID - BootloaderフォルダにあるHIDBootLoader.exeを実行する。

🖳 Microchip USB HID	Bootloader v2.3			
Open Hex File	Erase Device	Read Device	Export Hex	
Program/Verify	Verify	Reset Device		
		Allow Configuratio	n Word Programming	
Device not detec	ted. Verify devi	ce is in bootload	er mode.	

KEY1ボタンを押しながら、USBケーブルでボードとPCを繋ぐ。PC側で自動的にドライバを

インストールする。上記アプリから新しいデバイスが接続されたと提示する。

	Microchip USB HID Bootloader v2.3	
K	Open Hex File Erase Device Read Device Export Hex	
	Program/Verify Verify Reset Device	
	📃 Allow Configuration Word Programming	
	Device attached.	

"Open Hex File"をクリックして書き込む用Hexファイルを選択する。

				×
🕞 🔵 🗢 📗 « USB Device -	HID - Mouse 🕨 HID - Mouse - Firmware 🕨	▼ 47	HID - Mouse - Fil	rmwareの 🔎
整理 ▼ 新しいフォルダー			: :== •	- 1 0
•	名前	更新日時	種類	サイズ
🜏 ホームグループ	🐌 Objects	2009/11/03 21:13	ファイル フォル	
	USB Device - HID - Mouse - 18 - L	2009/11/03 21:13	HEX ファイル	13 KB
1 コンピューター				
🏭 HP (C:)				
👝 FACTORY_IMAGE (E				
🗑 DVD RW ドライブ (E				
👝 OS (F:)				
👝 APP (G:)				
👝 リムーバブル ディス? 🗸	•	III		•
ファイル名	(N): USB Device - HID - Mouse - C18 - Low	Pin Count USB E 👻	Hex files (*.hex)	-
			開<(<u>0</u>)	キャンセル

"Program/Verify"をクリックして選択したファイルをボードに書き込む。

MICROCHIP USB HID	Bootloader v2.3			
Open Hex File	Erase Device	Read Device	Export Hex	
Program/ Verity	Verny) on Word Programming	
			on word Frogramming	
Device attached.				
Hicrochip USB HID	Bootloader v2.3			
Open Hex File	Erase Device	Read Device	Export Hex	
Program/Verify	Verify	Reset Device		
Program/Verify	Verity	Reset Device) on Word Programming	

USBを切断してもう一度繋ぐと、書き込んだアプリが実行する。

第六章 サンプルソースの説明

CODE +	
	更新[
Microchip Solutions	2009,
🔽 ॊ Microchip Solutions Boot	2009

CODE の下に二つのフォルダがある:

Microchip Solutions:書込器で書き込み用

Microchip Solutions Boot:ブートローダで書き込み用

6.1 CODE¥Microchip Solutions Boot¥USB Device - HID - Mouse

ボードをマウスとして認識する。

◆ USB ケーブルでボードと PC を繋ぐ。標準の HID デバイスなので自動的にドライバをインストールする。

◆ インストール完了後、マウスのポインターがサークルの操作をする。KEY1 キーで停止・
 実行制御できる。また LED1 と LED2 が交互に点滅する。

6.2 CODE¥Microchip Solutions Boot¥USB Device - HID - Keyboard

ボードをキーボードとして認識する。

◆ USB ケーブルでボードと PC を繋ぐ。標準の HID デバイスなので自動的にドライバをインストールする。

◆ 新規に.txt ファイルを作成して、KEY1 キーを押す度に一つのキャラクターが増える。

IID-keyboard_test.txt - メモ帳		Γ
ファイル(E) 編集(E) 書式(<u>O</u>) 表示(⊻) ヘルプ(H)		
abcdefghijklmnopqr¦stuvwxyz1234567890abcdefghijkl	*	
		ľ
		l
	-	
•		

6.3 CODE¥Microchip Solutions Boot¥USB Device - HID - Joystick

ボードをジョイスティックとして認識する。

◆ USB ケーブルでボードと PC を繋ぐ。標準の HID デバイスなので自動的にドライバをインストールする。

◆ USB Device - HID - Joystickフォルダにある joytester.exeを実行する。

◆ KEY1 キーを押して、下記の様に変化する。

6.4 CODE¥Microchip Solutions Boot¥USB Device - HID - Custom Demos

- ◆ USB ケーブルでボードと PC を繋ぐ。自動的にドライバをインストールする。
- ◆ USB Device HID Custom Demosフォルダにある GenericHIDSimpleDemo.exeを実行 する。

📑 Form1		
Connect	Toggle LED(s)	
	Get Pushbutton	State: Unknown
♦ "Connect"	をクリックしてボー	- ドを接続する。
📑 Form1		<u>_ ×</u>

Connect	Toggle LED(s)	
	Get Pushbutton State: Unknown	

◆ KEY1キーを押しながら、"Get Pushbuton"をクリックすると、キー押下されたと検出 する。

🔡 Form1			
Connect	Toggle LED(s)	State:	Fressed

- ◆ "Toggle LED(s)"をクリックすると、ボード上のLEDの点滅を制御する。
- ◆ GenericHIDSimpleDemo.exeを閉じて、同じフォルダにあるHID PnP Demo.exeを実行す

る。

🔡 HID PnP Demo	- D ×
Device Found: AttachedState = TRUE	Status
ToggleLED(s) Pushbutton State: Not Pressed	
ANx/POT Voltage	

◆ ADボリューム調整する事で、"ANx/POT Voltage" プログレスバーが変化する。

🔡 HID PnP Demo	- O ×
Device Found: AttachedState = TRUE	Status
ToggleLED(s) Pushbutton State: Not Pressed	
ANx/POT Voltage	

◆ "Generic HID - Simple Demo - PC Software"及び"Generic HID - PnP Demo - PC Software"のフォルダに上記アプリのソースコードがある。

6.5 CODE¥Microchip Solutions Boot¥USB Device - CDC - Basic Demo

USB 仮想シリアルポートプログラム。本テストプログラムをボードに書き込んで、他の USBCDC ドライバ持っているデバイス (PC、ARM9/2440 ボードなど)と接続すると、新しい ハードウェアを発見してドライバをインストールする。

インストール終了後、シリアル通信ポートが一個追加される。

▲ 🦃 ポート (COM と LPT)

Communications Port (COM5)

ドライバの保存フォルダ:

¥CODE¥Microchip Solutions¥USB Device - CDC - Basic Demo¥inf USB 仮想シリアルポートは普通のシリアルポートと同じ様に通信できる。

以上。