%‘ TEXAS Application Report
IN STRUMENTS SLAA149C—-December 2005—Revised October 2007

Programming a Flash-Based MSP430
Using the JTAG Interface

Markus Koesler, Wolfgang Lutsch MSP430

ABSTRACT

This application report details the functions required to erase, program, and verify the
memory module of the MSP430 flash-based microcontroller family using the JTAG
communication port, as well as how to program the JTAG access security fuse,
available on all MSP430 devices. Device access using standard 4-wire JTAG and
2-wire JTAG, also referred to as Spy-Bi-Wire (SBW), is discussed. In addition, an
example programmer system, including software (source code is provided) and the
corresponding hardware implementation, is demonstrated in Appendix A. This example
is intended as a reference for further understanding of the concepts presented in this
report and to help aid in development of similar MSP430 programmer solutions.

Contents
1 Y igele VT iTo] o) I |
2 Interface and INStrUCtONS] s e s s et e e eeeeeeeeeeeeeeeraeeeeoeeeeoeeeoeerostesoceieseeeeneeseneess 3
2.1 JTAG Interface SignalS ieeeeieeeereseereeeieieereeeeieseereseeeiseereseieseereseeieneeres 3
2.2 JTAG ACCESS MACIOS e e e eeeeeeeeeeesssisisssssssssssssssssesseeeeeeeeesiiiiiisessesasnnns 4
2.3 SBW Timing and Control [ouieeeieeeeieeeeraneeiaeieaeeieseeiaseeraseeeaeeiesseeeneeranes 1
24 JTAG Communication INStruCtioONS e e oo eeeeeeeeeeceeeeeneeeeeeeseeeeeeesneeeeeesnees 17
3 Memory Programming Control SeqUeNCeS[ieeeeeeeeereeaeereeeereeeeeeeeeeeeroseeraeeeeres 13
3.1 iU g ol U o] 1
3.2 (€1=1al=T eVl ST o Tt o]0 & I 19
3.3 Accessing Non-Flash Memory Locations With JTAG[.. ..o o veeeeeeieeeeeeeeeeeeeees 27
3.4 Programming the Flash Memory (Using the Onboard Flash Controller)f—..-..... 24
3.5 Reading From Flash Memory oo oo oo eeeeeeeeeraneeraeeieeeeeeeeeioseeroeeeeess 29
3.6 Verifying the Flash Memoryl o oo oo e e oo eeereeeeeeeeesseeeeeeesseeeeeeesseeeeeesnees 29
3.7 Erasing the Flash Memory (Using the Onboard Flash Controller)rre..r....... 24
4 Programming the JTAG Access Protection FUSE[. oeeieeeieieereieeieseereeiiseereseeieness 3d
4.1 Standard 4-Wir€ JTAG oo e et ieeeeeeeieeeeeeiseeeeeieesseeeeieeseeeeeeesseeeisnens 3]
4.2 Fuse-Programming Voltage via SBW[..ueieeerreeeeraneeraeieieeiseeeiaseeiaeienerss 3]
4.3 Testing for a Successfully Programmed Fuse[...ooovooeoeeeeeeeeeeeeeeeseeeeeeeanees 39
5 JTAG FUuNCtion ProtOtyPeS]ieseeeteeeeeeeeeeeeeeoeereoeeioseeroseeeaeeieseeeeseeroseeroeeieneees 33
5.1 Low-Level JTAG FUNCHONS oo s s et e e eeeeeeeeeeeeeeroneeroeeeeoeeeeeeeioneeroeeeeees 33
5.2 High-Level JTAG ROUIINES .t uiueeieieeieeiiieeeieeeieneeieseeeeseeieseieneereseeeeeess 34
6 G Gl 349
7 Third-Party SUPPOM ... e et eeraeeieaeeraseeiaeeeraseieaeeieseeianeeraseiesseereseieseereseeeneess 31
Appendix A Implementation [oeieeeeieeeeeeeeeraeeeoeeieoeeeeseeroseeeoeeieseeeeseeroseeraseeeneees 33
Appendix B MSP430 JTAG Implementation [ieierieeeeieeieeeeiereeeeeiorieeeeiorioseeioriones 49

List of Figures

1 Timing Example for the IR_SHIFT (0x83) INStruCtion]e.eesveeeeeeieeeeeeeeeeeeeeeeeaaeeeess. 5|
2 Data Register 1/0: DR_SHIFT16 (0x158B) (TDO Output is OX55AA) i eeeeeereeeaeeeeee... 3
3 Address Register I/O: DR_SHIFT20 (0x12568) (TDO Output Is OXA55AA)re-zer...... G
4 STl 0 N N g

All trademarks are the property of their respective owners.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 1
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

@‘ TEXAS

INSTRUMENTS
www.ti.com
Introduction
5 (@[o I < 1
6 Timing Diagram (Alternative TimiNg) eeeeeeeeeeeeeteeeereeeereseererereseereseeieseeraseieseerens |
7 SBW-t0-JTAG Interface Diagraml . eeeeseeeeeereeeeeeereeeseeeereeseeeeiseeseeeiseeseeeieeees g
8 Synchronization of TDI/TCLK During Run-Test/ldle[...eieeeeieeeereeeereeiiieereieeiaeereee. 9
9 Detailed SBW Timing Diagrameeeseeeeeeeeeeaeeeeeeeroseeroeeeoeeieoeereseeroseeeoeereseeeanees 17
10 JTAG Access Entry Sequences (for Devices Supporting SBW)[Coeoeeeeeoeeeeeeeeeee... 19
11 Fuse Check and TAP Controller ReSet[. ..ot veeeeeerareeeeeeeroeeeeeeoeioeeroeeoeeeeeroeeeeeees 11
12 Fuse BloW TimiNg[e e e e ueee e seee e eeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeisssseeeseseseeeeesannees 39
A-1 SGTo][Ter=110] @AV o] o] [{eX=11To] S Tel o 100 o1 o 13
B-1 TAP Controller State Machine ... oo oooeeee e e ieeeeeeseeaeeereeeeeereeaeeeeeeaeeeeeesseeeess 13
List of Tables
1 Standard 4-Wire JTAG SigNalslieeeeieeeeeeeereeeeeaeeieneeroeereeeeseereseeroeesoseeeseeranes 3
2 JTAG Signal Implementation OVerVIEW] e woeeeeeeeereeeeeeeoeeeeeioeroeeeoeroeeeeroeeeeeeeeeoees 4
3 JTAG Communication MacCrOS[eseeeereeeieneereseeeeeeieseieseeieseeieseereseieseeieseeseeeres 4
4 Memory AcCesS INStrUCHONS] s s e e e eeeeeeeereeeeeeeeseseeeeieeseeesisssseeeseseseeessssseees 17
5 JTAG Control Signal RegiSterN e e ueueereeeeiaeeraeeieneeieseeieseerareieseeieeeeioseeraseeeieess 13
6 Shared JTAG Device Pin FUNCHONS oo e soeoeereeeeeeeeeeeoeeeeeessneeeeeoseeeceeesseeeeeeees 13
7 Erase/Program Minimum TCLK CloCK CyCleS[ieeeieerereereaeereeeereseeroreeeaeereeeeeanees 29
8 Flash Memory Parameters (frrg = 450 KHZ) oo e e eeeeeeeroeeeeeeeeroeeeeeeoeroeeeeeaeeees 29
9 MSP430 Device JTAG Interface (Shared PinS)|ieeeeeeeieeeieseerereeeeseeieeieseereseeeieess 34
10 MSP430 Device Dedicated JTAG Interface]. .. .oeeeereeeeeeeieeseeerieeeseeeieseseeeieseeees 34
1 Introduction

This document provides an overview of how to program the flash memory module of an MSP430
flash-based device using the on-chip JTAG interface [4-wire or 2-wire Spy-Bi-Wire (SBW) interfaces]. A
focus is maintained on the high-level JTAG functions used to access and program the flash memory and
the respective timing.

Four main elements are presented:

Bection 2, Interface and Instructions, describes the required JTAG signals and associated pin
functionality for programming the MSP430 family. In addition, this section includes the descriptions of
the provided software macro routines and JTAG instructions used to communicate with and control a
target MSP430 via the JTAG interface.

Bection 3, Memory Programming Control Sequences, demonstrates use of the provided macros and
function prototypes in a software-flow format that are used to control a target MSP430 device and
program and/or erase the flash memory.

Bection 4, Programming the JTAG Access Protection Fuse, details the fuse mechanism used to
disable memory access via JTAG to the target device’s memory, eliminating the possibility of
undesired memory access for security purposes.

illustrates development of an example MSP430 flash programmer using an MSP430F149
as the host controller and includes a schematic and required software/project files. A thorough
description of how to use the given implementation is also included, providing an example system that
can be used directly or referenced for custom MSP430 programmer solutions.

Note: The MSP430 JTAG interface implements the test access port state machine (TAP controller)
as specified by IEEE Std 1149.1. References to the TAP controller and specific JTAG states
identified in the 1149.1 standard are made throughout this document. The TAP state
machine is shown in Appendix B, Figure B-1. Appendix B, also lists various
specialities of the MSP430 JTAG implementation which are non-compliant with the IEEE Std
1149.1.

2 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Interface and Instructions
2 Interface and Instructions

This section describes the hardware connections to the JTAG interface of the MSP430 devices and the
associated pin functionality used during programming. In addition, the descriptions of the software macro
routines used to program a MSP430 target and the JTAG instructions used to communicate with and
control the target via the JTAG interface are detailed.

2.1 JTAG Interface Signals

The MSP430 family supports in-circuit programming of flash memory via the JTAG port, available on all
MSP430 devices. All devices support the JTAG 4-wire interface. In addition, some devices also support
the next generation optimized 2-wire JTAG interface. Using these signals, an interface connection to
access the MSP430 JTAG port using a PC or other controller can be established. See the respective
MSP430 device data sheet for the connections required by a specific device.

2.1.1 4-Wire JTAG Interface

The standard JTAG interface requires four signals for sending and receiving data. On larger MSP430
devices, these pins are dedicated for JTAG. Smaller devices with fewer total pins multiplex these JTAG
lines with general-purpose functions. On these smaller devices, one additional signal is required that is
used to define the state of the shared pins. This signal is applied to the TEST pin. The remaining
connections required are ground and VCC when powered by the programmer. These signals are
described in [TableJ].

Table 1. Standard 4-Wire JTAG Signals

Pin Direction Usage
T™MS IN Signal to control the JTAG state machine
TCK IN JTAG clock input
TDI IN JTAG data input/TCLK input
TDO ouT JTAG data output
TEST IN Enable JTAG pins (shared JTAG devices only)

The TEST input exists only on MSP430 devices with shared JTAG function, usually assigned to port 1. To
enable these pins for JTAG communication, a logic level 1 must be applied to the TEST pin. For normal
operation (non-JTAG mode), this pin is internally pulled down to ground, enabling the shared pins as
standard port I/O.

The TCLK signal is an input clock, which must be provided to the target device from an external source.
This clock is used internally as the target device’s system clock, MCLK, to load data into memory locations
and to clock the CPU. There is no dedicated pin for TCLK; instead, the TDI pin is used as the TCLK input.
This occurs while the MSP430 TAP controller is in the Run-Test/Idle state.

Note: TCLK input support on the MSP430 XOUT pin exists but has been superseded by the TDI
pin on all current MSP430 flash-based devices. Existing FET tools, as well as the software
provided with this application report, implement TCLK on the TDI input pin.

2.1.2 2-Wire SBW JTAG Interface

The core JTAG logic integrated into devices that support 2-wire mode is identical to 4-wire-only devices.
The fundamental difference is that 2-wire devices implement additional logic that is used to convert the
2-wire communication into the standard 4-wire communication internally. In this way, the existing JTAG
emulation methodology of the MSP430 can be fully utilized.

The 2-wire interface is made up of the SBWTCK (Spy-Bi-Wire test clock) and SBWTDIO (Spy-Bi-Wire test
data input/output) pins. The SBWTCK signal is the clock signal and is a dedicated pin. In normal
operation, this pin is internally pulled to ground. The SBWTDIO signal represents the data and is a
bidirectional connection. In order to reduce the overhead of the 2-wire interface, the SBWTDIO line is
shared with the RST/NMI pin of the MSP430.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 3
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

2.2

221

gives a general overview of MSP430 devices and their respective JTAG interface implementation.

Table 2. JTAG Signal Implementation Overview

Devices TESTPin | 4Wire JTAG | SBW 2Wire
20- and 28- pin MSP430F1xx devices YES YES NO
64-, 80-, and 100-pin MSP430F1xx /4xx devices NO YES NO
MSP430F21x1 family YES YES NO
14-, 20-, 28-, and 38-pin MSP430F2xx devices YES YES YES
64-, 80-, and 100-pin MSP430F2xx devices NO YES NO

JTAG Access Macros

To keep descriptions of the JTAG functions in the following sections simple, high-level macros have been
used to describe the JTAG access. This document does not detail the basic JTAG functionality; rather,
focuses on the MSP430-specific implementation used for memory access and programming. For the
purpose of this document, it is important to show the instructions that need to be loaded into the JTAG
instruction register, as well as when these instructions are required. The following section summarizes the
macros used throughout this document and their associated functionality. (See the accompanying
software for more information.)

Table 3. JTAG Communication Macros

Macro Name Function

Shifts an 8-bit JTAG instruction into the JTAG instruction register. At the same time, the 8-bit
value is shifted out through TDO.

Shifts a 16-bit data word into a JTAG data register. At the same time, the 16-bit value is shifted
out through TDO.

Shifts a 20-bit address word into the JTAG Memory Address Bus register. At the same time, the
20-bit value is shifted out through TDO. Only applicable to MSP430X architecture devices.

IR_SHIFT (8-bit Instruction)

DR_SHIFT16 (16-bit Data)

DR_SHIFT20 (20-bit Address)

MsDelay (time) Waits for the specified time in milliseconds

SetTCLK Sets TCLK to 1

CIrTCLK Sets TCLK to O

TDOvalue Variable containing the last value shifted out on TDO

Macros for 4-Wire JTAG Interface

2211 IR_SHIFT (8-bit Instruction)

This macro loads a desired JTAG instruction into the JTAG instruction register (IR) of the target device. In
the MSP430, this register is 8 bits wide with the least significant bit (LSB) shifted in first. The data output
from TDO during a write to the JTAG instruction register contains the version identifier of the JTAG
interface (or JTAG ID) implemented on the target device. Regardless of the 8-bit instruction sent out on
TDI, the return value on TDO is always the JTAG ID. Each instruction bit is captured from TDI by the
target MSP430 on the rising edge of TCK. TCLK should not change state while this macro is executed
(TCLK = TDI while the TAP controller is in the Run-Test/Idle state). shows how to load the
ADDR_16BIT instruction into the JTAG IR register. See for a complete list of the JTAG
interface communication instructions used to access the target device flash memory module.

Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

Data to TDI LSB MSB

ToK S

ws [] I

o Z7H I @y

oo 77T T
I

Teek /X . \\ XA

Save TDI value (= TCLK) 47 Instruction Input via TDI 4} Restore saved TDI value

Figure 1. Timing Example for the IR_SHIFT (0x83) Instruction

2.2.1.2 DR_SHIFT16 (16-bit Data)

This macro loads a 16-bit word into the JTAG data register (DR). (In the MSP430, a data register is 16
bits wide.) The data word is shifted, most significant bit (MSB) first, into the target MSP430’s TDI input.
Each bit is captured from TDI on a rising edge of TCK. At the same time, TDO shifts out the last
captured/stored value in the addressed data register. A new bit is present at TDO with a falling edge of
TCK. TCLK should not change state while this macro is executing. shows how to load a 16-bit
word into the JTAG DR and read out a stored value via TDO.

Data to TDI MSB LSB
0 0 0 0 1 0 1 1 0 0 0 1 0 1 1
e Ly Ly u
™S h I~
o1 ZJKITT, -\ /U T\ W
o0 [/ NIV VA N VAN /N NS\ N
TcLK /X .4
Data from TDO | 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
Save TDI value (= TCLK) |« Data input via TDI and data output via TDO ——— |

Restore saved TDI value

Figure 2. Data Register /O: DR_SHIFT16 (0x158B) (TDO Output is 0x55AA)

2.2.1.3 DR_SHIFT20 (20-bit Address) (Applies Only to MSP430X Devices)

The MSP430X architecture is based on a 20-bit memory address bus (MAB), in order to address up to

1 MB of continuous memory. No new JTAG instructions are needed to control the 20-bit MAB (for details
on instructions, see Bection 2.4.1)), only the JTAG address register itself has been extended to 20 bits.
This macro loads a 20-bit address word into the 20-bit wide JTAG MAB register. The address word is
shifted, MSB first, into the target MSP430’s TDI input. Each bit is captured from TDI on a rising edge of
TCK. At the same time, TDO shifts out the last captured/stored value in the JTAG MAB register. A new bit
is present at TDO with a falling edge of TCK. TCLK should not change state while this macro is executing.
This macro should only be used when IR_ADDR_16BIT or IR_ADDR_CAPTURE have been loaded into
the JTAG instruction register before the MAB gets manipulated via JTAG. Note that on a 20-bit shift
access, the upper four bits (19:16) of the JTAG address register are shifted out last. That means bit 15 of
the MAB is read first when the lower part of the MAB is accessed by performing a 16-bit shift. This kind of
implementation assures compatibility with the original MSP430 architecture and its JTAG MAB register
implementation.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 5
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

” TEXAS
INSTRUMENTS

www.ti.com
Interface and Instructions

Note: The DR_SHIFT20(20-bit Address) macro in the associated C-code software example
application automatically reconstructs the swapped TDO (15:0) (19:16) output to a
continuous 20-bit address word (19:0) and simply returns a 32-bit LONG value.

shows how to load a 20-bit address word into the JTAG address register and read out a stored
value via TDO.

Data to TDI MSB LSB
o 0010010010101 1 0 10 0 O

ok LU LU ey e ey e
™S | L
o1 ZK T /i /N AN VARN W/ (EIVAR

DO SIARN AR AR NIV VAR VAR VARN WA

TCLK /)

DatafromTDO:|O0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 O

Bit#:|15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 19 18 17 16§
Save TDI value (= TCLK) Data input via TDI and data output via TDO —————p
Restore saved TDI value

Figure 3. Address Register 1/0: DR_SHIFT20 (0x12568) (TDO Output Is 0XA55AA)

2.2.1.4 MsDelay (time)
This macro causes the programming interface software to wait for a specified amount of time in

milliseconds (ms). While this macro is executing, all signals to and from the target MSP430 must hold their
previous values.

2215 SetTCLK

This macro sets the TCLK input clock (provided on the TDI signal input) high. TCK and TMS must hold
their last value while this macro is performed (see Bection 2.3.3 and Figure g for SBW-specific

constraints).

TCK uuuuL
s I X X/ // // Wi

00 /NI T XTI /. Wil
ek T LT

Figure 4. SetTCLK

SetTCLK

6 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

2216 CIrTCLK

This macro resets the TCLK input clock low. TCK and TMS must hold their last value while this action is
performed (see Section 2.3.3 and Figure § for SBW-specific constraints).

S

TCK _I Ll Ll |_| \—
™S TIIX_ X T
TDO / JUITX XU T
TCLK / // ///

Figure 5. CIrTCLK

CIrTCLK

2.2.2 Macros for 2-Wire JTAG (SBW) Interface

All JTAG macros described in the previous section also apply to the 2-wire interface and are provided as
software source along with this document.

2.3 SBW Timing and Control

The following sections provide a basic understanding of the SBW implementation as it relates to
supporting generation of the macro function timing signals. This is intended to enable development of
custom MSP430 programming solutions, rather than just relying on the example application code also
provided.

23.1 Basic Timing

The SBW interface serial communication uses time-division multiplexing, allocating three time slots:
TMS_SLOT, TDI_SLOT, and TDO_SLOT. In order to clock TCLK via the SBW interface in a similar
method as it is clocked via TDI during 4-wire JTAG access, an alternative JTAG timing method is
implemented. This implementation makes use of the fact that the TDI and TMS signals are clocked into
the TAP controller or shift register with the rising edge of TCK as shown in Figure g.

SBWTCK
TMS and TDI — i< T usi——
TCK clocked into TAP
shift register \\
~=
TMS Slot TDI Slot TDO Slot

Figure 6. Timing Diagram (Alternative Timing)

The implemented logic used to translate between the 2-wire and 4-wire interfaces is shown in Figure 7.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 7
Eubmit Documentation Feedbacl

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

%‘ TEXAS

INSTRUMENTS
www.ti.com
Interface and Instructions
SET
SBWTDIO L 3 D Q p TMS
In TMS Slot EN
SBWTCK —@ —
SET
® D Q - TDITCLK
G
JTAG TAP in
Run Test/Idle
In TDI Slot D a TCK
{>c ® G
CLR

< TDO

In TDO Slot -

Figure 7. SBW-to-JTAG Interface Diagram

The advantages of this implementation are:

» Data on TDI and data on TDO are aligned.

» During the TDI_SLOT of the 2-wire interface, SBWTDIO can be used as TCLK input if the JTAG TAP
controller is in its Run-Test/Idle state. For this purpose the TDI output needs to be synchronized to its
input as shown in Figure 8. The synchronization logic is only active in the Run-Test/Idle state.

8 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

SBWTCK
(external signal)

Case 1:

SBWTDIO
(external signal)

Case 1a:
TDITCLK
(internal signal)

Case 1b:
TDITCLK
(internal signal)

Case 2:

SBWTDIO
(external signal)

Case 2a:
TDI/TCLK
(internal signal)

Case 2b:
TDITCLK
(internal signal)

TMS Slot

T™MS =1

Latched at 1

during previous ;

TDI slot

Latched at 0

during previous :

TDI Slot

TMS =0

Latched at 0

during previous :

TDI Slot

.
I
I
1
¥
[}
L)
|
L
.

Latched at 1

during previous :

TDI Slot

TDI Slot

TDO Slot

Figure 8. Synchronization of TDI/TCLK During Run-Test/Idle

After power up, as long as the SBW interface is not activated yet, TMS and TDI are set to logical 1 level

internally.

2.3.2 TDO Slot

As shown in Figure g, the TDO operation is allocated one time slot. (Refer also to the detailed timing
shown in Figure 9.) The master should release control of the SBWTDIO line based off of the rising edge of
SBWTCK of the TDI cycle. Once the master releases the SBWTDIO line, an internal bus keeper holds the
voltage on the line. The next falling edge of SBWTCK triggers the slave to start driving the bus. The slave
only drives the SBWTDIO line during the low time of the SBWTCK cycle. The master should not enable its
drivers until the slave has released the SBWTDIO line. Therefore, the master could use the rising edge of

the SBWTCK signal as a trigger point to enable its driver.

Note:

The low phase of the clock signal supplied on SBWTCK must not be longer than 7 us, else

SBW logic gets deactivated and must be activated again according to Eection 3.1].

SLAA149C—-December 2005—Revised October 2007
Bubmit Documentafion FeedbacK

Programming a Flash-Based MSP430 Using the JTAG Interface 9

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

” TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

| | | |
FMASTEH—’N—SLAVE—* MASTER P SLAVE—Py

SBWTDIO —< T™S >< TDI >—< TDO >—< TMS >< TDI >—< TDO >7
SBWTCK |

0 1 2 0 1 2
| | | | | | |
[« TMS_SLOT -pt<—TDI_SLOT—j«@-TDO_SLOT— ot~ TMS_SLOT-Jj«—TDI_SLOT— -t~ TDO_SLOT-J
1 [1 1 ' [

LOAD_JTAG_REG

JTAG_REG >< ><

TCLK

T™S TMS

n-1

%
n X

TDI TDI

> >
> >

DI,

TCK

JTAG TAP TAP STATE, TAP STATE,
STATE " "

Figure 9. Detailed SBW Timing Diagram

2.3.3 SetTCLK_sbw and CIrTCLK_sbw in SBW Mode

shows handling and synchronization of TCLK in SBW mode while the JTAG TAP Controller is in
Run-Test/Idle state. Refer to reference function SetTCLK_sbw and CIrTCLK_sbw for software
implementation.

2.4 JTAG Communication Instructions

Selecting a JTAG register and controlling the CPU is done by shifting in a JTAG instruction using the
IR_SHIFT macro described in the previous section. The following instructions that can be written to the
JTAG IR are used to program the target flash memory. All instructions sent to the target MSP430 via the
JTAG register are transferred LSB first.

10 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

Table 4. Memory Access Instructions

Instruction Name S-E;ITst(wec;i)on
Controlling the Memory Address Bus (MAB)
IR_ADDR_16BIT 0x83
IR_ADDR_CAPTURE 0x84
Controlling the Memory Data Bus (MDB)
IR_DATA_TO_ADDR 0x85
IR_DATA_16BIT 0x41
IR_DATA_QUICK 0x43
IR_BYPASS OxFF
Controlling the CPU
IR_CNTRL_SIG_16BIT 0x13
IR_CNTRL_SIG_CAPTURE 0x14
IR_CNTRL_SIG_RELEASE 0x15
Memory Verification Via Pseudo Signature Analysis (PSA)
IR_DATA_PSA 0x44
IR_SHIFT_OUT_PSA 0x46
JTAG Access Security Fuse Programming
IR_Prepare_Blow 0x22
IR_Ex_Blow 0x24

Note: Do not write any unlisted values to the JTAG instruction register. Instruction values written to
the MSP430 JTAG register other than those listed above may cause undesired device
behavior.

Note: When a new JTAG instruction is shifted into the JTAG instruction register, it takes effect with
the UPDATE-IR state of the TAP controller. When accessing a JTAG data register, the last
value written is captured with the CAPTURE-DR state, and the new value shifted in becomes
valid with the UPDATE-DR state. In other words, there is no need to go through
Run-Test/Idle state of the JTAG TAP controller to shift in instructions or data. Be aware of
the fact that clocking TCLK is only possible in the Run-Test/Idle state. This is why the
provided software example application exclusively makes use of the JTAG macros described
in Bection 2.2, which always go through Run-Test/Idle state.

241 Controlling the Memory Address Bus (MAB)

The following instructions control the MAB of the target MSP430. To accomplish this, a 16-bit (20-bit in
MSP430X architectures) register, termed the JTAG MAB register, is addressed. By using the JTAG data
path of the TAP controller, this register can be accessed and modified.

2411 IR_ADDR_16BIT

This instruction enables setting of the MAB to a specific value, which is shifted in with the next JTAG
16-bit data access using the DR_SHIFT16 (16-bit Data) macro or the next JTAG 20-bit address word
access using the DR_SHIFT (20-bit Address) macro. The MSP430 CPU’s MAB is set to the value written
to the JTAG MAB register. The previous value stored in the JTAG MAB register is simultaneously shifted
out on TDO while the new 16- or 20-bit address is shifted in via TDI.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 11
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

Note: In MSP430X devices, a 16-bit shift to update the JTAG MAB register does not automatically
reset the upper four bits (19:16) of the JTAG MAB register. Always use the 20-bit shift macro
to ensure that the upper four bits (19:16) are set to a defined value.

24.1.2 IR_ADDR_CAPTURE

This instruction enables readout of the data on the MAB with the next 16- or 20-bit data access. The MAB
value is not changed during the 16- or 20-bit data access; that is, the 16- or 20-bit data sent on TDI with
this command is ignored (O is sent as a default in the provided software).

242 Controlling the Memory Data Bus (MDB)

The following instructions control the MDB of the MSP430 CPU. To accomplish this, a 16-bit register,
termed the JTAG MDB register, is addressed. By using the JTAG data path of the TAP controller, this
register can be accessed and modified.

2.42.1 IR_DATA_TO_ADDR

This instruction enables setting of the MSP430 MDB to a specific value shifted in with the next JTAG
16-bit data access using the DR_SHIFT16 (16-bit Data) macro. The MSP430 CPU’s MDB is set to the
value written to the JTAG MDB register. As the new value is written into the MDB register, the prior value
in the MSP430 MDB is captured and shifted out on TDO. The MSP430 MAB is set by the value in the
JTAG MAB register during execution of the IR_DATA_TO_ADDR instruction. This instruction is used to
write to all memory locations of the MSP430.

24.2.2 IR_DATA_16BIT

This instruction enables setting of the MSP430 MDB to the specified 16-bit value shifted in with the next
16-bit JTAG data access. The complete MSP430 MDB is set to the value of the JTAG MDB register. At
the same time, the last value of the MSP430 MDB is captured and shifted out on TDO. In this situation,
the MAB is still controlled by the CPU. The program counter (PC) of the target CPU sets the MAB value.

2.42.3 IR_DATA_QUICK

This instruction enables setting of the MSP430 MDB to a specific value shifted in with the next 16-bit
JTAG data access. The 16-bit MSP430 MDB is set to the value written to the JTAG MDB register. During
the 16-bit data transfer, the previous MDB value is captured and shifted out on TDO. The MAB value is
set by the program counter (PC) of the CPU. This instruction auto-increments the program counter by two
on every falling edge of TCLK in order to automatically point to the next 16-bit memory location. The target
CPU'’s program counter must be loaded with the starting memory address prior to execution of this
instruction, which can be used to quickly read or write to a memory array. (See Section 3.2 for more
information on setting the PC.)

Note: IR_DATA_QUICK cannot be used on flash memory.

2424 IR_BYPASS

This instruction delivers the input to TDI as an output on TDO delayed by one TCK clock. When this
instruction is loaded, the IR_CNTRL_SIG_RELEASE instruction, which is defined in the following section,
is performed simultaneously. After execution of the bypass instruction, the 16-bit data shifted out on TDI
does not affect any register of the target MSP430’s JTAG control module.

12 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

243 Controlling the CPU

The following instructions enable control of the MSP430 CPU through a 16-bit register accessed via
JTAG. This data register is called the JTAG control signal register. describes the bit functions
making up the JTAG control signal register used for memory access.

Table 5. JTAG Control Signal Register

Bit No. Name Description
Controls the read/write (RW) signal of the CPU

0 RIW 1 =read, 0 = write
(N/A) Always write 0
(N/A) Always write 0
Sets the CPU into a controlled halt state
3 HALT_JTAG 1 = CPU stopped, 0 = CPU operating normally
4 BYTE Controls the BYTE signal of the CPU used for memory access data length
1 = byte (8-bit) access, 0 = word (16-bit) access
(N/A) Always write 0
6 (N/A) Always write 0
7 INSTR_LOAD Read only: Indicates the target CPU instruction state

1 = instruction fetch state, 0 = instruction execution state
8 (N/A) Always write 0
Indicates CPU synchronization

° TCE 1 = synchronized, 0 = not synchronized

10 TCE1 Establishes JTAG control over the CPU
1 = CPU under JTAG control, 0 = CPU free running
Controls the power-on-reset (POR) signal

1 POR 1 = perform POR, 0 = no reset
Selects control source of the RW and BYTE bits

12 Release low byte 1 = CPU has control, 0 = control signal register has control
Sets flash module into JTAG access mode

13 TAGFUNCSAT 1 = CPU has control (default), 0 = JTAG has control
Enables TDO output as TDI input

14 SWITCH 1 = JTAG has control, 0 = normal operation

15 (N/A) Always write 0

2.43.1 IR_CNTRL_SIG_16BIT

This instruction enables setting of the complete JTAG control signal register with the next 16-bit JTAG
data access. Simultaneously, the last value stored in the register is shifted out on TDO. The new value
takes effect when the TAP controller enters the UPDATE-DR state.

24.3.2 IR_CNTRL_SIG_CAPTURE

This instruction enables readout of the JTAG control signal register with the next JTAG 16-bit data access
instruction.

2433 IR_CNTRL_SIG_RELEASE

This instruction completely releases the CPU from JTAG control. Once executed, the JTAG control signal
register and other JTAG data registers no longer have any effect on the target MSP430 CPU. This
instruction is normally used to release the CPU from JTAG control.

24.4 Memory Verification Via Pseudo Signature Analysis (PSA)
The following instructions support verification of the MSP430 memory content by means of a PSA mode.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 13
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Interface and Instructions

2441 IR_DATA_PSA

The IR_DATA_PSA instruction switches the JTAG_DATA_ REG into the PSA mode. In this mode, the
program counter of the MSP430 is incremented by every two system clocks provided on TCLK. The CPU
program counter must be loaded with the start address prior to execution of this instruction. The number of
TCLK clocks determines how many memory locations are included in the PSA calculation.

2.4.4.2 IR_SHIFT_OUT_PSA

245

The IR_SHIFT_OUT_PSA instruction should be used in conjunction with the IR_DATA_PSA instruction.
This instruction shifts out the PSA pattern generated by the IR_DATA PSA command. During the
SHIFT-DR state of the TAP controller, the content of the JTAG_DATA_REG is shifted out via the TDO pin.
While this JTAG instruction is executed, the capture and update functions of the JTAG_DATA_REG are
disabled.

JTAG Access Security Fuse Programming

The following instructions are used to access and program the built-in JTAG access protection fuse,
available on every MSP430 flash device. Once the fuse is programmed (or blown), future access to the
MSP430 via the JTAG interface is permanently disabled. This allows for access protection of the final
MSP430 firmware programmed into the target device.

2451 IR_PREPARE_BLOW

This instruction sets the MSP430 into program-fuse mode.

2452 IR_EX_BLOW

This instruction programs (blows) the access protection fuse. In order to execute properly, it must be
loaded after the IR_PREPARE_BLOW instruction is given.

14

Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

3.1

3.11

Memory Programming Control Sequences

Start-Up

Before the main flash programming routine can begin, the target device must be initialized for
programming. This section describes how to perform the initialization sequence.

Enable JTAG Access

Reference function: GetDevice, GetDevice_sbw

MSP430 devices with TEST pin and 4-wire JTAG access only (no SBW)

To use the JTAG features of MSP430 devices with shared JTAG and a TEST pin, it is necessary to
enable the shared JTAG pins for JTAG communication mode. (Devices with dedicated JTAG
inputs/outputs and no TEST pin do not require this step.) The shared pins are enabled for JTAG
communication by connecting the TEST pin to VCC. For normal operation (non-JTAG mode), this pin
should be released and allowed to be internally pulled to ground. shows the port 1 pins that
are used for JTAG communication.

Table 6. Shared JTAG Device Pin Functions

Port 1 Function JTAG Function
(TEST = Open) (TEST = VCC)

P14 TCK
P1.5 TMS
P1.6 TDI/TCLK
P1.7 TDO

MSP430 devices with 2-wire (SBW) JTAG access

The SBW interface and any access to the JTAG interface is disabled while the TEST/SBWTCK pin is
held low. This is accomplished by an internal pulldown resistor. The pin can also be tied low externally.

Pulling the TEST/SBWTCK pin high enables the SBW interface and disables the RST/NMI functionality
of the RST/NMI/SBWTDIO pin. While the SBW interface is active, the internal reset signal is held high,
and the internal NMI signal is held at the input value seen at RST/NMI with TEST/SBWTCK going high.
Devices with SBW also support the standard 4-wire interface. The 4-wire JTAG interface access is
enabled by pulling the SBWTDIO line low and then applying a clock on SBWTCK. The 4-wire JTAG
mode is exited by holding the TEST/SWBCLK low for more than 100 ps.

To select the 2-wire SBW mode, the SBWTDIO line is held high and the first clock is applied on
SBWTCK. After this clock, the normal SBW timings are applied starting with the TMS slot, and the
normal JTAG patterns can be applied, typically starting with the Tap Reset and Fuse Check sequence.
The SBW mode is exited by holding the TEST/SWBCLK low for more than 100 ps.

In devices implementing the Bootstrap Loader (BSL) the TEST/SBWTCK and RST/NMI/SBWTDIO are
also used to invoke the BSL. In Figure 10, different cases used to enter the SBW/JTAG or BSL mode
are shown.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 15
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

%‘ TEXAS

INSTRUMENTS
www.ti.com
Memory Programming Control Sequences
TEST/SBWTCK [[]
Case 1a: SBW Entry Sequence
RST/NMI/SBWTDIO : : gg";vD'sab'ed
BSL Entry | : Enter SBW | :
disabled : Mode
Case 1b: 4-Wire JTAG Entry Sequence
— BSL Disabled
RST/NMI/'SBWTDIO : : N
: : 4-Wire JTAG
BSL Entry | : Enter 4-Wire | -
disabled : JTAG Mode
Case 2a: Successful BSL Entry Sequence
RST/NMI/SBWTDIO ,7 BSL Enabled
(RST function) . . SBW/JTAG Disabled
/ /: . T~
BSL Entry | : Enter 4-Wire | : | Disable 4-Wire Start BSL
enabled : JTAG Mode | : JTAG Mode,
. . Enable BSL
Case 2b: Unsuccessful BSL Entry Sequence : :
RST/NMI/SBWTDIO : T BSL Disabled
RST function : : I— SBW
() —— L~
BSLEntry | : Enter * | BSLEntry
enabled : SBW : Disabled
: Mode :
Case 3: NMI Function
RST/NMI/SBWTDIO ,7 BSL Disabled
(NMI function) : 4-Wire JTAG
-
: Enter 4-Wire | :
BSL Entry | : JTAG Mode
disabled :

3.1.2

Figure 10. JTAG Access Entry Sequences (for Devices Supporting SBW)

Fuse Check and Reset of the JTAG State Machine (TAP Controller)
Reference functions: ResetTAP, ResetTAP_sbw

Each MSP430 family device includes a physical fuse used to permanently disable memory access via
JTAG communication. When this fuse is programmed (or blown), access to memory via JTAG is
permanently disabled and cannot be restored. When initializing JTAG access after power up, a fuse check
must be done before JTAG access is granted. Toggling of the TMS signal twice performs the check. It is
recommended that a minimum of six TCK clocks be sent to the target device while TMS is high followed
by setting TMS low for at least one TCK clock. This sets the JTAG state machine (TAP controller) to a
defined starting point: the Run-Test/Idle state. This procedure can also be used at any time during JTAG
communication to reset the JTAG port.

While the fuse is tested, a current of up to 2 mA flows into the TDI input (or into the TEST pin on devices
without dedicated JTAG pins). To enable settling of the current, the low phase of the two TMS pulses
should last a minimum of 5 ps.

16

Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
[Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

3.13

Under certain circumstances (e.g., by plugging in a battery), a toggling of TMS may accidentally occur
while TDI is logical low. In that case, no current flows through the security fuse, but the internal logic
remembers that a fuse check was performed. Thus, the fuse will be mistakenly recognized as
programmed (e.g., blown). To avoid the issue, newer MSP430 JTAG implementations also reset the
internal fuse check logic on performing a reset of the TAP controller as previously described. Thus, it is
recommended to first perform a reset of the TAP and then check the JTAG fuse status as shown in
Figure 11].

JTAG Fuse
.~~~ Checked

JTAG State-Machine Reset
Run-Test/Idle T,
V'

TCK L L L L L L LI LT
™S | | B
LI
™0 /I iy
L S o A A A

SetTCLK

=)

Figure 11. Fuse Check and TAP Controller Reset

Following the same sequence in SBW mode has the side effect of changing the TAP controller state while
the fuse check is performed. As described in Becfion 2.3.]), the internal signal TCK is generated
automatically in every TDI_SLOT. Performing a fuse check in SBW mode, starting directly after a reset of
the TAP controller, will end up in its Exit2-DR state. Two more dummy TCKs need to be generated to get
back into Run-Test/Idle state; one TCK with SBWTDIO being high during the TMS_SLOT followed by one
TCK with SBWTDIO being low during the TMS_SLOT (reference function: ResetTAP_sbw).

Taking the CPU Under JTAG Control
Reference function: GetDevice, GetDevice_sbw

After the initial fuse check and reset, the target device’s CPU must be taken under JTAG control. This is
done by setting bit 10 (TCE1) of the JTAG control signal register to 1. Thereafter, the CPU needs some
time to synchronize with JTAG control. To check if the CPU is synchronized, bit 9 (TCE) is tested (sync
successful if set to 1). Once this bit is verified as high, the CPU is under the control of the JTAG interface.
Following is the flow used to take the target device under JTAG control.

| R_SHI FT("I R_CNTRL_SI G 16BI T")
DR_SHI FT16(0x2401)

I R_SHI FT(" I R_CNTRL_SI G CAPTURE")
DR_SHI FT16(0x0000)

No
Bit 9 of TDOword = 1?
Yes
CPU is under JTAG control
SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 17

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

3.2

3.2.1

3.2.2

General Functions

The functions described in this section are used for general control of the target MSP430 CPU, as well as
high-level JTAG access and bus control.

Set CPU to Instruction-Fetch
Reference function: SetlnstrFetch

Sometimes it is useful for the target device to directly execute an instruction presented by a host over the
JTAG port. To accomplish this, the CPU must be set to the instruction-fetch state. With this setting, the
target device CPU loads and executes an instruction as it would in normal operation, except that the
instruction is transmitted via JTAG. Bit 7 of the JTAG control signal register indicates that the CPU is in
the instruction-fetch state. TCLK should be toggled while this bit is zero. After a maximum of seven TCLK
clocks, the CPU should be in the instruction-fetch mode. If not (bit 7 = 1), a JTAG access error has
occurred and a JTAG reset is recommended.

I R_SHI FT(" I R_CNTRL_SI G_CAPTURE")
DR _SHI FT16(0x0000) = Readout data
Bit 7 of TDOvalue = 0?

drTCLK
Set TCLK
CPU is in the instruction-fetch state

Setting the Target CPU Program Counter (PC)

In order to use some of the features of the JTAG interface provided by the MSP430, setting of the CPU
program counter (PC) of the target device is required. The following flow is used to accomplish this.
Implementations for both the MSP430 and MSP430X architectures are shown,

 MSP430 architecture: Reference function: SetPC

CPU must be in the instruction-fetch state prior to the following sequence.
IR SH FT("IR_CNTRL_SI G 16BI T")
DR _SHI FT16(0x3401) : rel ease |ow byte
I R_SHI FT(" I R_DATA 16BI T")
DR_SHI FT16(0x4030) : Instruction to |load PC
C rTCLK
Set TCLK
DR_SHI FT16("PC _Val ue") : Insert the value for PC
G r TCLK
I R_SH FT("1 R_ADDR_CAPTURE")
Set TCLK
CrTCLK : Now PC is set to "PC_Val ue"
IR SH FT("I R CNTRL_SI G 16BI T")
DR_SHI FT16(0x2401) : low byte controlled by JTAG
Load PC completed

18

Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

» MSP430X architecture: Reference function: SetPC_x

CPU must be in the instruction-fetch state prior to the following sequence.

I R_SHI FT("I R_CNTRL_SI G 16BI T")

DR _SHI FT16(0x3401) rel ease | ow byte

I R_SHI FT("| R_DATA 16BI T")

DR_SHI FT16(0x0X80) Instruction to load PC, X = PC(19:16)
a r TCLK

Set TCLK

DR _SHI FT16("PC(15:0)") Insert the value for PC(15:0)

G r TCLK

I R_SHI FT(" | R_ADDR_CAPTURE")

Set TCLK

ClrTCLK : Now PC is set to "PC Val ue"

IR_SHI FT("I R_CNTRL_SI G 16BI T")

DR_SHI FT16(0x2401) low byte controlled by JTAG

Load PC completed

3.2.3 Controlled Stop/Start of the Target CPU
Reference function: HaltCPU/ReleaseCPU

While a memory location is accessed by the JTAG interface, the target device’s CPU should be taken into
a defined halt state. Stopping of the CPU is supported by the HALT_JTAG bit (bit 3) in the JTAG control

signal register, which is set to 1 with execution of the HaltCPU functi
memory location(s), the CPU can be returned to normal operation. T
ReleaseCPU prototype and simply resets the HALT_JTAG bit.

on. After accessing the required
his function is implemented via the

CPU must be in the instruction-fetch state prior to the following sequence

I R_SHI FT("1 R_DATA 16BI T")

DR_SHI FT16(Ox3FFF)
changing the state

"JWP $" instruction to keep CPU from

HaltCPU A rTCK

I R_SH FT("I R_CNTRL_SI G 16BI T")

DR _SHI FT16(0x2409) : set HALT JTAG bit

Set TCLK

Now the CPU is in a controlled state and is not altered during memory accesses.
Note: Do not reset the HALT_JTAG bit (= 0) while accessing the target memory.

Memory Access Performed Here

The CPU is switched back to normal operation using ReleaseCPU.

CrTCLK

IR_SH FT("I R_CNTRL_SI G 16BI T")

Release

CPU DR_SHI FT16(0x2401) : dear HALT JTAG bit

I R_SH FT(" | R_ADDR_CAPTURE")

Set TCLK

The CPU is now in the instruction-fetch state and ready to receive a new JTAG instruction. If the PC
has been changed while the memory was being accessed, the PC must be loaded with the correct
address.

SLAA149C—-December 2005—Revised October 2007

Bubmit Documentafion FeedbacK

Programming a Flash-Based MSP430 Using the JTAG Interface

19

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

Memory Programming Control Sequences

*L‘ TEXAS
INSTRUMENTS

www.ti.com

3.24 Resetting the CPU While Under JTAG Control
Reference function: ExecutePOR
Sometimes it is required to reset the target device while under JTAG control. It is recommended that a
reset be performed before programming or erasing the flash memory of the target device. When a reset
has been performed, the state of the target CPU is equivalent to that after an actual device power up. The
following flow is used to force a power-up reset.
IR SH FT("I R CNTRL_SI G 16BI T")
DR_SHI FT16(0x2C01) : Apply Reset
DR_SHI FT16(0x2401) : Renpve Reset
C rTCLK
Set TCLK
G rTCLK
Set TCLK
CrTCLK
I R_SH FT("1 R_ADDR_CAPTURE")
Set TCLK
The target CPU is now reset; the PC points to the start address of the user program, which is the
address pointed to by the data stored in the reset vector memory location OxXFFFEh and all registers are
set to their respective power-up values.
The target device’s watchdog timer must now be disabled in order to avoid an undesired reset of the
target.
I R_SH FT("I R _DATA 16BI T")
DR_SHI FT16(0x3FFF) : "JMP $" instruction to keep CPU from changing the
state
G rTCLK
IR SH FT("I R_CNTRL_SI G 16BI T")
DR_SHI FT16(0x2409) : set HALT_JTAG bit
Set TCLK
CrTCLK
IR SHFT("IR CNTRL_SIG 16BI T") : Disable Watchdog
DR _SHI FT16(0x2408) © Set to Wite
IR_SH FT("I R_ADDR_16BI T")
DR _SHI FT16(0x0120) : Set Watchdog Control Register Address
I R_SH FT("1 R DATA TO ADDR')
DR_SHI FT16(0x5A80) . Wite to Watchdog Control Register
Set TCLK
The target CPU is now released for the next operation.
G rTCLK
IR SH FT("I R_CNTRL_SI G 16BI T")
DR _SHI FT16(0x2401) : Set to Read
I R_SHI FT(" | R_ADDR_CAPTURE")
Set TCLK
20 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

3.2.5

Release Device From JTAG Control
Reference function: ReleaseDevice
After the desired JTAG communication is completed, the CPU is released from JTAG control. There are

two ways to accomplish this task:

» Disconnect the external JTAG hardware and perform a true power-up reset. The MSP430 then starts
executing the program code beginning at the address stored at OxFFFEh (the reset vector).

* Release MSP430 from JTAG control. This is done by performing a reset using the JTAG control signal
register. The CPU must then be released from JTAG control by using the IR_CNTRL_SIG_RELEASE
instruction. The target MSP430 then starts executing the program at the address stored at OXFFFE.

Flow to release the target device:

IR_SH FT("I R_CNTRL_SI G _16BI T")
DR _SHI FT16(0x2C01) : Apply Reset
DR_SHI FT16(0x2401) : Renpbve Reset

I R_SHI FT("1 R_CNTRL_SI G_RELEASE")
The target CPU starts program execution with the address stored at location OxOFFFE (reset vector).

3.3 Accessing Non-Flash Memory Locations With JTAG
3.3.1 Read Access
To read from any memory address location (peripherals, RAM or flash), the R/W signal must be set to
READ using the JTAG control signal register (bit O set to 1). The MSP430 MAB must be set to the specific
address to be read using the IR_ADDR_16BIT instruction while TCLK is 0. To capture the corresponding
value of the MSP430 MDB, the IR_DATA_TO_ADDR instruction must be executed. After the next rising
edge of TCLK, the data of this address is present on the MDB. The MDB can now be captured and read
out via the TDO pin using a 16-bit JTAG data access. When TCLK is set low again, the address of the
next memory location to be read can be applied to the target MAB. Following is the flow required to read
data from any memory address of a target device. Implementations for both the MSP430 and MSP430X
architectures are shown.
* MSP430 architecture, Reference function: ReadMem
Set CPU to stopped state (HaltCPU)
a rTCLK
I R_SHI FT("I R_CNTRL_SI G 16BI T")
DR_SHI FT16(0x2409) : Read Menory
I R_SHI FT(" | R_ADDR_16BI T")
DR _SHI FT16(" Addr ess") : Set desired address
I R_SHI FT(" | R_DATA_TO_ADDR")
Set TCLK Yes
a r TCLK
DR _SHI FT16(0x0000) : Menory value shifted out on TDO
Read again?
No
ReleaseCPU should now be executed, returning the CPU to normal operation.
SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 21

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

Memory Programming Control Sequences

*L‘ TEXAS
INSTRUMENTS

www.ti.com

» MSP430X architecture, Reference function: ReadMem_x

Set CPU to stopped state (HaltCPU)

drTCLK
IR_SH FT("IR_CNTRL_SI G 16BI T")
DR_SHI FT16(0x2409) Read Menory
I R_SHI FT(" | R_ADDR_16BI T")
DR_SHI FT20(" Addr ess") . Set desired address
I R_SH FT(" I R_DATA TO ADDR')
Set TCLK Yes
drTCLK
DR_SHI FT16(0x0000) Menory value shifted out on TDO
Read again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

3.3.2 Write Access
To write to a memory location in peripherals or RAM (but not flash), the R/W signal must be set to WRITE
using the JTAG control signal register (bit O set to 0). The MAB must be set to the specific address using
the IR_ADDR_16BIT instruction while TCLK is low. The MDB must be set to the data value to be written
using the IR_DATA _TO_ADDR instruction and a 16-bit JTAG data input shift. On the next rising edge of
TCLK, this data is written to the selected address set by the value on the MAB. When TCLK is asserted
low, the next address and data to be written can be applied to the MAB and MDB. After completion of the
write operation, it is recommended to set the R/W signal back to READ. Following is the flow for a
peripheral or RAM memory address write. Implementations for both the MSP430 and MSP430X
architectures are shown.
* MSP430 architecture, Reference function: WriteMem
Set CPU to stopped state (HaltCPU)

a r TCLK

I R_SHI FT("I R_CNTRL_SI G 16BI T")

DR_SHI FT16(0x2408) Wite Menory

I R_SHI FT(" | R_ADDR_16BI T")

DR _SHI FT16(" Addr ess") : Set desired address

I R_SHI FT(" | R_DATA_TO ADDR") Ves

DR_SHI FT16(" Dat a") Send 16-bit Data

Set TCLK

Write again?
No
ReleaseCPU should now be executed, returning the CPU to normal operation.
22 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

* MSP430X architecture, Reference function: WriteMem_x

Set CPU to stopped state (HaltCPU)
drTCLK
IR_SH FT("IR_CNTRL_SI G 16BI T")
DR _SHI FT16(0x2408) © Wite Menory
I R_SHI FT(" | R_ADDR_16BI T")
DR_SHI FT20(" Addr ess") : Set desired address
I R_SH FT(" I R_DATA TO ADDR') Ves
DR _SHI FT16(" Data") : Send 16-bit Data
Set TCLK

Write again?
No
ReleaseCPU should now be executed, returning the CPU to normal operation.

3.3.3 Quick Access of Memory Arrays

The JTAG communication implemented on the MSP430 also supports access to a memory array in a
more efficient manner. The instruction IR_DATA_ QUICK is used to accomplish this operation. The R/W
signal selects whether a read or write access is to be performed. Before this instruction can be loaded into
the JTAG IR register, the program counter (PC) of the target MSP430 CPU must be set to the desired
memory starting address. After the IR_DATA_QUICK instruction is shifted into the IR register, the PC is
incremented by two with each falling edge of TCLK, automatically pointing the PC to the next memory
location. The IR_DATA_QUICK instruction allows setting the corresponding MDB to a desired value
(write), or captures (reads) the MDB with a DR_SHIFT16 operation. The MDB should be set when TCLK
is low. On the next rising TCLK edge, the value on the MDB is written into the location addressed by the
PC. To read a memory location, TCLK must be high before the DR_SHIFT16 operation is executed.

3.3.3.1 Flow for Quick Read (All Memory Locations)
Reference function: ReadMemQuick

Set PC to start address — 4 (SetPC)
Switch CPU to stopped state (HaltCPU)

a r TCLK
IR SH FT("I R CNTRL_SI G 16BI T")
DR_SHI FT16(0x2409) : Set RWto read
I R_SHI FT("I R_DATA QUI CK")
Set TCLK Ves
DR_SHI FT16(0x0000)
a r TCLK . Auto-increnents PC
Read From Next Address?
No

ReleaseCPU should now be executed, returning the CPU to normal operation. Reset the target CPU'’s
PC if needed (SetPC).

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 23
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

3.3.3.2

Flow for Quick Write (RAM and Peripheral Memory Only)
Reference function: WriteMemQuick

Set PC to start address — 4 (SetPC)
Switch CPU to stopped state (HaltCPU)

CrTCLK
IR SH FT("IR_CNTRL_SI G 16BI T")
DR _SHI FT16(0x2408) : Set RWto wite
I R_SHI FT(" I R_DATA QUI CK")
DR_SHI FT16(" Dat a") . Set data Ves
Set TCLK
G r TCLK : Auto-increnents PC
Write To Next Address?
No

ReleaseCPU should now be executed, returning the CPU to normal operation. Reset the target CPU’s
PC if needed (SetPC).

3.4 Programming the Flash Memory (Using the Onboard Flash Controller)
Reference function: WriteFLASH
This section describes one method available to program the flash memory module in an MSP430 device.
It uses the same procedure that user-defined application software, which would be programmed into a
production-equipment MSP430 device, would utilize. (Note: Nonconsecutive flash memory addressing is
supported.)
This programming method requires a TCLK frequency of 350 kHz + 100 kHz while the erase or
programming cycle is being executed. (For more information on the flash controller timing, please see the
corresponding MSP430 user’s guide and specific device data sheet.) The following table shows the
required minimum number of TCLK cycles, depending on the action performed on the flash (for FCTL2
register bits 0 — 7 = 0x40 as defined in the MSP430 user’s guide).
Table 7. Erase/Program Minimum TCLK Clock Cycles
FLASH Action Minimum TCLK Count
Segment erase 4820
Mass erase 5300-10600®)
Program word 35
() MSP430 Device-dependent, refer to device specific datasheet. Refer to for more details.
24 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

The following JTAG communication flow shows programming of the MSP430 flash memory using the
onboard flash controller. In this implementation, 16-bit words are programmed into the main flash memory
area. To program bytes, the BYTE bit in the JTAG CNTRL_SIG register must be set high while in

programming mode. StartAddr is the starting

address of the flash memory array to be programmed.

Switch CPU to stopped state (HaltCPU)

drTCLK

I R_SHI FT("I R_CNTRL_SI G_16BI T")

DR_SHI FT16(0x2408) Set RWto Wite

| R_SHI FT(" I R_ADDR_16BI T")

DR _SHI FT16(0x0128) Point to FCTL1 Address

| R_SHI FT(" | R_DATA_TO ADDR')

DR_SHI FT16(0xA540)

Enable FLASH Wite Access

Set TCLK

G r TCLK

I R_SHI FT(" | R_ADDR 16BI T")

DR_SHI FT16(0x012A) @) Point to FCTL2 Address
I R_SHI FT(" I R_DATA TO ADDR')
DR_SHI FT16(0xA540) Source is MCLK, divider by 1
Set TCLK
a rTCLK
| R_SHI FT(" I R_ADDR_16BI T")
DR_SHI FT16(0x012¢) @ Point to FCTL3 Address
I R_SHI FT(" I R_DATA TO ADDR')
DR_SHI FT16(0xA500) @ Clear FCTL3 Register
Set TCLK
a rTCLK
I R_SHI FT("I R_CNTRL_SI G 16BI T")
DR_SHI FT16(0x2408) Set RWto Wite
I R_SHI FT("I R_ADDR 16BI T")
DR _SHI FT16(" Address") @ Set Address for Wite
| R_SHI FT(" | R_DATA_TO ADDR')
DR_SHI FT16(" Dat a") Set Data for Wite
Set TCLK Ves
a rTCLK
IR SHI FT("I R CNTRL_SI G 16BI T")
DR_SHI FT16(0x2409) Set RWto Read
SetTCLK Repeat 35 times ©
a rTCLK

Write Another Flash Address?

No

I R_SHI FT("I R_CNTRL_SI G 16BI T")
DR_SHI FT16(0x2408) Set RWto Wite
I R_SHI FT("I R_ADDR 16BI T")
DR _SHI FT16(0x0128) @ Point to FCTL1 Address

M Replace with DR_SHIFT20(“Address”) when programming an MSP430X architecture device.

Substitute 0xA540 for '2xx devices for Info-Segment A programming.
Correct timing required. Must meet min/max TCLK frequency requirement of 350 kHz =100 kHz.

SLAA149C—-December 2005—Revised October 2007

Bubmit Documentafion FeedbacK

Programming a Flash-Based MSP430 Using the JTAG Interface

25

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

I R_SHI FT(" I R_DATA_TO ADDR')
DR_SHI FT16(0xA500) . Disable FLASH Wite Access
Set TCLK
C rTCLK
I R_SH FT("I R_ADDR_16BI T")
DR _SHI FT16(0x012¢C) @ : Point to FCTL3 Address
I R_SHI FT(" I R_DATA_TO ADDR')
DR_SHI FT16(0xA500) @ . Disable FLASH Wite Access
Set TCLK
ReleaseCPU should now be executed, returning the CPU to normal operation.

3.5 Reading From Flash Memory
Reference function: ReadMem or ReadMemQuick
The flash memory can be read using the normal memory read flow given earlier for non-flash memory
addresses. The quick access method can also be used to read flash memory.
3.6 Verifying the Flash Memory
Reference function: VerifyMem
Verification is performed using a pseudo signature analysis (PSA) algorithm, which is built into the
MSP430 JTAG logic and executes in =23 ms/4 kB.
3.7 Erasing the Flash Memory (Using the Onboard Flash Controller)
Reference function: EraseFLASH
This section describes how to erase one segment of flash memory (ERASE_SGMT), how to erase the
device main memory (ERASE_MAIN), and how to perform an erase of the complete flash memory
address range including, main and info flash segments (ERASE_MASS). This method requires the user to
provide a TCLK signal at a frequency of 350 kHz + 100 kHz while the erase cycle is being executed, as is
also the case when programming the flash memory. The following tables show the segment and mass
erase flows, respectively, and the minimum number of TCLK cycles required by the flash controller to
perform each action (FCTL2 register bits 0—7 = 0x40).
3.7.1 Flow to Erase a Flash Memory Segment
Switch CPU to stopped state (HaltCPU)
d r TCLK
I R_SHI FT(" I R_CNTRL_SI G_16BI T")
DR_SHI FT16(0x2408) . Set RWto Wite
I R_SHI FT("| R_ADDR_16BI T")
DR_SHI FT16(0x0128) O © Point to FCTL1 Address
I R_SHI FT(" | R_DATA_TO ADDR')
DR_SHI FT16(0xA502) . Enable FLASH segnent erase
Set TCLK
G r TCLK
I R_SHI FT("| R_ADDR_16BI T")
DR_SHI FT16(0x012A) © Point to FCTL2 Address
I R_SHI FT(" | R_DATA_TO ADDR')
@ Replace with DR_SHIFT20("Address") when programming an MSP430X architecture device.
26 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{';‘ TEXAS

INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

DR_SHI FT16(0xA540) Source is MCLK, divider by 1
Set TCLK

G r TCLK

I R_SHI FT("I R_ADDR 16BI T")

DR_SHI FT16(0x012C) Point to FCTL3 Address

I R_SHI FT(" | R_DATA TO ADDR')

DR_SHI FT16(0xA500) @ Clear FCTL3 Register

Set TCLK

G r TCLK

IR SHIFT("I R CNTRL_SI G 16BI T")

DR SHI FT16(“ Er aseAddr”) @ . Set Address for Erase ©®

I R_SHI FT(" | R_DATA TO ADDR')

DR_SHI FT16(0X55AA) 5 ;/\rtti te Dummy Data for Erase
Set TCLK

G r TCLK

IR_SHIFT("I R CNTRL_SI G 16BI T")

DR_SHI FT16(0x2409) Set RWto Read

Set TALK Repeat 4819 times)
a r TCLK

IR SHI FT("I R CNTRL_SI G 16BI T")

DR_SHI FT16(0x2408) Set RWto Wite

I R_SHI FT("I R_ADDR 16BI T")

DR_SHI FT16(0x0128) @ Point to FCTL1 Address

I R_SHI FT(" | R_DATA TO ADDR')

DR_SHI FT16(0xA500)

Di sabl e FLASH Erase

Set TCLK

G r TCLK

I R_SH FT("I R_ADDR 16BI T")

DR_SHI FT16(0x012¢C) @

Poi nt

to FCTL3 Address

I R_SHI FT(" | R_DATA TO ADDR')

DR _SHI FT16(0xA500) @

Di sable FLASH Wite Access

Set TCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

@
3)
4)

Substitute 0xA540 for '2xx devices for Info-Segment A programming.

The EraseAddr parameter is the address pointing to the flash memory segment to be erased.
Correct timing required. Must meet min/max TCLK frequency requirement of 350 kHz +100 kHz.

SLAA149C—-December 2005—Revised October 2007
Bubmit Documentafion FeedbacK

Programming a Flash-Based MSP430 Using the JTAG Interface 27

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences
3.7.2 Flow to Erase the Entire Flash Address Space (Mass Erase)

Beside the TCLK signal at a frequency of 350 kHz + 100 kHz (used for the Flash Timing Generator, data
sheet parameter fz1g), two more data sheet parameters must be taken into account when using the
described method to perform a mass or main memory erase. The first is tcyerase (Cumulative mass erase
time) and the second is tyass erase (Mass erase time). Two different specification combinations of these
parameters are currently implemented in dedicated MSP430 devices. shows an overview of the
parameters (assuming a maximum TCLK frequency of 450 KHz).

Table 8. Flash Memory Parameters (ferg = 450 kHz)

. Mass Erase Duration Generated by the
Implementation temErase tmass Erase Flash Timing Generator Y
200 ms 5300 X terg 11.1 ms
2 20 ms 10600 X terg 20 ms

For implementation 1, in order to assure the recommended 200-ms erase time to safely erase the flash
memory space, 5300 TCLK cycles are transmitted to the target MSP430 device and repeated 19 times.
With implementation 2, the following sequence needs to be performed only once.

Note: MSP430F2xx devices have four information memory segments of 64 bytes each. Segment
INFOA (refer to MSP430F2xx Family User’s Guide for more information) is a lockable flash
information segment and contains important calibration data for the MSP430F2xx clock
system (DCO) unique to the given device programmed at production test. The remaining
three information memory segments (INFOB, INFOC and INFOD) cannot be erased by a
mass erase operation as long as INFOA is locked. INFOB, INFOC, and INFOD can be
erased segment by segment, independent of the lock setting for INFOA. Unlocking INOFA
allows performing the mass erase operation.

Switch CPU to stopped state (HaltCPU)
G r TCLK
IR SH FT("I R CNTRL_SI G _16BI T")
DR_SHI FT16(0x2408) . set RWto wite
IR _SHI FT("I R_ADDR 16BI T")
DR_SHI FT16(0x0128) @ : FCTL1 address
IR SH FT("I R _DATA TO ADDR')
DR_SHI FT16(0xA506) : Enable FLASH nass erase
Set TCLK
a r1ax oo e %
IR _SHI FT("I R_ADDR 16BI T")
DR _SHI FT16(0x012A) @ : FCTL2 address
IR SH FT("I R _DATA TO ADDR')
DR_SHI FT16(0xA540) : Source is MCLK and divider is O
Set TCLK
G r TCLK
IR _SHI FT("I R_ADDR 16BI T")
DR_SHI FT16(0x012C) @ : FCTL3 address
IR SH FT("I R _DATA TO ADDR')

@ Correct timing required. Must meet min/max TCLK frequency requirement of 350 kHz +100 kHz.
@) Replace with DR_SHIFT20(“Address”) when programming an MSP430X architecture device.

28 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Memory Programming Control Sequences

DR_SHI FT16(0xA500) ©

Clear FCTL3 register

Set TCLK

CrTCLK

I R_SHI FT("I R_ADDR_16BI T")

DR SHI FT16(" Er aseAddr") @

. Set address for erase ¥

I R_SHI FT(" | R_DATA_TO ADDR')

DR_SHI FT16(0x55AA)

Wite dummy data for erase start

Set TCLK

a r TCLK

I R_SHI FT("I R_CNTRL_SI G 16BI T")

DR_SHI FT16(0x2409)

set RWto read

Set TCLK

G r TCLK

Perform 10600 or 5300 times®
Perform once or

IR_SH FT("I R_CNTRL_SI G 16BI T")

Repeat 19 times®

DR_SHI FT16(0x2408)

set RWto wite

I R_SHI FT(" | R_ADDR_16BI T")

DR SHI FT16(0x0128) @

FCTL1 address

I R_SHI FT(" | R_DATA_TO ADDR')

DR_SHI FT16(0xA500)

Di sabl e FLASH erase

Set TCLK

d rTCLK

I R_SHI FT(" | R_ADDR_16BI T")

DR SHI FT16(0x012C) @

Point to FCTL3 Address

I R_SHI FT(" | R_DATA_TO ADDR')

DR_SHI FT16(0xA500) ©

Di sable FLASH Wite Access

Set TCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

(@) substitute 0xA540 for '2xx devices for Info-Segment A programming.
@) The EraseAddr parameter is the address pointing to the flash memory segment to be erased. For mass erase, an even value in
the address range of the information memory should be used. For main memory erase, an even value in the address range of

the main memory should be used.

SLAA149C—-December 2005—Revised October 2007
Bubmit Documentafion FeedbacK

Programming a Flash-Based MSP430 Using the JTAG Interface 29

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

Programming the JTAG Access Protection Fuse

*L‘ TEXAS
INSTRUMENTS

www.ti.com

4 Programming the JTAG Access Protection Fuse
Two similar methods are described and implemented, depending on the target MSP430 device family.

All devices having a TEST pin use this input to apply the programming voltage, Vpp. As previously
described, these devices have shared-function JTAG interface pins. The higher pin count MSP430
devices with dedicated JTAG interface pins use the TDI pin for fuse programming.

Devices with a TEST pin:

Table 9. MSP430 Device JTAG Interface (Shared Pins)

Pin Direction Usage
P1.5/TMS IN Signal to control JTAG state machine
P1.4/TCK IN JTAG clock input
P1.6/TDI IN JTAG data input/TCLK input
P1.7/TDO ouT JTAG data output
TEST IN Logic high enables JTAG communication; Vpp input while programming JTAG fuse

Devices without a TEST pin (dedicated JTAG pins):

Table 10. MSP430 Device Dedicated JTAG Interface

Pin Direction Usage
TMS IN Signal to control JTAG state machine
TCK IN JTAG clock input
TDI IN JTAG data input/TCLK input; Vpp input while programming JTAG fuse
TDO OUT/IN JTAG data output; TDI input while programming JTAG fuse
Note: The value of Vpp required for fuse programming can be found in the corresponding target
device data sheet. For existing flash devices, the required voltage for Vpp is 6.5V £ 0.5 V.
30 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Programming the JTAG Access Protection Fuse

4.1 Standard 4-Wire JTAG
Reference function: BlowFuse

41.1 Fuse-Programming Voltage via TDI Pin (Dedicated JTAG Pin Devices Only)

When the fuse is being programmed, Vpp is applied via the TDI input. Communication data that is
normally sent on TDI is sent via TDO during this mode. describes the dual functionality for the
TDI and TDO pins.) The settling time of the Vpp source must be taken into account when generating the
proper timing to blow the fuse. The following flow details the fuse programming sequence built into the
BlowFuse function.

IR SHIFT(“I R CNTRL_SI G 16BI T")
DR _SHI FT_I N(0x7201) : Configure TDO as TDI
TDI signal releases to target, TDI is now provided on TDO.
I R SH FT(“I R PREPARE BLOW) (through TDO pin)
MsDel ay(1) : Delay for 1ns
Connect Vpp to TDI pin

Wait until Vpp input has settled (depends on Vpp source)
IR SH FT(“IR_.EX_ BLOW) : Sent to target via TDO
MsDel ay(1) : Delay for 1ns
Remove Vpp from TDI pin
Switch TDI pin back to TDI function and reset the JTAG state machine (ResetTAP)

41.2 Fuse-Programming Voltage via TEST Pin

The same method is used to program the fuse for the TEST pin MSP430 devices, with the exception that
the fuse-blow voltage, Vpp, is now applied to the TEST input pin.

I R_SHI FT(“I R_PREPARE_BLOW)
MsDel ay(1) : Delay for 1ns
Connect Vpp to TEST pin
Wait until VPP input has settled (depends on VPP source)

I R_SHI FT(*“I R_EX_BLOW)

MsDel ay(1) : Delay for 1ns

Remove Vpp from TEST pin
Reset the JTAG state machine (ResetTAP)

4.2 Fuse-Programming Voltage via SBW
Reference function: BlowFuse_sbw

In SBW mode, the TEST/SBWTCK pin is used to apply fuse-blow voltage Vpp. The required timing
sequence is shown in Figure 17. The actual fuse programming happens in the Run-Test/Idle state of the
TAP controller. After the IR_EX_BLOW instruction is shifted in via SBW one more TMS_SLOT must be
performed. Then a stable Vpp needs to be applied to SBWTCK. Taking SBWTDIO high as soon as Vpp
has been settled will blow the fuse. It is required that SBWTDIO is low on exit of the IR_EX_ BLOW
instruction shift.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 31
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

Programming the JTAG Access Protection Fuse

” TEXAS
INSTRUMENTS

www.ti.com

Apply fuse blow voltage
before taking SBWTDIO high

LA;

SBWTCK

SBWTDIO

SN VN VN VI N VS VS S

Execute Blow

TDISlot : TDO Slot TMSSlot : TDISlot : TDO Slot TMS Slot : * TDI Slot
N | . : M M

I
TCK i

! : :

TAP State >< ue)date-m >< Run-Test/Idle

i
|
Enable Blow |
i
!
I

AN\

A

Original fuse blow signal
goes high with entering
the Run-Test/Idle state.

Signal to fuse blow
transistor delayed until
SBWTDIO goes high.

Figure 12. Fuse Blow Timing

4.3 Testing for a Successfully Programmed Fuse

Reference function: IsFuseBlown

Once the fuse is programmed and a RESET (via the JTAG ExecutePOR command or the RST/NMI pin in
hardware) has been issued, the only JTAG function available on the target MSP430 is BYPASS. When
the target is in BYPASS, data sent from host to target is delayed by one TCK pulse and output on TDO,
where it can be received by other devices downstream of the target MSP430.

To test a device for a programmed fuse, access to any JTAG data register can be attempted. In the
following communication sequence, the JTAG CNTRL_SIG register is accessed.

Initialize JTAG access (ResetTAP)

I R_SHI FT(“1 R_CNTRL_SI G_CAPTURE")

DR_SHI FT16(OxAAAA)

Is TDO output value = 0x55557?

Yes:

Fuse IS programmed

No:

Fuse NOT programmed

32 Programming a Flash-Based MSP430 Using the JTAG Interface

SLAA149C—-December 2005—-Revised October 2007

Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

JTAG Function Prototypes

5 JTAG Function Prototypes

5.1 Low-Level JTAG Functions

static word IR_Shift (byte Instruction)

Shifts a new instruction into the JTAG instruction register through TDI. (The instruction is shifted in
MSB first; the MSB is interpreted by the JTAG instruction register as the LSB.)

Arguments: byte Instruction (8-bit JTAG instruction)
Result: word TDOword (Value shifted out on TDO = JTAG_ID)

static word DR_Shift16 (word Data)
Shifts a given 16-bit word into the JTAG data register through TDI (data shift MSB first)
Arguments: word data (16-bit data value)
Result: word (Value shifted out simultaneously on TDO)

static void ResetTAP (void)

Performs fuse-blow check, resets the JTAG interface, and sends the JTAG state machine (TAP
controller) to the Run-Test/Idle state

Arguments: None
Result: None

static word ExecutePOR (void)

Executes a power-up clear command via the JTAG control signal register. This function also
disables the target device’s watchdog timer in order to avoid an automatic reset condition.

Arguments: None

word (STATUS_OK if the queried JTAG ID is valid, STATUS_ERROR

Result otherwise)

static word SetInstrFetch (void)
Sends the target device’s CPU into the instruction fetch state
Arguments: None

word (STATUS_OK if instruction-fetch state is set, STATUS_ERROR

Result otherwise)

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 33
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

JTAG Function Prototypes

static void SetPC (word Addr)
Loads the target device CPU’s program counter (PC) with the desired 16-bit address
Arguments: word Addr (Desired 16-bit PC value)
Result: None

static void HaltCPU (void)
Sends the target CPU into a controlled, stopped state
Arguments: None
Result: None

static void ReleaseCPU (void)

Releases the target device’s CPU from the controlled, stopped state. (Does not release the target
device from JTAG control. See ReleaseDevice.)

Arguments: None
Result: None

static word VerifyPSA (word StartAddr, word Length, word *DataArray)

Compares the computed pseudo signature analysis (PSA) value to the PSA value shifted out from
the target device. It can be used for very fast data block or erasure verification (called by the
EraseCheck and VerifyMem prototypes discussed previously).

Arguments: word StartAddr (Start address of the memory data block to be checked)
word Length (Number of words within the data block)
word *DataArray (Pointer to an array containing the data, O for erase check)

Result: word (STATUS_OK if comparison was successful, STATUS_ERROR
otherwise)

5.2 High-Level JTAG Routines

word GetDevice (void)

Takes the target MSP430 device under JTAG control. Sets the target device’s CPU watchdog to a
hold state; sets the global DEVICE variable.

Arguments: None

Result: word (STATUS_ERROR if fuse is blown, JTAG_ID is incorrect (not = 0x89) or
synchronizing time-out occurs; STATUS_OK otherwise)

void ReleaseDevice (word Addr)
Releases the target device from JTAG control; CPU starts execution at the specified PC address
Arguments: word Addr (OXFFFE: Perform reset; address at reset vector loaded into PC;
otherwise address specified by Addr loaded into PC)
Result: None

34 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

JTAG Function Prototypes

void WriteMem (word Format, word Addr, word Data)
Writes a single byte or word to a given address (RAM/peripheral only)
Arguments: word Format (F_BYTE or F_ WORD)
word Addr (destination address for data to be written)
word Data (data value to be written)
Result: None

void WriteMemQuick (word StartAddr, word Length, word *DataArray)
Writes an array of words into the target device memory (RAM/peripheral only)
Arguments: word StartAddr (start address of destination memory)
word Length (number of words to be programmed)
word *DataArray (pointer to array containing the data)
Result: None

void WriteFLASH (word StartAddr, word Length, word *DataArray)

Programs/verifies an array of words into flash memory using the flash controller of the target
device

Arguments: word StartAddr (Start address of destination flash memory)
word Length (Number of words to be programmed)
word *DataArray (Pointer to array containing the data)
Result: None

word WriteFLASHallSections (word *DataArray)

Programs/verifies a set of arrays of words into flash memory by using the WriteFLASH() function.

It conforms to the CodeArray structure convention of the target device program file:
Target_Code.txt. (See Appendix A for more information on file structure.)

Arguments: word *CodeArray (pointer to an array set containing the data)
Result: word (STATUS_OK if write/verification was successful, STATUS_ERROR
otherwise)

word ReadMem (word Format, word Addr)
Reads one byte or word from a specified target memory address
Arguments: word Format (F_BYTE or F_WORD)
word Addr (target address for data to be read)
Result: word (data value stored in the target address memory location)

void ReadMemQuick (word StartAddr, word Length, word *DataArray)
Reads an array of words from target memory
Arguments: word StartAddr (start address of target memory to be read)
word Length (number of words to be read)
word *DataArray (pointer to array for data storage)
Result: None

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface
Eubmit Documentafion FeedbacH

35

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

References

void EraseFLASH (word EraseMode, word EraseAddr)

Performs a mass erase (with or without information memory) or a segment erase of a flash module
specified by the given mode and address

Arguments: word EraseMode (ERASE_MASS, ERASE_MAIN or ERASE_SGMT)
word EraseAddr (any address within the selected segment to be erased)
Result: None

word EraseCheck (word StartAddr, word Length)
Performs an erase check over the given memory range
Arguments: word StartAddr (start address of memory to be checked)
word Length (number of words to be checked)

Result: word (STATUS_OK if erase check was successful, STATUS_ERROR
otherwise)

word VerifyMem (word StartAddr, word Length, word *DataArray)
Performs a program verification over the given memory range
Arguments: word StartAddr (start address of memory to be verified)
word Length (number of words to be verified)
word *DataArray (pointer to array containing the data)

Result: word (STATUS_OK if verification was successful, STATUS_ERROR
otherwise)

word BlowFuse (void)

Programs (or blows) the JTAG interface access security fuse. This function also checks for a
successfully programmed fuse using the IsFuseBlown() prototype.

Arguments: None
Result: word (STATUS_OK if fuse blow was successful, STATUS_ERROR otherwise)

word IsFuseBlown (void)
Determines if the security fuse has been programmed on the target device
Arguments: None
Result: word (STATUS_OK if fuse is blown, STATUS_ERROR otherwise)

6 References
MSP430Fxxx device data sheets
MSP430x1xx Family User's Guide, literature number SLAU049
MSP430x4xx Family User's Guide, literature number SLAUO56
MSP430x2xx Family User's Guide, literature number SLAU144
IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE STD1149.1

36 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Third-Party Support

7 Third-Party Support

SoftBaugh, Inc., offers a complete system as shown in ppendix A, which is compatible with the software
available with the MSP430 Flash Programming Replicator application report. This information can be
found at this address: http://www.softbaugh.com/ExtREP430.html

SoftBaugh, Inc.

5400 Laurel Springs Parkway
Suite 1001

Suwanee GA 30024

Tel.: 800-794-5756

Fax: 770-886-1777

E-mail: e-mail info@softbaugh.com
Web site: www.softbaugh.com

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 37
Eubmit Documentafion FeedbacH

http://www.softbaugh.com/ExtREP430.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Appendix A

Appendix A Implementation

A.1 Implementation History
There are two Replicator implementations. The latest version is discussed in this document, while the
previous version is found in a separate file, slaal49b.zip. The main difference between the two
implementations is the use of the srec_cat.exe function in place of FileMaker.exe. Corresponding changes
to function calls and declarations were made to the Replicator.c file. While the implementation described
in this document is preferred, the previous implementation is maintained for legacy users.
A.2 Implementation Overview
The following sections document the examples provided via .zip file along with this application report.
Each example demonstrates the software functions described in the previous sections using an
MSP430F149 as the host controller that programs the given target MSP430 flash-based device of choice.
The complete C source code and project files are provided in the attachment accompanying this
application report. A schematic for the system as implemented in this discussion is also provided.
Key features of the JTAG Replicator programmer implementations are as follows:
» Support all MSP430 flash-based devices. There are specific software projects for the following target
device Replicator implementations:
— Replicator: All 4-wire JTAG, MSP430 architecture devices (includes SBW devices when
programmed in 4-wire mode)
— Replicator for Spy-Bi-Wire: 2-wire interface implementation for SBW devices only
— Replicator for MSP430X: For 4-wire MSP430X extended architecture devices only
Note: The Replicator source files are provided in independent folders with the same names as
previously given. Within these folders, filenames are assigned accordingly when
applicable specifically to a certain device type. For example, the file JTAGfunc.c used in
the Replicator version, is renamed JTAGfuncSBW.c in the Replicator for SBW version
and JTAGfunc430X.c in the Replicator for MSP430X version.
* Maximum target device program code size: approximately 57 KB
» MSP430X target device source code must be placed in lower 64-kB address space.
* Programming speed (Erase, Program, Verify): approximately 8 KB in 1.5 s, 48 KBin 8 s
e Fast verify and erase check: 17 KB/10 ms
e Support programming of the JTAG access fuse (permanently disables device memory access via
JTAG)
» Stand-alone target programming operation (no personal computer or additional supporting
hardware/software required)
38 SLAA149C-December 2005—Revised October 2007

Bubmit Documentafion Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Software Operation

A.3

Software Operation

The host controller stores the JTAG communication protocol code and the target program in its flash
memory (61 KB available on the MSP430F149). The programming software itself occupies about 3.5 KB,
so approximately 57 KB remain for the target device program. The Replicator host can be loaded with the
target source code via the flash emulation tool (FET) or the MSP430 serial programming adapter. (See the
MSP430 website at for more information on device programming tools.)

The basic functionality of the programmer is as follows. Pushing the GO button generates a hardware
reset and starts the host controller's JTAG communication routine in order to erase, program, and verify
the target device. While the system is active, two LEDs on the programmer board are on; after successful
completion, only the green LED is on. If an error occurrs or communication to the target device fails, only
the red LED remains on. The entire procedure takes approximately 3 s for a target program size of 8 KB.
(Some code not strictly required to erase/program/verify the target MSP430 is executed at the end of the
Replicator.c source file, increasing the specified programming times. These additional instructions can be
customized to fit the individual system programming requirements.)

To achieve optimum performance, the JTAG communication protocol uses the SPI module on the host
MSP430F149 for the basic JTAG data shift function. To simplify code portability to alternative host
platforms, this shift function is also provided in the attached code as a software loop using the
general-purpose /O port functionality as an alternative. See the included source code file
LowLevelFunc.h, LowLevelFuncSBW.h, and LowLevelFunc430X.h.

To program the host MSP430F149 different development environments can be used—IAR Embedded
Workbench™ or CCE™ by Texas Instruments. The free versions of IAR and CCE impose code size
restrictions. In order to use the 57 KB previously mentioned, the full version of IAR or CCE is needed. The
folder structure provides both an IAR and CCE folder, each of which contains the environment-specific
files. For IAR, the workspace file (extension .eww) must be started to open the IAR Workbench. Using
CCE, each Replicator project must be imported into the user's workspace. This can be done by
right-clicking in the project's view and selecting "Import" in the context menu. After choosing the desired
Replicator folder, the project is imported and ready to use.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 39
Eubmit Documentafion FeedbacH

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*L‘ TEXAS
INSTRUMENTS

www.ti.com

Software Structure

A.4 Software Structure

The programming software is partitioned in three levels and consists of eight files in addition to the target
program (see below):

Top level Specifies which programming functions (erase, program, verify, blow fuse) are to be executed.

Contains the main section, which can be modified to meet custom requirements. In
the main section of this program, the target device is erased, checked for
successful erasure, and programmed. Programming loads the provided example
code to the target device’s memory space. (The provided code file simply flashes
port pins P1.0 and/or P5.1, which drive the LEDs on the socket board provided with
the FET tools, available from Texas Instruments MSP430 Group. This is the
compiled FETXXX_1.s43 example code file.) This file must be replaced by the
required user program and added to the project in order be compiled and loaded
into the host. To demonstrate the capabilities of the MSP430 JTAG interface,
additional code is included, which manipulates the 1/0-ports and RAM of the target
device. These routines can be used to test the target device and PCB for
successful communication.

Replicator.c

Contains the basic declarations of the program code of the target device. If a
C-header file should be implemented to program the target device instead of an
assembly file simply replace the content of Target_Code.h by the output of
srec_cat.exe and remove Target_Code.s43 (IAR) resp. Target_Code.asm (CCE)
from the project. The Target_Code.h file is generated by the srec_cat.exe file
directly or via the srec.bat file.

Target_Code.h

JTAG functions All MSP430-specific functions are defined here. These files should not be modified under any
circumstance.

JTAGfunc.c
JTAGfuncSBW.c Contain the MSP430-specific functions needed for flash programming
JTAGfunc430X.c
JTAGfunc.h

JTAGfuncSBW.h Contain constant definitions and function prototypes used for JTAG communication
JTAGfunc430X.h

Low-level functions All functions that depend specifically on the host controller (JTAG port I/O and timing functions) are located
here. These files need to be adapted if a host controller other than the MSP430F149 is implemented.

LowLevelFunc.c
LowLevelFuncSBW.c | Contain the basic host-specific functions
LowLevelFunc430X.c

LowLevelFunc.h
LowLevelFuncSBW.h | Contain host-specific definitions and function prototypes
LowLevelFunc430X.h

Devices Describes features and differences between MSP430 devices with respect to FLASH programming.
Devices.c Functions to distinguish MSP430 devices concerning FLASH programming.
Devices.h Device function prototypes and definitions for FLASH programming.

As mentioned previously, the target device’'s program code must be supplied separately. There are two
ways to include the provided example in the project space of the program to be sent to the host. Either
include a separate file (e.g., Target_Code.s43 (IAR) or Target_Code.asm (CCE)), which contains the
target code in assembly format, or replace the C-Array in the Target_Code.h header file. Both alternatives
must conform to the format expected by the slaal49 source code.

40 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Software Structure

To build these files from the TI-txt format output from the compiler, a conversion program called
srec_cat.exe and a batch file, srec.bat, are provided. TI-txt format can be output by the IAR Linker by
setting the required compiler/linker options (see the IAR tool instruction guides for more information). This
can also be done in CCE using the hex430 command line executable. srec_cat.exe is a command line

application which expects parameters in the following format:

'srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.h -c_array -output_word -c_compressed'
or

'srec_cat.exe Target _Code.txt -ti_txt -Output Target_Code.s43 -asm -output_word -a430' (IAR)
resp.

'srec_cat.exe Target Code.txt -ti_txt -Output Target_Code.asm -asm -output_word -cl430' (CCE)
Parameter description:

» 'srec_cat.exe": The name of the application

» 'Target_Code.txt -ti_txt": This is the input file by name and the format of it

e '-Output’: A keyword to make clear that following parameters describe the output file and format

e 'Target _Code.x -[c_array,asm]" This is the output file by name and the format the input file should be
converted in. For the slaal49 application report only C-header and assembly formats are allowed.

Choose one format for your purpose.

» ‘'-output_word: The parameter is necessary because the source code expects words to write to the

target device. Otherwise, srec_cat.exe would write bytes.

» '-c_compressed’: This statement is additional to the c_array output. If specified the output will not be fill

any address gap with a OXFF pattern, what finally will not increase the file size.

» The following statements are additional to the assembly output. Choose one to specify your format.

— '-a430" Writes an assembly file that is understood by the IAR Embedded Workbench in the
Replicator context.

— '-cl430": Writes an assembly file that is understood by TlI CCE in the Replicator context.

The srec.bat file generates all three types of output files (.h, .asm, and .s43) simultaneously. The
command line format is: 'srec Target_Code'.

Note: If the TI-txt source file includes odd segment addresses and/or an odd number of data bytes,
additional byte padding might be required to generate appropriate word-aligned output
format. Use srec_cat.exe with a "--fill OXFF --within <input> --range-padding 2" filter to fix this
problem. The srec.bat automatically filters the output format for appropriate word alignment.
For example, 'srec_cat.exe Target_Code.txt -ti_txt --fill OxFF --within Target_Code.txt -ti_txt
--range-padding 2 -Output Target_Code.h -c_array -output_word -c_compressed'

Note: If using assembly source code that contains the target code, make sure that the array
declarations are stored in target_code.h . An example can be seen in the included basic
header file.

Note: The provided conversion program is Open Source and has a much larger range of functions.
For more information and documentation see http://srecord.sourceforge.netj.
Additionally, this software was tested to function correctly with version 1.36, but will not
necessarily be compatible with future versions.

Note: To enable easy porting of the software to other microcontrollers, the provided source code is
written in ANSI-C. As always, it is recommended that the latest available version of the
applicable MSP430 development software be installed before beginning a new project.

SLAA149C-December 2005—Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface
Eubmit Documentafion FeedbacH

41

http://srecord.sourceforge.net/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Programmer Operation

A5

A.6

A.6.1

A.6.2

Programmer Operation

The following is a step-by-step procedure that demonstrates how the JTAG Replicator programmer could
be used together with any MSP430 FETXXX development tool using the IAR MSP430 development
environment.

Hardware Setup

The hardware (H/W) consists of the host controller MSP430F149, five semiconductor relays, two voltage
regulators and two JTAG interface connectors. An external power supply delivering 8 V to 10 V dc at
200 mA is required for operation (see Figure A-J).

Host Controller

To achieve maximum programming speed, the host controller MSP430F149 runs at a maximum CPU
clock frequency of 8 MHz, provided on LFXT1. CPU operation at this frequency requires a supply voltage
of 3.6 V for the host controller, which is provided by U2 in the schematic. The host is programmed via a
dedicated JTAG port labeled Host JTAG (see Figure A-J)).

Target Connection

The target MSP430 device is connected to the host controller/programmer through the 14-pin connector
labeled Target JTAG, which has the same standard signal assignment as all available MSP430 tools (FET
and PRGS tools). The host supply voltage of 3.6 V is also available on pin 2 of this connector, eliminating
the need for an additional supply for the target system, but it does not have to be used at the target. The
required Spy-Bi-Wire or 4-wire JTAG and GND must be connected. (On devices requiring the TEST pin,
the TEST signal also must be provided from the programmer to the target MSP430 device.)

To enable programming of all MSP430 flash-based devices including a JTAG access fuse, five
semiconductor relays are used, which are controlled by the host MSP430. Relay U4 controls Vpp On
devices with a TEST pin; U5 connects Vpp to TDI on devices not requiring a TEST signal. U6 isolates the
host controller from the target TDI pin while Vpp is connected to the target TDI input. U7 connects the host
TDI signal to the target TDO pin while the fuse is programmed (for devices without a TEST pin). U8
controls availability of V¢ to the target device. The host controller program includes delays, which
consider a relay switching time of a maximum of 5 ms. U4 and U5 should have a Roy < 1 Q to minimize
voltage drop during fuse programming. While the fuse is being programmed, a maximum current flow of
100 mA is possible for approximately 2 us into the TDI pin (or the TEST pin, depending on the target
device).

The following recommended relays meet the above requirements:

NAIS AQV212 (as shown in Figure A-T))
NEC PS710A

Matsushita AQV251

Matsushita ~ AQY211EH

CP Clare LCA710

42

Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

T/T 2198yg| dET:ETZT 908Z/07/Z2 :918Q

Hardware Setup

m”.._..., NIt
N3y idsqunN uUswn>og

gr401eo1dsy :3LIL

403eD11daYy-BELdSW T

ddi 4

Lno NI

NG"8-/+Ng'e = ddrt T NIN T

Qugpz / J0n@T NS+ = NIt

1S3 LNOddrT

1I0LNOddf

oarI 7 f ﬂ %.u "sIeisp 40t 14odas uonedridde aag
H

ZT9L0ar ‘abejroa rmopq asny Ayramoast
. 3y 1surebe g s128104d WYOBEE mr_h
'wyg @ 8q osie pnhoys gy “1ebaey ayp ud
papnioul Apeadie s J401SISa4 wypese © +F
'wyp @ 3g Ued it asimaaa

“(4[-=41mg) spol—a4ighds utt
STIIASP-XXTZT/XXAZ 4 WO uno[q 29 pinoys
dsnj MTdN28s 84} T paJinbad Auo st

| pazol> Tdr pue wyopee=gTH

= Tar

(]

HEYTalg

6+T40EHdSH

ddrT IQLNOdd

JUEATENE T/ ANAT
T

11
TM

(e 0

h .J 153r 30N

INSTRUMENTS
www.ti.com

{';‘ TEXAS

43

Programming a Flash-Based MSP430 Using the JTAG Interface

Figure A-1. Replicator Application Schematic

ocumentation Feedbac

uomi

SLAA149C—-December 2005—Revised October 2007

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Hardware Setup

Note: An MSP430 flash programmer system designed for a specific MSP430 target device or a
system not implementing fuse-blow functionality may require fewer relays or no relays at all.
The programmer system described herein was developed with the intention that it can be
used with any MSP430 flash-based device, across all families, including all memory access
functionality, as well as fuse-blow capability.

A.6.3 Host Controller/Programmer Power Supply

From the input voltage of 8 V to 10 V dc, two onboard voltages are generated using adjustable LDOS: V¢
= 3.6 V as supply voltage for the host controller MSP430F149 and target device, and Vpp = 6.5V t0
program the JTAG access fuse. While the fuse is being programmed, a peak current of 100 mA can flow
through the TEST input pin (see the corresponding target MSP430 device data sheet).

If the target H/W requires a supply voltage lower than 3.6 V, the V¢ output of the programmer can be
reduced accordingly (the host controller's CPU crystal frequency should be reduced as well), or level
shifters can be added to translate the required supply voltage to the desired level.

When using a target system that is powered locally, the V¢ level of the host programmer should match
that locally at the target. When differences exist between these voltage rails, communication between host
and target may fail due to invalid logic levels. It is also possible under these conditions that device
damage can occur.

44 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C-December 2005—Revised October 2007
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

{'f TEXAS
INSTRUMENTS

www.ti.com

Appendix B

Appendix B MSP430 JTAG Implementation

B.1 TAP Controller State Machine

Power
On

Fuse Check

0 Test-Logic-Reset

0
o Run-Test/IDLE
Y N

Select DR-Scan

Capture-DR
0

i
Tg'l'

o

O

1]

Pause-DR 0

Update-DR
1 0

Select IR-Scan

Capture-IR
0

IQI

(o

Pause-IR 0

Update-IR

Figure B-1. TAP Controller State Machine

B.2 MSP430 JTAG Restrictions (Non-Compliance With IEEE Std 1149.1)

The MSP430 device must be the first device in the JTAG chain (because of clocking via TDI and JTAG
fuse check sequence).

Only the BYPASS instruction is supported. There is no support for SAMPLE, PRELOAD, or EXTEST
instructions.

The JTAG pins are shared with port functions on certain devices — JTAG function controlled via TEST

SLAA149C—-December 2005—Revised October 2007

Eubmit Documentafion FeedbacH

45

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

Document Revision History

*5‘ TEXAS
INSTRUMENTS

www.ti.com

Document Revision History

Version Date Changes/Comments
Added information about MSP430 JTAG restrictions,
SLAAL49C September 2007 Renamed bit 11 of the JTAG control signal register from PUC to POR, Eeclion 2.4.3
Added
Updated with description for the usage of SRecord conversion tool

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

46 Revision History

SLAA149C—-December 2005—-Revised October 2007
Bubmit Documentation FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right, copyright, mask
work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from Tl to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated T| product or service and is an unfair and deceptive business
practice. Tl is not responsible or liable for any such statements.

Tl products are not authorized for use in safety-critical applications (such as life support) where a failure of the Tl product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of Tl products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its
representatives against any damages arising out of the use of Tl products in such safety-critical applications.

Tl products are neither designed nor intended for use in military/aerospace applications or environments unless the Tl products are
specifically designated by Tl as military-grade or "enhanced plastic." Only products designated by Tl as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of Tl products which Tl has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products
are designated by Tl as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications
Amplifiers Bmplifier.fi.con Audio [nww ircom/audid
Data Converters Automotive [www ii-com/automofivg
DSP [sp Broadband
Interface Digital Control [yww ii.com/digitalcontro]
Logic [oaiciiconi Military [vww T com/militany
Power Mgmt Rowerirconj Optical Networking [xww i.com/opficalnetworR
Microcontrollers Security
RFID Telephony [yww Ti.com/telephony
Low Power Video & Imaging [vww ti.com/vided
Wireless

Wireless [ww ircomiwirelesd

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Interface and Instructions
	2.1 JTAG Interface Signals
	2.1.1 4-Wire JTAG Interface
	2.1.2 2-Wire SBW JTAG Interface

	2.2 JTAG Access Macros
	2.2.1 Macros for 4-Wire JTAG Interface
	2.2.1.1 IR_SHIFT (8-bit Instruction)
	2.2.1.2 DR_SHIFT16 (16-bit Data)
	2.2.1.3 DR_SHIFT20 (20-bit Address) (Applies Only to MSP430X Devices)
	2.2.1.4 MsDelay (time)
	2.2.1.5 SetTCLK
	2.2.1.6 ClrTCLK

	2.2.2 Macros for 2-Wire JTAG (SBW) Interface

	2.3 SBW Timing and Control
	2.3.1 Basic Timing
	2.3.2 TDO Slot
	2.3.3 SetTCLK_sbw and ClrTCLK_sbw in SBW Mode

	2.4 JTAG Communication Instructions
	2.4.1 Controlling the Memory Address Bus (MAB)
	2.4.1.1 IR_ADDR_16BIT
	2.4.1.2 IR_ADDR_CAPTURE

	2.4.2 Controlling the Memory Data Bus (MDB)
	2.4.2.1 IR_DATA_TO_ADDR
	2.4.2.2 IR_DATA_16BIT
	2.4.2.3 IR_DATA_QUICK
	2.4.2.4 IR_BYPASS

	2.4.3 Controlling the CPU
	2.4.3.1 IR_CNTRL_SIG_16BIT
	2.4.3.2 IR_CNTRL_SIG_CAPTURE
	2.4.3.3 IR_CNTRL_SIG_RELEASE

	2.4.4 Memory Verification Via Pseudo Signature Analysis (PSA)
	2.4.4.1 IR_DATA_PSA
	2.4.4.2 IR_SHIFT_OUT_PSA

	2.4.5 JTAG Access Security Fuse Programming
	2.4.5.1 IR_PREPARE_BLOW
	2.4.5.2 IR_EX_BLOW

	3 Memory Programming Control Sequences
	3.1 Start-Up
	3.1.1 Enable JTAG Access
	3.1.2 Fuse Check and Reset of the JTAG State Machine (TAP Controller)
	3.1.3 Taking the CPU Under JTAG Control

	3.2 General Functions
	3.2.1 Set CPU to Instruction-Fetch
	3.2.2 Setting the Target CPU Program Counter (PC)
	3.2.3 Controlled Stop/Start of the Target CPU
	3.2.4 Resetting the CPU While Under JTAG Control
	3.2.5 Release Device From JTAG Control

	3.3 Accessing Non-Flash Memory Locations With JTAG
	3.3.1 Read Access
	3.3.2 Write Access
	3.3.3 Quick Access of Memory Arrays
	3.3.3.1 Flow for Quick Read (All Memory Locations)
	3.3.3.2 Flow for Quick Write (RAM and Peripheral Memory Only)

	3.4 Programming the Flash Memory (Using the Onboard Flash Controller)
	3.5 Reading From Flash Memory
	3.6 Verifying the Flash Memory
	3.7 Erasing the Flash Memory (Using the Onboard Flash Controller)
	3.7.1 Flow to Erase a Flash Memory Segment
	3.7.2 Flow to Erase the Entire Flash Address Space (Mass Erase)

	4 Programming the JTAG Access Protection Fuse
	4.1 Standard 4-Wire JTAG
	4.1.1 Fuse-Programming Voltage via TDI Pin (Dedicated JTAG Pin Devices Only)
	4.1.2 Fuse-Programming Voltage via TEST Pin

	4.2 Fuse-Programming Voltage via SBW
	4.3 Testing for a Successfully Programmed Fuse

	5 JTAG Function Prototypes
	5.1 Low-Level JTAG Functions
	5.2 High-Level JTAG Routines

	6 References
	7 Third-Party Support
	Appendix A Implementation
	A.1 Implementation History
	A.2 Implementation Overview
	A.3 Software Operation
	A.4 Software Structure
	A.5 Programmer Operation
	A.6 Hardware Setup
	A.6.1 Host Controller
	A.6.2 Target Connection
	A.6.3 Host Controller/Programmer Power Supply

	Appendix B MSP430 JTAG Implementation
	B.1 TAP Controller State Machine
	B.2 MSP430 JTAG Restrictions (Non-Compliance With IEEEStd1149.1)

	Document Revision History

