
Application Report
SLAA149C–December 2005–Revised October 2007

Programming a Flash-Based MSP430
Using the JTAG Interface

Markus Koesler, Wolfgang Lutsch .. MSP430

ABSTRACT
This application report details the functions required to erase, program, and verify the
memory module of the MSP430 flash-based microcontroller family using the JTAG
communication port, as well as how to program the JTAG access security fuse,
available on all MSP430 devices. Device access using standard 4-wire JTAG and
2-wire JTAG, also referred to as Spy-Bi-Wire (SBW), is discussed. In addition, an
example programmer system, including software (source code is provided) and the
corresponding hardware implementation, is demonstrated in Appendix A. This example
is intended as a reference for further understanding of the concepts presented in this
report and to help aid in development of similar MSP430 programmer solutions.

Contents
1 Introduction .. 2
2 Interface and Instructions.. 3

2.1 JTAG Interface Signals ... 3
2.2 JTAG Access Macros ... 4
2.3 SBW Timing and Control .. 7
2.4 JTAG Communication Instructions... 10

3 Memory Programming Control Sequences .. 15
3.1 Start-Up.. 15
3.2 General Functions ... 18
3.3 Accessing Non-Flash Memory Locations With JTAG 21
3.4 Programming the Flash Memory (Using the Onboard Flash Controller).......... 24
3.5 Reading From Flash Memory .. 26
3.6 Verifying the Flash Memory... 26
3.7 Erasing the Flash Memory (Using the Onboard Flash Controller)................. 26

4 Programming the JTAG Access Protection Fuse ... 30
4.1 Standard 4-Wire JTAG .. 31
4.2 Fuse-Programming Voltage via SBW ... 31
4.3 Testing for a Successfully Programmed Fuse 32

5 JTAG Function Prototypes... 33
5.1 Low-Level JTAG Functions ... 33
5.2 High-Level JTAG Routines.. 34

6 References... 36
7 Third-Party Support ... 37
Appendix A Implementation .. 38
Appendix B MSP430 JTAG Implementation ... 45

List of Figures

1 Timing Example for the IR_SHIFT (0x83) Instruction.. 5
2 Data Register I/O: DR_SHIFT16 (0x158B) (TDO Output is 0x55AA) 5
3 Address Register I/O: DR_SHIFT20 (0x12568) (TDO Output Is 0xA55AA) 6
4 SetTCLK ... 6

All trademarks are the property of their respective owners.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

1 Introduction

Introduction

5 ClrTCLK.. 7
6 Timing Diagram (Alternative Timing)... 7
7 SBW-to-JTAG Interface Diagram... 8
8 Synchronization of TDI/TCLK During Run-Test/Idle ... 9
9 Detailed SBW Timing Diagram .. 10
10 JTAG Access Entry Sequences (for Devices Supporting SBW)............................ 16
11 Fuse Check and TAP Controller Reset .. 17
12 Fuse Blow Timing ... 32
A-1 Replicator Application Schematic ... 43
B-1 TAP Controller State Machine... 45

List of Tables

1 Standard 4-Wire JTAG Signals ... 3
2 JTAG Signal Implementation Overview.. 4
3 JTAG Communication Macros .. 4
4 Memory Access Instructions... 11
5 JTAG Control Signal Register ... 13
6 Shared JTAG Device Pin Functions .. 15
7 Erase/Program Minimum TCLK Clock Cycles... 24
8 Flash Memory Parameters (fFTG = 450 kHz)... 28
9 MSP430 Device JTAG Interface (Shared Pins)... 30
10 MSP430 Device Dedicated JTAG Interface ... 30

This document provides an overview of how to program the flash memory module of an MSP430
flash-based device using the on-chip JTAG interface [4-wire or 2-wire Spy-Bi-Wire (SBW) interfaces]. A
focus is maintained on the high-level JTAG functions used to access and program the flash memory and
the respective timing.

Four main elements are presented:
Section 2, Interface and Instructions, describes the required JTAG signals and associated pin
functionality for programming the MSP430 family. In addition, this section includes the descriptions of
the provided software macro routines and JTAG instructions used to communicate with and control a
target MSP430 via the JTAG interface.
Section 3, Memory Programming Control Sequences, demonstrates use of the provided macros and
function prototypes in a software-flow format that are used to control a target MSP430 device and
program and/or erase the flash memory.
Section 4, Programming the JTAG Access Protection Fuse, details the fuse mechanism used to
disable memory access via JTAG to the target device’s memory, eliminating the possibility of
undesired memory access for security purposes.
Appendix A illustrates development of an example MSP430 flash programmer using an MSP430F149
as the host controller and includes a schematic and required software/project files. A thorough
description of how to use the given implementation is also included, providing an example system that
can be used directly or referenced for custom MSP430 programmer solutions.

Note: The MSP430 JTAG interface implements the test access port state machine (TAP controller)
as specified by IEEE Std 1149.1. References to the TAP controller and specific JTAG states
identified in the 1149.1 standard are made throughout this document. The TAP state
machine is shown in Appendix B, Figure B-1. Appendix B, Section A.3 also lists various
specialities of the MSP430 JTAG implementation which are non-compliant with the IEEE Std
1149.1.

Programming a Flash-Based MSP430 Using the JTAG Interface2 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2 Interface and Instructions

2.1 JTAG Interface Signals

2.1.1 4-Wire JTAG Interface

2.1.2 2-Wire SBW JTAG Interface

Interface and Instructions

This section describes the hardware connections to the JTAG interface of the MSP430 devices and the
associated pin functionality used during programming. In addition, the descriptions of the software macro
routines used to program a MSP430 target and the JTAG instructions used to communicate with and
control the target via the JTAG interface are detailed.

The MSP430 family supports in-circuit programming of flash memory via the JTAG port, available on all
MSP430 devices. All devices support the JTAG 4-wire interface. In addition, some devices also support
the next generation optimized 2-wire JTAG interface. Using these signals, an interface connection to
access the MSP430 JTAG port using a PC or other controller can be established. See the respective
MSP430 device data sheet for the connections required by a specific device.

The standard JTAG interface requires four signals for sending and receiving data. On larger MSP430
devices, these pins are dedicated for JTAG. Smaller devices with fewer total pins multiplex these JTAG
lines with general-purpose functions. On these smaller devices, one additional signal is required that is
used to define the state of the shared pins. This signal is applied to the TEST pin. The remaining
connections required are ground and VCC when powered by the programmer. These signals are
described in Table 1.

Table 1. Standard 4-Wire JTAG Signals
Pin Direction Usage
TMS IN Signal to control the JTAG state machine
TCK IN JTAG clock input
TDI IN JTAG data input/TCLK input
TDO OUT JTAG data output
TEST IN Enable JTAG pins (shared JTAG devices only)

The TEST input exists only on MSP430 devices with shared JTAG function, usually assigned to port 1. To
enable these pins for JTAG communication, a logic level 1 must be applied to the TEST pin. For normal
operation (non-JTAG mode), this pin is internally pulled down to ground, enabling the shared pins as
standard port I/O.

The TCLK signal is an input clock, which must be provided to the target device from an external source.
This clock is used internally as the target device’s system clock, MCLK, to load data into memory locations
and to clock the CPU. There is no dedicated pin for TCLK; instead, the TDI pin is used as the TCLK input.
This occurs while the MSP430 TAP controller is in the Run-Test/Idle state.

Note: TCLK input support on the MSP430 XOUT pin exists but has been superseded by the TDI
pin on all current MSP430 flash-based devices. Existing FET tools, as well as the software
provided with this application report, implement TCLK on the TDI input pin.

The core JTAG logic integrated into devices that support 2-wire mode is identical to 4-wire-only devices.
The fundamental difference is that 2-wire devices implement additional logic that is used to convert the
2-wire communication into the standard 4-wire communication internally. In this way, the existing JTAG
emulation methodology of the MSP430 can be fully utilized.

The 2-wire interface is made up of the SBWTCK (Spy-Bi-Wire test clock) and SBWTDIO (Spy-Bi-Wire test
data input/output) pins. The SBWTCK signal is the clock signal and is a dedicated pin. In normal
operation, this pin is internally pulled to ground. The SBWTDIO signal represents the data and is a
bidirectional connection. In order to reduce the overhead of the 2-wire interface, the SBWTDIO line is
shared with the RST/NMI pin of the MSP430.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2.2 JTAG Access Macros

2.2.1 Macros for 4-Wire JTAG Interface

2.2.1.1 IR_SHIFT (8-bit Instruction)

Interface and Instructions

Table 2 gives a general overview of MSP430 devices and their respective JTAG interface implementation.

Table 2. JTAG Signal Implementation Overview
SBW 2-WireDevices TEST Pin 4-Wire JTAG JTAG

20- and 28- pin MSP430F1xx devices YES YES NO
64-, 80-, and 100-pin MSP430F1xx /4xx devices NO YES NO
MSP430F21x1 family YES YES NO
14-, 20-, 28-, and 38-pin MSP430F2xx devices YES YES YES
64-, 80-, and 100-pin MSP430F2xx devices NO YES NO

To keep descriptions of the JTAG functions in the following sections simple, high-level macros have been
used to describe the JTAG access. This document does not detail the basic JTAG functionality; rather,
focuses on the MSP430-specific implementation used for memory access and programming. For the
purpose of this document, it is important to show the instructions that need to be loaded into the JTAG
instruction register, as well as when these instructions are required. The following section summarizes the
macros used throughout this document and their associated functionality. (See the accompanying
software for more information.)

Table 3. JTAG Communication Macros
Macro Name Function

Shifts an 8-bit JTAG instruction into the JTAG instruction register. At the same time, the 8-bitIR_SHIFT (8-bit Instruction) value is shifted out through TDO.
Shifts a 16-bit data word into a JTAG data register. At the same time, the 16-bit value is shiftedDR_SHIFT16 (16-bit Data) out through TDO.
Shifts a 20-bit address word into the JTAG Memory Address Bus register. At the same time, theDR_SHIFT20 (20-bit Address) 20-bit value is shifted out through TDO. Only applicable to MSP430X architecture devices.

MsDelay (time) Waits for the specified time in milliseconds
SetTCLK Sets TCLK to 1
ClrTCLK Sets TCLK to 0
TDOvalue Variable containing the last value shifted out on TDO

This macro loads a desired JTAG instruction into the JTAG instruction register (IR) of the target device. In
the MSP430, this register is 8 bits wide with the least significant bit (LSB) shifted in first. The data output
from TDO during a write to the JTAG instruction register contains the version identifier of the JTAG
interface (or JTAG ID) implemented on the target device. Regardless of the 8-bit instruction sent out on
TDI, the return value on TDO is always the JTAG ID. Each instruction bit is captured from TDI by the
target MSP430 on the rising edge of TCK. TCLK should not change state while this macro is executed
(TCLK = TDI while the TAP controller is in the Run-Test/Idle state). Figure 1 shows how to load the
ADDR_16BIT instruction into the JTAG IR register. See Section 2.4 for a complete list of the JTAG
interface communication instructions used to access the target device flash memory module.

4 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

TCK

TMS

TDI

TDO

TCLK

Instruction Input via TDI

1 1 10 0 0 0 0

Data to TDI LSB MSB

Save TDI value (= TCLK) Restore saved TDI value

2.2.1.2 DR_SHIFT16 (16-bit Data)

TCK

TMS

TDI

TDO

TCLK

Data input via TDI and data output via TDO

1 100 0 1 0 1 0 10 0 1 0 10

1 1 1 1 1 1 1 10 0 0 0 0 00 0Data from TDO

Data to TDI MSB LSB

Save TDI value (= TCLK)

Restore saved TDI value

2.2.1.3 DR_SHIFT20 (20-bit Address) (Applies Only to MSP430X Devices)

Interface and Instructions

Figure 1. Timing Example for the IR_SHIFT (0x83) Instruction

This macro loads a 16-bit word into the JTAG data register (DR). (In the MSP430, a data register is 16
bits wide.) The data word is shifted, most significant bit (MSB) first, into the target MSP430’s TDI input.
Each bit is captured from TDI on a rising edge of TCK. At the same time, TDO shifts out the last
captured/stored value in the addressed data register. A new bit is present at TDO with a falling edge of
TCK. TCLK should not change state while this macro is executing. Figure 2 shows how to load a 16-bit
word into the JTAG DR and read out a stored value via TDO.

Figure 2. Data Register I/O: DR_SHIFT16 (0x158B) (TDO Output is 0x55AA)

The MSP430X architecture is based on a 20-bit memory address bus (MAB), in order to address up to
1 MB of continuous memory. No new JTAG instructions are needed to control the 20-bit MAB (for details
on instructions, see Section 2.4.1), only the JTAG address register itself has been extended to 20 bits.
This macro loads a 20-bit address word into the 20-bit wide JTAG MAB register. The address word is
shifted, MSB first, into the target MSP430’s TDI input. Each bit is captured from TDI on a rising edge of
TCK. At the same time, TDO shifts out the last captured/stored value in the JTAG MAB register. A new bit
is present at TDO with a falling edge of TCK. TCLK should not change state while this macro is executing.
This macro should only be used when IR_ADDR_16BIT or IR_ADDR_CAPTURE have been loaded into
the JTAG instruction register before the MAB gets manipulated via JTAG. Note that on a 20-bit shift
access, the upper four bits (19:16) of the JTAG address register are shifted out last. That means bit 15 of
the MAB is read first when the lower part of the MAB is accessed by performing a 16-bit shift. This kind of
implementation assures compatibility with the original MSP430 architecture and its JTAG MAB register
implementation.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

TCK

TMS

TDI

TDO

TCLK

Data input via TDI and data output via TDO

1 000 0 0 1 0 1 00 1 0 1 10

1 1 1 1 1 1 1 10 0 0 0 0 00 0Data from TDO:

Data to TDI LSB

Save TDI value (= TCLK)

Restore saved TDI value

1 10 0

0 1 0 0

Bit #: 14 12 10 8 7 5 3 115 9 6 4 2 1613 11 19 170 18

MSB

2.2.1.4 MsDelay (time)

2.2.1.5 SetTCLK

TCLK

TDO

TCK

TMS

SetTCLK

Interface and Instructions

Note: The DR_SHIFT20(20-bit Address) macro in the associated C-code software example
application automatically reconstructs the swapped TDO (15:0) (19:16) output to a
continuous 20-bit address word (19:0) and simply returns a 32-bit LONG value.

Figure 3 shows how to load a 20-bit address word into the JTAG address register and read out a stored
value via TDO.

Figure 3. Address Register I/O: DR_SHIFT20 (0x12568) (TDO Output Is 0xA55AA)

This macro causes the programming interface software to wait for a specified amount of time in
milliseconds (ms). While this macro is executing, all signals to and from the target MSP430 must hold their
previous values.

This macro sets the TCLK input clock (provided on the TDI signal input) high. TCK and TMS must hold
their last value while this macro is performed (see Section 2.3.3 and Figure 8 for SBW-specific
constraints).

Figure 4. SetTCLK

Programming a Flash-Based MSP430 Using the JTAG Interface6 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2.2.1.6 ClrTCLK

TCLK

TDO

TCK

TMS

ClrTCLK

2.2.2 Macros for 2-Wire JTAG (SBW) Interface

2.3 SBW Timing and Control

2.3.1 Basic Timing

SBWTCK

TCK

TMS Slot TDI Slot TDO Slot

TMS and TDI
clocked into TAP

shift register

< m7 s

Interface and Instructions

This macro resets the TCLK input clock low. TCK and TMS must hold their last value while this action is
performed (see Section 2.3.3 and Figure 8 for SBW-specific constraints).

Figure 5. ClrTCLK

All JTAG macros described in the previous section also apply to the 2-wire interface and are provided as
software source along with this document.

The following sections provide a basic understanding of the SBW implementation as it relates to
supporting generation of the macro function timing signals. This is intended to enable development of
custom MSP430 programming solutions, rather than just relying on the example application code also
provided.

The SBW interface serial communication uses time-division multiplexing, allocating three time slots:
TMS_SLOT, TDI_SLOT, and TDO_SLOT. In order to clock TCLK via the SBW interface in a similar
method as it is clocked via TDI during 4-wire JTAG access, an alternative JTAG timing method is
implemented. This implementation makes use of the fact that the TDI and TMS signals are clocked into
the TAP controller or shift register with the rising edge of TCK as shown in Figure 6.

Figure 6. Timing Diagram (Alternative Timing)

The implemented logic used to translate between the 2-wire and 4-wire interfaces is shown in Figure 7.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

D

EN

D

G

SBWTCK

SBWTDIO

In TMS Slot

In TDI Slot

Q

Q

TMS

TDI/TCLK

TCK

TDO

D

G

Q

In TDO Slot

SET

SET

CLR

Reset

JTAG TAP in

Run Test/Idle

Interface and Instructions

Figure 7. SBW-to-JTAG Interface Diagram

The advantages of this implementation are:
• Data on TDI and data on TDO are aligned.
• During the TDI_SLOT of the 2-wire interface, SBWTDIO can be used as TCLK input if the JTAG TAP

controller is in its Run-Test/Idle state. For this purpose the TDI output needs to be synchronized to its
input as shown in Figure 8. The synchronization logic is only active in the Run-Test/Idle state.

8 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

TMS Slot TDI Slot TDO Slot

SBWTCK
(external signal)

TDI/TCLK
(internal signal)

SBWTDIO
(external signal)

SBWTDIO
(external signal)

TMS = 1

TMS = 0

Case 1:

Case 2:

Case 1a:

Case 1b:

Case 2b:

Case 2a:

Latched at 1
during previous

TDI slot

Latched at 1
during previous

TDI Slot

Latched at 0
during previous

TDI Slot

Latched at 0
during previous

TDI Slot

TDI/TCLK
(internal signal)

TDI/TCLK
(internal signal)

TDI/TCLK
(internal signal)

2.3.2 TDO Slot

Interface and Instructions

Figure 8. Synchronization of TDI/TCLK During Run-Test/Idle

After power up, as long as the SBW interface is not activated yet, TMS and TDI are set to logical 1 level
internally.

As shown in Figure 6, the TDO operation is allocated one time slot. (Refer also to the detailed timing
shown in Figure 9.) The master should release control of the SBWTDIO line based off of the rising edge of
SBWTCK of the TDI cycle. Once the master releases the SBWTDIO line, an internal bus keeper holds the
voltage on the line. The next falling edge of SBWTCK triggers the slave to start driving the bus. The slave
only drives the SBWTDIO line during the low time of the SBWTCK cycle. The master should not enable its
drivers until the slave has released the SBWTDIO line. Therefore, the master could use the rising edge of
the SBWTCK signal as a trigger point to enable its driver.

Note: The low phase of the clock signal supplied on SBWTCK must not be longer than 7 µs, else
SBW logic gets deactivated and must be activated again according to Section 3.1.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

SBWTCK

1 2

TDI_SLOT TDO_SLOT

TMSn-1 TMSn

JTAG TAP

STATE

TDIn-1 TDIn

TMS_SLOT

0 1 2

TDI_SLOTTMS_SLOT

0

10 2SHIFT_COUNT

LOAD_JTAG_REG

JTAG_REG

TCLK

TMS

TDI

TCK

TAP STATEn� 1 TAP STATEn

TDO_SLOT

TDI TDOSBWTDIO

10 2

MASTER SLAVE MASTER SLAVE

TMS TDI TDOTMS

2.3.3 SetTCLK_sbw and ClrTCLK_sbw in SBW Mode

2.4 JTAG Communication Instructions

Interface and Instructions

Figure 9. Detailed SBW Timing Diagram

Figure 8 shows handling and synchronization of TCLK in SBW mode while the JTAG TAP Controller is in
Run-Test/Idle state. Refer to reference function SetTCLK_sbw and ClrTCLK_sbw for software
implementation.

Selecting a JTAG register and controlling the CPU is done by shifting in a JTAG instruction using the
IR_SHIFT macro described in the previous section. The following instructions that can be written to the
JTAG IR are used to program the target flash memory. All instructions sent to the target MSP430 via the
JTAG register are transferred LSB first.

Programming a Flash-Based MSP430 Using the JTAG Interface10 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2.4.1 Controlling the Memory Address Bus (MAB)

2.4.1.1 IR_ADDR_16BIT

Interface and Instructions

Table 4. Memory Access Instructions
8-Bit InstructionInstruction Name Value (Hex)

Controlling the Memory Address Bus (MAB)
IR_ADDR_16BIT 0x83
IR_ADDR_CAPTURE 0x84
Controlling the Memory Data Bus (MDB)
IR_DATA_TO_ADDR 0x85
IR_DATA_16BIT 0x41
IR_DATA_QUICK 0x43
IR_BYPASS 0xFF
Controlling the CPU
IR_CNTRL_SIG_16BIT 0x13
IR_CNTRL_SIG_CAPTURE 0x14
IR_CNTRL_SIG_RELEASE 0x15
Memory Verification Via Pseudo Signature Analysis (PSA)
IR_DATA_PSA 0x44
IR_SHIFT_OUT_PSA 0x46
JTAG Access Security Fuse Programming
IR_Prepare_Blow 0x22
IR_Ex_Blow 0x24

Note: Do not write any unlisted values to the JTAG instruction register. Instruction values written to
the MSP430 JTAG register other than those listed above may cause undesired device
behavior.

Note: When a new JTAG instruction is shifted into the JTAG instruction register, it takes effect with
the UPDATE-IR state of the TAP controller. When accessing a JTAG data register, the last
value written is captured with the CAPTURE-DR state, and the new value shifted in becomes
valid with the UPDATE-DR state. In other words, there is no need to go through
Run-Test/Idle state of the JTAG TAP controller to shift in instructions or data. Be aware of
the fact that clocking TCLK is only possible in the Run-Test/Idle state. This is why the
provided software example application exclusively makes use of the JTAG macros described
in Section 2.2, which always go through Run-Test/Idle state.

The following instructions control the MAB of the target MSP430. To accomplish this, a 16-bit (20-bit in
MSP430X architectures) register, termed the JTAG MAB register, is addressed. By using the JTAG data
path of the TAP controller, this register can be accessed and modified.

This instruction enables setting of the MAB to a specific value, which is shifted in with the next JTAG
16-bit data access using the DR_SHIFT16 (16-bit Data) macro or the next JTAG 20-bit address word
access using the DR_SHIFT (20-bit Address) macro. The MSP430 CPU’s MAB is set to the value written
to the JTAG MAB register. The previous value stored in the JTAG MAB register is simultaneously shifted
out on TDO while the new 16- or 20-bit address is shifted in via TDI.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2.4.1.2 IR_ADDR_CAPTURE

2.4.2 Controlling the Memory Data Bus (MDB)

2.4.2.1 IR_DATA_TO_ADDR

2.4.2.2 IR_DATA_16BIT

2.4.2.3 IR_DATA_QUICK

2.4.2.4 IR_BYPASS

Interface and Instructions

Note: In MSP430X devices, a 16-bit shift to update the JTAG MAB register does not automatically
reset the upper four bits (19:16) of the JTAG MAB register. Always use the 20-bit shift macro
to ensure that the upper four bits (19:16) are set to a defined value.

This instruction enables readout of the data on the MAB with the next 16- or 20-bit data access. The MAB
value is not changed during the 16- or 20-bit data access; that is, the 16- or 20-bit data sent on TDI with
this command is ignored (0 is sent as a default in the provided software).

The following instructions control the MDB of the MSP430 CPU. To accomplish this, a 16-bit register,
termed the JTAG MDB register, is addressed. By using the JTAG data path of the TAP controller, this
register can be accessed and modified.

This instruction enables setting of the MSP430 MDB to a specific value shifted in with the next JTAG
16-bit data access using the DR_SHIFT16 (16-bit Data) macro. The MSP430 CPU’s MDB is set to the
value written to the JTAG MDB register. As the new value is written into the MDB register, the prior value
in the MSP430 MDB is captured and shifted out on TDO. The MSP430 MAB is set by the value in the
JTAG MAB register during execution of the IR_DATA_TO_ADDR instruction. This instruction is used to
write to all memory locations of the MSP430.

This instruction enables setting of the MSP430 MDB to the specified 16-bit value shifted in with the next
16-bit JTAG data access. The complete MSP430 MDB is set to the value of the JTAG MDB register. At
the same time, the last value of the MSP430 MDB is captured and shifted out on TDO. In this situation,
the MAB is still controlled by the CPU. The program counter (PC) of the target CPU sets the MAB value.

This instruction enables setting of the MSP430 MDB to a specific value shifted in with the next 16-bit
JTAG data access. The 16-bit MSP430 MDB is set to the value written to the JTAG MDB register. During
the 16-bit data transfer, the previous MDB value is captured and shifted out on TDO. The MAB value is
set by the program counter (PC) of the CPU. This instruction auto-increments the program counter by two
on every falling edge of TCLK in order to automatically point to the next 16-bit memory location. The target
CPU’s program counter must be loaded with the starting memory address prior to execution of this
instruction, which can be used to quickly read or write to a memory array. (See Section 3.2 for more
information on setting the PC.)

Note: IR_DATA_QUICK cannot be used on flash memory.

This instruction delivers the input to TDI as an output on TDO delayed by one TCK clock. When this
instruction is loaded, the IR_CNTRL_SIG_RELEASE instruction, which is defined in the following section,
is performed simultaneously. After execution of the bypass instruction, the 16-bit data shifted out on TDI
does not affect any register of the target MSP430’s JTAG control module.

Programming a Flash-Based MSP430 Using the JTAG Interface12 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2.4.3 Controlling the CPU

2.4.3.1 IR_CNTRL_SIG_16BIT

2.4.3.2 IR_CNTRL_SIG_CAPTURE

2.4.3.3 IR_CNTRL_SIG_RELEASE

2.4.4 Memory Verification Via Pseudo Signature Analysis (PSA)

Interface and Instructions

The following instructions enable control of the MSP430 CPU through a 16-bit register accessed via
JTAG. This data register is called the JTAG control signal register. Table 5 describes the bit functions
making up the JTAG control signal register used for memory access.

Table 5. JTAG Control Signal Register
Bit No. Name Description

Controls the read/write (RW) signal of the CPU0 R/W 1 = read, 0 = write
1 (N/A) Always write 0
2 (N/A) Always write 0

Sets the CPU into a controlled halt state3 HALT_JTAG 1 = CPU stopped, 0 = CPU operating normally
Controls the BYTE signal of the CPU used for memory access data length4 BYTE 1 = byte (8-bit) access, 0 = word (16-bit) access

5 (N/A) Always write 0
6 (N/A) Always write 0

Read only: Indicates the target CPU instruction state7 INSTR_LOAD 1 = instruction fetch state, 0 = instruction execution state
8 (N/A) Always write 0

Indicates CPU synchronization9 TCE 1 = synchronized, 0 = not synchronized
Establishes JTAG control over the CPU10 TCE1 1 = CPU under JTAG control, 0 = CPU free running
Controls the power-on-reset (POR) signal11 POR 1 = perform POR, 0 = no reset
Selects control source of the RW and BYTE bits12 Release low byte 1 = CPU has control, 0 = control signal register has control
Sets flash module into JTAG access mode13 TAGFUNCSAT 1 = CPU has control (default), 0 = JTAG has control
Enables TDO output as TDI input14 SWITCH 1 = JTAG has control, 0 = normal operation

15 (N/A) Always write 0

This instruction enables setting of the complete JTAG control signal register with the next 16-bit JTAG
data access. Simultaneously, the last value stored in the register is shifted out on TDO. The new value
takes effect when the TAP controller enters the UPDATE-DR state.

This instruction enables readout of the JTAG control signal register with the next JTAG 16-bit data access
instruction.

This instruction completely releases the CPU from JTAG control. Once executed, the JTAG control signal
register and other JTAG data registers no longer have any effect on the target MSP430 CPU. This
instruction is normally used to release the CPU from JTAG control.

The following instructions support verification of the MSP430 memory content by means of a PSA mode.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

2.4.4.1 IR_DATA_PSA

2.4.4.2 IR_SHIFT_OUT_PSA

2.4.5 JTAG Access Security Fuse Programming

2.4.5.1 IR_PREPARE_BLOW

2.4.5.2 IR_EX_BLOW

Interface and Instructions

The IR_DATA_PSA instruction switches the JTAG_DATA_REG into the PSA mode. In this mode, the
program counter of the MSP430 is incremented by every two system clocks provided on TCLK. The CPU
program counter must be loaded with the start address prior to execution of this instruction. The number of
TCLK clocks determines how many memory locations are included in the PSA calculation.

The IR_SHIFT_OUT_PSA instruction should be used in conjunction with the IR_DATA_PSA instruction.
This instruction shifts out the PSA pattern generated by the IR_DATA_PSA command. During the
SHIFT-DR state of the TAP controller, the content of the JTAG_DATA_REG is shifted out via the TDO pin.
While this JTAG instruction is executed, the capture and update functions of the JTAG_DATA_REG are
disabled.

The following instructions are used to access and program the built-in JTAG access protection fuse,
available on every MSP430 flash device. Once the fuse is programmed (or blown), future access to the
MSP430 via the JTAG interface is permanently disabled. This allows for access protection of the final
MSP430 firmware programmed into the target device.

This instruction sets the MSP430 into program-fuse mode.

This instruction programs (blows) the access protection fuse. In order to execute properly, it must be
loaded after the IR_PREPARE_BLOW instruction is given.

Programming a Flash-Based MSP430 Using the JTAG Interface14 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3 Memory Programming Control Sequences

3.1 Start-Up

3.1.1 Enable JTAG Access

Memory Programming Control Sequences

Before the main flash programming routine can begin, the target device must be initialized for
programming. This section describes how to perform the initialization sequence.

Reference function: GetDevice, GetDevice_sbw
• MSP430 devices with TEST pin and 4-wire JTAG access only (no SBW)

To use the JTAG features of MSP430 devices with shared JTAG and a TEST pin, it is necessary to
enable the shared JTAG pins for JTAG communication mode. (Devices with dedicated JTAG
inputs/outputs and no TEST pin do not require this step.) The shared pins are enabled for JTAG
communication by connecting the TEST pin to VCC. For normal operation (non-JTAG mode), this pin
should be released and allowed to be internally pulled to ground. Table 6 shows the port 1 pins that
are used for JTAG communication.

Table 6. Shared JTAG Device Pin Functions
Port 1 Function JTAG Function
(TEST = Open) (TEST = VCC)

P1.4 TCK
P1.5 TMS
P1.6 TDI/TCLK
P1.7 TDO

• MSP430 devices with 2-wire (SBW) JTAG access
The SBW interface and any access to the JTAG interface is disabled while the TEST/SBWTCK pin is
held low. This is accomplished by an internal pulldown resistor. The pin can also be tied low externally.
Pulling the TEST/SBWTCK pin high enables the SBW interface and disables the RST/NMI functionality
of the RST/NMI/SBWTDIO pin. While the SBW interface is active, the internal reset signal is held high,
and the internal NMI signal is held at the input value seen at RST/NMI with TEST/SBWTCK going high.
Devices with SBW also support the standard 4-wire interface. The 4-wire JTAG interface access is
enabled by pulling the SBWTDIO line low and then applying a clock on SBWTCK. The 4-wire JTAG
mode is exited by holding the TEST/SWBCLK low for more than 100 µs.
To select the 2-wire SBW mode, the SBWTDIO line is held high and the first clock is applied on
SBWTCK. After this clock, the normal SBW timings are applied starting with the TMS slot, and the
normal JTAG patterns can be applied, typically starting with the Tap Reset and Fuse Check sequence.
The SBW mode is exited by holding the TEST/SWBCLK low for more than 100 µs.
In devices implementing the Bootstrap Loader (BSL) the TEST/SBWTCK and RST/NMI/SBWTDIO are
also used to invoke the BSL. In Figure 10, different cases used to enter the SBW/JTAG or BSL mode
are shown.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

TEST/SBWTCK

RST/NMI/SBWTDIO

BSL Entry

disabled.

Enter SBW

Mode

Case 1a: SBW Entry Sequence

BSL Entry

disabled

Enter 4-Wire

JTAG Mode

Case 1b: 4-Wire JTAG Entry Sequence

RST/NMI/SBWTDIO

(RST function)

BSL Entry

enabled.

Enter 4-Wire

JTAG Mode

Case 2a: Successful BSL Entry Sequence

Disable 4-Wire

JTAG Mode,
Enable BSL.

Start BSL

RST/NMI/SBWTDIO

(NMI function)

BSL Entry

disabled.

Enter 4-Wire

JTAG Mode

Case 3: NMI Function

BSL Entry

enabled.

Case 2b: Unsuccessful BSL Entry Sequence
RST/NMI/SBWTDIO

(RST function)

Enter

SBW
Mode

BSL Entry

Disabled.

BSL Disabled

SBW

BSL Disabled

4-Wire JTAG

BSL Enabled

SBW/JTAG Disabled

BSL Disabled

SBW

BSL Disabled

4-Wire JTAG

RST/NMI/SBWTDIO

3.1.2 Fuse Check and Reset of the JTAG State Machine (TAP Controller)

Memory Programming Control Sequences

Figure 10. JTAG Access Entry Sequences (for Devices Supporting SBW)

Reference functions: ResetTAP, ResetTAP_sbw

Each MSP430 family device includes a physical fuse used to permanently disable memory access via
JTAG communication. When this fuse is programmed (or blown), access to memory via JTAG is
permanently disabled and cannot be restored. When initializing JTAG access after power up, a fuse check
must be done before JTAG access is granted. Toggling of the TMS signal twice performs the check. It is
recommended that a minimum of six TCK clocks be sent to the target device while TMS is high followed
by setting TMS low for at least one TCK clock. This sets the JTAG state machine (TAP controller) to a
defined starting point: the Run-Test/Idle state. This procedure can also be used at any time during JTAG
communication to reset the JTAG port.

While the fuse is tested, a current of up to 2 mA flows into the TDI input (or into the TEST pin on devices
without dedicated JTAG pins). To enable settling of the current, the low phase of the two TMS pulses
should last a minimum of 5 µs.

16 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

TCK

TCLK

TDI

TDO

TMS

SetTCLK
JTAG Fuse

Checked

JTAG State-Machine Reset

Run-Test/Idle

3.1.3 Taking the CPU Under JTAG Control

Memory Programming Control Sequences

Under certain circumstances (e.g., by plugging in a battery), a toggling of TMS may accidentally occur
while TDI is logical low. In that case, no current flows through the security fuse, but the internal logic
remembers that a fuse check was performed. Thus, the fuse will be mistakenly recognized as
programmed (e.g., blown). To avoid the issue, newer MSP430 JTAG implementations also reset the
internal fuse check logic on performing a reset of the TAP controller as previously described. Thus, it is
recommended to first perform a reset of the TAP and then check the JTAG fuse status as shown in
Figure 11.

Figure 11. Fuse Check and TAP Controller Reset

Following the same sequence in SBW mode has the side effect of changing the TAP controller state while
the fuse check is performed. As described in Section 2.3.1, the internal signal TCK is generated
automatically in every TDI_SLOT. Performing a fuse check in SBW mode, starting directly after a reset of
the TAP controller, will end up in its Exit2-DR state. Two more dummy TCKs need to be generated to get
back into Run-Test/Idle state; one TCK with SBWTDIO being high during the TMS_SLOT followed by one
TCK with SBWTDIO being low during the TMS_SLOT (reference function: ResetTAP_sbw).

Reference function: GetDevice, GetDevice_sbw

After the initial fuse check and reset, the target device’s CPU must be taken under JTAG control. This is
done by setting bit 10 (TCE1) of the JTAG control signal register to 1. Thereafter, the CPU needs some
time to synchronize with JTAG control. To check if the CPU is synchronized, bit 9 (TCE) is tested (sync
successful if set to 1). Once this bit is verified as high, the CPU is under the control of the JTAG interface.
Following is the flow used to take the target device under JTAG control.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401)

IR_SHIFT("IR_CNTRL_SIG_CAPTURE")

DR_SHIFT16(0x0000)
No

Bit 9 of TDOword = 1?
Yes

CPU is under JTAG control

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.2 General Functions

3.2.1 Set CPU to Instruction-Fetch

3.2.2 Setting the Target CPU Program Counter (PC)

Memory Programming Control Sequences

The functions described in this section are used for general control of the target MSP430 CPU, as well as
high-level JTAG access and bus control.

Reference function: SetInstrFetch

Sometimes it is useful for the target device to directly execute an instruction presented by a host over the
JTAG port. To accomplish this, the CPU must be set to the instruction-fetch state. With this setting, the
target device CPU loads and executes an instruction as it would in normal operation, except that the
instruction is transmitted via JTAG. Bit 7 of the JTAG control signal register indicates that the CPU is in
the instruction-fetch state. TCLK should be toggled while this bit is zero. After a maximum of seven TCLK
clocks, the CPU should be in the instruction-fetch mode. If not (bit 7 = 1), a JTAG access error has
occurred and a JTAG reset is recommended.

IR_SHIFT("IR_CNTRL_SIG_CAPTURE")

DR_SHIFT16(0x0000) = Readout data

Bit 7 of TDOvalue = 0?

ClrTCLK

SetTCLK

CPU is in the instruction-fetch state

In order to use some of the features of the JTAG interface provided by the MSP430, setting of the CPU
program counter (PC) of the target device is required. The following flow is used to accomplish this.
Implementations for both the MSP430 and MSP430X architectures are shown,
• MSP430 architecture: Reference function: SetPC

CPU must be in the instruction-fetch state prior to the following sequence.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x3401) : release low byte

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x4030) : Instruction to load PC

ClrTCLK

SetTCLK

DR_SHIFT16("PC_Value") : Insert the value for PC

ClrTCLK

IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

ClrTCLK : Now PC is set to "PC_Value"

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401) : low byte controlled by JTAG

Load PC completed

Programming a Flash-Based MSP430 Using the JTAG Interface18 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.2.3 Controlled Stop/Start of the Target CPU

Memory Programming Control Sequences

• MSP430X architecture: Reference function: SetPC_x
CPU must be in the instruction-fetch state prior to the following sequence.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x3401) : release low byte

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x0X80) : Instruction to load PC, X = PC(19:16)

ClrTCLK

SetTCLK

DR_SHIFT16("PC(15:0)") : Insert the value for PC(15:0)

ClrTCLK

IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

ClrTCLK : Now PC is set to "PC_Value"

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401) : low byte controlled by JTAG

Load PC completed

Reference function: HaltCPU/ReleaseCPU

While a memory location is accessed by the JTAG interface, the target device’s CPU should be taken into
a defined halt state. Stopping of the CPU is supported by the HALT_JTAG bit (bit 3) in the JTAG control
signal register, which is set to 1 with execution of the HaltCPU function. After accessing the required
memory location(s), the CPU can be returned to normal operation. This function is implemented via the
ReleaseCPU prototype and simply resets the HALT_JTAG bit.

CPU must be in the instruction-fetch state prior to the following sequence

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x3FFF) : "JMP $" instruction to keep CPU from
changing the state

ClrTCLKHaltCPU
IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : set HALT_JTAG bit

SetTCLK

Now the CPU is in a controlled state and is not altered during memory accesses.
Note: Do not reset the HALT_JTAG bit (= 0) while accessing the target memory.

Memory Access Performed Here
The CPU is switched back to normal operation using ReleaseCPU.

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")
Release

DR_SHIFT16(0x2401) : Clear HALT_JTAG bitCPU
IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

The CPU is now in the instruction-fetch state and ready to receive a new JTAG instruction. If the PC
has been changed while the memory was being accessed, the PC must be loaded with the correct
address.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.2.4 Resetting the CPU While Under JTAG Control

Memory Programming Control Sequences

Reference function: ExecutePOR

Sometimes it is required to reset the target device while under JTAG control. It is recommended that a
reset be performed before programming or erasing the flash memory of the target device. When a reset
has been performed, the state of the target CPU is equivalent to that after an actual device power up. The
following flow is used to force a power-up reset.

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2C01) : Apply Reset

DR_SHIFT16(0x2401) : Remove Reset

ClrTCLK

SetTCLK

ClrTCLK

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

The target CPU is now reset; the PC points to the start address of the user program, which is the
address pointed to by the data stored in the reset vector memory location 0xFFFEh and all registers are

set to their respective power-up values.
The target device’s watchdog timer must now be disabled in order to avoid an undesired reset of the

target.

IR_SHIFT("IR_DATA_16BIT")

DR_SHIFT16(0x3FFF) : "JMP $" instruction to keep CPU from changing the
state

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : set HALT_JTAG bit

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT") : Disable Watchdog

DR_SHIFT16(0x2408) : Set to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0120) : Set Watchdog Control Register Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0x5A80) : Write to Watchdog Control Register

SetTCLK

The target CPU is now released for the next operation.

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2401) : Set to Read

IR_SHIFT("IR_ADDR_CAPTURE")

SetTCLK

20 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.2.5 Release Device From JTAG Control

3.3 Accessing Non-Flash Memory Locations With JTAG

3.3.1 Read Access

Memory Programming Control Sequences

Reference function: ReleaseDevice

After the desired JTAG communication is completed, the CPU is released from JTAG control. There are
two ways to accomplish this task:
• Disconnect the external JTAG hardware and perform a true power-up reset. The MSP430 then starts

executing the program code beginning at the address stored at 0xFFFEh (the reset vector).
• Release MSP430 from JTAG control. This is done by performing a reset using the JTAG control signal

register. The CPU must then be released from JTAG control by using the IR_CNTRL_SIG_RELEASE
instruction. The target MSP430 then starts executing the program at the address stored at 0xFFFE.

Flow to release the target device:
IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2C01) : Apply Reset

DR_SHIFT16(0x2401) : Remove Reset

IR_SHIFT("IR_CNTRL_SIG_RELEASE")

The target CPU starts program execution with the address stored at location 0x0FFFE (reset vector).

To read from any memory address location (peripherals, RAM or flash), the R/W signal must be set to
READ using the JTAG control signal register (bit 0 set to 1). The MSP430 MAB must be set to the specific
address to be read using the IR_ADDR_16BIT instruction while TCLK is 0. To capture the corresponding
value of the MSP430 MDB, the IR_DATA_TO_ADDR instruction must be executed. After the next rising
edge of TCLK, the data of this address is present on the MDB. The MDB can now be captured and read
out via the TDO pin using a 16-bit JTAG data access. When TCLK is set low again, the address of the
next memory location to be read can be applied to the target MAB. Following is the flow required to read
data from any memory address of a target device. Implementations for both the MSP430 and MSP430X
architectures are shown.
• MSP430 architecture, Reference function: ReadMem

Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Read Memory

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

YesSetTCLK

ClrTCLK

DR_SHIFT16(0x0000) : Memory value shifted out on TDO

Read again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.3.2 Write Access

Memory Programming Control Sequences

• MSP430X architecture, Reference function: ReadMem_x
Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Read Memory

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT20("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")

YesSetTCLK

ClrTCLK

DR_SHIFT16(0x0000) : Memory value shifted out on TDO

Read again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

To write to a memory location in peripherals or RAM (but not flash), the R/W signal must be set to WRITE
using the JTAG control signal register (bit 0 set to 0). The MAB must be set to the specific address using
the IR_ADDR_16BIT instruction while TCLK is low. The MDB must be set to the data value to be written
using the IR_DATA_TO_ADDR instruction and a 16-bit JTAG data input shift. On the next rising edge of
TCLK, this data is written to the selected address set by the value on the MAB. When TCLK is asserted
low, the next address and data to be written can be applied to the MAB and MDB. After completion of the
write operation, it is recommended to set the R/W signal back to READ. Following is the flow for a
peripheral or RAM memory address write. Implementations for both the MSP430 and MSP430X
architectures are shown.
• MSP430 architecture, Reference function: WriteMem

Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Write Memory

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")
Yes

DR_SHIFT16("Data") : Send 16-bit Data

SetTCLK

Write again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

Programming a Flash-Based MSP430 Using the JTAG Interface22 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.3.3 Quick Access of Memory Arrays

3.3.3.1 Flow for Quick Read (All Memory Locations)

Memory Programming Control Sequences

• MSP430X architecture, Reference function: WriteMem_x
Set CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Write Memory

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT20("Address") : Set desired address

IR_SHIFT("IR_DATA_TO_ADDR")
Yes

DR_SHIFT16("Data") : Send 16-bit Data

SetTCLK

Write again?
No

ReleaseCPU should now be executed, returning the CPU to normal operation.

The JTAG communication implemented on the MSP430 also supports access to a memory array in a
more efficient manner. The instruction IR_DATA_QUICK is used to accomplish this operation. The R/W
signal selects whether a read or write access is to be performed. Before this instruction can be loaded into
the JTAG IR register, the program counter (PC) of the target MSP430 CPU must be set to the desired
memory starting address. After the IR_DATA_QUICK instruction is shifted into the IR register, the PC is
incremented by two with each falling edge of TCLK, automatically pointing the PC to the next memory
location. The IR_DATA_QUICK instruction allows setting the corresponding MDB to a desired value
(write), or captures (reads) the MDB with a DR_SHIFT16 operation. The MDB should be set when TCLK
is low. On the next rising TCLK edge, the value on the MDB is written into the location addressed by the
PC. To read a memory location, TCLK must be high before the DR_SHIFT16 operation is executed.

Reference function: ReadMemQuick
Set PC to start address – 4 (SetPC)

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Set RW to read

IR_SHIFT("IR_DATA_QUICK")

SetTCLK
Yes

DR_SHIFT16(0x0000)

ClrTCLK : Auto-increments PC

Read From Next Address?
No

ReleaseCPU should now be executed, returning the CPU to normal operation. Reset the target CPU’s
PC if needed (SetPC).

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.3.3.2 Flow for Quick Write (RAM and Peripheral Memory Only)

3.4 Programming the Flash Memory (Using the Onboard Flash Controller)

Memory Programming Control Sequences

Reference function: WriteMemQuick
Set PC to start address – 4 (SetPC)

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to write

IR_SHIFT("IR_DATA_QUICK")

DR_SHIFT16("Data") : Set data
Yes

SetTCLK

ClrTCLK : Auto-increments PC

Write To Next Address?
No

ReleaseCPU should now be executed, returning the CPU to normal operation. Reset the target CPU’s
PC if needed (SetPC).

Reference function: WriteFLASH

This section describes one method available to program the flash memory module in an MSP430 device.
It uses the same procedure that user-defined application software, which would be programmed into a
production-equipment MSP430 device, would utilize. (Note: Nonconsecutive flash memory addressing is
supported.)

This programming method requires a TCLK frequency of 350 kHz ± 100 kHz while the erase or
programming cycle is being executed. (For more information on the flash controller timing, please see the
corresponding MSP430 user’s guide and specific device data sheet.) The following table shows the
required minimum number of TCLK cycles, depending on the action performed on the flash (for FCTL2
register bits 0 – 7 = 0x40 as defined in the MSP430 user’s guide).

Table 7. Erase/Program Minimum TCLK Clock Cycles
FLASH Action Minimum TCLK Count

Segment erase 4820
Mass erase 5300–10600 (1)

Program word 35

(1) MSP430 Device-dependent, refer to device specific datasheet. Refer to Section 3.7 for more details.

Programming a Flash-Based MSP430 Using the JTAG Interface24 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Memory Programming Control Sequences

The following JTAG communication flow shows programming of the MSP430 flash memory using the
onboard flash controller. In this implementation, 16-bit words are programmed into the main flash memory
area. To program bytes, the BYTE bit in the JTAG CNTRL_SIG register must be set high while in
programming mode. StartAddr is the starting address of the flash memory array to be programmed.

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Enable FLASH Write Access

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012A) (1) : Point to FCTL2 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Source is MCLK, divider by 1

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (2) : Clear FCTL3 Register

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16("Address") (1) : Set Address for Write

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16("Data") : Set Data for Write

SetTCLK
Yes

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Set RW to Read

SetTCLK
Repeat 35 times (3)

ClrTCLK

Write Another Flash Address?
No

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

(1) Replace with DR_SHIFT20(“Address”) when programming an MSP430X architecture device.
(2) Substitute 0xA540 for '2xx devices for Info-Segment A programming.
(3) Correct timing required. Must meet min/max TCLK frequency requirement of 350 kHz ＝100 kHz.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.5 Reading From Flash Memory

3.6 Verifying the Flash Memory

3.7 Erasing the Flash Memory (Using the Onboard Flash Controller)

3.7.1 Flow to Erase a Flash Memory Segment

Memory Programming Control Sequences

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) : Disable FLASH Write Access

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (2) : Disable FLASH Write Access

SetTCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

Reference function: ReadMem or ReadMemQuick

The flash memory can be read using the normal memory read flow given earlier for non-flash memory
addresses. The quick access method can also be used to read flash memory.

Reference function: VerifyMem

Verification is performed using a pseudo signature analysis (PSA) algorithm, which is built into the
MSP430 JTAG logic and executes in ≈23 ms/4 kB.

Reference function: EraseFLASH

This section describes how to erase one segment of flash memory (ERASE_SGMT), how to erase the
device main memory (ERASE_MAIN), and how to perform an erase of the complete flash memory
address range including, main and info flash segments (ERASE_MASS). This method requires the user to
provide a TCLK signal at a frequency of 350 kHz ± 100 kHz while the erase cycle is being executed, as is
also the case when programming the flash memory. The following tables show the segment and mass
erase flows, respectively, and the minimum number of TCLK cycles required by the flash controller to
perform each action (FCTL2 register bits 0–7 = 0x40).

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA502) : Enable FLASH segment erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012A) (1) : Point to FCTL2 Address

IR_SHIFT("IR_DATA_TO_ADDR")

(1) Replace with DR_SHIFT20("Address") when programming an MSP430X architecture device.

Programming a Flash-Based MSP430 Using the JTAG Interface26 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Memory Programming Control Sequences

DR_SHIFT16(0xA540) : Source is MCLK, divider by 1

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (2) : Clear FCTL3 Register

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(“EraseAddr”) (1) : Set Address for Erase (3)

IR_SHIFT("IR_DATA_TO_ADDR")

: Write Dummy Data for Erase
DR_SHIFT16(0x55AA)

Start

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : Set RW to Read

SetTCLK
Repeat 4819 times (4)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : Set RW to Write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (1) : Point to FCTL1 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) : Disable FLASH Erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (1) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (2) : Disable FLASH Write Access

SetTCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.
(2) Substitute 0xA540 for '2xx devices for Info-Segment A programming.
(3) The EraseAddr parameter is the address pointing to the flash memory segment to be erased.
(4) Correct timing required. Must meet min/max TCLK frequency requirement of 350 kHz ±100 kHz.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

3.7.2 Flow to Erase the Entire Flash Address Space (Mass Erase)
Memory Programming Control Sequences

Beside the TCLK signal at a frequency of 350 kHz ± 100 kHz (used for the Flash Timing Generator, data
sheet parameter fFTG), two more data sheet parameters must be taken into account when using the
described method to perform a mass or main memory erase. The first is tCMErase (cumulative mass erase
time) and the second is tMass Erase (mass erase time). Two different specification combinations of these
parameters are currently implemented in dedicated MSP430 devices. Table 8 shows an overview of the
parameters (assuming a maximum TCLK frequency of 450 KHz).

Table 8. Flash Memory Parameters (fFTG = 450 kHz)
Mass Erase Duration Generated by theImplementation tCMErase tMass Erase Flash Timing Generator

1 200 ms 5300 × tFTG 11.1 ms
2 20 ms 10600 × tFTG 20 ms

For implementation 1, in order to assure the recommended 200-ms erase time to safely erase the flash
memory space, 5300 TCLK cycles are transmitted to the target MSP430 device and repeated 19 times.
With implementation 2, the following sequence needs to be performed only once.

Note: MSP430F2xx devices have four information memory segments of 64 bytes each. Segment
INFOA (refer to MSP430F2xx Family User’s Guide for more information) is a lockable flash
information segment and contains important calibration data for the MSP430F2xx clock
system (DCO) unique to the given device programmed at production test. The remaining
three information memory segments (INFOB, INFOC and INFOD) cannot be erased by a
mass erase operation as long as INFOA is locked. INFOB, INFOC, and INFOD can be
erased segment by segment, independent of the lock setting for INFOA. Unlocking INOFA
allows performing the mass erase operation.

Switch CPU to stopped state (HaltCPU)

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : set RW to write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (2) : FCTL1 address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA506) : Enable FLASH mass erase

SetTCLK
Perform once or

ClrTCLK Repeat 19 times (1)

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012A) (2) : FCTL2 address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA540) : Source is MCLK and divider is 0

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (2) : FCTL3 address

IR_SHIFT("IR_DATA_TO_ADDR")

(1) Correct timing required. Must meet min/max TCLK frequency requirement of 350 kHz ±100 kHz.
(2) Replace with DR_SHIFT20(“Address”) when programming an MSP430X architecture device.

28 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Memory Programming Control Sequences

DR_SHIFT16(0xA500) (3) : Clear FCTL3 register

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16("EraseAddr") (2) : Set address for erase (4)

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0x55AA) : Write dummy data for erase start

SetTCLK

ClrTCLK

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2409) : set RW to read

SetTCLK
Perform 10600 or 5300 times (1)

ClrTCLK Perform once or
Repeat 19 times (1)

IR_SHIFT("IR_CNTRL_SIG_16BIT")

DR_SHIFT16(0x2408) : set RW to write

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x0128) (2) : FCTL1 address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) : Disable FLASH erase

SetTCLK

ClrTCLK

IR_SHIFT("IR_ADDR_16BIT")

DR_SHIFT16(0x012C) (2) : Point to FCTL3 Address

IR_SHIFT("IR_DATA_TO_ADDR")

DR_SHIFT16(0xA500) (3) : Disable FLASH Write Access

SetTCLK

ReleaseCPU should now be executed, returning the CPU to normal operation.

(3) Substitute 0xA540 for '2xx devices for Info-Segment A programming.
(4) The EraseAddr parameter is the address pointing to the flash memory segment to be erased. For mass erase, an even value in

the address range of the information memory should be used. For main memory erase, an even value in the address range of
the main memory should be used.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

4 Programming the JTAG Access Protection Fuse
Programming the JTAG Access Protection Fuse

Two similar methods are described and implemented, depending on the target MSP430 device family.

All devices having a TEST pin use this input to apply the programming voltage, VPP. As previously
described, these devices have shared-function JTAG interface pins. The higher pin count MSP430
devices with dedicated JTAG interface pins use the TDI pin for fuse programming.

Devices with a TEST pin:

Table 9. MSP430 Device JTAG Interface (Shared Pins)
Pin Direction Usage

P1.5/TMS IN Signal to control JTAG state machine
P1.4/TCK IN JTAG clock input
P1.6/TDI IN JTAG data input/TCLK input
P1.7/TDO OUT JTAG data output
TEST IN Logic high enables JTAG communication; VPP input while programming JTAG fuse

Devices without a TEST pin (dedicated JTAG pins):

Table 10. MSP430 Device Dedicated JTAG Interface
Pin Direction Usage

TMS IN Signal to control JTAG state machine
TCK IN JTAG clock input
TDI IN JTAG data input/TCLK input; VPP input while programming JTAG fuse
TDO OUT/IN JTAG data output; TDI input while programming JTAG fuse

Note: The value of VPP required for fuse programming can be found in the corresponding target
device data sheet. For existing flash devices, the required voltage for VPP is 6.5 V ± 0.5 V.

Programming a Flash-Based MSP430 Using the JTAG Interface30 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

4.1 Standard 4-Wire JTAG

4.1.1 Fuse-Programming Voltage via TDI Pin (Dedicated JTAG Pin Devices Only)

4.1.2 Fuse-Programming Voltage via TEST Pin

4.2 Fuse-Programming Voltage via SBW

Programming the JTAG Access Protection Fuse

Reference function: BlowFuse

When the fuse is being programmed, VPP is applied via the TDI input. Communication data that is
normally sent on TDI is sent via TDO during this mode. (Table 10 describes the dual functionality for the
TDI and TDO pins.) The settling time of the VPP source must be taken into account when generating the
proper timing to blow the fuse. The following flow details the fuse programming sequence built into the
BlowFuse function.

IR_SHIFT(“IR_CNTRL_SIG_16BIT”)

DR_SHIFT_IN(0x7201) : Configure TDO as TDI

TDI signal releases to target, TDI is now provided on TDO.

IR_SHIFT(“IR_PREPARE_BLOW”) (through TDO pin)

MsDelay(1) : Delay for 1ms

Connect VPP to TDI pin
Wait until VPP input has settled (depends on VPP source)

IR_SHIFT(“IR_EX_BLOW”) : Sent to target via TDO

MsDelay(1) : Delay for 1ms

Remove VPP from TDI pin
Switch TDI pin back to TDI function and reset the JTAG state machine (ResetTAP)

The same method is used to program the fuse for the TEST pin MSP430 devices, with the exception that
the fuse-blow voltage, VPP, is now applied to the TEST input pin.

IR_SHIFT(“IR_PREPARE_BLOW”)

MsDelay(1) : Delay for 1ms

Connect VPP to TEST pin
Wait until VPP input has settled (depends on VPP source)

IR_SHIFT(“IR_EX_BLOW”)

MsDelay(1) : Delay for 1ms

Remove VPP from TEST pin
Reset the JTAG state machine (ResetTAP)

Reference function: BlowFuse_sbw

In SBW mode, the TEST/SBWTCK pin is used to apply fuse-blow voltage VPP. The required timing
sequence is shown in Figure 12. The actual fuse programming happens in the Run-Test/Idle state of the
TAP controller. After the IR_EX_BLOW instruction is shifted in via SBW one more TMS_SLOT must be
performed. Then a stable VPP needs to be applied to SBWTCK. Taking SBWTDIO high as soon as VPP
has been settled will blow the fuse. It is required that SBWTDIO is low on exit of the IR_EX_BLOW
instruction shift.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

SBWTCK

TCK

TAP State Run-Test/Idle

SBWTDIO

Enable Blow

Execute Blow

Signal to fuse blow
transistor delayed until

SBWTDIO goes high.

Apply fuse blow voltage
before taking SBWTDIO high.

TDI Slot TDO Slot TMS Slot TDI SlotTDI Slot

Update-IR

TMS SlotTDO Slot

�Original� fuse blow signal
goes high with entering
the Run-Test/Idle state.

4.3 Testing for a Successfully Programmed Fuse

Programming the JTAG Access Protection Fuse

Figure 12. Fuse Blow Timing

Reference function: IsFuseBlown

Once the fuse is programmed and a RESET (via the JTAG ExecutePOR command or the RST/NMI pin in
hardware) has been issued, the only JTAG function available on the target MSP430 is BYPASS. When
the target is in BYPASS, data sent from host to target is delayed by one TCK pulse and output on TDO,
where it can be received by other devices downstream of the target MSP430.

To test a device for a programmed fuse, access to any JTAG data register can be attempted. In the
following communication sequence, the JTAG CNTRL_SIG register is accessed.

Initialize JTAG access (ResetTAP)

IR_SHIFT(“IR_CNTRL_SIG_CAPTURE”)

DR_SHIFT16(0xAAAA)

Is TDO output value = 0x5555?
Yes: No:

Fuse IS programmed Fuse NOT programmed

Programming a Flash-Based MSP430 Using the JTAG Interface32 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

5 JTAG Function Prototypes

5.1 Low-Level JTAG Functions

JTAG Function Prototypes

static word IR_Shift (byte Instruction)
Shifts a new instruction into the JTAG instruction register through TDI. (The instruction is shifted in
MSB first; the MSB is interpreted by the JTAG instruction register as the LSB.)

Arguments: byte Instruction (8-bit JTAG instruction)
Result: word TDOword (Value shifted out on TDO = JTAG_ID)

static word DR_Shift16 (word Data)
Shifts a given 16-bit word into the JTAG data register through TDI (data shift MSB first)

Arguments: word data (16-bit data value)
Result: word (Value shifted out simultaneously on TDO)

static void ResetTAP (void)
Performs fuse-blow check, resets the JTAG interface, and sends the JTAG state machine (TAP
controller) to the Run-Test/Idle state

Arguments: None
Result: None

static word ExecutePOR (void)
Executes a power-up clear command via the JTAG control signal register. This function also
disables the target device’s watchdog timer in order to avoid an automatic reset condition.

Arguments: None
word (STATUS_OK if the queried JTAG ID is valid, STATUS_ERRORResult: otherwise)

static word SetInstrFetch (void)
Sends the target device’s CPU into the instruction fetch state

Arguments: None
word (STATUS_OK if instruction-fetch state is set, STATUS_ERRORResult: otherwise)

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

5.2 High-Level JTAG Routines

JTAG Function Prototypes

static void SetPC (word Addr)
Loads the target device CPU’s program counter (PC) with the desired 16-bit address

Arguments: word Addr (Desired 16-bit PC value)
Result: None

static void HaltCPU (void)
Sends the target CPU into a controlled, stopped state

Arguments: None
Result: None

static void ReleaseCPU (void)
Releases the target device’s CPU from the controlled, stopped state. (Does not release the target
device from JTAG control. See ReleaseDevice.)

Arguments: None
Result: None

static word VerifyPSA (word StartAddr, word Length, word *DataArray)
Compares the computed pseudo signature analysis (PSA) value to the PSA value shifted out from
the target device. It can be used for very fast data block or erasure verification (called by the
EraseCheck and VerifyMem prototypes discussed previously).

Arguments: word StartAddr (Start address of the memory data block to be checked)
word Length (Number of words within the data block)
word *DataArray (Pointer to an array containing the data, 0 for erase check)

Result: word (STATUS_OK if comparison was successful, STATUS_ERROR
otherwise)

word GetDevice (void)
Takes the target MSP430 device under JTAG control. Sets the target device’s CPU watchdog to a
hold state; sets the global DEVICE variable.

Arguments: None
Result: word (STATUS_ERROR if fuse is blown, JTAG_ID is incorrect (not = 0x89) or

synchronizing time-out occurs; STATUS_OK otherwise)

void ReleaseDevice (word Addr)
Releases the target device from JTAG control; CPU starts execution at the specified PC address

Arguments: word Addr (0xFFFE: Perform reset; address at reset vector loaded into PC;
otherwise address specified by Addr loaded into PC)

Result: None

Programming a Flash-Based MSP430 Using the JTAG Interface34 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

JTAG Function Prototypes

void WriteMem (word Format, word Addr, word Data)
Writes a single byte or word to a given address (RAM/peripheral only)

Arguments: word Format (F_BYTE or F_WORD)
word Addr (destination address for data to be written)
word Data (data value to be written)

Result: None

void WriteMemQuick (word StartAddr, word Length, word *DataArray)
Writes an array of words into the target device memory (RAM/peripheral only)

Arguments: word StartAddr (start address of destination memory)
word Length (number of words to be programmed)
word *DataArray (pointer to array containing the data)

Result: None

void WriteFLASH (word StartAddr, word Length, word *DataArray)
Programs/verifies an array of words into flash memory using the flash controller of the target
device

Arguments: word StartAddr (Start address of destination flash memory)
word Length (Number of words to be programmed)
word *DataArray (Pointer to array containing the data)

Result: None

word WriteFLASHallSections (word *DataArray)
Programs/verifies a set of arrays of words into flash memory by using the WriteFLASH() function.
It conforms to the CodeArray structure convention of the target device program file:
Target_Code.txt. (See Appendix A for more information on file structure.)

Arguments: word *CodeArray (pointer to an array set containing the data)
Result: word (STATUS_OK if write/verification was successful, STATUS_ERROR

otherwise)

word ReadMem (word Format, word Addr)
Reads one byte or word from a specified target memory address

Arguments: word Format (F_BYTE or F_WORD)
word Addr (target address for data to be read)

Result: word (data value stored in the target address memory location)

void ReadMemQuick (word StartAddr, word Length, word *DataArray)
Reads an array of words from target memory

Arguments: word StartAddr (start address of target memory to be read)
word Length (number of words to be read)
word *DataArray (pointer to array for data storage)

Result: None

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

6 References

References

void EraseFLASH (word EraseMode, word EraseAddr)
Performs a mass erase (with or without information memory) or a segment erase of a flash module
specified by the given mode and address

Arguments: word EraseMode (ERASE_MASS, ERASE_MAIN or ERASE_SGMT)
word EraseAddr (any address within the selected segment to be erased)

Result: None

word EraseCheck (word StartAddr, word Length)
Performs an erase check over the given memory range

Arguments: word StartAddr (start address of memory to be checked)
word Length (number of words to be checked)

Result: word (STATUS_OK if erase check was successful, STATUS_ERROR
otherwise)

word VerifyMem (word StartAddr, word Length, word *DataArray)
Performs a program verification over the given memory range

Arguments: word StartAddr (start address of memory to be verified)
word Length (number of words to be verified)
word *DataArray (pointer to array containing the data)

Result: word (STATUS_OK if verification was successful, STATUS_ERROR
otherwise)

word BlowFuse (void)
Programs (or blows) the JTAG interface access security fuse. This function also checks for a
successfully programmed fuse using the IsFuseBlown() prototype.

Arguments: None
Result: word (STATUS_OK if fuse blow was successful, STATUS_ERROR otherwise)

word IsFuseBlown (void)
Determines if the security fuse has been programmed on the target device

Arguments: None
Result: word (STATUS_OK if fuse is blown, STATUS_ERROR otherwise)

MSP430Fxxx device data sheets

MSP430x1xx Family User’s Guide, literature number SLAU049

MSP430x4xx Family User’s Guide, literature number SLAU056

MSP430x2xx Family User’s Guide, literature number SLAU144

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE STD1149.1

Programming a Flash-Based MSP430 Using the JTAG Interface36 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

7 Third-Party Support
Third-Party Support

SoftBaugh, Inc., offers a complete system as shown in Appendix A, which is compatible with the software
available with the MSP430 Flash Programming Replicator application report. This information can be
found at this address: http://www.softbaugh.com/ExtREP430.html

SoftBaugh, Inc.

5400 Laurel Springs Parkway

Suite 1001

Suwanee GA 30024

Tel.: 800-794-5756

Fax: 770-886-1777

E-mail: e-mail info@softbaugh.com

Web site: www.softbaugh.com

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 37
Submit Documentation Feedback

http://www.softbaugh.com/ExtREP430.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Appendix A Implementation

A.1 Implementation History

A.2 Implementation Overview

Appendix A

There are two Replicator implementations. The latest version is discussed in this document, while the
previous version is found in a separate file, slaa149b.zip. The main difference between the two
implementations is the use of the srec_cat.exe function in place of FileMaker.exe. Corresponding changes
to function calls and declarations were made to the Replicator.c file. While the implementation described
in this document is preferred, the previous implementation is maintained for legacy users.

The following sections document the examples provided via .zip file along with this application report.
Each example demonstrates the software functions described in the previous sections using an
MSP430F149 as the host controller that programs the given target MSP430 flash-based device of choice.
The complete C source code and project files are provided in the attachment accompanying this
application report. A schematic for the system as implemented in this discussion is also provided.

Key features of the JTAG Replicator programmer implementations are as follows:
• Support all MSP430 flash-based devices. There are specific software projects for the following target

device Replicator implementations:
– Replicator: All 4-wire JTAG, MSP430 architecture devices (includes SBW devices when

programmed in 4-wire mode)
– Replicator for Spy-Bi-Wire: 2-wire interface implementation for SBW devices only
– Replicator for MSP430X: For 4-wire MSP430X extended architecture devices only

Note: The Replicator source files are provided in independent folders with the same names as
previously given. Within these folders, filenames are assigned accordingly when
applicable specifically to a certain device type. For example, the file JTAGfunc.c used in
the Replicator version, is renamed JTAGfuncSBW.c in the Replicator for SBW version
and JTAGfunc430X.c in the Replicator for MSP430X version.

• Maximum target device program code size: approximately 57 KB
• MSP430X target device source code must be placed in lower 64-kB address space.
• Programming speed (Erase, Program, Verify): approximately 8 KB in 1.5 s, 48 KB in 8 s
• Fast verify and erase check: 17 KB/10 ms
• Support programming of the JTAG access fuse (permanently disables device memory access via

JTAG)
• Stand-alone target programming operation (no personal computer or additional supporting

hardware/software required)

38 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

A.3 Software Operation
Software Operation

The host controller stores the JTAG communication protocol code and the target program in its flash
memory (61 KB available on the MSP430F149). The programming software itself occupies about 3.5 KB,
so approximately 57 KB remain for the target device program. The Replicator host can be loaded with the
target source code via the flash emulation tool (FET) or the MSP430 serial programming adapter. (See the
MSP430 website at www.ti.com for more information on device programming tools.)

The basic functionality of the programmer is as follows. Pushing the GO button generates a hardware
reset and starts the host controller’s JTAG communication routine in order to erase, program, and verify
the target device. While the system is active, two LEDs on the programmer board are on; after successful
completion, only the green LED is on. If an error occurrs or communication to the target device fails, only
the red LED remains on. The entire procedure takes approximately 3 s for a target program size of 8 KB.
(Some code not strictly required to erase/program/verify the target MSP430 is executed at the end of the
Replicator.c source file, increasing the specified programming times. These additional instructions can be
customized to fit the individual system programming requirements.)

To achieve optimum performance, the JTAG communication protocol uses the SPI module on the host
MSP430F149 for the basic JTAG data shift function. To simplify code portability to alternative host
platforms, this shift function is also provided in the attached code as a software loop using the
general-purpose I/O port functionality as an alternative. See the included source code file
LowLevelFunc.h, LowLevelFuncSBW.h, and LowLevelFunc430X.h.

To program the host MSP430F149 different development environments can be used—IAR Embedded
Workbench™ or CCE™ by Texas Instruments. The free versions of IAR and CCE impose code size
restrictions. In order to use the 57 KB previously mentioned, the full version of IAR or CCE is needed. The
folder structure provides both an IAR and CCE folder, each of which contains the environment-specific
files. For IAR, the workspace file (extension .eww) must be started to open the IAR Workbench. Using
CCE, each Replicator project must be imported into the user's workspace. This can be done by
right-clicking in the project's view and selecting "Import" in the context menu. After choosing the desired
Replicator folder, the project is imported and ready to use.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 39
Submit Documentation Feedback

www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

A.4 Software Structure
Software Structure

The programming software is partitioned in three levels and consists of eight files in addition to the target
program (see below):
Top level Specifies which programming functions (erase, program, verify, blow fuse) are to be executed.

Contains the main section, which can be modified to meet custom requirements. In
the main section of this program, the target device is erased, checked for
successful erasure, and programmed. Programming loads the provided example
code to the target device’s memory space. (The provided code file simply flashes
port pins P1.0 and/or P5.1, which drive the LEDs on the socket board provided with
the FET tools, available from Texas Instruments MSP430 Group. This is theReplicator.c compiled FETXXX_1.s43 example code file.) This file must be replaced by the
required user program and added to the project in order be compiled and loaded
into the host. To demonstrate the capabilities of the MSP430 JTAG interface,
additional code is included, which manipulates the I/O-ports and RAM of the target
device. These routines can be used to test the target device and PCB for
successful communication.
Contains the basic declarations of the program code of the target device. If a
C-header file should be implemented to program the target device instead of an
assembly file simply replace the content of Target_Code.h by the output ofTarget_Code.h srec_cat.exe and remove Target_Code.s43 (IAR) resp. Target_Code.asm (CCE)
from the project. The Target_Code.h file is generated by the srec_cat.exe file
directly or via the srec.bat file.

JTAG functions All MSP430-specific functions are defined here. These files should not be modified under any
circumstance.
JTAGfunc.c
JTAGfuncSBW.c Contain the MSP430-specific functions needed for flash programming
JTAGfunc430X.c
JTAGfunc.h
JTAGfuncSBW.h Contain constant definitions and function prototypes used for JTAG communication
JTAGfunc430X.h

Low-level functions All functions that depend specifically on the host controller (JTAG port I/O and timing functions) are located
here. These files need to be adapted if a host controller other than the MSP430F149 is implemented.
LowLevelFunc.c
LowLevelFuncSBW.c Contain the basic host-specific functions
LowLevelFunc430X.c
LowLevelFunc.h
LowLevelFuncSBW.h Contain host-specific definitions and function prototypes
LowLevelFunc430X.h

Devices Describes features and differences between MSP430 devices with respect to FLASH programming.
Devices.c Functions to distinguish MSP430 devices concerning FLASH programming.
Devices.h Device function prototypes and definitions for FLASH programming.

As mentioned previously, the target device’s program code must be supplied separately. There are two
ways to include the provided example in the project space of the program to be sent to the host. Either
include a separate file (e.g., Target_Code.s43 (IAR) or Target_Code.asm (CCE)), which contains the
target code in assembly format, or replace the C-Array in the Target_Code.h header file. Both alternatives
must conform to the format expected by the slaa149 source code.

40 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Software Structure

To build these files from the TI-txt format output from the compiler, a conversion program called
srec_cat.exe and a batch file, srec.bat, are provided. TI-txt format can be output by the IAR Linker by
setting the required compiler/linker options (see the IAR tool instruction guides for more information). This
can also be done in CCE using the hex430 command line executable. srec_cat.exe is a command line
application which expects parameters in the following format:

'srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.h -c_array -output_word -c_compressed'
or
'srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.s43 -asm -output_word -a430' (IAR)
resp.
'srec_cat.exe Target_Code.txt -ti_txt -Output Target_Code.asm -asm -output_word -cl430' (CCE)

Parameter description:
• 'srec_cat.exe': The name of the application
• 'Target_Code.txt -ti_txt': This is the input file by name and the format of it
• '-Output': A keyword to make clear that following parameters describe the output file and format
• 'Target_Code.x -[c_array,asm]': This is the output file by name and the format the input file should be

converted in. For the slaa149 application report only C-header and assembly formats are allowed.
Choose one format for your purpose.

• '-output_word': The parameter is necessary because the source code expects words to write to the
target device. Otherwise, srec_cat.exe would write bytes.

• '-c_compressed': This statement is additional to the c_array output. If specified the output will not be fill
any address gap with a 0xFF pattern, what finally will not increase the file size.

• The following statements are additional to the assembly output. Choose one to specify your format.
– '-a430': Writes an assembly file that is understood by the IAR Embedded Workbench in the

Replicator context.
– '-cl430': Writes an assembly file that is understood by TI CCE in the Replicator context.

The srec.bat file generates all three types of output files (.h, .asm, and .s43) simultaneously. The
command line format is: 'srec Target_Code'.

Note: If the TI-txt source file includes odd segment addresses and/or an odd number of data bytes,
additional byte padding might be required to generate appropriate word-aligned output
format. Use srec_cat.exe with a "--fill 0xFF --within <input> --range-padding 2" filter to fix this
problem. The srec.bat automatically filters the output format for appropriate word alignment.
For example, 'srec_cat.exe Target_Code.txt -ti_txt --fill 0xFF --within Target_Code.txt -ti_txt
--range-padding 2 -Output Target_Code.h -c_array -output_word -c_compressed'

Note: If using assembly source code that contains the target code, make sure that the array
declarations are stored in target_code.h . An example can be seen in the included basic
header file.

Note: The provided conversion program is Open Source and has a much larger range of functions.
For more information and documentation see http://srecord.sourceforge.net/.
Additionally, this software was tested to function correctly with version 1.36, but will not
necessarily be compatible with future versions.

Note: To enable easy porting of the software to other microcontrollers, the provided source code is
written in ANSI-C. As always, it is recommended that the latest available version of the
applicable MSP430 development software be installed before beginning a new project.

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 41
Submit Documentation Feedback

http://srecord.sourceforge.net/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

A.5 Programmer Operation

A.6 Hardware Setup

A.6.1 Host Controller

A.6.2 Target Connection

Programmer Operation

The following is a step-by-step procedure that demonstrates how the JTAG Replicator programmer could
be used together with any MSP430 FETXXX development tool using the IAR MSP430 development
environment.

The hardware (H/W) consists of the host controller MSP430F149, five semiconductor relays, two voltage
regulators and two JTAG interface connectors. An external power supply delivering 8 V to 10 V dc at
200 mA is required for operation (see Figure A-1).

To achieve maximum programming speed, the host controller MSP430F149 runs at a maximum CPU
clock frequency of 8 MHz, provided on LFXT1. CPU operation at this frequency requires a supply voltage
of 3.6 V for the host controller, which is provided by U2 in the schematic. The host is programmed via a
dedicated JTAG port labeled Host JTAG (see Figure A-1).

The target MSP430 device is connected to the host controller/programmer through the 14-pin connector
labeled Target JTAG, which has the same standard signal assignment as all available MSP430 tools (FET
and PRGS tools). The host supply voltage of 3.6 V is also available on pin 2 of this connector, eliminating
the need for an additional supply for the target system, but it does not have to be used at the target. The
required Spy-Bi-Wire or 4-wire JTAG and GND must be connected. (On devices requiring the TEST pin,
the TEST signal also must be provided from the programmer to the target MSP430 device.)

To enable programming of all MSP430 flash-based devices including a JTAG access fuse, five
semiconductor relays are used, which are controlled by the host MSP430. Relay U4 controls VPP on
devices with a TEST pin; U5 connects VPP to TDI on devices not requiring a TEST signal. U6 isolates the
host controller from the target TDI pin while VPP is connected to the target TDI input. U7 connects the host
TDI signal to the target TDO pin while the fuse is programmed (for devices without a TEST pin). U8
controls availability of VCC to the target device. The host controller program includes delays, which
consider a relay switching time of a maximum of 5 ms. U4 and U5 should have a RON < 1 Ω to minimize
voltage drop during fuse programming. While the fuse is being programmed, a maximum current flow of
100 mA is possible for approximately 2 µs into the TDI pin (or the TEST pin, depending on the target
device).

The following recommended relays meet the above requirements:

NAIS AQV212 (as shown in Figure A-1)
NEC PS710A
Matsushita AQV251
Matsushita AQY211EH
CP Clare LCA710

Programming a Flash-Based MSP430 Using the JTAG Interface42 SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Hardware Setup

Figure A-1. Replicator Application Schematic

SLAA149C–December 2005–Revised October 2007 Programming a Flash-Based MSP430 Using the JTAG Interface 43
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

A.6.3 Host Controller/Programmer Power Supply

Hardware Setup

Note: An MSP430 flash programmer system designed for a specific MSP430 target device or a
system not implementing fuse-blow functionality may require fewer relays or no relays at all.
The programmer system described herein was developed with the intention that it can be
used with any MSP430 flash-based device, across all families, including all memory access
functionality, as well as fuse-blow capability.

From the input voltage of 8 V to 10 V dc, two onboard voltages are generated using adjustable LDOs: VCC
= 3.6 V as supply voltage for the host controller MSP430F149 and target device, and VPP = 6.5 V to
program the JTAG access fuse. While the fuse is being programmed, a peak current of 100 mA can flow
through the TEST input pin (see the corresponding target MSP430 device data sheet).

If the target H/W requires a supply voltage lower than 3.6 V, the VCC output of the programmer can be
reduced accordingly (the host controller’s CPU crystal frequency should be reduced as well), or level
shifters can be added to translate the required supply voltage to the desired level.

When using a target system that is powered locally, the VCC level of the host programmer should match
that locally at the target. When differences exist between these voltage rails, communication between host
and target may fail due to invalid logic levels. It is also possible under these conditions that device
damage can occur.

44 Programming a Flash-Based MSP430 Using the JTAG Interface SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Appendix B MSP430 JTAG Implementation

B.1 TAP Controller State Machine

Select DR-ScanRun-Test/IDLE

Test-Logic-Reset

0

1

0

1

1

Fuse Check
Power

On

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

Select IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

B.2 MSP430 JTAG Restrictions (Non-Compliance With IEEE Std 1149.1)

Appendix B

Figure B-1. TAP Controller State Machine

• The MSP430 device must be the first device in the JTAG chain (because of clocking via TDI and JTAG
fuse check sequence).

• Only the BYPASS instruction is supported. There is no support for SAMPLE, PRELOAD, or EXTEST
instructions.

• The JTAG pins are shared with port functions on certain devices – JTAG function controlled via TEST
pin.

SLAA149C–December 2005–Revised October 2007 45
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

www.ti.com

Document Revision History

Document Revision History

Version Date Changes/Comments

• Added information about MSP430 JTAG restrictions, Section A.3
• Renamed bit 11 of the JTAG control signal register from PUC to POR, Section 2.4.3SLAA149C September 2007
• Added Section A.1
• Updated Section A.4 with description for the usage of SRecord conversion tool

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

46 Revision History SLAA149C–December 2005–Revised October 2007
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA149C

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

RFID www.ti-rfid.com Telephony www.ti.com/telephony

Low Power www.ti.com/lpw Video & Imaging www.ti.com/video
Wireless

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://dsp.ti.com
http://www.ti.com/broadband
http://interface.ti.com
http://www.ti.com/digitalcontrol
http://logic.ti.com
http://www.ti.com/military
http://power.ti.com
http://www.ti.com/opticalnetwork
http://microcontroller.ti.com
http://www.ti.com/security
http://www.ti-rfid.com
http://www.ti.com/telephony
http://www.ti.com/lpw
http://www.ti.com/video
http://www.ti.com/wireless

	1 Introduction
	2 Interface and Instructions
	2.1 JTAG Interface Signals
	2.1.1 4-Wire JTAG Interface
	2.1.2 2-Wire SBW JTAG Interface

	2.2 JTAG Access Macros
	2.2.1 Macros for 4-Wire JTAG Interface
	2.2.1.1 IR_SHIFT (8-bit Instruction)
	2.2.1.2 DR_SHIFT16 (16-bit Data)
	2.2.1.3 DR_SHIFT20 (20-bit Address) (Applies Only to MSP430X Devices)
	2.2.1.4 MsDelay (time)
	2.2.1.5 SetTCLK
	2.2.1.6 ClrTCLK

	2.2.2 Macros for 2-Wire JTAG (SBW) Interface

	2.3 SBW Timing and Control
	2.3.1 Basic Timing
	2.3.2 TDO Slot
	2.3.3 SetTCLK_sbw and ClrTCLK_sbw in SBW Mode

	2.4 JTAG Communication Instructions
	2.4.1 Controlling the Memory Address Bus (MAB)
	2.4.1.1 IR_ADDR_16BIT
	2.4.1.2 IR_ADDR_CAPTURE

	2.4.2 Controlling the Memory Data Bus (MDB)
	2.4.2.1 IR_DATA_TO_ADDR
	2.4.2.2 IR_DATA_16BIT
	2.4.2.3 IR_DATA_QUICK
	2.4.2.4 IR_BYPASS

	2.4.3 Controlling the CPU
	2.4.3.1 IR_CNTRL_SIG_16BIT
	2.4.3.2 IR_CNTRL_SIG_CAPTURE
	2.4.3.3 IR_CNTRL_SIG_RELEASE

	2.4.4 Memory Verification Via Pseudo Signature Analysis (PSA)
	2.4.4.1 IR_DATA_PSA
	2.4.4.2 IR_SHIFT_OUT_PSA

	2.4.5 JTAG Access Security Fuse Programming
	2.4.5.1 IR_PREPARE_BLOW
	2.4.5.2 IR_EX_BLOW

	3 Memory Programming Control Sequences
	3.1 Start-Up
	3.1.1 Enable JTAG Access
	3.1.2 Fuse Check and Reset of the JTAG State Machine (TAP Controller)
	3.1.3 Taking the CPU Under JTAG Control

	3.2 General Functions
	3.2.1 Set CPU to Instruction-Fetch
	3.2.2 Setting the Target CPU Program Counter (PC)
	3.2.3 Controlled Stop/Start of the Target CPU
	3.2.4 Resetting the CPU While Under JTAG Control
	3.2.5 Release Device From JTAG Control

	3.3 Accessing Non-Flash Memory Locations With JTAG
	3.3.1 Read Access
	3.3.2 Write Access
	3.3.3 Quick Access of Memory Arrays
	3.3.3.1 Flow for Quick Read (All Memory Locations)
	3.3.3.2 Flow for Quick Write (RAM and Peripheral Memory Only)

	3.4 Programming the Flash Memory (Using the Onboard Flash Controller)
	3.5 Reading From Flash Memory
	3.6 Verifying the Flash Memory
	3.7 Erasing the Flash Memory (Using the Onboard Flash Controller)
	3.7.1 Flow to Erase a Flash Memory Segment
	3.7.2 Flow to Erase the Entire Flash Address Space (Mass Erase)

	4 Programming the JTAG Access Protection Fuse
	4.1 Standard 4-Wire JTAG
	4.1.1 Fuse-Programming Voltage via TDI Pin (Dedicated JTAG Pin Devices Only)
	4.1.2 Fuse-Programming Voltage via TEST Pin

	4.2 Fuse-Programming Voltage via SBW
	4.3 Testing for a Successfully Programmed Fuse

	5 JTAG Function Prototypes
	5.1 Low-Level JTAG Functions
	5.2 High-Level JTAG Routines

	6 References
	7 Third-Party Support
	Appendix A Implementation
	A.1 Implementation History
	A.2 Implementation Overview
	A.3 Software Operation
	A.4 Software Structure
	A.5 Programmer Operation
	A.6 Hardware Setup
	A.6.1 Host Controller
	A.6.2 Target Connection
	A.6.3 Host Controller/Programmer Power Supply

	Appendix B MSP430 JTAG Implementation
	B.1 TAP Controller State Machine
	B.2 MSP430 JTAG Restrictions (Non-Compliance With IEEEStd1149.1)

	Document Revision History

