
Application Report
SLAA330–September 2006

Software I2C Slave Using the MSP430
Thomas Kot ... MSP430

ABSTRACT

This application report describes the design of a software I2C slave that can run up to
100-kbps using an MSP430 MCU. This software I2C uses a small amount of MCU
resources so that it can be implemented on lower-end MSP430 devices. The interface
to the I2C bus uses two I/O pins; and the code size, including flash memory and RAM,
is small. Low power is built into the software design. The application of this software
I2C is not just confined to low-end products.

Contents
1 Introduction .. 2
2 I2C Operation.. 2
3 Firmware Overview... 3
4 I2C Software Flow .. 4
5 Timing of I2C .. 5
6 Testing the Software I2C ... 10
7 Schematics... 11
8 Hardware Implementation.. 12
9 References... 12
Appendix A Sample Code .. 13
Appendix B Infrared Transmission ... 14
Appendix C Key Scan Flow Chart ... 15

List of Figures

1 I2C Signals... 2
2 Writing Data ... 4
3 Reading Data.. 5
4 Writing Process Timing Diagram ... 5
5 Master Write Timing .. 7
6 Reading Process Timing Diagram.. 8
7 Software I2C System With Hardware I2C Master Block Diagram 10
8 Infrared Receiver With I2C System Block Diagram ... 12
B-1 Infrared Transmission Format ... 14
C-1 Flow Chart of Key Scanning ... 15

List of Tables

1 Writing Data ... 4
2 Reading Data.. 5
3 Writing Process Timing .. 6
4 Master Write Timing .. 7
5 Reading Process Timing... 8

SLAA330–September 2006 1Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

1 Introduction

2 I2C Operation

SDA

SCL

State 1 State 2 State 3 State 4

Introduction

I2C is a common communication protocol in the electronics industry. The two-wire configuration can attach
up to 127 devices using 7-bit addressing.

Texas Instruments MSP430 is an ultralow-power 16-bit RISC MCU. With its fast processing speed, the
MSP430 can emulate data transfer through an I/O pin at high speed. In this application, the MCU
accommodates an infrared receiver and an I2C slave software routine using a clock speed of 8 MHz.

The device chosen for this application is the MSP430F1121. The peripherals used are as follows:
• Two I/Os with interrupt for emulating I2C
• One I/O with interrupt for receiving infrared data input
• Timer A

This application demonstrates the implementation of a software 100-kbps I2C slave. The fast processing
capability of the MSP430 allows additional software modules to be implemented as well. For
demonstration purposes, infrared communication was also implemented.

This application note contains a brief section on I2C slave and infrared reception, followed by a more
detailed description of the system design using hardware and software.

The full function of I2C is described in its specification documents (I2C specification, version 2.1). In this
application, only the slave mode with sequential read and write is implemented. This mode is enough to
cover normal use of I2C slave communication.

There are four major states when implementing an I2C.

The following are typical I2C signals:

Figure 1. I2C Signals

State 1
Start Condition. A high-to-low transition on the SDA line while SCL is high is one unique case. This
situation indicates a start condition.

State 2
After the start condition, data is transmitted bit by bit. When SCL goes low, SDA is free to set its state
to high or low. When SCL goes high, state of SDA is latched into the MCU buffer; SDA cannot make
any change at this time, because it is treated as error.

State 3
On every 9th SCL clock, an acknowledge bit is issued. To indicate an acknowledgment, the MCU on
the receiving side needs to set SDA to low before the 9th rising edge of SCL.

State 4
Stop condition. A low-to-high transition on the SDA line while SCL is high defines a stop condition.

2 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

3 Firmware Overview

3.1 Key Scan

3.2 Infrared Receive

3.3 I 2C Data Fetching

Firmware Overview

For 100-kbps communication, SCL must run at 100 kHz. Assuming, the mark space ratio is 50%, the clock
cycle of SCL is 10 µs, with 5 µs at level high and 5 µs at level low. When the MCU is running at 8 MHz,
one instruction cycle (CPU cycle) is 125 ns. 10 µs can accommodate 80 instruction cycles while 5 µs can
accommodate 40 instruction cycles.

To prevent infinite waiting loops and unpredictable errors, a time-out timer is started whenever the start
condition is triggered. When stop condition is detected or there is a time out, the I2C slave routine stops
running.

The firmware can be divided into three modules: key scan routine, IR detection routine, and I2C routine.
To avoid conflict among routines, as they all use the same RAM buffer, only one interrupt service routine
is enabled during data transfer. After the IR routine or key pad routine returns valid data, P1.1 is set high
to notify the master, and the I2C routine is enabled. The following sections briefly describe how the three
modules work. For the I2C module, a detailed explanation and some working examples are discussed.

An infinite loop is used for scanning key input. Five inputs in port 1 and three inputs in port 2 are directly
connected to the MCU (not in matrix form). This is a simple example of key scanning. Each key is
checked sequentially in a software loop. In this loop, all other interrupt services are enabled. However,
when a key press is being checked, the MCU must also check if an I2C or IR routine is running. If not, the
global interrupt enable bit is reset, the command corresponding to the key pressed is stored in the RAM
buffer and P1.1 is set high, waiting for the master unit to fetch this command through I2C. It is important to
note that if the master does not check the status of the I2C and IR routines, the RAM buffer will be
corrupted. During the process that the command is stored in the buffer, other interrupts must be disabled
to avoid corrupting the buffer. See the Appendix C for a flow chart of the key scan routine.

When receiving an infrared signal, the I2C interrupt must be disabled. There are two reasons:
• The IR routine uses Timer_A’s external input to measure the IR pulse width, but Timer_A is also used

by the I2C routine.
• The RAM buffer is shared between two routines.

If both the IR and I2C routines are enabled at the same time, the received data will be corrupted. The
following is the basic flow of IR routine.

1. Run Timer_A in continuous mode. Disable P1.0 interrupt to disable I2C function.
2. Receive IR signal and check its pulse width to determine a logic 0 or 1.
3. Customer code checking (see Figure B-1)
4. Customer code checking (see Figure B-1)
5. If the last IR signal is received, store the received data in the RAM buffer. Set P1.1 high and enable

I2C interrupt on P1.0

When the I2C routine is enabled, the IR routine must be disabled. This is because Timer_A is used as a
time-out timer, and the I2C routine needs access to the RAM buffer. Therefore, there is a conflict between
the IR and the key pad routines. After an I2C data frame has completed and a stop condition is generated,
both Timer_A and the RAM buffer are freed. P1.1 is reset, and the system is ready for the next event.

SLAA330–September 2006 3Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

4 I2C Software Flow

4.1 Data Writing into MCU

A B C D E F G

. . . .

. . . .

Clock Number

SCL

SDA

Data

Region

1 2 3 4 5 6 7 8 9

1 1 0 0 0 1 0 0 0

I2C Software Flow

When a valid start condition is detected, the software enables the SCL rising-edge interrupt and resets the
software state-machine pointers. Then, the subsequent bits are processed by the SCL interrupt service
routine (ISR). For a more detailed explanation, please see Appendix A.

When the master sends the address to the slave and the R/W bit is clear, the I2C ISR executes the
corresponding sequence of states to process the master write request. The same software routine is used
to process both data and the address sent by the master. Figure 2 and Table 1 show an overview of a
master write operation. The ISR column contains the labels listed in the source code of the software state
machine.

Figure 2. Writing Data

Table 1. Writing Data

SCL EdgeISR Region DescriptionTriggering

The most-significant bit, bit 7, is detected; enable SDA rising edge INT, whichSCL_W1LH ↑ A enables stop condition detection.

Disable SDA INT, which in turn disables stop condition detection. If an SCL
SCL_W1HL ↓ B rising edge is detected, instead of SDA, Label22 is triggered and the SDA INT

is disabled.

SCL_W2to6LH ↑ C Bit 6 to bit 2 detect

SCL_W7LH ↑ D Bit 1 detect and address detect

SCL_W8LH ↑ E Bit 0 detect; R/W bit detect; normal write-in data.

Set SDA output for ACK; if a write command is received, record data in RAM.
SCL_W8HL ↓ F If a read command is received, R4 ISR address pointer is set to the address

for reading data.

SCL_W9HL ↓ G Reset SDA, reset R4 for write-in data ISR address pointer.

4 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

4.2 Data Reading From MCU

A B C D E

. . . .

. . . .

Clock Number

SCL

SDA

Data

Region

9 10 11 12 13 14 15 16 17 18

1 0 1 0 1 0 1 0 0

5 Timing of I2C

5.1 Writing Process

Clock Number

SCL

SDA

Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 P

Timing of I2C

When a read command is detected, the ISR for master read is used. Figure 3 and Table 2 show the
overview of a master read. The ISR column contains the labels listed in the source code of the software
state machine.

Figure 3. Reading Data

Table 2. Reading Data

SCL EdgeISR Region DescriptionTriggering

Set the following SCL ISR trigger to be rising edge. The remaining instructionsSCL_R1HL ↓ A are the same as SCL_R2to8HL.

SDA rising edge INT is enabled, which in turn enables the detection of a stop
condition. The SDA INT is enabled until SCL sends out a falling edge. The

SCL_R1LH ↑ B routine SCL_R2to8HL disables the SDA INT and continues to read out data.
This routine provides an alternative way to stop communication with ACK at
the end.

SCL_R2to8HL ↓ C Rotate one bit out of a data byte; set the SDA output according to the bit.

Release the control of SDA. Set the rising edge trigger of SCL, prepare forSCL_R9HL ↓ D detection of the ACK bit.

Detect the ACK/NACK bit. If ACK is received, falling edge of SCL is set. Next
data is loaded. R4 is set to SCL_R1HL. If NACK is received, indicating the endSCLR9LH ↑ E of data reading, SCL triggering is set to rising edge, and R4 address pointer is
set to SCL_W1LH which enables detection of a stop condition.

Figure 4 shows an example for writing 0xAA into the slave MCU with device address 0x62 (seven bits).

Figure 4. Writing Process Timing Diagram

SLAA330–September 2006 5Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

Timing of I2C

Note: The data in Table 3 are measured with an operating clock frequency of 8 MHz. One
instruction cycle is 0.125 µs. The number of instruction cycles is equal to the total time
divided by 0.125 µs. Integer clock numbers indicate the number of rising edges of SCL
after a start condition; half clock numbers indicate the falling edges of SCL. ISRs from
clock numbers 1 to 9.5 are used for detection of device address, while clock numbers 10
to 18.5 are the ISRs for writing data into MCU. In Table 3, the Total Time column shows
the total amount of time taken to complete the corresponding interrupt service routine.
The Latch In/Out Data column shows the time taken for the corresponding interrupt
service routine to reach the instruction of latch in/out and execute it.

Table 3. Writing Process Timing

LatchTotal TimeClock Number ISR Label In/Out Data Remarks(µs) (µs)

Start Condition SDA 9.375 NA Start condition initialization. Time-out timer starts running.

1 SCL_W1LH 4.875 2 Capture the first bit and prepare for detection of stop condition.

Set rising edge detect for SCL. Disable the SDA signal detect,
hence disable detection of stop condition. The 2 µs is the time1.5 SCL_W1HL 3.125 2 taken from the falling edge to the instruction that clears the SCL
interrupt flag.

2 SCL_W2to6LH 3.375 2 Latch in 2nd data bit

3 SCL_W2to6LH 3.375 2 Latch in 3rd data bit

4 SCL_W2to6LH 3.375 2 Latch in 4th data bit

5 SCL_W2to6LH 3.375 2 Latch in 5th data bit

6 SCL_W2to6LH 3.375 2 Latch in 6th data bit

7 SCL_W7LH 5.75 2 Latch in 7th data bit

8 SCL_W8LH 4.375 2 Latch in 8th data bit

8.5 SCL_W8HL 4.125 1.5 Set SDA to low for ACK bit

9.5 SCL_W9HL 3.375 1.5 Release SDA for input

10 SCL_W1LH 4.875 2 Capture the first bit and prepare for detection of stop condition

Set rising-edge detect for SCL. Disable the SDA signal detect,
hence disable detection of stop condition. The 2 µs is the time10.5 SCL_W1HL 3.125 2 taken from the falling edge to the instruction that clears the SCL
interrupt flag.

11 SCL_W2to6LH 3.375 2 Latch in 2nd data bit

12 SCL_W2to6LH 3.375 2 Latch in 3rd data bit

13 SCL_W2to6LH 3.375 2 Latch in 4th data bit

14 SCL_W2to6LH 3.375 2 Latch in 5th data bit

15 SCL_W2to6LH 3.375 2 Latch in 6th data bit

16 SCL_W7LH 4.875 2 Latch in 7th data bit

17 SCL_W8LH 4.25 2 Latch in 8th data bit

17.5 SCL_W8HL 4.125 1.5 Set SDA to low for ACK bit

18.5 SCL_W9HL 3.375 1.5 Release SDA

Enable SDA INT, preparing for detection of stop condition. The
19 SCL_W1LH 4.875 3 3 µs is the time taken from the rising edge to the instruction that

clears SDA interrupt flag.

Stop Condition SDA 12 NA Stop condition detected. Reset time out time.

6 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

5.2 Bit Rate Versus MCU Clock Speed in Writing Process

Clock Number

SCL

SDA

Data

ISR

1 2 3

1 1 0

A B C D

Time = {Total time (SDA + SCL_W1LH) � Hold time (start cond) + Rising-edge time limit (SCL_W1HL)} / 1.5 cycles of SCL
= (9.375 + 4.875 � 4 + 2) / 1.5
= 8.17 ms

Time = 4.375 + 1.5 + 1 ms timing clearance
= 6.875 ms

Timing of I2C

In the I2C master write process, the timing bottleneck begins at the start condition and continues to the
rising edge of the 2nd clock. Figure 5 shows the timing diagram. The data for calculation is based on an
8-MHz MCU clock.

Figure 5. Master Write Timing

Table 4. Master Write Timing

Label ISR Time (µs) Description

The time spent on this ISR is longer than the sum of hold time of start
A SDA 9.375 condition, which is 4 µs (see I2C specification), and the low period of SCL

clock.

Immediately after the SDA ISR, run the SCL_1LH, as interrupt flag is setB SCL_W1LH 4.875 during running SDA ISR.

After completing SCL_W1LH, this routine follows. The instruction of clearing
C SCL_W1HL 3.125 SCL interrupt flag limits the timing of SCL. The rising edge of next clock can

only occur after the instruction or at least 2 µs after starting this routine.

After SCL_W1HL, this routine follows. The next routine starts after a risingD SCL_W2to6LH 3.375 edge.

The time of one cycle for the SCL clock is expressed as follows:

At 100 kbps, the time taken to transfer one bit is 10 µs, therefore, when the CPU is running at 8 MHz, the
MCU has enough processing power to deal with this bottleneck. The minimum clock speed required for
running 100-kbps I2C slave write process is 6.84 MHz.

From Table 3, ISR SCL_W7LH requires more time in clock number 7 than it does in clock 6. This is
because the ISR must check the device address and run more instructions in clock 7. In clock 16, only
writing in a data bit requires fewer instructions. ISR SCL_W8LH requires more time in clock 8 than it does
in clock 17. This is because it must check the bit for read or write and run more instructions in clock 8. In
clock 17, it only needs to write in a data bit.

Normally, the hold time for a start condition is longer than 4 µs. If a longer hold time can be set, or the
user adds extra instructions to extend the SCL low in this interrupt service routine, this bottleneck is
resolved. However, in the firmware of this application, there is no extended SCL low feature. The second
timing bottleneck is located between the rising edge of the 8th clock to the rising edge of the 9th clock.

The minimum clock speed required for running 100-kbps I2C slave with this setting is 5.22 MHz.

SLAA330–September 2006 7Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

5.3 Number of MIPS Used in Writing Process

5.4 Reading Process

Clock Number

SCL

SDA

Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 P

Timing of I2C

In the I2C master write process, the device address is received and followed by a sequence of data. The
same interrupt routines are used for receiving device address and data sent from the master.

To calculate the number of MIPS used, the total number of instructions for receiving 8 bits of data and an
acknowledge bit is divided by the time period. The number of instructions for start and stop condition can
be ignored as it is relatively small compared to the total number since they are used only once in
transmission.

The number of MIPS is equal to the number of instruction cycles used from clock 10 to clock 18 divided by
9 clock periods for a 100-kbps transmission.

= 332/90 MIPS
= 3.69 MIPS

Where one instruction cycle equals one clock cycle for the CPU clock. If running at 8 MHz, one clock cycle
is 0.125 µs.

Figure 6 shows the timing for reading 0xAA from a slave MCU with device address 0x62 (seven bits).

Figure 6. Reading Process Timing Diagram

Note: The data in the tables are measured with an operating clock frequency of 8 MHz. Integer
clock numbers indicate the number of rising edges of SCL after start condition; half clock
numbers indicate the falling edges of SCL. The first 8 bits in the sequence are the device
address sent by master unit of I2C, while second 8 bits are the data (0xAA) read out from
the MCU. ISRs starting from clock numbers 1 to 8.5 are used for detection of device
address, while clock numbers 9.5 to 18 are the ISRs for reading data.

Table 5. Reading Process Timing

Latch In/OutTotal TimeClock Number ISR Label Data Remarks(µs) (µs)

Start Condition SDA 9.375 NA Start condition initialization. Time-out timer starts running.

1 SCL_W1LH 4.875 2 Capture the first bit and prepare for detection of stop condition

Set rising edge detect for SCL. Disable the SDA signal detect,
hence disable detection of stop condition. The 2 µs is the time1.5 SCL_W1HL 3.125 2 taken from the falling edge to the instruction that clears the
SCL interrupt flag.

2 SCL_W2to6LH 3.375 2 Latch in 2nd data bit

3 SCL_W2to6LH 3.375 2 Latch in 3rd data bit

4 SCL_W2to6LH 3.375 2 Latch in 4th data bit

5 SCL_W2to6LH 3.375 2 Latch in 5th data bit

6 SCL_W2to6LH 3.375 2 Latch in 6th data bit

7 SCL_W7LH 5.75 2 Latch in 7th data bit

8 SCL_W8LH 4.375 2 Latch in 8th data bit

8.5 SCL_W8HL 4.875 1.5 Set SDA to low for ACK bit

8 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

5.5 Bit Rate Versus MCU Clock Speed in Reading Process

5.6 Number of MIPS Used in Read-Out Process

Timing of I2C

Table 5. Reading Process Timing (continued)

Latch In/OutTotal TimeClock Number ISR Label Data Remarks(µs) (µs)

9.5 SCL_R1HL 4.625 3 Output 1

Enable SDA INT to detect stop condition. After that, the INT is
10 SCL_R1LH 3.625 2 disabled in SCL_R2to8HL. The 2 µs is the time taken from the

falling edge to the instruction that clears the SCL interrupt.

10.5 SCL_R2to8HL 4.375 2.5 Output 0

11.5 SCL_R2to8HL 4.125 2.5 Output 1

12.5 SCL_R2to8HL 4.375 2.5 Output 0

13.5 SCL_R2to8HL 4.125 2.5 Output 1

14.5 SCL_R2to8HL 4.375 2.5 Output 0

15.5 SCL_R2to8HL 4.125 2.5 Output 1

16.5 SCL_R2to8HL 4.375 2.5 Output 0

17.5 SCL_R9HL 3.125 1.5 Release SDA

18 SCL_R9HL 4.25 1.5 Latch in NACK bit

Enable SDA INT, preparing fro detection of stop condition. The
19 SCL_W1LH 4.875 3 3 µs is the time taken from the rising edge to the instruction

that clears SDA interrupt flag.

Stop Condition SDA 12 NA Stop condition detected. Time-out timer stops running.

In the reading process, the timing bottleneck is the same as that in writing process, 8.17 µs, starting from
the start condition to the rising edge of the 2nd clock. The minimum clock speed required for running
100-kbps I2C slave read process is 6.84 MHz.

Another bottleneck is at clock 9.5. It takes 3 µs to output a data bit in half cycle. A 1-µs timing clearance is
required for rise time of rising edge, in total 4 µs in half cycle. Therefore an 8-µs period of I2C SCL clock is
required. A technique of adding extra instructions to extend SCL low can resolve this bottleneck, which is
left to the user to design.

The minimum clock frequency required to run a 100-kbps I2C read process with this bottleneck is 6 MHz.

In the read-out process, after the device address has been received, data is sent out to the master unit.
The resources required for the most frequently used ISRs are used to calculate the overall number of
MIPS required. These are:
• Data bit output ISR (SCL_R2to8HL)
• ACK detection ISR (SCL_R9HL of ACCRETE)

The others, such as start and stop detection, only contribute to a small part of this calculation and can be
ignored. This is especially true for multi-byte reads.

The number of MIPS is equal to number of instructions from clock 9.5 to clock 18.5 (ACK) divided by
9 clock periods for 100-kbps transmission.

= 368/90 MIPS
= 4.09 MIPS

SLAA330–September 2006 9Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

5.7 Clock Setting

5.8 Running With Other Interrupt Routines

6 Testing the Software I2C

SDA

SCL

Vcc

GND GND

10k 10k

100k

V = 3.3 VCC

MSP430F1121A
or MSP430F2131

Software I C Slave2

MSP430F169
I C Master2Rosc

VCC

P2.0

P1.0

P1.1 P1.1

P3.3

P3.1

P3.4,5

XT2 8 MHz

UTXD0

19200
8N1

VCC PC
Hyperterminal

Window

Interrupt master with a high
when data is in buffer and

with a low when data is read

Testing the Software I2C

From the previous sections, a 6.84-MHz crystal frequency is the minimum required to operate the I2C at a
transfer rate of 100 kbps.

When the high-frequency clock is provided by the DO, a nominal frequency 7.42 MHz is suggested. As the
minimum and maximum working frequencies are 6.84 MHz and 8 MHz, respectively, there is a ±8% timing
tolerance. An operating frequency of 8 MHz gives ±15% timing tolerance for I2C transactions. When using
MSP4301xx devices, if the DO frequency is set above 5 MHz, an external resistor is required to connect
the RISC pin to VCC. When using the MSP430F2xx devices, the DO can be set to run at a maximum of
16 MHz, and its variation due to temperature drift is limited to only 1%. Be sure to check the device
datasheet for VCC requirements for any given operating frequency.

In an MSP430, when processing an interrupt service routine, the global interrupt enable bit (GIE) is
cleared to disable other interrupts until the present interrupt routine is finished. For some applications, it
may be necessary to nest interrupt routines. In this case, an EINT instruction can be inserted into an
interrupt service routine to enable other interrupts. The I2C interrupt service routine can run on top of other
interrupt routines using this method.

Figure 7 illustrates how to set up a test environment for the I2C slave software. A more detailed I2C slave
circuit diagram is contained in Section 7.

Figure 7. Software I2C System With Hardware I2C Master Block Diagram

The master I2C device is an MSP430F169, which uses its hardware I2C module. The software slave
device is an MSP430F1121A on an MSP-FET430P120 target board.

To test the system, the user enters a command on the PC’s hyperterminal window. The setting of the
RS232 port is 19200-8-N-1. The I2C speed is set to 108 kbps. The master source code can also be
downloaded with this application report.

10 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

7 Schematics

Schematics

In the master, the following commands have been implemented which can be entered at the hyperterminal
window, followed by pressing the <Enter> key:

clr <Enter> : Clears the screen
A5 <Enter> : Performs a loop-back test with the slave unit using characters: AA 05 AA ...
rand <Enter> : Performs a loop-back test with the slave unit using characters: 01 02 03 ...
RX <Enter> : Reads 15 stored characters from slave
<any key> <Enter>: sends the character to slave and store in its buffer

Note: Before entering a command in hyperterminal, it may be necessary to insert a new line by
pressing <Enter> before typing the commands listed above.

This circuit can be used as a front panel with IR receiver in many portable devices or home appliances,
such as televisions, etc.

SLAA330–September 2006 11Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

8 Hardware Implementation

Key Pad

IR Detector

MSP430

Interrupt Signal

P1.0

P2.0

P1.1

TV / CD / Portable Player

I C2

9 References

Hardware Implementation

Figure 8. Infrared Receiver With I2C System Block Diagram

The circuit consists of an IR detector, two pullup resistors for I2C, and eight key buttons. When an IR
signal is received and decoded, the received data is stored in a buffer. The slave unit, an
MSP430F1121A, then generate a high signal on P1.1, indicating that its buffer is filled with new data and
is waiting for it to be fetched. The master unit then fetches the data through the I2C interface. In addition,
an 8-key pad is implemented. Similarl to the process when an IR signal is received, when a key button is
pressed, a corresponding command is stored in the same buffer, and P1.1 is set high. The master unit
can fetch the command through I2C.

This circuit can be used as a front panel for a car audio set or in many portable devices like cameras,
portable CD players, or home appliances like TVs, mini-combos, etc.

1. I2C Specification
2. MSP430F1xx User’s Guide (literature number SLAU049)

12 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

Appendix A Sample Code

Appendix A

The ISR SCL_W1LH is shown below as an example. When SCL generates the first rising edge, it triggers
the ISR_SCL interrupt routine, which, in turn, branches to the appropriate ISR pointed by address pointer
R4. In this example, it branches to SCL_W1LH. Hence, each ISR has an overhead of 8 instruction cycles,
of which 6 cycles are for the MCU to process interrupt input, and 2 cycles are for branching instructions. In
SCL_W1LH, the instruction to latch-in SDA data, taking 4 instruction cycles, is BIT.B #SDA,&P2IN. Before
that, it has one more instruction, which takes 4 cycles. In this way, the number of instruction cycles taken
for SCL_W1LH to reach and operate the latch-in instruction is 8 + 4 + 4 = 16 instruction cycles. The time
taken to latch-in data is 16 × 0.125 µs = 2 µs. However, completing the whole SCL_W1LH ISR takes more
instructions, including RETI. In total, it needs 39 cycles, which equates to 4.875 µs.
ISR_SCL

BR @R4+
SCL_WRT DW SCL_W1LH ; Bit 1 (first bit rising edge)

DW SCL_W1HL ; Bit 1 (first bit falling edge)
DW SCL_W2to6LH ; Bit 2

.

.

.

.

SCL_W1LH BIS.B #SCL,&P1IES ; FALLING EDGE FOR CLEAR SDA INT
BIT.B #SDA,&P2IN ; Test if data line is high
BIC.B #SCL,&P1IFG ; Reset interrupt flag
BIC.B #SDA,&P2IFG ; Clear flag, FOR STP_CON DETECT
BIS.B #SDA,&P2IE ; ENABLE SDA INT
RLC.B IICDATA
RETI

SCL_W1HL
.
.
.
.

RETI

SCL_W2to6LH
.
.
.
.

RETI
.
.
.
.

SLAA330–September 2006 13Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

Appendix B Infrared Transmission

C0 C1 C5 C6 C7 C�0 C�1 C�5 C�6 C�7 D0 D1 D5 D5 D7 D�0 D�1 D�5 D�6 D�7 endSync Pulse

8 bit

Customer Code

8 bit Inverted

Customer Code

8 bit

Data Code

8 bit Inverted

Data Code

Data 0 T T

Sync Pulse 15.5T 8T

Data 1 T 3T

End of transmission T

Subsequent frames 6TT4T15.5T

186T 186T 186T

T T= On time = Off timewhere T = 0.56 ms

Appendix B

Figure B-1. Infrared Transmission Format

To transmit a 0, a 38-kHz square pulse is turned on for a period of T (T is 0.58 ms) and off for a period of
T. To transmitting a 1, the 38-kHz pulse is turned on for a period of T and off for 3T.

The timing to the receiver may vary due to its clock tolerance, propagation delay, etc., in this application, a
timing tolerance of 0.3 ms is set.

14 SLAA330–September 2006Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

www.ti.com

Appendix C Key Scan Flow Chart

KeyLoop

Check port 1
key

Check port 2
key

CheckTimer

INT enable

DINT

Put data into

RAM buffer
Set P1.1 to high

EINT

EINT

Check SDA
INT enable

Y

Y

Y

Y

Appendix C

Figure C-1. Flow Chart of Key Scanning

SLAA330–September 2006 15Software I2C Slave Using the MSP430
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA330

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2006, Texas Instruments Incorporated

	1 Introduction
	2 I2C Operation
	3 Firmware Overview
	3.1 Key Scan
	3.2 Infrared Receive
	3.3 I 2C Data Fetching

	4 I2C Software Flow
	4.1 Data Writing into MCU
	4.2 Data Reading From MCU

	5 Timing of I2C
	5.1 Writing Process
	5.2 Bit Rate Versus MCU Clock Speed in Writing Process
	5.3 Number of MIPS Used in Writing Process
	5.4 Reading Process
	5.5 Bit Rate Versus MCU Clock Speed in Reading Process
	5.6 Number of MIPS Used in Read-Out Process
	5.7 Clock Setting
	5.8 Running With Other Interrupt Routines

	6 Testing the Software I2C
	7 Schematics
	8 Hardware Implementation
	9 References
	Appendix A Sample Code
	Appendix B Infrared Transmission
	Appendix C Key Scan Flow Chart

