@ TEXAS Application Report
INSTRUMENTS SLAA276A — October 2006

MSP430 USB Connectivity Using TUSB3410

Andreas Dannenberg MSP430

ABSTRACT

This application report presents a ready-to-use USB connectivity reference design for
MSP430 microcontrollers using the Texas Instruments TUSB3410 USB-to-serial bridge
controller. The provided solution enables high-speed data transfers with speeds of up to
921,600 bit/s as well as MSP430 Flash code download through the USB port. The
reference design includes MSP430 and PC software, drivers, schematics, layout, and
BOM information.

Contents
L I 121 € e T ¥ T 1o o 3
2 Design Decisions and USB Configuration...........cccccimiinnmninnnsssssnssssssssssssss s s ssssnns 4
3 Reference Design HardWarecccooeriiiimmmmmiisssssissssss s s sss s s ssss s ssss s s sssssss s sesssnss s snssanns 6
3.1 Standard Solution Using MSPA30F1612........uuiiiiiiiiiee et 6
3.2 Lower-Cost Solution Using MSPA30F2274ooo ettt 7
4 Reference Design SOftWare........cccccccrirrrirrrnirsssssssssssss s sssss s sssnnnnns 9
4.1 OVEIVIBW ..ottt et e e e e et e e e e e e e e e e b e e e e e e R e e e e e e e et e e e r e e e e s 9
4.2 MSP430F16X DEMO FIMMWAETEccciiiiiiiiiiiiiee ettt e e 9
4.3 MSP430F22XX DEMO FilMWAIEcccuiiiiiiiiiiiee ettt 12
4.4 PC DemO APPHCALIONeeieiiiiiiiiite ettt e annne 15
4.5 Customized Bootstrap LOAder TOOL.........ooiuiiiiiiieie e 17
5 Reference DeSign USB DIiVErS......cccoocerriiismsrmiisssssmnsssssssssssssss s s sssss s sasssssssssssssssssssssssssesssnnsssnnsan 19
oI B O A=Y V1= PP PP 19
5.2 Manual Driver INStallationoooi e 19
5.3 Standard TUSBB4T0 DIIVEN......cccoiiuiiiiiiiiiie ettt e e s e s eneneee s 20
5.4 Custom MSP430-TUSB3410 Reference Design DrVer..........coocueiiiiiiiieiiiiiieee e 21
5.5 Automated Driver INSTAlEr........ ... 21
6 Other LOWer-Cost OPLtioNsSccccuiiiirsmrmiiismsssnsssssssssssss s ssss s e sssss s sssssmss s sssssmsssessssnsssnssen 21
6.1 NO External EEPROM ...ttt e e e e e e e e s e e e e e e e e e e nnnneeees 21
6.2 NO External MSP430 CryStal........couui it 22
A~ 1V 13 1 1 1T 22
L T £ 1= (= = TS 23
Appendix A. F16x Solution Hardware DescCriptioncccccciiiiismninnissss s sssss e 24
AW IS Tor g 1T o 0 P o7 PSP RO 24
A2 BOAIA LAYOUL....coiiiiiiiiiei ettt e n e e e e e e e e annn 26
A3 Bill Of MAIEIAL......co oot e aannnes 28

{i‘ TEXAS

SLAA276A INSTRUMENTS
Appendix B. F22xx Solution Hardware DesScCriptioncccccivrmmmmmmiinnnnnssssemssnnsssssssssssssssssssssssssses 29
0 TS T =Y g = U1 PR 29
B.2 BO@Ird LAYOULooeeiiiiiiieee et e e e e e e e as 30
[O = 11| o) 1Y F= (=4 | SRR 32
Figures
Figure 1. MSP430F16x-TUSB3410 Reference Design OVervieWcueeeeeeeereeeeeeeseeseeeessssssssssnnennn 3
Figure 2. MSP430F22xx-TUSB3410 Reference Design — Lower Cost Solutioncccceriicnenen 4
Figure 3. MSP430F16x Demo Firmware main() FIOWooo oo 10
Figure 4. MSP430F16x Demo Firmware Interrupt Handler FIOwccccviimmiincccms e 11
Figure 5. MSP430F22xx Demo Firmware main() FIOW ... 13
Figure 6. MSP430F22xx Demo Firmware Interrupt Handler Flow.........ccccoovoiiirccccmnincccenncsiceen 14
Figure 7. PC Demo Application FIOW.........ccccccmmmmmimnininsssmmnnnninsssnns 16
Figure 8. Found New Hardware Wizard...........cccceiiiiiiiiimmmmniniinnnesssss s sssssssssssssss s 19
Figure 9. Device Manager After Driver InStall........cccoociiiiiimiiniie e 20
Figure 10. PCB Layout Component SIidecccccccmiiinrmminiismnninsssssnssssss s ssssssss s ssssssss s ssssssnns 26
Figure 11. PCB Layout Solder Sideccccucimrmiiismmrinismsrinsssssssssss s ssssssss s s sssss s ssssssss s snsssnnes 26
Figure 12. PCB Component Placement............ooooooeemoeeeeeieeeeeeeeceecceeccessse s s ce s s se s s s s s s ss s s s s s mmnsnnsnnmsnmnnnnns 27
Figure 13. PCB Layout Component Sidecccccccmiiiiimrininsmniinsssssssssss s s s ssss s sssnns 30
Figure 14. PCB Layout Solder Sidecuummmimmiiimmmimeisesss s ssssssssssssssssss s s ssssssssssssssssssssssssssssssssssssssesnne 30
Figure 15. PCB Component Placement...........ooiiiimiinccesrincsss s s s s 31
Tables
Table 1. Reference Design USB Setupcccccvmimiiiimmmmnnisissnnsss s s s s ssms s s ssmss s 5
Table 2. MSP430F16x-TUSB3410 Signal ConnNections........ccccuucmmrminsmmsrmsssssssssssssssssssssssssssssssesas 7
Table 3. MSP430F22xx-TUSB3410 Signal ConNections........ccccecmiminimmsrmnnssssssssssssssssssssssssssnees 8
Table 4. ZIP Archive Contents OVErVIEWccccuiiseermnissmsrmnsssssrsssssssssnssssss s sssssssssssssssssssssssnssssnnss 9

2 MSP430 USB Connectivity Using TUSB3410

*? TEXAS
INSTRUMENTS SLAA276A

Introduction

To enable USB connectivity for MSP430 devices, the Texas Instruments TUSB3410 USB-to-
serial bridge controller can be used. The TUSB3410 is USB 2.0 full speed compliant and
supports baud rates from 50 Baud up to 921.6 kBaud. It has a built-in 8052 CPU that can
execute custom firmware. Both self- and USB-powered applications are supported. UART,
handshake, and GPIO pins provide a variety of interface options.

3.6V ;
EEPROM
V-REG |—¢ Parameter
Storage
SDA fSCL I°’C
5V
! BSL — Y v
> e B
TUSB3410 MSP430 O User
Host PC - USB 1 USB Controller F16x [—o Application
4—1_ —O
I_HJ UART I_HJ
12MHz 8MHz

Figure 1. MSP430F16x-TUSB3410 Reference Design Overview

Figure 1 shows the block diagram of one of the USB connectivity solutions presented in this
application report using an MSP430F1612. This is the most universal approach, and this
solution is applicable to all available MSP430 devices. However, depending on the selected
MSP430 device as well as the specific application requirements, lower-cost solutions using
fewer components can be implemented. Figure 2 shows an example of such a lower-cost
solution, using an MSP430F2274. The main difference is that the lower-cost solution uses only a
single crystal and uses the MSP430 to emulate the external USB configuration EEPROM. Note
that both solutions are proposals only, and that it is not in the scope of this document to cover
every aspect of every possible implementation.

MSP430 USB Connectivity Using TUSB3410 3

*? TEXAS

SLAA276A INSTRUMENTS
V-REG |92V
I°’C SDA
SV l scL | l
| - —0
Host PC | > TUSB3410 MSP430 F—© User
USB USB Controller F22xx —O Application
- —0
f UART I_{ }J
12MHz I:I
12MHz

Figure 2. MSP430F22xx-TUSB3410 Reference Designh — Lower Cost Solution

The connection between host PC and MSP430 is established through a full-duplex UART link.
On the PC side, a virtual COM port (VCP) provided by the TUSB3410 driver suite is used to
exchange data with the MSP430 hardware USART module. This process is straightforward by
using standard Windows API calls on the PC side and MSP430 USART accesses. All underlying
USB transfers are transparent for both PC and MSP430 applications.

The MSP430-TUSB3410 reference designs are bus-powered USB devices. Also, the solution
shown in Figure 1 is capable of programming a blank MSP430 through the USB link via the
bootstrap loader (BSL). Furthermore, the TUSB3410 configuration EEPROM can be
programmed in-system through the MSP430 via I’C.

Both PC and MSP430 demonstration software is provided, along with this application report to
offer a complete end-to-end turnkey solution. Bidirectional data transfer is demonstrated by
having the PC and the MSP430 displaying each others’ key and push-button status.

Note: The software and drivers provided with this application report are for use with PCs running
Windows XP™ or Windows 2000™. Older versions of Windows are not supported.

2 Design Decisions and USB Configuration

The TUSB3410 supports a variety of different application setups such as:
Use as UART-type device
Use as standard Windows class-type device
Use as custom device
Firmware storage on host PC
Firmware storage on external EEPROM
Device serialization

4 MSP430 USB Connectivity Using TUSB3410

{? TEXAS
INSTRUMENTS SLAA276A

A detailed overview of the different TUSB3410 operating scenarios can be found in [8]. For the
MSP430-TUSB3410 reference design, the following configuration setup is used:

Table 1. Reference Design USB Setup

ltem Value
TUSB3410 usage UART-type device
TUSB3410 firmware location Host PC
Device serialization Not used
Vendor ID 0x0451
Product ID Oxbeef
Manufacturer descriptor string “Texas Instruments”
Product descriptor string "MSP430-TUSB3410 Reference Design"

More information on using the TUSB3410 as a UART-type device can be found in [11].

For USB compliance, any USB product must have a unique vendor ID and product ID. The OS
uses the VID/PID combination to determine what driver to load. The VID and PID are reported to
the USB host in the USB device descriptor when this descriptor is requested by the host. A
unique VID can be obtained from the USB Implementers Forum (www.usb.org). A product ID
can be whatever a vendor chooses, but since the VID/PID pair determines what driver is loaded,
the same PID should not be given to two different products. Also, these values must match to
host values stored in the driver INF files. See chapter 5 for more information.

Using the TUSB3410, an external EEPROM must be used for parameter storage. An MSP430
MCU may also be used to emulate this external EEPROM. However, due to limitations of the
TUSB3410 I°C implementation, not all MSP430 devices can be used. The inability of the
TUSB3410 to support I°C clock stretching requires that the I°C slave reacts immediately on the
I°C fast mode transactions. This requires either an MSP430 device that can operate at speeds of
at least 12 MHz in combination with a USCI module (e.g., MSP430F22xx), or an MSP430 device
with USCI module and DMA (e.g., MSP430FG461x). The alternative, lower-cost solution
provided in this application report demonstrates the EEPROM emulation using an
MSP430F22xx device. In addition to that, an EEPROM emulation code example using an
MSP430FG461x device is contained in the ZIP file associated with this application report.

To generate a vendor-specific EEPROM image for use with the TUSB3410, Tl provides a
header generator utility for download [12]. This tool expects a configuration file (*.cfg) as input,
which defines the EEPROM image contents and contains vendor-specific details, such as
VID/PID reported by the USB device to the host. Example configuration files are provided along
with the tool and can be modified using a text editor. The output of the header generator utility is
a binary EEPROM image file (*.bin). The configuration file and the associated binary image used
with the MSP430-TUSB3410 reference design are provided with this application report (see
Table 4). Here, the binary output file was converted into a C-compiler constant and directly
included into the MSP430 firmware. This enables EEPROM programming at MSP430
application runtime, eliminating the need for an external EEPROM programmer. See section 4.2
for more information. Note that Tl also provides a tool that allows programming of a blank
EEPROM directly over the USB through the TUSB3410 [9]. This EEPROM image can also be
used for purposes of emulating an actual EEPROM using the MSP430, which is described in
section 4.3.

MSP430 USB Connectivity Using TUSB3410 5

{? TEXAS

SLAA276A INSTRUMENTS

3

3.1

Reference Design Hardware

Standard Solution Using MSP430F1612

The schematics of the MSP430F1612-TUSB3410 reference design can be found in section A.1.
Also, PCB layout and BOM information can be found in sections A.2 and A.3. The two main
components that can be identified are the TUSB3410 USB-to-serial bridge controller (U1), and
the MSP430F1612 (U2). This particular higher-end MSP430 device was selected to allow more
flexibility during evaluation and code development. Any MSP430F16x device can directly drop
into this design, whereas other MSP430 family members would require changes to the design.
The MSP430 choice is somewhat arbitrary, as almost any MSP430 can be used to interface with
the TUSB3410. However, the use of a hardware USART module is recommended.

The TUSB3410 USB data lines are connected to a standard USB B-type PCB mount connector.
TI’s transient voltage suppressor SN75240 (U3) is used on the USB lines to provide an
increased level of ESD protection.

The reference design hardware is designed as a bus-powered USB application. The USB
supplies 5 V on each port, and devices can generally draw up to 100 mA from the bus without
any special considerations. However, up to 500 mA can be made available by the host upon
request. Here, a TI TPS77301 LDO is used (U4) to generate 3.6 V with a maximum output
current of 250 mA. This supply voltage is used to power the entire circuit. LED5 is illuminated
when power is supplied by the USB.

For this reference design, the MSP430 is operated at 8 MHz. This clock is provided by Qf1,
which is connected to the LFXT1 oscillator. All MSP430 port pins of ports 1 through 6 are
brought out on 8-pin headers. This allows easy access to the signals used to communicate with
the TUSB3410, as well as for attaching any custom circuitry. Furthermore, four push-buttons
(SW1...SW4) and four LEDs (LED1...LED4) are connected to 1/O port 4 for demonstration
purposes. An MSP430-standard 14-pin JTAG header is provided for in-system debugging and
programming. Note that the board’s VCC is routed to pin 4 of the JTAG connector to allow the
JTAG debugger to adjust its voltage levels.

The circuitry external to the TUSB3410 has been designed according to [5], [6], and [10]. This
reference design uses an external EEPROM (U5) with I°C interface for USB configuration
parameter storage. The EEPROM size can be selected according the amount of data that needs
to be stored. More information on EEPROM selection can be found in [11]. Note that there is a
jumper (JP1) in the EEPROM SCL line that allows disconnecting the EEPROM. In this case, the
TUSB3410 would report its standard VID/PID values to the host upon USB connection. The
12-MHz crystal Q2 provides the required clock for device operation. Table 2 shows the signal
connections made between TUSB3410 and MSP430.

MSP430 USB Connectivity Using TUSB3410

{? TEXAS

INSTRUMENTS SLAA276A
Table 2. MSP430F16x-TUSB3410 Signal Connections
MSP430 Signal TUSB3410 Signal Description
P3.5/URXDO SOuUT Data received from the USB
P3.4/UTXD0 SIN Data sent to the USB
P2.2/TAOt SOuUT Receive data connection for BSL
P1.1/TAOt SIN Transmit data connection for BSL
P3.1/SIMO0O/SDAT | SDA I12C data line. Also connected to EEPROM (U5).
P3.3/UCLKO/SCLT | SCL I12C clock line. Also connected to EEPROM (U5).
P3.0/STEO} RESET Signal allows controlling the TUSB3410 operation.
XT2IN CLKOUT% Allows TUSB3410 clock output to be used for the MSP430
RST/NMIt DTR Reset connection used for BSL entry
TCKt RTS JTAG TCK connected used for BSL entry
P1.6/TA1 DSR%t UART hardware handshake signal
P1.7/TA2 CTSt UART hardware handshake signal

+ The MSP430 can be disconnected from this signal by not populating a OR resistor. See application schematic for details.
1 This signal is not used by the software provided with this application report.

3.2

For the actual data transmission, the MSP430 USARTO module is used in UART mode. It can
handle all baud rates supported by the TUSB3410. This module is also used in I°C mode for
communication with the EEPROM. This enables in-system programming of the external
EEPROM through the MSP430 and eliminates the need for using an external EEPROM
programmer. This method is used by the software provided here. Note that these connections
are optional and that an I°C master can easily be implemented with GPIO pins on any MSP430.
As a design idea, available EEPROM space could also be used as additional MSP430 storage.

In addition to the serial connections to USARTO, the same signals are also connected to the
MSP430 BSL pins. This way, a blank MSP430 can be programmed through the USB UART link.
Refer to section 4.5 for more information.

The connection from the MSP430 P3.0/STEO pin to the TUSB3410 RESET pin allows keeping
the TUSB3410 in reset state while the MSP430 is accessing the EEPROM. Also, by cycling this
signal, a USB unplug-replug event can be generated without actually disconnecting the
application PCB.

Lower-Cost Solution Using MSP430F2274

The schematics of the lower-cost version of the MSP430-TUSB3410 reference design using an
MSP430F2274 can be found in section B.1. Also, PCB layout and BOM information can be
found in sections B.2 and B.3. The two main components that can be identified are the
TUSB3410 USB-to-serial bridge controller (U2) and the MSP430F2274 (U1). This particular
mid-range MSP430 device was selected because of its 16-MHz architecture and its USCI
communication module to allow for a lower-cost implementation. Any MSP430F22xx device can
be directly used with this hardware design.

The TUSB3410 USB data lines are connected to a standard USB B-type PCB mount connector.
TI’s transient voltage suppressor SN75240 (U3) is used on the USB lines to provide an
increased level of ESD protection.

MSP430 USB Connectivity Using TUSB3410 7

*? TEXAS

SLAA276A INSTRUMENTS

The reference design hardware is designed as a bus-powered USB application. The USB
supplies 5 V on each port and devices can generally draw up to 100 mA from the bus without
any special considerations. However, up to 500 mA can be made available by the host upon
request. Here, a TI TPS77301 LDO is used (U4) to generate 3.6 V with a maximum output
current of 250 mA. This supply voltage is used to power the entire circuit. LED5 is illuminated
when power is supplied by the USB.

For this reference design, the MSP430 is operated at 12 MHz. This clock is provided by Q1,
which is connected to the LFXT1 oscillator. All MSP430 port pins of ports 1 through 4 are
brought out on 8-pin headers. This allows easy access to the signals used to communicate with
the TUSB3410 as well as for attaching any custom circuitry. Furthermore, four push-buttons
(SW1...SW4) and four LEDs (LED1...LED4) are connected to I/O port 1 for demonstration
purposes. An MSP430-standard 14-pin JTAG header is provided for in-system debugging and
programming. The connections make use of the 2-wire JTAG protocol (“Spy-Bi-Wire”) and,
therefore, require the use of an appropriate JTAG emulator. Note that the board’s VCC is routed
to pin 4 of the JTAG connector to allow the JTAG debugger to adjust its voltage levels.

The circuitry external to the TUSB3410 has been designed according to [5], [6], and [10]. This
version of the reference design operates the MSP430F2274 USCI_B0O communication module in
I°C slave mode to emulate the external USB parameter storage EEPROM. The actual data
transmission is handled by the USCI_AO module used in UART mode. The TUSB3410 is
sourced by a 12-MHz clock signal that is output by the MSP430 through the P2.0/ACLK pin.
Note that there is a voltage divider used before the signal is fed into the TUSB3410 X1/CLKI pin
to not exceed the maximum allowed input voltage level as per TUSB3410 datasheet [5]. Table 2
shows the signal connections made between TUSB3410 and MSP430.

Table 3. MSP430F22xx-TUSB3410 Signal Connections

MSP430 Signal TUSB3410 Signal Description
P3.5/UCAORXD SOUT Data received from the USB
P3.4/UCAQTXD SIN Data sent to the USB
P3.1/UCBOSDA SDA 12C data line
P3.2/UCB0OSCL SCL 12C clock line
P3.0 RESET Signal allows controlling the TUSB3410 operation.
P2.0/ACLK X1/CLKI Allows MSP430 clock output to be used for the TUSB3410

The connection from the MSP430 P3.0 pin to the TUSB3410 RESET pin allows keeping the
TUSB3410 in reset state while the MSP430 is accessing the EEPROM. Also, by cycling this
signal, a USB unplug-replug event can be generated without actually disconnecting the

application PCB.

MSP430 USB Connectivity Using TUSB3410

Q'f TEXAS

INSTRUMENTS SLAA276A
4 Reference Design Software
41 Overview
The ZIP archive associated with this application report contains a variety of different files. Table
4 provides an overview.
Table 4. ZIP Archive Contents Overview
Folder / File(s) Description
EXE\TUSB3410Demo.exe PC demo application
EXE\BSLDEMO2.exet BSL software, modified for code download through USB
EXE\F16xDemoFirmware.txtt Demo firmware image in MSP430-TXT format, MSP430F16x solution
EXE\F16xFET1.txtt Flashing LED demo software image in MSP430-TXT format, MSP430F16x
solution
F16X_GERBERS*.* Board layout files in Gerber format, MSP430F 16x solution
F22XX_GERBERS*.* Board layout files in Gerber format, MSP430F22xx solution
MSP430F16X_SW_CCE*.* Code Composer Essentials V2.0 MSP430 source code, MSP430F16x
solution
MSP430F16X_SW_IAR*.* IAR Embedded Workbench V3.41A MSP430 source code, MSP430F16x
solution
MSP430F22XX_SW_CCE*.* Code Composer Essentials V2.0 MSP430 source code, MSP430F22xx
solution
MSP430F22XX_SW_IAR*.* IAR Embedded Workbench V3.41A MSP430 source code, MSP430F22xx
solution
MSP430FG461x_EEPROM_CCE*.* | Code Composer Essentials V2.0 MSP430FG461x code example of an
EEPROM emulation
MSP430FG461x_EEPROM_IAR*.* IAR Embedded Workbench V3.41A MSP430FG461x code example of an
EEPROM emulation
MSP430_TUSB3410_2KXP_V103*.* | Windows VCP driver for MSP430-TUSB3410 reference design
ORIG_TUSB3410_2KXP_V103*.* Windows standard TUSB3410 driver
PC_BSL*.*t Microsoft Visual C++ source code of BSL software
PC_DEMO*.* Microsoft Visual C++ source code of PC demo software
TUSB3410_EEPROM*.* EEPROM image used for MSP430-TUSB3410 reference design
1 These files can only be used in conjunction with the BSL-capable version of the reference design.
4.2 MSP430F16x Demo Firmware

The MSP430 software provided with this application report is contained in the single C file
“MSP430F16x-TUSB3410_Demo.c”. Versions for use with IAR Embedded Workbench and TI's
Code Composer Essentials are included. The software demonstrates in-system EEPROM
programming (U5) and serial communication with 460,800 Baud. The lower nibble of a received
character is output to the LEDs on the demo board and, on press or release of any push button,
a byte is transmitted to the PC containing the updated button state. The software is intended to
be used together with the PC software as presented in section 4.4, but can also be used to
communicate with any terminal software such as HyperTerm. Figure 3 and Figure 4 give an
overview of the software flow.

MSP430 USB Connectivity Using TUSB3410

9

SLAA276A

*? TEXAS
INSTRUMENTS

10

Figure 3.

<M8P430 SW Start)

Init system

EEPROM OK?

v

v

Check / handle push-
button event

v

Check / handle RX’d

Program EEPROM

Release TUSB3410 |«

Enter LPMO —

byte event

MSP430 USB Connectivity Using TUSB3410

MSP430F16x Demo Firmware main() Flow

Upon MSP430 reset, the function InitSystem() is called to configure used peripherals and the
application board. Watchdog timer and 1/O ports are set up for proper use, and the clock system
is set up to operate from the external crystal with a frequency of 8 MHz. Furthermore, USARTO
is set up for I°C operation, which will be used for communication with the EEPROM. Refer to [1]

for more information on MSP430F1xx module operation.

{? TEXAS
INSTRUMENTS SLAA276A

CUSARTO ISR StaD CTimer_B ISR Start)

Update push-button
status flags

v v

Set RX status flag Exit LPMO

Exit LPMO CTimer_B ISR End)
CUSARTO ISR End)

Figure 4. MSP430F16x Demo Firmware Interrupt Handler Flow

Read RX'd byte

As part of the initialization sequence, the TUSB3410 is brought into a reset state. In this mode,
the MSP430 can access the I°C bus without interfering with the TUSB3410 operation. Then, the
presence of an external EEPROM is detected by sending out its address and checking for a
valid I°C ACK condition. In the case an ACK was received, the EEPROM contents are verified
against the image stored in the MSP430 Flash memory constant EEPROMImage(] by calling
EEPROM_Verify(). In the case of this reference design, the size of this image is ~140 Byte. If
there is a mismatch, e.g., when the EEPROM is blank, the EEPROM contents is programmed by
calling EEPROM_Write(). After the EEPROM update procedure, the TUSB3410 reset signal is
de-asserted and the device resumes normal operation. Note that at this point, the MSP430
RESET pin is deactivated by switching it to NMI mode. This is necessary due to the BSL
capability of the solution presented here (see chapter 3) and the fact that the TUSB3410 toggles
the DTR signal for a short while after device connection, which would cause unintended
MSP430 resets. When the TUSB3410 resumes operation, it reads out the EEPROM contents,
and then connects to the USB host controller reporting the configuration data that was stored in
the EEPROM.

The last step is the configuration of USARTO for UART mode. This mode is used for the actual
data communication. A bit rate of 460,800 Baud using 8 data bits, 1 stop bit, and no parity is
configured. One may adjust the communication speed to meet specific application requirements.
The MSP430 is capable of communicating with the TUSB3410 at all Baud rates this device
offers, which is up to 921,600 Baud. It must be confirmed that the settings on the PC side, which
are used to open the virtual COM port (VCP), match the settings for which the MSP430 is
configured. See section 4.4 for more information.

MSP430 USB Connectivity Using TUSB3410 11

{? TEXAS

SLAA276A INSTRUMENTS

4.3

12

After the system initialization, the main() function configures the Timer_B7 module of the
MSP430F1612 to be used to query the status of the push-buttons SW1...SW4. The capture/
compare (CC) blocks which are connected to the push-button signal lines are set up to capture
the rising edge and generate an interrupt. The TIMERBO_ISR() and TIMERB1_ISR() functions
are executed upon button press and switch the CC block in question to compare mode, thus
effectively polling the button state with a defined interval. This way, an effective button query and
debounce are implemented. The three flag variables ButtonState, ButtonSet, and
ButtonReleased are used to indicate to the main() program context any push-button status
change. Furthermore, the CPU is awakened on any push-button events. This is used to
implement event-driven program flow.

After Timer_B7 setup, the USARTO module receive interrupt is activated, and the main event
handling loop is entered. The program resides in low-power mode 0 (all clocks are on, CPU is
off) until an event occurs. On any button event, the updated button state is transmitted by
loading the variable ButtonState into the USARTO transmit buffer. Note that data is only
transmitted if there is an actual change in the state of any push-button. If a UART character is
received, LED1...LED4 are set according to the lower nibble of the received byte.

In a custom application, where more data is moved over the USB, the MSP430 DMA controller
can be used to enable fast and low CPU overhead movement of large data blocks. Furthermore,
USB devices usually buffer bytes before actually transmitting them; therefore, transferring data
in blocks rather than byte-by-byte is faster.

MSP430F22xx Demo Firmware

The MSP430 software provided with this application report is contained in the single C file
“MSP430F22xx-TUSB3410_Demo.c”. Versions for use with IAR Embedded Workbench and TI’s
Code Composer Essentials are included. The code discussed here is similar to the one
described in section 4.2. The main difference is that the MSP430 is used to emulate the USB
configuration EEPROM.

The application demonstrates serial communication with 460,800 Baud using USCI_AO in UART
mode. The lower nibble of a received character is output to the LEDs on the demo board, and on
press or release of any push-button, a byte is transmitted to the PC containing the updated
button state. The software is intended to be used together with the PC software as presented in
section 4.4, but can also be used to communicate with any terminal software such as
HyperTerm. Figure 5 and Figure 6 give an overview about the software flow.

Upon MSP430 reset, the function InitSystem() is called to configure used peripherals and the
application board. Watchdog timer and 1/O ports are set up for proper use, and the clock system
is set up to operate from the external crystal with a frequency of 12 MHz. This clock is also being
output to port pin P2.0/ACLK to supply a 12-MHz clock to the TUSB3410, which is required for
its operation. Note that while the system is configured, the TUSB3410 is held in a reset state. As
a part of the configuration process, the USCI_BO0 module is set up for I°C slave-mode operation
and used to emulate the configuration EEPROM. Refer to [2] for more information on
MSP430F2xx module operation.

MSP430 USB Connectivity Using TUSB3410

{5‘ TEXAS
INSTRUMENTS

SLAA276A

<M8P430 SW Start)

Init system

v

Release TUSB3410

v

v

Check / handle push-
button event

v

Check / handle RX’d

Enter LPMO ¢

byte event

MSP430F22xx Demo Firmware main() Flow

By setting the slave mode address to 0x50, the MSP430 reacts on I°C master transactions
coming from the TUSB3410 after it is powered up. An optimized software approach, combined
with the CPU execution speed of 12 MHz, enables delay-free reaction on I°C fast-mode
transactions. This is needed due to the non I°C-compliant implementation of the TUSB3410 I°C
module (see note below). The only two transactions that are supported by the MSP430 firmware
are the setting of the 16-bit virtual EEPROM address pointer and the read-out of consecutive
data bytes while auto-incrementing the address pointer. The I°C EEPROM contents itself is
contained in the MSP430 Flash memory constant EEPROMImage[], while the variable
EE_AddrPtr is used as the address pointer. In the case of this reference design, the size of this

image is ~140 Byte.

NOTE: MSP430 USED FOR EEPROM EMULATION

The time from the falling edge of SCL of the TUSB3410 I’C read-transaction's
R/W bit until the USCI_BO0 transmit buffer UCBOTXBUF is loaded is CRITICAL.
The transmit buffer must have been loaded BEFORE the falling edge of the read-
transaction’s address byte's clock signal SCL. This window is exactly 2.5 ps
(one SCL clock period in I°C fast mode). This timing requirement can be met with
an MSP430 MCLK frequency of at least 12 MHz, as used in the application.
Alternatively, a DMA channel can be used instead to load the transmit buffer

allowing it to meet the I°C timing requirement at much lower CPU speeds.

MSP430 USB Connectivity Using TUSB3410 13

SLAA276A

*? TEXAS

INSTRUMENTS

14

CUSCI I°C ISR StarD GSCI UART ISR Sta) C Port 1 ISR Start)

Update virtual
EEPROM address ptr

Read RX'd byte

Update push-button
status flags

v

v

v

Send virtual
EEPROM data

Set RX status flag

Exit LPMO

v

v

v

Exit LPMO

GSCI UART ISR E@

Figure 6. MSP430F22xx Demo Firmware Interrupt Handler Flow

CUSCI I°’C ISR End) C Port 1 ISR End)

The last step is the configuration of USCI_AO for UART mode. This mode is used for the actual
data communication. A bit rate of 460,800 Baud using 8 data bits, 1 stop bit, and no parity is
configured. One may adjust the communication speed to meet specific application requirements.
The MSP430 is capable of communicating with the TUSB3410 at all Baud rates this device
offers, which is up to 921,600 Baud. It must be made sure that the settings on the PC side,
which are used to open the virtual COM port (VCP), match the settings the MSP430 is
configured for. See section 4.4 for more information. Furthermore, the USCI_AO module receive
interrupt is activated.

Now, the TUSB3410 reset signal is deasserted, and the device resumes normal operation. Note
that at this point, the TUSB3410 reads out the EEPROM image from the MSP430 Flash
memory. As a next step, it then connects to the USB host controller reporting the configuration
data that it just read out from the MSP430.

After the system initialization, the main() function, processes all occurring events, is entered.
The program resides in low-power mode 0 (all clocks are on, CPU is off) until an event occurs.
On any button event, the updated button state is transmitted by loading the variable ButtonState
into the USCI_AO transmit buffer. Note that data is only transmitted if there is an actual change
in the state of any push-button. If a UART character is received, LED1...LED4 are set according
to the lower nibble of the received byte.

MSP430 USB Connectivity Using TUSB3410

{? TEXAS
INSTRUMENTS SLAA276A

Push button presses SW1...SW4 trigger the execution of the PORT1_ISR(). Inside this ISR, the
Timer_A is activated and used to generate a periodic interrupt. The associated TIMERA1_ISR()
is then used to poll the state of all pushed buttons with a defined interval. This way, an effective
button-query and de-bounce is implemented. The ISR is executed periodically as long as at
least one button is pressed. The three flag variables—ButtonState, ButtonSet, and
ButtonReleased—are used to indicate to the main() program context any push-button status
change. Furthermore, the CPU is awakened on any push-button events. This is used to
implement event-driven program flow.

Received characters cause the USCIABORX_ISR() to be executed. There, the data is simply
fetched from the module and a flag is set indicating to the main event handler that data was
received. The CPU is then awakened from low-power mode to process any pending events
within the main event handler.

4.4 PC Demo Application

The PC demo application provided with this application report is designed to work together with
both the MSP430 firmware versions. It is written as a Windows 32-Bit console application and
runs under Windows XP and 2000. The application’s source code is contained in a single file,
which is also included. It was successfully built under both Microsoft Visual C++ and Borland
C++.

The purpose of this program is to demonstrate how the MSP430-TUSB3410 reference design
hardware can be automatically detected and used. The auto-detection feature makes this
solution more user friendly as the need for manual inspection of the Windows device manager
for the board’s associated VCP number is removed. The keys <1>...<4> are used to light the
corresponding LEDs on the reference design board, and push-button presses on the demo
board are output to the console. Figure 7 gives an overview of the program operation.

MSP430 USB Connectivity Using TUSB3410 15

SLAA276A

4QFTEXAS
INSTRUMENTS

C PC SW Start)

v

Enum COM port
class devices

TUSB3410

found? Error Message

!
G

Open COM port

v

Activate RX Callback
Function

v

Wait for key-event

T

Process and TX key-
stroke

<ESC>
pressed?

<

Figure 7.

CRX Callback Start)

v

Readout RX’d byte

v

Display MSP430
button state

v

Activate RX Callback
Function

PC Demo Application Flow

CRX Callback End)

The program is started by executing “TUSB3410Demo.exe”. After outputting a welcome
message, the demo program calls the function EnumComPorts(). This function is used to
identify which COMnn port[s] are attached to the Texas Instruments TUSB3410 Universal
Multiport (UMP) controller. On the initial function call with the parameter dwindex set to 0, it
enumerates all currently connected serial communication devices (GUID_CLASS_COMPORT).
Then, it checks the hardware ID (HWID) of the virtual COM port (stored in the TUSB3410 driver
INF-files) and returns the COMnn port, which Windows embeds in the "Friendly Name". The
TUSB3410 drivers include the ability to customize the "Friendly Name" before the "(COMnn)",

and the HWID after the "umpport\".

16 MSP430 USB Connectivity Using TUSB3410

{? TEXAS
INSTRUMENTS SLAA276A

4.5

The HWID search string is contained in the local constant szHardwarelDump[] within the
EnumComPorts() function. For this reference design, it is set to
"umpport\VID_0451_BEEF_com", as this corresponds with the entries made in the TUSB3410
driver INF file (see section 5.4). This constant needs to be customized for different USB devices.
EnumComPorts() returns a result code that indicates if the device referred to with the list index
(dwindex) matches the HWID. Subsequent calls to EnumComPorts() can be used to identify all
connected devices. A return value of ERROR_SUCCESS indicates a match, and the parameter
IpszName contains the associated COM port. The code ERROR_NO_MORE_ITEMS indicates
that the end of the enumeration list has been reached. EnumComPorts() uses the Windows
SetupAPI for reading out low-level device interface data. Note that this requires the library
“setupapi.lib” to be linked to the project for a successful build. More information on SetupAPI can
be found in the Windows Driver Kit section on [15].

If the MSP430-TUSB3410 Reference Design is found, a message is output, displaying the
associated VCP port number. This number should match what is shown in the Windows device
manager. After this, the VCP is opened like any other COM port in Windows using the Windows
API call CreateFile(). Note that the COM port is opened with the attribute OVERLAPPED to
allow for an event-driven program flow. Also, port configuration and the actual data transfer do
not differ as if a real hardware serial port is used. Extensive information on serial port
programming can be found on [15].

The VCP is configured by filling a Windows DCB structure with all the parameters. Note that a
baud rate of 460,800 with 8 data bits, 1 stop bit, and no parity is used and that any flow control
mechanisms are disabled. These settings must match the MSP430 USART settings for
successful communication.

After this, the main event processing loop is entered. At the beginning of this loop, the program
enters an alterable wait mode using the function WaitForSingleObjectEx(). When any console
keyboard event is detected, the wait mode is exited and the program checks the keyboard input
buffer for a press or release of any of the keys <1>...<4>. If the status of these keys changes,
the variable PCButtonState is updated and the new keyboard state is transmitted over the VCP
to the MSP430-TUSB3410 reference design board using WriteFile(). In analogy to the MSP430
firmware, the lower nibble of the transmitted byte contains the current state of the keys
<1>...<4>. Note that data is only transmitted if there is an actual change in the state of these
keys. Also, if <ESC> is pressed, a flag gets set, the event processing loop is left, the VCP is
closed by calling CloseHandle(), and the program is exited.

For any character that is received from the demo board through the VCP connection, the
function FilelOCompletionRoutine() is automatically executed by Windows. This is possible as
the COM port is used in OVERLAPPED mode. This function serves as an event handler, reads
out the received byte from COMBuffer[] and displays the updated MSP430 button state to the
console.

Customized Bootstrap Loader Tool

With the MSP430F16x-TUSB3410 reference design presented in section 3.1, it is possible to
use the MSP430 built-in bootstrap loader (BSL) firmware to program a blank MSP430 through
the USB interface. Details on the operation of the BSL can be found in [13]. Tl also provides an
application report that presents a BSL programming solution consisting of serial-port hardware
and PC software [14].

MSP430 USB Connectivity Using TUSB3410 17

{? TEXAS

SLAA276A INSTRUMENTS

18

All the connections needed for BSL programming as required by [14] are made (see Table 2).
When comparing TI's BSL programmer hardware with the reference design, it can be seen that
the two serial handshake lines, DTR and RTS, which are used to invoke the BSL, are inverted.
To accommodate this, minor modifications were made to the BSL software that was available on
the web at the time of writing this application report to invert these two signals in software. The
modified source code and a new PC application are provided as part of this application report.

To program a blank MSP430F16x-TUSB3410 reference design board, the following flow can be
used:

1.) Generate an MSP430-TXT output file of the program you want to download.
2.) Connect the application board to a PC USB port.

3.) Install the standard TI TUSB3410 VCP drivers for the “TUSB3410 Boot Device”. This is the
device the TUSB3410 reports as with its default configuration (either with blank EEPROM, or
with disconnected EEPROM by removing JP1). These drivers are supplied with this
application report. For the most up-to-date drivers, always refer to [7].

4.) Open the Windows device manager to identify the VCP to which the TUSB3410 is connected
(see Figure 9).

5.) From the command line, start the provided BSL tool BSLDEMO2.exe with the COM port and
the MSP430-TXT file to program as parameters. For example, to download the blinking LED
demo code supplied with this application report to an MSP430 connected on COM5, the
following command line would need to be executed:

C:\>BSLDEMO2 —cCOM5 FET1.TXT

After starting, the tool connects to the MSP430 internal BSL via USB and download the code
file. After this is finished, the MSP430 RESET signal is released and the code execution
starts. All four LEDs on the demo board should now be blinking.

Note that when re-flashing an MSP430 that is running the firmware presented in section 4.2, one
additional step must be performed. While the firmware is running, it deactivates the MSP430
RESET pin to prevent unintended device resets due to DTR serial handshake line operation, but
this also disables the ability for the BSL to gain control over the device. In order to maintain reset
functionality and BSL download capability, hold down any of the push-buttons SW1...SW4 from
the moment the board is connected until the BSL download is completed. Doing so traps the
firmware in an endless loop and switch on all LEDs. During the connection process, the board’s
LEDs blink several times as the TUSB3410 operates the DTR handshake signal.

MSP430 USB Connectivity Using TUSB3410

{? TEXAS
INSTRUMENTS SLAA276A

5

5.1

5.2

Reference Design USB Drivers

Overview

Together with this application report, two sets of drivers are provided (see Table 4). The drivers
are based on the current TI TUSB3410 driver suite at the time of writing this application report. It
is recommended to check the TUSB3410 product folder on the Tl web page for possible driver
updates [7]. The driver is available under the order number TUSBWINVCP. Note that per driver
installation, two actual drivers get installed: one universal multi-port serial adapter (UMP) and
one virtual serial COM port that makes use of the services provided by the UMP. The dual-driver
setup is due to the chosen TUSB3410 Windows driver architecture.

TI's current TUSB3410 solution has successfully passed WHQL certification. Therefore, one
should also be able to achieve WHQL certification with a customized solution using different VID
and PID values.

Manual Driver Installation

All drivers supplied with this application report must be manually installed upon USB hardware
connection. When Windows detects the new device, the Found New Hardware Wizard pops up
(Figure 8). A different device name is shown, depending on whether or not an EEPROM is used
for USB parameter storage, and the descriptor strings are stored there. The screenshot shows
the wizard when the standard TUSB3410 descriptor string is used.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

Thiz wizaed helpsz pou netall software for:
TUSEZ410 Device

']l If pour hardware came with an nstallation CDv
“ii or floppy disk. insert it now.

“w'hat do wou wank the wizard bo do?

i Inztall the zoftwane automatically [Fecommended]
7 Install fom a kst or specific location [Advanced)

Click Next to corfinue.

B i | Mest » I Cancel

Figure 8. Found New Hardware Wizard

MSP430 USB Connectivity Using TUSB3410 19

{ff TEXAS

SLAA276A INSTRUMENTS

5.3

20

On the first dialog page, “Install from a list or specific location” must be selected. Then, one must
point the wizard to the actual directory where the driver files reside. The directory choice
depends on if the reference design EEPROM is blank (or JP1 is removed), or the EEPROM was
already programmed by the MSP430 firmware. Refer to Table 4 for folder names. For the
remainder of the driver installation, simply push “Next >” until everything is done. After the first
driver is installed (Multi-port serial adapter, UMP), the Found New Hardware Wizard pops up
again and asks for drivers for the actual VCP. Again, direct the wizard to the same directory, and
push “Next >” until the second driver is installed. After installation, the Windows device manager
should appear as shown in Figure 9. Behind the VCP port name, the associated COMnn number
of the VCP is displayed. This number can immediately be used to communicate with the demo
board. The PC software provided with this application report shows how this VCP port number
detection process can be automated. See section 4.4 for details.

L. Device Manager i =10 x|
Fie Action View Help

> B &2 3 |
B0 rozsocs) =

- iy Computer

¥l Disk drives

w8 Display adapters
[l ol DYDPCD-ROM drives

t-4= Floppy disk controllers
- B Floppy disk drives
¥
+]

) (=) IDE ATAJATAPI cortrollers
- Keyboards
-y Mice and other pointing dayvices
F- & Monitors
=30 Multi-port serial adspters
30 TUSES410 Device -
+- B8 Metwork adapters
=5 Ports (COM &LPT)
¥ Communications Port (COML)
5 ECP Printer Port (LPTL)
A USB - Serial Port (COM3) =i
¥R Processors
@) Sound, video and game conkrollers
- W System devices
F Universal Serial Bus conkralers ﬂ

Figure 9. Device Manager After Driver Install

Standard TUSB3410 Driver

This driver suite is used in the case the EEPROM on the reference design hardware is blank or
jumper JP1 is removed at the time the board is connected. In this case, the board reports as
“TUSB3410 Boot Device”. The “Found New Hardware” wizard must be directed to the
“ORIG_TUSB3410_2KXP_V103” folder. After driver installation, the TUSB3410 VCP is listed in
the Windows device manager and can be used, e.g., to download code to a blank MSP430
using the BSL tool as described in 4.5.

MSP430 USB Connectivity Using TUSB3410

{? TEXAS
INSTRUMENTS SLAA276A

54

5.5

6.1

Custom MSP430-TUSB3410 Reference Design Driver

The other driver supplied with this application report is a customized TUSB3410 driver for use
with the VID/PID values used with the reference design demo board (Table 1). Also, the
descriptor strings were modified to show the board as “MSP430-TUSB3410 Reference Design”
in the Windows device manager. The driver suite basically is the standard TUSB3410 set of
driver files, with the two modified INF-files umpusbXP.inf (for the UMP) and UmpComXP.inf (for
the VCP). Inspect these files to see exactly which changes were made.

The process for creating a custom application-specific driver set is to take the standard
TUSB3410 driver suite and then modify these two INF-files using a text editor. Throughout these
files there are instructions and hints, placed as comments, that indicate places to fill in custom
VID, PID, and descriptor string values. Make sure that the UMP hardware ID used in both driver
INF-files matches and is unique to your company and product. Note that for a custom
application, it is recommended to delete all comments regarding occurrences of TI’'s VID/PIDs
throughout these files. Otherwise, conflicts with different USB devices using the TUSB3410
drivers can occur.

Automated Driver Installer

The TUSB3410 driver suite, which is available in the TUSB3410 product folder, also contains a
driver installer. It is an InstallShield project that allows installing the Windows drivers prior to
USB device connection. Using this installer results in an easier driver installation, as Windows is
already aware of the device drivers by the time the actual device gets connected, and the need
for manually pointing the “Found New Hardware” wizard to the driver directory is removed. In
this case, the user only needs to push “Next >” in the dialog boxes until everything is done.

The driver installer can be customized for VID / PID values without rebuilding the actual
InstallShield project. The automated driver and instructions on how to customize are included in
the TUSBWINVCP driver package, which is available on [7].

Other Lower-Cost Options

No External EEPROM

It is possible to design a TUSB3410-based device that does not use an external EEPROM and
also doesn’t use the MSP430 to emulate one. This solution reports the default descriptors
located in the TUSB3410 boot code, including TI's default VID/PID, and the TUSB3410 firmware
is downloaded from the host. However, doing so has two consequences:

1.) The solution is not USB-compliant because it does not have the vendor’s unique VID.

2.) The host that sees two devices with the same VID/PID and same serial number may not
allow both of them to function.

For these reasons, Tl strongly discourages this configuration, unless the system is known to be
an isolated bus that will not encounter any unknown devices that may conflict with your device.

MSP430 USB Connectivity Using TUSB3410 21

{? TEXAS

SLAA276A INSTRUMENTS

6.2

22

No External MSP430 Crystal

The TUSB3410 can output its UART baud clock or a fixed frequency of 3.556MHz on pin
CLKOUT. This signal can be directly connected to an MSP430 oscillator input (XIN or XT2IN)
with the respective oscillator operated in high-speed mode. This way, a stable clock source can
be made available to the MSP430 and used for CPU and peripheral operation, without attaching
an external crystal.

However, this option requires the customer to modify the existing TUSB3410 firmware. A line of
code needs to be added which enables the CLKOUT feature by setting the bit CLKOUTEN in
the MODECNFG configuration register. The bit CLKSLCT allows selecting between the UART
clock and the fixed 3.556-MHz frequency output.

The modified firmware needs to be stored either in the external configuration EEPROM or
included into the Windows driver package (file name: umpf3410.i51). In the latter case, the new
firmware automatically is downloaded by the Windows drivers once the application is connected.
The MSP430 OSCFAULT detect feature can be used to determine if the external clock is
present or not and, if so, use it. For example, with a TUSB3410 output clock frequency of
7.3728MHz driving the MSP430 USART module (divide by 8), high-speed UART communication
with 921,600 Baud can be established. The TUSB3410 firmware source code package is
available from Tl upon request.

Summary

The MSP430-TUSB3410 reference design presents an example of how USB connectivity can be
achieved with MSP430 devices without hardware USB module. Transfer speeds of up to
~1Mbit/s can be achieved reliably. Extensive support collateral is available from Tl, allowing a
hassle-free implementation.

MSP430 USB Connectivity Using TUSB3410

*? TEXAS
INSTRUMENTS SLAA276A

8 References

©ONOOAWND

11

MSP430x1xx Family User’s Guide (SLAU049)

MSP430x2xx Family User’s Guide (SLAU144)

MSP430F 16x Mixed Signal Microcontroller Datasheet (SLAS368)

MSP430F22xx Mixed Signal Microcontroller Datasheet (SLAS504)

TUSB3410, TUSB34101 USB To Serial Port Controller Data Manual (SLLS519)

TUSB3410 Errata (SLLZ021)

TUSB3410 Product Folder (http://focus.ti.com/docs/prod/folders/print/tusb3410.html)

VIDs, PIDs and Firmware: Design Decisions When Using Tl USB Device Controllers
(SLLA154)

TI USB EEPROM Burner Utility for the TUSB3410 (SLLC259)

. TUSB3410UARTPDK User’s Guide (SLLU043)

. USB/Serial Applications Using TUSB3410/5052 and the VCP Software (SLLA170)
12.
13.
14,
15.

USB Header Generator For VCP Applications (SLLC251)
Features of the MSP430 Bootstrap Loader (SLAA089)
Application of Bootstrap Loader in MSP430 w/Flash (SLAAQ96)
Microsoft Developer Network (http://msdn.microsoft.com)

MSP430 USB Connectivity Using TUSB3410 23

INSTRUMENTS

{? TEXAS

Appendix A. F16x Solution Hardware Description

R1
47k

R2

RESFT — UDTR
CK — URTS
MS R3 b ol
uce DI
DO C1 KOUT
H H J_S%waouoo?,o,b
| \0| \0| \O| O O LO| LO| L] LO)|
c1 c2
- COONARENOR
04 (O g8geeesses
TOTANSGON e
bats 3447 Pot oy
2 ps.a/a3 ps.3 (2 BAJ3
Pe-43 | ps.4/ne Ps.2 (16 BA.2
BeS 4 | pes/ns p5.1 (—8 _PA.d
PE.65 | peerne MSP430F1612IPM 2y |24 bsp
BE.Z6 | pe7/n7 p4.7 |43 P47
c3 m+ z p4.¢ |42 P46
o g Sl
To—{ XouT/TeLK P4.4 ﬂE
9| VEREF+ P4.3 ﬂ_ulﬁw
- 11 UEREF- p4.2 (28 P42
1 praz | o a1 |37 Pad
33pl I p1.13 U1 pag |36 P40
Q1 ﬁ p3.7 %mmsm
8MHz =2 m“_..u.rm Pa.g (21 P36
pl.46 | P3.5
RYNQINOTRYN QN
A NNNNNNNNOOOOM
[slyalyaiyalyalyalyaiysiyaiyalyalyainaiyaiyaiyan
mlzd 7wN81234567&m
o
ajaf
R12
RXD
R13 X0
 —
DSk RL4 @R ac
wrs RL5 @R ane
SR RST 3410
—

PORT1 PORT4
ucrsed_ 17 UDSR Pazel_ 17 Pde
p156 5 P1.4 P456 5 P4.4
P1.3 4 3 pP1.2 P43 4 3 P4.2
prazl_ _1pP1p P42 1P4.p

PORT2 PORTS
mNNm_ _anm 8 va
p256 5 p2.4 <3 5
4 3 4 3
2 1 2 1
PORT3 PORT6
pazel[_ _1zp3s 8 2
RXD 6 5 TXD & 5
P3.34 3 P3.2 4 3
p3a2]_ 11 P30 2 1

N) ™) -~

+ <« + A

[al} af ol [al

+ P4yl ¥ \0 K_/M

Oy)@ >

S v, v

o Q¥ R R #YarVorVigy

QyT QPYT Qv Qapw - - -

GND GND

MSP430F 16x-TUSB3418 Reference Design

TITLE: TUSB34108_Demo

Document Number:

REU:

1.0

Date: 9/28/20086 09:41:56a

Sheet: 1/2

SLAA276A

A.1 Schematics

MSP430 USB Connectivity Using TUSB3410

24

SLAA276A

25

CC
RL7
RST_3410 “_.s_n_“
u2
UREGEN
511 RESET
I_l " WAKEUP
GND cxour % REC2e] AT
XD 17
RXD 19| SN
Wm sDA
2 scL
31] P3.0
R25 3L] p3s
38 1 p33
e 23] p3is
co g 12MHz o7 %1
wmn-.owﬁ 26 | 5
= TUSB3410UF
cie
33p!
EEPROM_DISABLE
GND
g4
JA“.
~i| N
SCL
SDA
R28
=) [o
11ee son |2
ZN R -
R31
3l e uwI: 7k
uce 1| yes uee |2 uce
24LC128I/SN
1L
L c15 "y
GND)

R2@__1k5 .B
PR ——A UBLS e
o [R21 33R ,
i e D-
R22 33R 5
crs p3—UCTS i
psr it UDSR
15 1 :
pco Pi—— BND
RI/CP wm :
RTs 22— URTS SHIELD
pTR pPp2i— 1 UDTR
23 yce .
TEsTe |22 SHIELDL
TESTL C7 -8 d o o o
wee |2 R23 | heak/1% 22p 22p USB_RECEPTACLE
ucce Mm |_|I H o o o < ww“ Type B
uDD18
eND |2 &ND GNB cons
eNDL |28 588 g
GND2 |28 R26 | heok/1% 2 2 2 2 as
u3
N TS) R
L SN75240PW
c11 C12 i
GND
— —C
(8]
>
= +3,
o= 8 1 oute N1 |2
- | B
- R30 0UT2 IN2 Lot
=T GkB1/0.1% _|O RES 6ND C
1 2 ol = ilrm e Pt
fa} 10
a TPS77301DGK
<[N »\s E) 1
y GND GND
Bk32/@.1%
GND GND GND &ND

MSP430F 16x-TUSB3418 Reference Design

TITLE: TUSB3410_Demo

Document Number: REU:
1.0

Date: 9/29/2006 ©9:41:56a Sheet: 2/2

INSTRUMENTS

{? TEXAS

MSP430 USB Connectivity Using TUSB3410

SLAA276A

{5‘ TEXAS
INSTRUMENTS

A.2 Board Layout

@ (& @) (@) (€ (0] (@) @) @ @ 0

=

VIVIV

26

Figure 11. PCB Layout Solder Side

MSP430 USB Connectivity Using TUSB3410

{5‘ TEXAS

INSTRUMENTS

SLAA276A

1 1 1

T

O

Ilq_l

LEDS R239

COPROPOOBOO OB
OO O® O @
PPOO® ® @2 060600000000
™ 8 PORT6 08 PORTS 8 PORT4 ©
o
Ute o :
ol:l o
1 C?*L’.'fl”‘“ o %% 3
= X orQq: a
gug o°‘D°* ez O 0B
Bl:lﬁ_ S E%meg +E+E= 11 —
oy o BE, o £ o° N
o g0 U2 C4 C5 Jo g
IRRENNEN al .:'.:' o o go
3 o ooF) = o DL
03 E o~ (oo o O
= ERL R | Z
o D8 30 o c:a 8&
DL @ % s ° ° °7E <L
mEmEoEmm 0 S @i
C1R23°Q26 ce %i o =X
us g _o2 WK Ko _PORTL 8 PORT2 8 PORT3 8
- - REg@@@@@@@@@@@@
- - D1 0000000009000

OI:ZSQO OI-'-ES
EO0E HEE S0 &HOH

RO

o oRll

RO §lo

LIs

LEDD

[

LED®D

LED4O

)
-
-+

@

1 1 L

Figure 12. PCB Component Placement

MSP430 USB Connectivity Using TUSB3410

27

Q'f TEXAS

SLAA276A INSTRUMENTS
A.3 Bill of Material

Qty. Value Device Parts Digi-Key #

4 EVQPPDASTD SWi1, SW2, SW3, SW4 P8087SCT-ND

1 JP1E JP1 A26529-01-ND

1 JUMPER J2 S9000-ND

1 RED LEDO0805 LED5 160-1176-1-ND

4 GREEN LEDO0805 LED1, LED2, LED3, LED4 160-1414-1-ND

2 MAO03-1 GND, VCC WM6503-ND

PORT1, PORT2, PORTS3,

6 MAO04-2 PORT4, PORT5, PORT6 A34268-04-ND

1 ML14 JTAG A26269-ND

5 0.1u CSMDO0805 C2,C11,C12,C13,C15 311-1142-1-ND

5 OR R_0805 R12, R13, R14, R15, R16 311-0.0ACT-ND

7 1K RES0805 R2, R3, R4, R5, R6, R7, R29 P1.0KACT-ND

1 1N4148 D D1 1N4148WTPMSCT-ND

3 1k5 R_0805 R20, R27, R28 P1.5KACT-ND

1 1u CSMD0805 C6 PCC1807CT-ND

1 3k32/0.1% R_0805 R32 RR12P3.32KBCT-ND

1 6k81/0.1% R_0805 R30 RR12P6.81KBCT-ND

1 8MHz HC49/US Qf X165-ND

1 10k R_0805 R17 P10KACT-ND

3 10u CSMD1210 C1,C3,C14 399-1563-1-ND

1 12MHz HC49/US Q2 X172-ND

1 15k R_0805 R18 P15KACT-ND

2 22p CSMD0805 C7,C8 311-1103-1-ND

1 241L.C128I/SN M24XXXS08 us 241.C128-1/SN-ND

2 33R R_0805 R21, R22 311-33ARCT-ND

2 33k R_0805 R19, R24 P33KACT-ND

4 33p CSMDO0805 C4, C5, C9, C10 311-1105-1-ND

6 47k R_0805 R1, R8, R9, R10, R11, R31 P47KACT-ND

2 100k/1% R_0805 R23, R26 311-100KCRCT-ND

1 470R R_0805 R25 311-470ARCT-ND

1 MSP430F1612IPM | FIXXQFP64PM U1 296-17885-ND

1 SN75240PW SN75240 UK} 296-6596-1-ND

1 TPS77301DGK TPS773XX U4 296-8108-5-ND

1 TUSB3410VF TUSB3410 u2 296-12699-ND

1 USB_RECPT USB_RECPT J1 ED90064-ND

28 MSP430 USB Connectivity Using TUSB3410

SLAA276A

Appendix B. F22xx Solution Hardware Description

J3
O 14 13 o
[S] - Q
12 11
2T % =15 RL > PORT1
8 7 SBWTCK 47k P 8 7 P1.6 m
6 1= SBTOIO0 MSP430BF22741DA P56 5 p1.4 >
4 i El P1.34 3 p1.2
|_HN P K m o) P12 1 P1.0
JTAG GND %3 \ﬁ 1 TEST/SBUTCK P17/TDO |H3E—BL.Z PORT? g 4 § §
| puce pLe/TOl (32— BL.S — 4 4 4
A B2.5 3| pos/mosc pLesTHs |36 P15 GND 8 7 GND a a 4&a 4q
el 4 | puss pLa/ToR |35 P1.4 pP2.56 5 P2.4
|_| XO0UT 5 | xout/p27 o |3t P13 p2.34 3 P2.2
XIN 6 | YiN/pos p1s |33 P12 p2.42 1 ACIK
GND Z | RST/SBWTDIO pia [22—P1d4 S ved vl v
c2 ALK 8 [pop plo 3L P10 . HSay)
1L p2.1 9 | pon po4 |32 P2.4 PORT3
ww_ p2.2 8 | 555 pos |28 D23 pazs[C _lzpas
P RST _adte1 | o572 pa> |28 paz RXD 6 5 TXD o da Lo
12MHz B2 Sha 12 | p3y P36 [22—PR36 B3.34 3 S0l ol N ol ol \ArPAVAREA 4
z 8 SCL_ 13 [pa's P35 |26 RXD snA 2| 11 RST 34410 YT OdYPT QYT YT - p i}
c3 |—| g paa 14 | 3% paq [25__TxXD []
1; 18 1 huss pe7 |2 B4z
23 16 1 puce pas [22—D4s =
P El 4.2 17 | pid peps 22 P45 28 7 P4.6 1
L w=d P4t 18 | o paq |24 D44 56 5 D4,4 GND
GND S LS p4.2 18 | pss paa |22 P43 34 3 P4.2
ucc : - 12 1 P4.0
GND — 3 5U r
+ * UBUS
R 4
D ST.3419 u1 U2 R1@ 33R
S R11 15k |R12 33k EP% ey s R13 1k5 A D-
15 10k 3 reseT P AT o
12
2] ueKkEWP oM
Bt 5| susPenD s GND
D1 1N4148 22 cLkouT cTS
25385 R -3 DSR SR 1 SHIELD
A{a=<a X0 12 1 o DeD] 2 1la a o+ o v o
BXD 19 1 sout RI/CP 3 e T SHIELD1
GND e 1A H H . . .
i spA DTR RL | USB_RECEPTACLE
SCL = e J2 GND GND « o o o Type B
P3.0 TEST1 =] (==l e
P3.1 uce R20100k/1% & &5 5 &
P3.3 ucce \/\/\/|H
mw mnmw R21 100k/1%
> u4 g Cil o
3 . T e TUSB341@UF SN7524@PK
IN1 0UT1 ~ B
« ——]
—lm IN2 0UT2 |_V s b s
3 1o res P2— &% A v A]
ol 3 a5y . &S5 g GND MSP430F 22xx-TUSB3418 Reference Design
=== 4 1 N o= C11 S
s L N == ieu uce
TPS7238106K 0SS 10 w W TITLE: TUSB341@_Demo
ol § fAVAY
x> Q) 3 3
SBUTDIO o oD oce Document Number: REU:
GND GND GND GND GND GND 1.1
Date: 9/29/2006 09:34:26a Sheet: 1/1

INSTRUMENTS
B.1 Schematics

{? TEXAS

29

MSP430 USB Connectivity Using TUSB3410

SLAA276A

{5‘ TEXAS
INSTRUMENTS

B.2 Board Layout

O OICEACIOKCIO)! o.(®(® @ @@’@@'
OIONORONOXORO), o & ©©@©

® -

Figure 14. PCB Layout Solder Side

30 MSP430 USB Connectivity Using TUSB3410

SLAA276A

— =

[CNONONOIN[ONONONO,
eeee oo

T

O

Sl
SH2
SW3

o |07 (W [)f

Ta3° zaz©® eoI® 03P

6HO G4 BiD &H 4D &£y 50 &

o

) L
PIRT3
o O
.I-I.I-I-I-I-Iﬁﬁ-l-l-l-l-l-l-l-l.:)
OOOOO()
oC4
[1 |
&@341@
U1.1
PORT4 1
®'®
100600

14

L= 1
CNCONONONONONCRN
CNONONONCNONC M

Q
w ®
- e =
= m [o) Si@ @
o o
SENEE § 1Y
Tom'#Nzy oL §
@® o o SED.@ ®
ofm© (odHo)=
g, o
o] 1 kLo~
¥ oXoNoNo) L4
B
m_ﬂ5
L -
mﬂﬂn
e = Ny
= M“RM“
& y=cl
o

INSTRUMENTS

{5‘ TEXAS

31

=]

MSP430 USB Connectivity Using TUSB3410

8

Figure 15. PCB Component Placement

Q'f TEXAS

SLAA276A INSTRUMENTS
B.3 Bill of Material

Qty. Value Device Parts Digi-Key #

4 EVQPPDASTD SWi1, SW2, SW3, SW4 P8087SCT-ND

5 LEDO0805 LED1, LED2, LED3, LED4, LED5 | 160-1414-1-ND

2 MAO03-1 GND, VCC WM6503-ND

1 MAO04-1 J2 WM6502-ND

4 MAO04-2 PORT1, PORT2, PORT3, PORT4 | A34268-04-ND

5 0.1u CAP-NP0805 C1,C4,C8,C9, C10 311-1142-1-ND

5 1K RES0805 R2, R3, R4, R5, R24 P1.0KACT-ND

1 1N4148 D D1 1N4148WTPMSCT-ND

3 1k5 RES0805 R13, R16, R17 P1.5KACT-ND

1 1u CSMD0805 C5 PCC1807CT-ND

2 3k3 RES0805 R19, R22 P3.3KACT-ND

1 3k32/0.1% RES0805 R25 RR12P3.32KBCT-ND

1 6k81/0.1% RES0805 R23 RR12P6.81KBCT-ND

1 10k RES0805 R15 P10KACT-ND

1 10u ELKO_1210 C11 399-3684-1-ND

1 12MHz HC49/S Q1 X172-ND

1 15k RES0805 R11 P15KACT-ND

2 22p CAP-NP0805 Cs, C7 311-1103-1-ND

2 33k RES0805 R12, R18 P33KACT-ND

2 33R RES0805 R10, R14 311-33ACT-ND

2 33p CAP-NP0805 C2,C3 311-1105-1-ND

5 47k RES0805 R1, R6, R7, R8, R9 P47KACT-ND

2 100k/1% RES0805 R20, R21 311-100KCRCT-ND

1 JTAG ML14 J3 A31135-ND

1 MSP430F2274IDA MSP430F22XXDA | U1

1 SN75240PW SN75240 us 296-6596-1-ND

1 TPS77301DGK TPS773XX U4 296-8108-5-ND

1 TUSB3410VF TUSB3410 U2 296-12699-ND

1 USB_RECEP USB_RECEPT J1 ED90064-ND

32

MSP430 USB Connectivity Using TUSB3410

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

	Abstract
	1 Introduction
	2 Design Decisions and USB Configuration
	3 Reference Design Hardware
	3.1 Standard Solution Using MSP430F1612
	3.2 Lower-Cost Solution Using MSP430F2274

	4 Reference Design Software
	4.1 Overview
	4.2 MSP430F16x Demo Firmware
	4.3 MSP430F22xx Demo Firmware
	4.4 PC Demo Application
	4.5 Customized Bootstrap Loader Tool

	5 Reference Design USB Drivers
	5.1 Overview
	5.2 Manual Driver Installation
	5.3 Standard TUSB3410 Driver
	5.4 Custom MSP430-TUSB3410 Reference Design Driver
	5.5 Automated Driver Installer

	6 Other Lower-Cost Options
	6.1 No External EEPROM
	6.2 No External MSP430 Crystal

	7 Summary
	8 References
	Appendix A. F16x Solution Hardware Description
	A.1 Schematics
	A.2 Board Layout
	A.3 Bill of Material

	Appendix B. F22xx Solution Hardware Description
	B.1 Schematics
	B.2 Board Layout
	B.3 Bill of Material

