Q‘ TEXAS Application Report
INSTRUMENTS SLAA329— September 2006

Efficient Multiplication and Division Using MSP430

Kripasagar Venkat MSP430

2.1

211

ABSTRACT

Multiplication and division in the absence of a hardware multiplier require many
instruction cycles, especially in C. This report discusses a method that does not need a
hardware multiplier and can perform multiplication and division with only shift and add
instructions. The method described in this application report is based on Horner's
method. The MSP430 microcontroller CPU can perform a register shift or add in one
instruction cycle. This allows fast execution of multiplications and divisions using
Horner’'s method. This method not only produces accurate results but also provides a
very good dynamic range as it does not totally depend on finite word length effects like
some of the conventional methods. Also discussed is the Canonical Signed Digit (CSD)
representation of numbers which further reduces the computational load when used
with this method for multiplication and division. Note that Horner's method requires the
multiplier or the divisor to be known in advance to function.

Introduction

Numbers can be broadly classified as fixed point and floating point. The fixed-point number representation
is limited to positive and negative integers, whereas the floating-point number representation can
accommodate fractions as well. Microcontrollers are fixed-point machines and deal with only fixed-point
arithmetic. Hence, alternate methods need to be devised to handle floating-point arithmetic. This also
leads to a loss in precision due to finite word length effects. Most microcontrollers do not have a hardware
multiplier and rely on algorithms based on repeated addition to perform multiplication and division
operations. This consumes a lot of instruction cycles and also exhibits limited precision. The Horner's
method discussed here is tailor-made for such machines without much loss in precision.

Horner’'s Method

The Horner’s method requires the multiplier or the divisor to be known in advance. This is not a serious
limitation, since few applications perform multiplication or division of numbers that change at runtime.
Once this is established, the multiplication or division can be performed efficiently with just shift and add
operations. The operand is denoted by X, the multiplier by M, and the divisor by D.

Multiplication
In explaining this method, first is considered the multiplication of two unsigned fractions.

Example 1: Unsigned Multiplication of Two Fractions

Let the number 0.12345 be multiplied by the constant 0.14325. The 12-bit binary representations of these
numbers are:

X =0.12345 = 0.000111111001,
M = 0.14325 = 0.001001001010,

SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 1
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

” TEXAS
INSTRUMENTS

www.ti.com

Horner’'s Method

The conventional method to perform this multiplication is:
0.12345 x 0.14325 = (0.000111111001;)(273 + 276 + 279 + 2711

= 0.000000111111, +
0.000000000111, +
0.000000000001,, +
0.000000000000,,

0.000001000111, =0.017333984375

The correct result of this multiplication is 0.0176842125, and the above method results in an absolute
error of 0.000350228125, which is approximately 1.5 LSB. This error can be attributed to finite word length
effects due to register width limitations. As the number of bits allocated for the fractions increase this error
is reduced. The Horner's method aims to reduce this error while maintaining the same register widths.

The Horner’s algorithm is based on the positions of the 1s in the multiplier and their distance to the
immediate 1 to their left. This is done starting from the rightmost bit position and moving left until the last 1
before the binary point.

In the binary equivalent of the multiplier 0.14325 = 0.001001001010,, starting from the right the first 1
occurs at bit position 2711, The difference in position of this 1 to its immediate 1 to the left is two. Similarly
the difference for the 1 in bit position 27° is three and so on.

If the number to be multiplied is denoted as X, the design equations can be written as:
Step 1: Set the intermediate result equal to the operand X and start with the rightmost 1

X x 272+ X=X, Forthe first iteration, the weight 22 is applied to the intermediate result as the
distance of the rightmost 1 (bit position 271) in the multiplier to its next 1 (bit
position 279) is two. The operand X is added to account the occurrence of the 1 at
bit position 2°. The result of this addition is now stored as the intermediate result
after this step.

Step 2: Proceed to the next 1 in bit position 2-°

X; x 22+ X=X, The weight 2-3is now applied to the intermediate result (updated in Step 1) since
the distance of the 1 in bit position 2-° to its next 1 (bit position 27°) is three. The
operand is again added for the reason explained in Step 1.

Step 3: Proceed to the next 1 in bit position 276

X, x 23+ X =X, The weight 273 is applied to the intermediate result (updated in Step 2) and the
operand added.

Step 4: Proceed to the last 1 in bit position 273

Final result = X3 x 273 The factor 272 is applied to the intermediate result (updated in Step 3), as it is
the weight at the position of the leftmost 1. The operand is not added this time,
since all the 1s have been taken into account.

2 Efficient Multiplication and Division Using MSP430 SLAA329-September 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

{'f TEXAS
INSTRUMENTS

www.ti.com

Horner's Method

This approach can be validated by back substituting the intermediate results.
Final result =Xz x23= (X, x23+X)x 23 =[(X; x23+X) x 23+ X] x 273
={[(Xyx22+X)x 23+ X] x 23 + X} x 273
=X x (271 + 279 + 26 4 2°9)

This result matches with the multiplication discussed earlier. The algorithm with X = 0.000111111001,,
when implemented gives:

X, =X x 272+ X = 0.000001111110, +
0.000111111001,
X, - 0.001001110111,

Similarly,
X, =X; x 273+ X = 0.000001001110, +
0.000111111001,
Xy - 0.001001000111,

And,
X3=X, x 23+ X = 0.000001001000, +
0.000111111001,
X3 - 0.001001000001,

The final result is
Final result = X3 x 2-3 = 0.000001001000, =0.017578125.

This has an absolute error of 0.0001060875 which is just 0.434534 LSB. Thus Horner’'s method gives a
better result for the same width limitations. Also, the method described uses only shift and add operations.
The procedure remains the same if the operand is a negative fraction. Numerical examples for various
combinations of the operand (X) and multipliers (M) are given in Appendix A.

2.2 Division

Now that Horner’'s method is shown to work for multiplication with good accuracy, it is easily extended to
division. The fact that division by a number is a multiplication by its reciprocal is used to explain the
approach. The examples shown in Appendix A indicate that Horner’'s method works flawlessly for all types
of multipliers. Hence, only a single example is shown that implements division.

221 Example 2: Unsigned Division of an Integer by a Floating Point Number
Consider the division of the number X = 441 by the factor 41.8375.
X =441 = 0110111001,
D =41.8375 =0101001.1101011001,
M = 1/41.8375 = 0.0239020018 = 0.0000011000011110,

SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 3
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

” TEXAS
INSTRUMENTS

www.ti.com

Horner’'s Method

2.3

The design equations for this division are:
Step 1: Set the intermediate result equal to the operand X and start with the rightmost 1

Xx 21+ X=X, For the first iteration, the weight 2 is applied to the intermediate result as the
distance of the rightmost 1 (bit position 271%) in the multiplier to its next 1 (bit
position 274) is one. The operand X is added to account the occurrence of the 1 at
bit position 2714, The result of this addition is now stored as the intermediate result
after this step.

Step 2: Proceed to the next 1 in bit position 2714

X; x 271+ X=X, The weight 27! is now applied to the intermediate result (updated in Step 1) since
the distance of the 1 in bit position 271* to its next 1 is one. The operand is again
added for the reason explained in Step 1.

Step 3: Proceed to the next 1 in bit position 2713

X, x 271+ X =X; The weight 271 is applied to the intermediate result (updated in Step 2) and the
operand added.

Step 4: Proceed to the next 1 in bit position 2712

X3 %25+ X=X, The weight 275 is applied to the intermediate result (updated in Step 3) and the
operand added.

Step 5: Proceed to the next 1 in bit position 2=/

X, x 21+ X =Xg The weight 271 is applied to the intermediate result (updated in Step 4) and the
operand added.

Step 6: Proceed to the last 1 in bit position 276

Final result = X; x 26 The factor 275 is applied to the intermediate result (updated in Step 5) as it is
the weight at the position of the leftmost 1. The operand is not added this
time, since all the 1s have been taken into account.

The correct result for this division is 10.5407827, and the result obtained is 10 with the fractional part
discarded with an error of 0.5407827, similar to the error in conventional methods.

All types of operands and multipliers shown in the previous section and Appendix A can be extended to
the process of division to produce the desired results.

Canonical Signed Digit Representation (CSD)

The efficiency of Horner's method can be further improved by using the Canonical Signed Digit (CSD)
format to represent the multiplier or divisor. The CSD format aims to reduce the number of add operations
during multiplication and division. The CSD format has a ternary set as opposed to a binary set in number
representation. The symbols used in this format are {0, 1, 1}, with 1 representing —1. The goal is to group
consecutive 1s and change them to a ternary representation from binary representation. This is done
starting from the rightmost 1 and proceeding left until the last 1. By doing so, the final CSD representation
never has adjacent 1s or 1s. This representation is effective when there are many adjacent 1s in the
binary representation.

Efficient Multiplication and Division Using MSP430 SLAA329-September 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

{'f TEXAS
INSTRUMENTS

www.ti.com

Horner's Method

Consider the 12-bit representation of 0.12345 = 0.000111111001,.

The CSD format can be used here to group the consecutive 1s. Starting from the rightmost bit, the first 1
occurs at the position 2712, This 1 does not have an adjacent 1 to its left and hence not modified. The next
1 at position 27° has five adjacent 1s to the left of it. These six 1s are combined and 1 is placed at the
rightmost bit position (27°), zeros at the remaining positions (278 to 27#) and a 1 at the bit position 2-2 (one
position left to leftmost 1 of the original sequence). This process is repeated for additional groups of 1s
that are encountered. The CSD representation now becomes:

0.12345 = 0.001000001001¢sp

Horner’'s method using CSD format reduces the number of add operations during multiplication. The
Example 3 shown is same as Example 1, with the roles of the multiplier and multiplicand interchanged.
The method gives exact results with reduced number of add operations.

23.1 Example 3: Unsigned Multiplication of Fractions Using Horner’s Method and CSD
Representation

X =0.14325 = 0.001001001010,
M = 0.12345 = 0.001000001001c5p

The ternary representation results in a slight modification to Horner’'s method. The design equation now
for an operand X becomes:

Step 1: Set the intermediate result equal to the operand X and start with the rightmost 1.

Xx23-X=X, For the first iteration, the weight 23 is applied to the intermediate result as the
distance of the rightmost 1 (bit position 27%?) in the multiplier to its next 1 or —1 (bit
position 279) is three. The operand X is now subtracted (instead of being added) to
account the occurrence of the —1 (instead of a 1) at bit position 27°. The result of
this subtraction is now stored as the intermediate result after this step.

Step 2: Proceed to the next 1 or —1 (in this example) at bit position 22

X; X278+ X=X, The weight 27° is applied to the intermediate result (updated in Step 1) and operand
added since 1 is encountered at bit position 273,

Step 3: Proceed to the last 1 in bit position 273

Final result = X, x 23 The factor 272 is applied to the intermediate result (updated in Step 2) as it is
the weight at the position of the leftmost 1 (or —1). The operand is not added
this time, since all the 1s (or —1s) have been taken into account.

The algorithm with X = 0.001001001010, when implemented gives:
X; =X x23-X= 0.000001001001, —
0.001001001010,,
X, - 1110111111111,

=

= Sign bit

SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 5
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

” TEXAS
INSTRUMENTS

www.ti.com

Horner's Method

2.4

24.1

Similarly,
X, =X, x28+X= 1111111110111, +
0.001001001010,
Xy - 0.001001000001,,

Final result = X, x 273 = 0.000001001000,, = 0.017578125

By grouping consecutive 1s, the number of add operations is reduced from 6 to 2. A few things can be
observed with the results obtained. In this example, interchanging the roles of multiplier and multiplicand
produced similar results. Hence, the absolute error in this case is also 0.0001060875, which is just
0.434534 LSB.

The CSD representation holds for integers as well, with a similar procedure. Additional care must be taken
while grouping the 1s in doing the conversion to CSD of fractions and integers. The grouping of 1s must
be done taking each group independently, one at a time. An example of the integer 441 represented in
CSD is shown below:

441 = 0110111001, = 1001001001 ¢¢p
Step1 441 =0110111001, = 0111001001cgp
Step2 441 =0111001001.gp = 1001001001 p

Additional examples using the CSD format in conjunction with Horner's method is shown in Appendix A.

Summary

The performance of Horner’'s method with and without CSD representations has been implemented on the
MSP430 architecture. Comparisons of the number of instruction cycles for each multiply and divide is
made for Horner's method against its C equivalent and the existing algorithms. The C code and the
associated assembly files have been included in a zip file accompanying this application report. Their
descriptions are provided in Appendix B. The examples considered are (41 x 441), (41 x 441.8375),
(9280/41), and (1500/37.12345) for integer-integer and integer-float multiplication and division,
respectively.

Results

shows a comparison among the methods. For the integer-float multiplication example, the
accuracy of Horner’'s method is almost perfect, which is not the case with existing conventional algorithms.
Also, if the multiplier were a pure fraction, scaling of the multiplier to the nearest integer must be done
before the use of conventional algorithms.

6

Efficient Multiplication and Division Using MSP430 SLAA329-September 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

{';‘ TEXAS

INSTRUMENTS
www.ti.com
Horner's Method
Table 1. Observations for the Methods Discussed
Instruction Code Size
Type Methods Cycles (bytes) Results Absolute Error
CLIB® 77 50 18081 0
Integer-Integer Existing methods @ 107 54 18081 0
Multiplication
(41 x 441) Horner 15 32 18081 0
Horner+CSD 13 30 18081 0
CLIB 183 80 226 0
Integer-Integer Existing methods 191 28 226 0
Division
(9280/41) Horner 23 48 226 0
Horner+CSD 21 44 226 0
CLIB 4270 322 18115.3375 0
Integer-FIQat Existing methods 107 54 18081 34.3375
Multiplication
(41 x 441.8375) Horner 32 66 18115 0.3375
Horner+CSD 29 60 18115 0.3375
CLIB 476 500 40.4057 0
Intege_r-_Float Existing methods 191 28 40 0.4057
Division
(1500/37.12345) Horner 24 50 40 0.4057
Horner+CSD 22 46 40 0.4057

(@ The C library is part of the IAR Embedded Workbench Ver. 3.41A, written for MSP430 family of devices.

@ The algorithms have been explained in the book Computer Organization, Carl Hamacher, Zvonko Vranesic, and Safawat Zaky,
3rd Edition, McGraw Hill Publication, 1990.

3 Includes cycles for type conversion from float to integer as part of a requirement of the algorithm used.

2.4.2 Tradeoffs

results are used as a comparison of speed, accuracy and memory requirements. The MSP430
CPU implements Horner’s algorithms extremely quickly with its single cycle shift and add operations. The
Horner's method, when compared to the existing methods, is extremely fast and maintains the same level
of accuracy for integer-integer multiplications and better accuracy for integer-float multiplications. Division
is also performed extremely fast with limited accuracy. The error in Horner's method is similar to existing
methods for integer-integer division. The results for integer-float divisions can be improved by representing
the divisor by a higher number of bits, with an insignificant increase in cycle count. There is no provision to
obtain the remainder during division in Horner's method, which is not the case with the existing algorithms.
The most important benefit of Horner's method is the multipliers and divisors suffer very little from finite
word length effects. Although the examples considered had only 12- or 16-bit word lengths, each of them
can be implemented with large precision with proportional increase in the number of shift and add
operations. The memory requirement is much higher for Horner's method since, for each multiplier or
divisor, the code is different. In cases where speed is of prime concern, this is not a serious limitation.
Also Horner's method requires the multiplier or the divisor to be known in advance, which is not the case
with the other methods. This does not pose any limitation to filtering operations and other standard
conversions, where the multipliers and divisors do not change during runtime.

SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 7
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

” TEXAS
INSTRUMENTS

www.ti.com

Appendix A

Appendix A

Al

A.2

In this appendix, several numerical examples are given for better understanding of Horner’s method
for various types of operands and multipliers.

Example 4: Signed Multiplication of Fractions With Multiplicand Negative

Consider the example when —0.12345 is multiplied by the constant 0.14325. The representation of this
negative fraction in the 2s complement format is:

X =-0.12345 = 7.111000000111b
M = 0.14325 = 0.001001001010,,

where T is the sign bit representing —1.
The design equations for this numerical example are shown.
X;=Xx22+X= 1111110000001, +
1.111000000111,
X - 1.110110001000,

X, =X, x223+X= 1111110110001, +
1.111000000111,
X, - 1.110110111000;,

X3=X,x 2%+ X = 1111110110111, +
1.111000000111,,
Xz - 1.110110111110,

Final result = X5 x 23 =1.111110110111, = -0.017822265625, which has an absolute error of
0.000138053125, which is just 0.565466 LSB.

The above example shows that the method is accurate, regardless of the sign of the operand X. If the
multiplier were a negative number, the above procedure remains exactly the same, except that in the end
the operand X is subtracted due to the sign bit of the multiplier. The design equations for this are shown in
Example 5.

Example 5: Signed Multiplication of Fractions With Multiplier Negative

If the multiplier is now considered to be —0.12345 and the operand X to be 0.14325. The binary
representations are:

= -0.12345 = 1.111000000111,,
X = 0.14325 = 0.001001001010;,

where 1 is the sign bit representing —1.

Efficient Multiplication and Division Using MSP430 SLAA329-September 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

{'f TEXAS
INSTRUMENTS

www.ti.com

Example 6: Unsigned Multiplication of Integers

Xx 2+ X=X,
X, x 271+ X=X,
Xy X 27 + X = X,
Xy x 271+ X=X,
X, x 271+ X = Xg

Final result = X5 x 271 - X.
With the present operands the absolute error obtained is 0.000138053125, which is 0.565466 LSB.

The previous examples considered fraction-fraction multiplication exhibiting the better accuracy of this
method over others. This method can also be employed when the multiplier is any integer or real number.
The procedure for this is very similar to the previous method, with a slight change. In microcontrollers, the
operand X is usually data coming from the analog-to-digital converter (ADC), which is a fixed-point
number. Typical examples are considered with the operand X a fixed point and the multiplier an integer or
a real number.

A.3 Example 6: Unsigned Multiplication of Integers
Consider the value of X to be 41 and the multiplier is 441.
X =41 =0101001,
M =441 = 0110111001,
The only change when the multiplier is an integer is the algorithm starts looking for 1s starting from the
leftmost bit and moves right. Similar to the approach for fractions the difference in bit positions of the
neighboring 1s is used as weights. Since the direction is from left to right the weights all become positive
powers of 2 rather than negative. The design equation for this example is:
Xx2l+ X=X,
Xy x 22+ X=X,
X, x 21+ X =X,
Xy x 2+ X=X,
Xy x 28+ X =Xqg
Final result = Xg x 29,
The final result becomes the result X5 weighted by 2° (the bit position of the rightmost 1).
The absolute error obtained for this multiplication is zero.
A.4 Example 7: Signed Multiplication of Integers With Multiplier Negative
The design equations would slightly change if the multiplier was negative. Consider the multiplier to be
—441 instead for the same X.
X =41 =0101001,
M = —441 = 7001000111,
SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 9

Bubmit Documentafion FeedbacK

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

%‘ TEXAS

INSTRUMENTS
www.ti.com
Example 8: Unsigned Integer-Float multiplication
The design equations now become:
X x23+ X=X, The sign bit causes the operand to be negative in the first equation.

X, x 24+ X = X,
X, x 2L+ X = X,
Xy x 21+ X=X,

Final result = X, x 2°.

The absolute error obtained for this multiplication is zero.

If the multiplier is a real number with an integer part and fractional part, the method is just a combination
of the two types discussed so far. The algorithm is now divided into two parts, one for the integer part of

the multiplier and the other for the fractional part of the multiplier. This approach is explained in
Example 8.

A.5 Example 8: Unsigned Integer-Float multiplication
Consider the multiplier to be defined as 441.8375 and the operand X is 41.
X =41 =0101001,
M = 441.8375 = 0110111001.1101011001,,
The fact to note here is that this method is independent of word length for the multiplier. The overhead
would only be in the number of shifts and adds to be done.
The design equations for this example is given by:
Xx2t+ X=X,
Xy x 22+ X=X,
X, x 21+ X = X,
Xy x 2L+ X=X,
Xy %23+ X =Xqg
Intermediate result due to integer part = Xg x 2°.
Xx28+ X=X,
Xy x21+ X=X,
Xy X 272 4+ X = Xg
Xgx 272+ X=X,
Xy X271+ X =Xq
Intermediate result due to fractional part = Xg x 272,
Adding the above two results gives us the final solution. The absolute error obtained for this multiply is just
the fractional part and is 0.3375 LSB.
The procedure is very similar if the multiplier is a negative real number, as shown in Example 9.
10 Efficient Multiplication and Division Using MSP430 SLAA329-September 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

{'f TEXAS
INSTRUMENTS

Www.ti.com
Example 9: Signed Integer-Float Multiplication With Multiplier Negative
A.6 Example 9: Signed Integer-Float Multiplication With Multiplier Negative
Consider the multiplier to be defined as —441.8375, and the operand X is 41.
X =41 =0101001,
M = —441.8375 = 1001000110.0010100111,

The design equations for this example is given by:
Xx23+ X=X,
Xy x 24+ X =X,
X, x 2L+ X =X,

Intermediate result due to integer part = X5 x 21,
Xx21+ X=X,
Xy x 21+ X=X,
X, x 273+ X =X,
Xgx 272+ X=X,

Intermediate result due to fractional part = X, x 273,

Adding the above two results gives us the final solution. The absolute error obtained for this multiply is just
the fractional part and is 0.6625 LSB.

A.7 Example 10: Unsigned Integer Multiplication With CSD

Consider the example of an integer-integer multiplication using Horner's method using the CSD format,
with the operand X being 41 and multiplier 441.

X = 41 = 0101001,
M = 441 = 0110111001, = 1001001001

The design equations are
X; =X x23-X= 00101001000,
00000101001,
Xy - 00100011111,

X, =X, x 25— X = 100011111000, —
000000101001,
X, - 100011001111,

X3= X, x 2+ X = 100011001111000, +
000000000101001,,
Xy 100011010100001,

SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 11
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

” TEXAS
INSTRUMENTS

www.ti.com

Example 11: Unsigned Integer-Float Multiplication With CSD Format

A.8

A.9

Final result = X; = (100011010100001), = 18081.
The absolute error obtained for this multiplication is zero.
The design equations remain the same if the operand X were a negative number.

Example 11: Unsigned Integer-Float Multiplication With CSD Format

When the multiplier is a real number say 441.8375 and the operand X is a positive integer say 41, the
design equations become:

X = 41 = 0101001,
M = 441.8375 = 0110111001.1101011001, = 1001001010.0010101001 ¢

The design equations for this example is given by:
Xx23 X=X,
Xy x 22 =X=X,
X, X 22+ X = Xq

Intermediate result due to integer part = X3 x 21,
Xx28 X=X,
Xy X272 -X=X,
X, X272 - X=X,

Intermediate result due to fractional part = X5 x 273

Adding the above two results gives us the final solution. The absolute error obtained for this multiplication
is just the fractional part and is 0.3375 LSB.

A point to be noted here is if the rightmost bit is 1, the design equations start with a negative X weighted
and added or subtracted with X depending on the next bit being 1 or —1, respectively.

Example 12: Signed Integer-Float Multiplication With Multiplier Negative in CSD Format

Consider the example if the multiplier was negative and the operand X a positive number 41 with the
multiplier —441.8375.

X =41 =0101001,
M = —441.8375 = 1001000110.0010100111b = 7001001010.0010101001(3%

The design equations are:
X x22+ X=X,
Xy x 22+ X=X,
Xy x 22 — X = X,

Intermediate result due to integer part = X3 x 2%,

12

Efficient Multiplication and Division Using MSP430 SLAA329-September 2006
ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

{'f TEXAS
INSTRUMENTS

www.ti.com

Example 12: Signed Integer-Float Multiplication With Multiplier Negative in CSD Format

X x28+X=X,
X, X272+ X=X,
Xy X 272+ X = Xg

Intermediate result due to fractional part = X5 x 273,

Adding the above two results gives the final solution. The absolute error obtained for this multiplication is
just the fractional part and is 0.6625 LSB.

SLAA329-September 2006 Efficient Multiplication and Division Using MSP430 13
Eubmit Documentafion FeedbacH

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

” TEXAS
INSTRUMENTS

www.ti.com

Appendix B

Appendix B MSP430 Code

B.1 MSP430 Code
The MSP430 codes that implement multiplication and division are shown below. For some of these
examples, it can be assumed that the the incoming operand is a 12-bit sample from the ADC. The codes
used and their functionality are given below.
multiply_int.c — source file calling four math functions. All the functions perform multiplication of two
16-bit integers to give a 16-bit integer result. The "main()" function calls each of these functions.
mul.s43 — assembly source file containing an existing scheme for integer-integer multiplication using only
shift and add operations. This source file is called by function "main()" in the source file multiply_int.c and
multiply_float.c.
horner_mul_int.s43 — assembly source file containing the Horner’'s scheme for integer-integer
multiplication. This source file is called by function "main()" in the source file multiply_int.c.
csd_mul_int.s43 — assembly source file containing the Horner’'s scheme using the CSD format for
integer-integer multiplication. This source file is called by function "main()" in the source file multiply_int.c.
multiply_float.c — source file calling four math functions. All the functions perform multiplication of a 16-bit
integer with a floating point number to give a 16-bit integer or float result. The "main()" function calls each
of these functions.
horner_mul_float.s43 — assembly source file containing the Horner’s scheme for integer-float
multiplication. This source file is called by function "main()" in the source file multiply_float.c.
csd_mul_float.s43 — assembly source file containing the Horner’'s scheme using the CSD format for
integer-float multiplication. This source file is called by function "main()" in the source file multiply_float.c.
div_int.c — source file calling four math functions. All the functions perform division of two 16-bit integers
to give a 16-bit integer result. The "main()" function calls each of these functions.
div.s43 — assembly source file containing an existing scheme for integer-integer division using only shift
and add operations. This source file is called by function "main()" in the source file div_int.c and
div_float.c.
horner_div_int.s43 — assembly source file containing the Horner's scheme for integer-integer division.
This source file is called by function "main()" in the source file div_int.c.
csd_div_int.s43 — assembly source file containing the Horner's scheme using the CSD format for
integer-integer division. This source file is called by function "main()" in the source file div_int.c.
div_float.c — source file calling four math functions. All the functions perform division of a 16-bit integer
with a floating point number to give a 16-bit integer or float result. The "main()" function calls each of these
functions.
horner_div_float.s43 — assembly source file containing the Horner’s scheme for integer-float division.
This source file is called by function "main()" in the source file div_float.c.
csd_div_float.s43 — assembly source file containing the Horner’'s scheme using the CSD format for
integer-float multiplication. This source file is called by function "main()" in the source file div_float.c.
These files are provided as a zip file downloadable with this application report.

14 Efficient Multiplication and Division Using MSP430 SLAA329-September 2006

ubmit Documentation Feedbac

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA329

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third-party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated

	1 Introduction
	2 Horner’s Method
	2.1 Multiplication
	2.1.1 Example 1: Unsigned Multiplication of Two Fractions

	2.2 Division
	2.2.1 Example 2: Unsigned Division of an Integer by a Floating Point Number

	2.3 Canonical Signed Digit Representation (CSD)
	2.3.1 Example 3: Unsigned Multiplication of Fractions Using Horner’s Method and CSD Representation

	2.4 Summary
	2.4.1 Results
	2.4.2 Tradeoffs

	Appendix A 
	A.1 Example 4: Signed Multiplication of Fractions With Multiplicand Negative
	A.2 Example 5: Signed Multiplication of Fractions With Multiplier Negative
	A.3 Example 6: Unsigned Multiplication of Integers
	A.4 Example 7: Signed Multiplication of Integers With Multiplier Negative
	A.5 Example 8: Unsigned Integer-Float multiplication
	A.6 Example 9: Signed Integer-Float Multiplication With Multiplier Negative
	A.7 Example 10: Unsigned Integer Multiplication With CSD
	A.8 Example 11: Unsigned Integer-Float Multiplication With CSD Format
	A.9 Example 12: Signed Integer-Float Multiplication With Multiplier Negative in CSD Format

	Appendix B MSP430 Code
	B.1 MSP430 Code

