
1 Introduction

2 Resolution of an A-D Converter

Full-scale voltage range ÷ (2   – 1) = (2.5 V – 0 V) ÷ 65535 = 38 µV16

(1)

2.1 Signal-to-Noise Ratio (SNR)

SNR (dB) = (6.02 × N) + 1.76 (2)
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ABSTRACT

This application report describes the theory of oversampling to achieve resolutions
greater than the available bits for an analog-to-digital converter (ADC). An example is
shown that utilizes this technique for the ADC12 of the MSP430 to obtain greater than
12 bits of resolution. The example code and the Gerber files for the PCB used are also
provided.

Choosing the resolution for the integrated ADC in an MCU application involves a balance between cost
and performance. The higher the ADC resolution required, the higher the cost. However, the MCU itself
opens up the possibility of enhancing the performance of the ADC using software and allows using an
inexpensive integrated ADC solution to achieve an improved resolution. Performance enhancements such
as calibration, linearization, oversampling, digital filtering, etc., can be achieved by software. This
document focuses on utilizing oversampling to achieve extra bits of resolution for the ADC12. The ADC12
of the MSP430 used in the given example is a 12-bit ADC with conversion speeds in excess of 200,000
samples per second.

One ADC step in the digital domain is defined as 1 least-significant bit (LSB), and this is often used as the
reference unit for ADC specifications. It is also the measure of the resolution of the converter, because it
defines the number of counts for the full-scale analog input range.

Many applications require fine resolution to measure small changes in a parameter over a large input
range. For example, an ADC may be required to detect a change of less than 40 µV over a range of
0 to 2500 mV. This requires at least 16 bits of resolution. The LSB in a 16-bit measurement would
represent the voltage shown in Equation 1:

For a waveform reconstructed from digital samples derived from the conversion, the signal-to-noise ratio
(SNR) is the ratio (in dB) of the full-scale analog input RMS (root mean squared) value to the RMS
quantization error. Increasing the effective resolution increases the signal-to-noise ratio of the conversion
and vice versa. The theoretical limit of the SNR of an ADC measurement is based on the quantization
noise that arises due to the quantization error inherent in the analog-to-digital conversion process. The
SNR for an ideal ADC driven with a sine wave, whose peak voltage is the ADC full-scale input voltage, is
given by Equation 2:

Where N is the number of bits representing the digital value.
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2.2 Improving the Resolution of an ADC

SNR (dB) = (6.02 × N) + 1.76 + 10 × log   (k)10 (3)
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Resolution of an A-D Converter

The dynamic range of the input signal must match the full range of the ADC; otherwise, the SNR will be
lower than calculated using Equation 2. For example, the SNR for an ideal 12-bit ADC will be 74 dB.
Equation 2 can also be used to reverse calculate the number of ADC bits required to achieve a given
SNR.

Due to the presence of quantization noise, thermal noise, reference noise, clock jitter, etc., an N-bit ADC
will have an effective number of bits (ENOB) that is less than N. The ENOB can be characterized by
sampling a pure sinusoidal input and performing an FFT on the collected data. The signal-to-noise and
distortion ratio (SINAD) is the ratio of the magnitude of the fundamental frequency to the RMS of all other
frequencies, including harmonics. ENOB can be calculated by replacing SNR in Equation 2 with the
SINAD, which includes the distortion noise, and N with ENOB. The SINAD and SNR can be obtained from
the above mentioned dynamic FFT testing.

Oversampling is a popular method used for improving ADC resolution. The input is sampled at a rate
higher than the minimum required Nyquist sampling rate, fs. For example, when using an N-bit ADC
without oversampling, an input signal of 100 Hz is sampled at 200 Hz (2 × 100 Hz) to get the digital output
with the native ENOB of the ADC. When oversampling with a factor of k = 16, the same 100-Hz input
signal is sampled at 3200 Hz (k × 2 × 100 Hz). The samples obtained by oversampling are low-pass
filtered and decimated using a digital filter to achieve a reduction of the quantization noise. The signal at
the frequency band of interest is not affected by the filter, and the result is an improved SNR. The
improved SNR results in a higher ENOB performance. Equation 3 shows the relationship between
improved SNR, N, and the oversampling factor, k.

Where k = fs/(2 × fmax), fs is the sampling frequency, and 2 × fmax is the Nyquist frequency.

Figure 1. Signal-Flow Diagram For Oversampling Method

Figure 1 shows the signal flow diagram for the oversampling method. The quantization noise is modeled
as white noise that is additive to the input signal while sampling. Oversampling using white noise provides
about 3 dB or half bit of resolution gain for each doubling of the oversampling rate. To obtain 16 bits of
resolution with this method using a 12-bit ADC, the oversampling factor required is 256.
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3 Demonstration Application

3.1 Circuit Description

3.2 Software Operation

3.2.1 100-µV Mode

3.2.2 Temperature Mode

Demonstration Application

Table 1 illustrates the relationship between oversampling factor k, SNR, and the extra bits of resolution
that can be achieved.

Table 1. Relationship Between Oversampling Factor,
SNR and Extra Bits of Resolution

OVERSAMPLING SNR IMPROVEMENT, EXTRA BITS OF
FACTOR, K DB RESOLUTION

2 3 0.5

4 6 1

8 9 1.5

16 12 2

32 16 2.5

64 18 3

128 21 3.5

256 24 4

512 27 4.5

1024 30 5

2048 33 5.5

4096 36 6

The demonstration board for this application uses a MSP430FG439 device with an LCD display powered
using a 3-V lithium battery. The Gerber files and schematic for the PCB used to demonstrate this
application are available in a zip file along with this application report. Resistors R1 and R2 and capacitors
C1, C2, C6, and C7 are used as the RC filter for AVCC/DVCC to filter the noise on the MCU’s power
supply. Such filtering is recommended for improved analog performance. Capacitors C4 and C11 are the
storage capacitors across the Vref, which are required to supply the additional current during a
conversion.[2] Please refer to the schematic for these components.

The board has four modes of operation and a calibration mode described as follows. Each mode displays
the oversampled and averaged value every 250 ms on the LCD. The ADC12 is continuously converting,
and samples are averaged using a 256-tap moving average filter in the FIR structure within the 250 ms
period.

This is the default mode of the board when it is powered up. The voltage is displayed with a resolution of
100 µV. To enter this mode when in any other mode, press Switch1 (SW1). The input value can be
changed using the on-board potentiometer or an external voltage source to observe the corresponding
change in the displayed value.

To enter this mode press Switch 2 (SW2). The temperature is displayed with a resolution of 0.01°C.

Note: This is not the accuracy of the on-chip temperature sensor. This mode is used only to
demonstrate the resolution achieved by oversampling.
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3.2.3 16-bit Voltage Measurement Mode

3.2.4 OFF Mode (LPM4)

3.2.5 Temperature Calibration Mode

3.2.6 Reference Calibration Mode

4 Software Description

4.1 Main()

Software Description

To enter this mode press Switch 3 (SW3). The voltage is displayed with 16-bit resolution. The
potentiometer or an external voltage source can be used to change the input voltage to observe the
results.

While in the 100-µV mode, press SW1 to enter this mode. To return to the 100-µV mode, press SW1
again. Pressing SW2 or SW3 has no effect. In this mode, the LCD and all clocks are disabled, and the
device is put to LPM4 mode.

1. Press and hold SW2 while the board is powered up.
2. When the LCD displays voltage, press SW2 to enable temperature calibration.
3. The LED blinks to indicate that the user is in temperature calibration mode. The LED stays on (instead

of blinking) if the initial temperature display on the LCD is greater than 79°F.
4. Press SW1 or SW2 to calibrate the temperature sensor offset, to display a known temperature reading

in your area.
5. Initially, pressing SW1 or SW2 adjusts the second digit after the decimal.
6. Pressing SW1 and SW2 together for one second enables the user to change the first digit after the

decimal.
7. Pressing SW1 and SW2 together again for one second enables the user to change the temperature in

jumps of 1°F.
8. Pressing SW1 and SW2 together again for one second returns the user to step 5.
9. Then, upon pressing SW3 for one second, the calibrated values are stored in flash, and the device

functions in the three modes described above.

1. Press and hold SW2 while the board is powered up.
2. When the LCD turns on, release SW2.
3. Press SW3. The device now enters Reference Voltage calibration mode.
4. The LED blinks to indicate this.
5. Adjust the potentiometer to display the Vref voltage on the LCD.
6. Again, SW1 and SW2 can be used to calibrate the reference voltage to match the voltage displayed on

the LCD to a known Vref reading, as measured with an accurate voltmeter. Reference voltage (Vref)
can be measured on header J3, pin 10.

7. Pressing SW3 again stores the calibrated value in flash, and the device functions in the three modes
previously described.

Upon execution of the code after a reset, a low_level_init and init_sys routines are executed to stop the
watchdog, initialize the ports, LCD, and the basic timer. The ADC12 is set up in repeat single-channel
mode and Timer_B is used as the sampling timer, causing a sample and convert every 390 µs.

The main loop is called every 250 ms to determine the function to be called (100-µV mode, temperature
mode, or 16-bit voltage-measurement mode) depending on the switch press, as described in Section 3.2.
An interval of 250 ms is used for the LCD to update at a rate that allows the user to easily see the voltage
resolution.
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4.2 Voltage2()

4.3 Temperature()

4.4 Voltage()

4.5 check_cal()

4.6 Temp_cal()

4.7 Ref_cal()

5 Results

Results

This function switches the device between 100-µV mode and OFF mode. It sets up the ADC12 to take
multiple samples and convert on channel 0 using the internal 2.5-V reference.

This function is used for taking a temperature measurement using the on-chip temperature sensor and
displaying it on LCD. It sets up the ADC12 to take multiple samples and convert on channel 10 using the
internal 1.5-V reference.

This function is used for the 16-bit voltage measurement mode. It sets up the ADC12 to take multiple
samples and convert on channel 0 using the internal 2.5-V reference.

This functions checks to see if flash information memory is blank or if it contains calibration constants. If
erased, appropriate values are put in calibration constants.

This function implements the temperature calibration by incrementing or decrementing the offset and
storing the calibration constant in flash after it is set.

This function implements the reference voltage calibration by incrementing or decrementing the “refcal”
constant and storing the calibration constant in flash after it is set.

The following is a chart of DC input voltage, incremented in steps of 1 LSB. 1-LSB steps are provided by a
precision 16-bit DAC. The Ideal values for a 16-bit converter and a 12-bit converter are compared with the
measured oversampled values. Analog input voltage is incremented in steps of 1 LSB. Figure 2 data is
taken over the entire range of 216 voltage values. Figure 3 is a zoomed-in snapshot of the data, which
simplifies looking at the chart. An Excel spreadsheet is available in the zip file with this application report
and contains the entire data set.
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Figure 2. Comparison of Oversampled Data With Ideal Data Over Entire Range
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Conclusion

Figure 3. Comparison of Oversampled Data With Ideal Data (Zoomed In)

This application report shows how to achieve higher resolution from ADC12 using the oversampling
method. Oversampling is a method of achieving higher effective resolutions while lowering the constraints
of the analog anti-aliasing filter, by implementing the filtering and decimation process digital. For example,
in the case of a time-varying input signal like a sine wave, a dither signal can be added to the input to
improve resolution. This approach is discussed in the oversampling techniques application report noted in
Section 7.[1] This solution could be achieved by using the MSP430FG439 with its integrated operational
amplifiers and timer/DAC12.[2]

Good layout practices and proper power-supply decoupling improve the analog performance of any
high-resolution system. Decoupling filters should be placed as close to the supply as possible.

Oversampling results depend on the quantization noise of the ADC and, hence, may vary between
devices. As seen from the results, oversampling technique helps to achieve greater than 12-bits of
resolution using the ADC12.

1. Oversampling Techniques using the TMS320C24x Family (SPRA461)
2. MSP430x4xx Family User’s Guide (SLAU056)
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