Chapter 16

LC/OS-11 Reference Manual

This chapter provides a reference to uC/OS-11 services. Each of the user-accessible kernel services is presented
in alphabetical order. The following information is provided for each of the services:

A Dbrief description

The function prototype

The filename of the source code

The #define constant needed to enable the code for the service
A description of the arguments passed to the function

A description of the returned value(s)

Specific notes and warnings on using the service

One or two examples of how to use the function

405

0S_ENTER_CRITICALQ)
0S_EXIT_CRITICALO

Chapter File Called from Code enabled by
3 0S_CPU.H Task or ISR N/A

0S_ENTER_CRITICALQ) and 0S_EXIT_CRITICAL() are macros used to disable and enable, respectively, the
processor’s interrupts.

Arguments
none

Returned Values
none
Notes/Warnings

1. These macros must be used in pairs.

2. IfOS_CRITICAL_METHOD is set to 3, your code is assumed to have allocated local storage for a variable of
type OS_CPU_SR, which is called cpu_sr, as follows

#i1f OS_CRITICAL_METHOD == /* Allocate storage for CPU status reg. */
0S_CPU_SR cpu_sr;
#endif
Example

void TaskX(void *p_arg)

{

#if OS_CRITICAL_METHOD ==
0S_CPU_SR cpu_sr = 0;

#endit
for (G3) {
OS_ENTER_CRITICALQ); /* Disable interrupts */
- /* Access critical code */
OS_EXIT_CRITICALQ); /* Enable interrupts */
}
}

406

OSEventNameGet()

INT8U OSEventNameGet(OS_EVENT *pevent,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.60 OS_CORE.C Task OS_EVENT_NAME_SIZE

OSEventNameGet () allows you to obtain the name that you assigned to a semaphore, a mutex, a mailbox or a
message queue. The name is an ASCIl string and the size of the name can contain up to
OS_EVENT_NAME_SIZE characters (including the NUL termination). This function is typically used by a
debugger to allow associating a name to a resource.

Arguments

pevent is a pointer to the event control block. pevent can point either to a semaphore, a mutex, a
mailbox or a queue. Where this function is concerned, the actual type is irrelevant. This
pointer is returned to your application when the semaphore, mutex, mailbox or queue is created
(see 0SSemCreate(), OSMutexCreate(), OSMboxCreate() and 0SQCreate()).

pname is a pointer to an ASCII string that will receive the name of the semaphore, mutex, mailbox or
queue. The string must be able to hold at least 0S_EVENT_NAME_SI1ZE characters (including
the NUL character).

perr a pointer to an error code and can be any of the following:
OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.
OS_ERR_EVENT_TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.
0S_ERR_PEVENT_NULL You passed a NULL pointer for pevent.
0S_ERR_NAME_GET_ISR You tried calling this function from an ISR.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

407

Notes/\Warnings

1. The semaphore, mutex, mailbox or message queue must be created before you can use this function and
obtain the name of the resource.

Example

INT8U PrinterSemName[30];
OS_EVENT *PrinterSem;

void Task (void *p_arg)

{
INT8U err;
INT8U size;
(void)p_arg;
for (53 {
size = OSEventNameGet(PrinterSem, &PrinterSemName[0], &err);
}
}

408

OSEventNameSet()

void OSEventNameSet(0OS_EVENT *pevent,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.60 OS_CORE.C Task OS_EVENT_NAME_SIZE

OSEventNameSet() allows you to assign a name to a semaphore, a mutex, a mailbox or a message queue.
The name is an ASCII string and the size of the name can contain up to 0S_EVENT_NAME_SIZE characters
(including the NUL termination). This function is typically used by a debugger to allow associating a hame to a
resource.

Arguments
pevent is a pointer to the event control block that you want to name. pevent can point either to a
semaphore, a mutex, a mailbox or a queue. Where this function is concerned, the actual type is
irrelevant. This pointer is returned to your application when the semaphore, mutex, mailbox or
queue is created (see 0SSemCreate(), OSMutexCreate(), OSMboxCreate() and
0SQCreate()).
pname is a pointer to an ASCII string that contains the name for the resource. The size of the string
must be smaller than or equal to OS_EVENT_NAME_SIZE characters (including the NUL
character).
perr a pointer to an error code and can be any of the following:
OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.
OS_ERR_EVENT_TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.
0S_ERR_PEVENT_NULL You passed a NULL pointer for pevent.
0S_ERR_NAME_SET ISR You called this function from an ISR.

Returned Values
none

Notes/\Warnings

1. The semaphore, mutex, mailbox or message queue must be created before you can use this function and set
the name of the resource.

409

Example

0S_EVENT *PrinterSem;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
OSEventNameSet(PrinterSem, “Printer #1”, &err);
s
s

410

OSFlagAccept()

0S_FLAGS OSFlagAccept(0S_FLAG _GRP *pgrp,

0S_FLAGS flags,
INT8U wait_type,
INT8U *perr);
Chapter File Called from Code enabled by
9 OS_FLAG.C | Taskand ISR OS_FLAG_EN && OS_FLAG_ACCEPT_EN

OSFlagAccept() allows you to check the status of a combination of bits to be either set or cleared in an event
flag group. Your application can check for any bit to be set/cleared or all bits to be set/cleared. This function
behaves exactly as 0SFlagPend() does, except that the caller does NOT block if the desired event flags are
not present.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see OSFlagCreate()].

flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are

specified by setting the corresponding bits in flags.

wait_type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared. You
can specify the following arguments:

0S_FLAG_WAIT_CLR_ALL You check all bits in Flags to be clear (0)
0S_FLAG_WAIT_CLR_ANY You check any bit in flags to be clear (0)
0S_FLAG_WAIT_SET ALL You check all bits in flags to be set (1)
0S_FLAG_WAIT_SET_ANY You check any bit in Flags to be set (1)

You can add OS_FLAG_CONSUME if you want the event flag(s) to be consumed
by the call. For example, to wait for any flag in a group and then clear the flags
that are present, set wait_type to

0S_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

perr a pointer to an error code and can be any of the following:

0S_ERR_NONE No error

OS_ERR_EVENT_TYPE You are not pointing to an event flag group

0S_ERR_FLAG_WAIT_TYPE You didn’t specify a proper wait_type argument.

OS_ERR_FLAG_INVALID_PGRP You passed a NULL pointer instead of the event flag
handle.

0S_ERR_FLAG_NOT_RDY The desired flags for which you are waiting are not
available.

Returned Values
The flag(s) that cause the task to be ready or, 0 if either none of the flags are ready or an error occurred.

411

Notes/\Warnings

1. The event flag group must be created before it is used.

2. This function does not block if the desired flags are not present.

IMPORTANT

The return value of OSFlagAccept() is different as of V2.70. In previous versions, OSFlagAccept()
returned the current state of the flags and now, it returns the flag(s) that are ready, if any.

Example

#define ENGINE_OIL_PRES OK 0xO01
#define ENGINE_OIL TEMP_OK 0x02
#define ENGINE_START 0x04

OS_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{
INT8U err;
0S_FLAGS value;
(void)p_arg;
for (G5) {
value = OSFlagAccept(EngineStatus,
ENGINE_OIL_PRES OK + ENGINE_OIL_TEMP_OK,
OS_FLAG_WAIT_SET_ALL,
&err);
switch (err) {
case OS_ERR_NONE:
/* Desired flags are available */
break;
case OS_ERR_FLAG_NOT_RDY:
/* The desired flags are NOT available */
break;
}
}
}

412

OSFlagCreate()

0S_FLAG_GRP *0OSFlagCreate(0S_FLAGS flags,
INT8U *perr);

Chapter File Called from Code enabled by
9 0S_FLAG.C Task or startup code 0OS_FLAG_EN

OSFlagCreate() is used to create and initialize an event flag group.

Arguments
flags contains the initial value to store in the event flag group.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the event flag group has been
created.
OS_ERR_CREATE_ISR if you attempt to create an event flag group from an ISR.

0S_ERR_FLAG_GRP_DEPLETED if no more event flag groups are available. You need to
increase the value of 0S_MAX_FLAGS in 0S_CFG.H.

Returned Values

A pointer to the event flag group if a free event flag group is available. If no event flag group is available,
OSFlagCreate() returns a NULL pointer.

Notes/\Warnings

1. Event flag groups must be created by this function before they can be used by the other services.

Example

0S_FLAG_GRP *EngineStatus;

void main (void)

{
INT8U err;
oSInitQ; /* Initialize pC/0S-11 */
/* Create a flag group containing the engine’s status */
EngineStatus = OSFlagCreate(0x00, &err);
OSStart(); /* Start Multitasking */
}

413

OSFlagDel ()

0S_FLAG_GRP *0SFlagDel (0OS_FLAG_GRP *pgrp,

INT8U opt,
INT8U *perr);
Chapter File Called from Code enabled by
9 0S_FLAG. Task 0S_FLAG_EN and OS_FLAG_DEL_EN
c

OSFlagDel () is used to delete an event flag group. This function is dangerous to use because multiple tasks
could be relying on the presence of the event flag group. You should always use this function with great care.
Generally speaking, before you delete an event flag group, you must first delete all the tasks that access the
event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see OSFlagCreate()].

opt specifies whether you want to delete the event flag group only if there are no pending tasks
(0S_DEL_NO_PEND) or whether you always want to delete the event flag group regardless of
whether tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
OS_ERR_NONE if the call is successful and the event flag group has been
deleted.
OS_ERR_DEL_ISR if you attempt to delete an event flag group from an ISR.

0S_ERR_FLAG_INVALID_PGRP if you pass a NULL pointer in pgrp.
0S_ERR_EVENT_TYPE if pgrp is not pointing to an event flag group.

OS_ERR_INVALID_OPT if you do not specify one of the two options mentioned in
the opt argument.

OS_ERR_TASK_WAITING if one or more task are waiting on the event flag group
and you specify 0S_DEL_NO_PEND.

Returned Values

A NULL pointer if the event flag group is deleted or pgrp if the event flag group is not deleted. In the latter
case, you need to examine the error code to determine the reason for the error.

414

Notes/\Warnings
1. You should use this call with care because other tasks might expect the presence of the event flag group.

2. This call can potentially disable interrupts for a long time. The interrupt-disable time is directly
proportional to the number of tasks waiting on the event flag group.

Example

0OS_FLAG_GRP *EngineStatusFlags;

void Task (void *p_arg)

{
INT8U err;

OS_FLAG_GRP *pgrp;

(void)p_arg;
while (1) {

pgrp = OSFlagDel (EngineStatusFlags, OS DEL_ALWAYS, &err);
if (pgrp == (OS_FLAG_GRP *)0) {
/* The event flag group was deleted */

415

OSFlagNameGet()

INT8U OSFlagNameGet(0S_FLAG_GRP *pgrp,

INT8U *pname,
INT8U *perr);
Chapter File Called from Code enabled by
New in V2.60 0S_FLAG.C Task or ISR 0S_FLAG_NAME_SIZE

OSFlagNameGet() allows you to obtain the name that you assigned to an event flag group. The name is an
ASCII string and the size of the name can contain up to OS_FLAG_NAME_SIZE characters (including the NUL
termination). This function is typically used by a debugger to allow associating a name to a resource.

Arguments
pgrp is a pointer to the event flag group.
pname is a pointer to an ASCII string that will receive the name of the event flag group. The string
must be able to hold at least 0OS_FLAG_NAME_SI1ZE characters (including the NUL character).
perr a pointer to an error code and can be any of the following:
OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was
copied to the array pointed to by pname.
OS_ERR_EVENT_TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.
0S_ERR_PNAME_NULL You passed a NULL pointer for pname.
0S_ERR_INVALID_PGRP You passed a NULL pointer for pgrp.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

416

Notes/\Warnings

1. The event flag group must be created before you can use this function and obtain the name of the resource.
Example

INT8U EngineStatusName[30];
0S_FLAG_GRP *EngineStatusFlags;

void Task (void *p_arg)

{
INT8U err;
INT8U size;
(void)p_arg;
for (53 {
size = OSFlagNameGet(EngineStatusFlags,
&EngineStatusName[0],
&err);
}
}

417

OSFlagNameSet()

void OSFlagNameSet(0S_FLAG _GRP *pgrp,

char *pname,
INT8U *perr);
Chapter File Called from Code enabled by
New in V2.60 0S_FLAG.C Task OS_EVENT_NAME_SIZE

OSFlagNameSet() allows you to assign a name to an event flag group. The name is an ASCII string and the
size of the name can contain up to OS_FLAG_NAME_SIZE characters (including the NUL termination). This
function is typically used by a debugger to allow associating a name to a resource.

Arguments

pgrp is a pointer to the event flag group that you want to name. This pointer is returned to your
application when the event flag group is created (see OSFlagCreate()).

pname is a pointer to an ASCII string that contains the name for the resource. The size of the string
must be smaller than or equal to OS_EVENT_NAME_SIZE characters (including the NUL
character).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the event flag group was copied to the array
pointed to by pname.

OS_ERR_EVENT_TYPE You are not pointing to an event flag group.
0S_ERR_PNAME_NULL You passed a NULL pointer for pname.
0S_ERR_INVALID_PGRP You passed a NULL pointer for pgrp.

0S_ERR_NAME_SET_ISR You called this function from an ISR.

Returned Values
none

Notes/\Warnings

1. The event flag group must be created before you can use this function to set the name of the resource.

418

Example

OS_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
OSFlagNameSet(EngineStatus, “Engine Status Flags”, &err);
}
}

419

OSFlagPend()

0S_FLAGS OSFlagPend(0S_FLAG_GRP *pgrp,

0S_FLAGS flags,
INT8U wait_type,
INT16U timeout,
INT8U *perr);
Chapter File Called from Code enabled by
9 0S_FLAG.C Task only 0S_FLAG_EN

OSFlagPend() is used to have a task wait for a combination of conditions (i.e., events or bits) to be set (or
cleared) in an event flag group. You application can wait for any condition to be set or cleared or for all
conditions to be set or cleared. If the events that the calling task desires are not available, then the calling task
is blocked until the desired conditions are satisfied or the specified timeout expires.

Arguments
pgrp

flags

wait_type

timeout

perr

is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see OSFlagCreate()].

is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are
specified by setting the corresponding bits in flags.

specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared. You
can specify the following arguments:

0S_FLAG_WAIT_CLR_ALL You check all bits in flags to be clear (0)

0S_FLAG_WAIT_CLR_ANY You check any bit in flags to be clear (0)

0S_FLAG_WAIT_SET ALL You check all bits in Flags to be set (1)

0S_FLAG_WAIT_SET_ANY You check any bit in Flags to be set (1)

You can also specify whether the flags are consumed by adding 0S_FLAG_CONSUME to the
wait_type. For example, to wait for any flag in a group and then clear the flags that satisfy
the condition, set wait_type to

0S_FLAG_WAIT_SET_ANY + OS_FLAG_CONSUME

allows the task to resume execution if the desired flag(s) is(are) not received from the event
flag group within the specified number of clock ticks. A timeout value of 0 indicates that the
task wants to wait forever for the flag(s). The maximum timeout is 65,535 clock ticks. The
timeout value is not synchronized with the clock tick. The timeout count begins decrementing
on the next clock tick, which could potentially occur immediately.

is a pointer to an error code and can be:

0S_ERR_NONE No error.

0S_ERR_PEND_ISR You try to call 0SFlagPend from an ISR, which is not

allowed.
OS_ERR_FLAG_INVALID_PGRP You pass a NULL pointer instead of the event flag handle.
0S_ERR_EVENT_TYPE You are not pointing to an event flag group.

0S_ERR_TIMEOUT The flags are not available within the specified amount of

time.

0S_ERR_FLAG_WAIT_TYPE You don’t specify a proper wait_type argument.

420

Returned Values
The flag(s) that cause the task to be ready or, 0 if either none of the flags are ready or an error occurred.

Notes/\Warnings

1. The event flag group must be created before it’s used.

IMPORTANT

The return value of OSFlagPend () is different as of VV2.70. In previous versions, OSFlagPend() returned
the current state of the flags and now, it returns the flag(s) that are ready, if any.

421

Example

#define ENGINE_OIL_PRES OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

0S_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{
INT8U err;
0S_FLAGS value;
(void)p_arg;
for (G5) {
value = OSFlagPend(EngineStatus,
ENGINE_OIL_PRES OK + ENGINE_OIL_TEMP_OK,
OS_FLAG _WAIT_SET ALL + OS_FLAG_CONSUME,
10,
&err);
switch (err) {
case 0OS_ERR_NONE:
/* Desired flags are available */
break;
case OS_ERR_TIMEOUT:
/* The desired flags were NOT available before .. */
/* .. 10 ticks occurred */
break;
}
}
}

422

OSFlagPendGetFlagsRdy()

0S_FLAGS OSFlagPendGetFlagsRdy(void)

Chapter File Called from Code enabled by
Added in V2.60 0S_FLAG.C Task only 0S_FLAG_EN

OSFlagPendGetFlagsRdy() is used to obtain the flags that caused the current task to become ready to run.
In other words, this function allows you to know "Who done It!"

Arguments

None

Returned Value

The value of the flags that caused the current task to become ready to run.

Notes/\Warnings

1. The event flag group must be created before it’s used.

423

Example

#define ENGINE_OIL_PRES OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

0S_FLAG_GRP *EngineStatus;

void Task (void *p_arg)

{
INT8U err;
0S_FLAGS value;
(void)p_arg;
for (G5) {
value = OSFlagPend(EngineStatus,
ENGINE_OIL_PRES OK + ENGINE_OIL_TEMP_OK,
OS_FLAG _WAIT_SET ALL + OS_FLAG_CONSUME,
10,
&err);
switch (err) {
case 0OS_ERR_NONE:
/* Find out who made task ready */
flags = OSFlagPendGetFlagsRdy();
break;
case 0OS_ERR_TIMEOUT:
/* The desired flags were NOT available before .. */
/* .. 10 ticks occurred */
break;
}
}
}

424

OSFlagPost()

0S_FLAGS OSFlagPost(0S_FLAG GRP *pgrp,

0S_FLAGS flags,
INT8U opt,
INT8U *perr);
Chapter File Called from Code enabled by
9 0S_FLAG.C Task or ISR 0S_FLAG_EN

You set or clear event flag bits by calling OSFlagPost(). The bits set or cleared are specified in a bit mask.
OSFlagPost() readies each task that has its desired bits satisfied by this call. You can set or clear bits that are
already set or cleared.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see OSFlagCreate()].

flags specifies which bits you want set or cleared. If opt is 0S_FLAG_SET, each bit that is set in
flags sets the corresponding bit in the event flag group. For example to set bits 0, 4, and 5,
you set Flags to 0x31 (note, bit 0 is the least significant bit). If opt is 0S_FLAG_CLR, each
bit that is set in flags will clears the corresponding bit in the event flag group. For example to
clear bits 0, 4, and 5, you specify Flags as 0x31 (note, bit 0 is the least significant bit).

opt indicates whether the flags are set (0S_FLAG_SET) or cleared (0S_FLAG_CLR).

perr is a pointer to an error code and can be:

0S_ERR_NONE The call is successful.
0S_ERR_FLAG_INVALID_PGRP You pass a NULL pointer.
0S_ERR_EVENT_TYPE You are not pointing to an event flag group.
0OS_ERR_FLAG_INVALID_OPT You specify an invalid option.

Returned Value

The new value of the event flags.

Notes/Warnings
1. Event flag groups must be created before they are used.

2. The execution time of this function depends on the number of tasks waiting on the event flag group.
However, the execution time is deterministic.

3. The amount of time interrupts are disabled also depends on the number of tasks waiting on the event flag
group.

425

Example

#define ENGINE_OIL_PRES OK 0x01
#define ENGINE_OIL_TEMP_OK 0x02
#define ENGINE_START 0x04

0OS_FLAG_GRP *EngineStatusFlags;

void TaskX (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
err = OSFlagPost(EngineStatusFlags,
ENGINE_START,
OS_FLAG_SET,
&err);
ks
}

426

OSFlagQuery()

0S_FLAGS OSFlagQuery(0S_FLAG_GRP *pgrp,

INT8U *perr);
Chapter File Called from Code enabled by
9 0S_FLAG.C Task or ISR OS_FLAG_EN && 0S_FLAG_QUERY_EN

OSFlagQuery() is used to obtain the current value of the event flags in a group. At this time, this function
does not return the list of tasks waiting for the event flag group.

Arguments
pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see OSFlagCreate()].
perr is a pointer to an error code and can be:
0S_ERR_NONE The call is successful.

0S_ERR_FLAG_INVALID_PGRP You pass a NULL pointer.

OS_ERR_EVENT_TYPE You are not pointing to an event flag groups.

Returned Value
The state of the flags in the event flag group.

Notes/\Warnings

1. The event flag group to query must be created.

2. You can call this function from an ISR.

Example

0OS_FLAG_GRP *EngineStatusFlags;

void Task (void *p_arg)

{
0S_FLAGS flags;
INT8U err;
(void)p_arg;
for (53 {
flags = OSFlagQuery(EngineStatusFlags, &err);
}
}

427

oSInit()

void OSInit(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

oSInit() initializes uC/OS-1l and must be called prior to calling 0SStart(), which actually starts
multitasking.

Arguments
none

Returned Values
none

Notes/Warnings

1. 0SInit() must be called before 0SStart().

Example

void main (void)

{
osInitQ; /* Initialize pC/0S-11 */

OSStart(); /* Start Multitasking */

428

OSIntEnter()

void OSIntEnter(void);

Chapter

File Called from Code enabled by

3

OS_CORE.C ISR only N/A

oSiIntenter() notifies _C/OS-Il that an ISR is being processed, which allows uC/OS-11 to keep track of
interrupt nesting. 0SIntEnter () is used in conjunction with 0SIntExit().

Arguments
none

Returned Values

none

Notes/\Warnings

1. This function must not be called by task-level code.

2. You can increment the interrupt-nesting counter (OSIntNesting) directly in your ISR to avoid the
overhead of the function call/return. It’s safe to increment OSIntNesting in your ISR because interrupts
are assumed to be disabled when OSIntNesting needs to be incremented.

3. You are allowed to nest interrupts up to 255 levels deep.

Example 1

(Intel 80x86, real mode, large model)

Use OSIntEnter () for backward compatibility with pC/OS.

ISRx PROC

PUSHA

PUSH
PUSH

CALL

POP
POP
POPA
IRET
ISRx ENDP

FAR

; Save interrupted task®"s context
ES
DS
FAR PTR _OSIntEnter ; Notify puC/0S-11 of start of ISR
DS ; Restore processor registers
ES

; Return from interrupt

429

Example 2
(Intel 80x86, real mode, large model)

1SRx PROC FAR

PUSHA ; Save interrupted task®"s context
PUSH ES
PUSH DS

MoV AX, SEG(_OSIntNesting) ; Reload DS
MoV DS, AX

INC BYTE PTR _OSIntNesting ; Notify pC/0S-11 of start of ISR

POP DS ; Restore processor registers
POP ES
POPA
IRET ; Return from interrupt
1SRx ENDP

430

OSINtEXit()

void OSIntExit(void);

Chapter File Called from Code enabled by
3 0S_CORE.C ISR only N/A

oSIntexit() notifies uC/OS-II that an ISR is complete, which allows uC/OS-I1 to keep track of interrupt
nesting. 0SIntExit() is used in conjunction with 0SIntEnter(). When the last nested interrupt completes,
osiIntexit() determines if a higher priority task is ready to run, in which case, the interrupt returns to the
higher priority task instead of the interrupted task.

Arguments
none

Returned Value
none

Notes/\Warnings

1. This function must not be called by task-level code. Also, if you decided to increment OSIntNesting, you
still need to call 0OSIntExit().

Example
(Intel 80x86, real mode, large model)

I1SRx PROC FAR

PUSHA ; Save processor registers
PUSH ES
PUSH DS

CALL FAR PTR _OSIntExit ; Notify pC/0S-11 of end of ISR

POP DS ; Restore processor registers
POP ES

POPA

IRET ; Return to interrupted task

I1SRx ENDP

431

OSMboxAccept()

void *0SMboxAccept(0OS_EVENT *pevent);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0OS_MBOX_EN && 0S_MBOX_ACCEPT_EN

OSMboxAccept() allows you to see if a message is available from the desired mailbox. Unlike
0SMboxPend(), 0SMboxAccept() does not suspend the calling task if a message is not available. In other
words, OSMboxAccept() is non-blocking. If a message is available, the message is returned to your
application, and the content of the mailbox is cleared. This call is typically used by ISRs because an ISR is not
allowed to wait for a message at a mailbox.

Arguments

pevent is a pointer to the mailbox from which the message is received. This pointer is returned to your
application when the mailbox is created [see OSMboxCreate()].

Returned Value
A pointer to the message if one is available; NULL if the mailbox does not contain a message.

Notes/\Warnings

1. Mailboxes must be created before they are used.

Example

0S_EVENT *CommMbox;

void Task (void *p_arg)

{
void *pmsg;
(void)p_arg;
for (G5) {
pmsg = OSMboxAccept(CommMbox); /* Check mailbox for a message */
if (pmsg !'= (void *)0) {
/* Message received, process */
} else {
/* Message not received, do .. */
. /* .. something else */
}
}
}

432

OSMboxCreate()

0S_EVENT *0SMboxCreate(void *pmsQ);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or startup code 0S_MBOX_EN

OSMboxCreate() creates and initializes a mailbox. A mailbox allows tasks or ISRs to send a pointer-sized
variable (message) to one or more tasks.

Arguments

pmsg is used to initialize the contents of the mailbox. The mailbox is empty when pmsg is a NULL
pointer. The mailbox initially contains a message when pmsg is hon-NULL.

Returned Value

A pointer to the event control block allocated to the mailbox. If no event control block is available,
OSMboxCreate() returns a NULL pointer.

Notes/\Warnings

1. Mailboxes must be created before they are used.

Example

0S_EVENT *CommMbox;

void main (void)

{
oSInit(); /* Initialize puC/0s-11 */
CommMbox = OSMboxCreate((void *)0); /* Create COMM mailbox */
oSStart(); /* Start Multitasking */
}

433

0SMboxDel ()

0S_EVENT *0SMboxDel (0S_EVENT *pevent,
INT8U opt,
INT8U *perr);

Chapter File Called from Code enabled by

10 0S_MBOX.C Task 0S_MBOX_EN and
0S_MBOX_DEL_EN

0SMboxDel () is used to delete a message mailbox. This function is dangerous to use because multiple tasks
could attempt to access a deleted mailbox. You should always use this function with great care. Generally
speaking, before you delete a mailbox, you must first delete all the tasks that can access the mailbox.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is
created [see OSMboxCreate()].

opt specifies whether you want to delete the mailbox only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the mailbox regardless of whether
tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the mailbox has been deleted.
0S_ERR_DEL_ISR if you attempt to delete the mailbox from an ISR.
OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the

opt argument.

0S_ERR_TASK_WAITING One or more tasks is waiting on the mailbox.
0S_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
0S_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the mailbox is deleted or pevent if the mailbox is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/Warnings
1. You should use this call with care because other tasks might expect the presence of the mailbox.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the mailbox.

3. 0SMboxAccept() callers do not know that the mailbox has been deleted.

434

Example

OS_EVENT *DispMbox;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
while (1) {
DispMbox = OSMboxDel (DispMbox, OS DEL_ALWAYS, &err);
it (DispMbox == (OS_EVENT *)0) {
/* Mailbox has been deleted */
ks
}
s

435

OSMboxPend ()

void *0SMboxPend(0S_EVENT *pevent,

INT16U timeout,
INT8U *perr);
Chapter File Called from Code enabled by
10 0S_MBOX.C Task only 0S_MBOX_EN

0SMboxPend() is used when a task expects to receive a message. The message is sent to the task either by an
ISR or by another task. The message received is a pointer-sized variable, and its use is application specific. If a
message is present in the mailbox when 0SMboxPend() is called, the message is retrieved, the mailbox is
emptied, and the retrieved message is returned to the caller. If no message is present in the mailbox,
0SMboxPend () suspends the current task until either a message is received or a user-specified timeout expires.
If a message is sent to the mailbox and multiple tasks are waiting for the message, pC/OS-Il resumes the
highest priority task waiting to run. A pended task that has been suspended with 0STaskSuspend() can
receive a message. However, the task remains suspended until it is resumed by calling 0STaskResume ().

Arguments

pevent is a pointer to the mailbox from which the message is received. This pointer is returned to your
application when the mailbox is created [see OSMboxCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox within the
specified number of clock ticks. A timeout value of 0 indicates that the task wants to wait
forever for the message. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count begins decrementing on the next clock
tick, which could potentially occur immediately.

perr is a pointer to a variable that holds an error code. 0SMboxPend() sets *perr to one of the

following:

OS_ERR_NONE

0S_ERR_TIMEOUT

OS_ERR_PEND_ABORT

0S_ERR_EVENT_TYPE

OS_ERR_PEND_LOCKED

0S_ERR_PEND_ISR

0S_ERR_PEVENT_NULL

Returned Value

if a message is received.

if a message is not received within the specified timeout
period.

indicates that the pend was aborted by another task or ISR by
calling 0SMboxPendAbort().

if pevent is not pointing to a mailbox.
if you called this function when the scheduler is locked.

if you call this function from an ISR and uC/OS-I1 suspends it.
In general, you should not call 0SMboxPend() from an ISR,
but uC/OS-11 checks for this situation anyway.

if pevent is a NULL pointer.

0SMboxPend() returns the message sent by either a task or an ISR, and *perr is set to OS_ERR_NONE. If a
message is not received within the specified timeout period, the returned message is a NULL pointer, and *perr

is set to OS_ERR_TIMEOUT.

Notes/\Warnings

1. Mailboxes must be created before they are used.
2. You should not call 0SMboxPend() from an ISR.

436

Example

0S_EVENT *CommMbox;

void CommTask(void *p_arg)

{
INT8U err;
void *pmsg;
(void)p_arg;
for (G3) {
pmsg = OSMboxPend(CommMbox, 10, &err);
if (err == OS_ERR_NONE) {
/* Code for received message */
} else {
/* Code for message not received within timeout */
}
}
}

437

OSMboxPendAbort()

void *0SMboxPendAbort(0S_EVENT *pevent,
INT8U opt,
INT8U *perr);

New Function File Called from Code enabled by
V2.84 0S_MBOX.C Task only 0S_MBOX_EN
&&
0S_MBOX_PEND_ABORT_EN

OSMboxPendAbort() aborts & readies any tasks currently waiting on a mailbox. This function should be
used to fault-abort the wait on the mailbox, rather than to normally signal the mailbox via 0SMboxPost() or
OSMboxPostOpt().

Arguments
pevent is a pointer to the mailbox for which pend(s) need to be aborted. This pointer is returned to
your application when the mailbox is created [see 0SMboxCreate()].
opt determines what type of abort is performed.
OS_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the
mailbox.
OS_PEND_OPT_BROADCAST Aborts the pend of all the tasks waiting on the mailbox.
perr is a pointer to a variable that holds an error code. 0SMboxPendAbort() sets *perr to one of
the following:
0S_ERR_NONE if no tasks were waiting on the mailbox. In this case, the return
value is also 0.
0S_ERR_PEND_ABORT at least one task waiting on the mailbox was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the mailbox was aborted.
0S_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value

OSMboxPendAbort() returns the number of tasks made ready to run by this function. Zero indicates that no
tasks were pending on the mailbox and thus this function had no effect.

Notes/\Warnings

1. Mailboxes must be created before they are used.

438

Example

OS_EVENT *CommMbox;

void CommTask(void *p_arg)

{
INT8U err;
INT8U nbr_tasks;
(void)p_arg;
for (G;) {
nbr_tasks = OSMboxPendAbort(CommMbox, OS PEND_ OPT_BROADCAST, &err);
if (err == 0S_ERR_NONE) {
/* No tasks were waiting on the mailbox */
} else {
/* All pends of tasks waiting on mailbox were aborted .. */
/* .. “nbr_tasks” indicates how many were made ready. */
3
3
3

439

OSMboxPost()

INT8U OSMboxPost(0S_EVENT *pevent,

void *pmsg) ;
Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_EN &&
0S_MBOX_POST_EN

OSMboxPost() sends a message to a task through a mailbox. A message is a pointer-sized variable and, its use
is application specific. If a message is already in the mailbox, an error code is returned indicating that the
mailbox is full. 0SMboxPost() then immediately returns to its caller, and the message is not placed in the
mailbox. If any task is waiting for a message at the mailbox, the highest priority task waiting receives the
message. If the task waiting for the message has a higher priority than the task sending the message, the higher
priority task is resumed, and the task sending the message is suspended. In other words, a context switch
occurs.

Arguments

pevent is a pointer to the mailbox into which the message is deposited. This pointer is returned to your
application when the mailbox is created [see OSMboxCreate()].

pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application
specific. You must never post a NULL pointer because this pointer indicates that the mailbox is
empty.

Returned Value
0SMboxPost () returns one of these error codes:

OS_ERR_NONE if the message is deposited in the mailbox.
0S_ERR_MBOX_FULL if the mailbox already contains a message.
0S_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
0S_ERR_PEVENT_NULL if pevent is a pointer to NULL.

OS_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer. By convention a
NULL pointer is not supposed to point to anything.

Notes/Warnings

1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer because this pointer indicates that the mailbox is empty.

440

Example

OS_EVENT *CommMbox;
INT8U CommRxBuf[100] ;

void CommTaskRx (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
err = OSMboxPost(CommMbox, (void *)&CommRxBuf[0]);
}
}

441

OSMboxPostOpt()

INT8U OSMboxPostOpt(0S_EVENT *pevent,

void *pmsg,
INT8U opt);
Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_EN and
0S_MBOX_POST_OPT_EN

OSMboxPostOpt() works just like OSMboxPost() except that it allows you to post a message to multiple
tasks. In other words, 0SMboxPostOpt() allows the message posted to be broadcast to all tasks waiting on the
mailbox. 0SMboxPostOpt() can actually replace 0SMboxPost() because it can emulate 0SMboxPost().

OSMboxPostOpt() is used to send a message to a task through a mailbox. A message is a pointer-sized
variable, and its use is application specific. If a message is already in the mailbox, an error code is returned
indicating that the mailbox is full. 0SMboxPostOpt() then immediately returns to its caller, and the message is
not placed in the mailbox. If any task is waiting for a message at the mailbox, 0SMboxPostOpt() allows you
either to post the message to the highest priority task waiting at the mailbox (opt set to 0S_POST_OPT_NONE)
or to all tasks waiting at the mailbox (opt is set to OS_POST_OPT_BROADCAST). In either case, scheduling
occurs and, if any of the tasks that receives the message have a higher priority than the task that is posting the
message, then the higher priority task is resumed, and the sending task is suspended. In other words, a context
switch occurs.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is
created [see OSMboxCreate()].

pmsg is the actual message sent to the task(s). pmsg is a pointer-sized variable and is application
specific. You must never post a NULL pointer because this pointer indicates that the mailbox is
empty.

opt specifies whether you want to send the message to the highest priority task waiting at the

mailbox (when opt is set to 0S_POST_OPT_NONE) or to all tasks waiting at the mailbox (when
opt is set to 0S_POST_OPT_BROADCAST).

When set to 0S_POST_OPT_NO_SCHED, the scheduler will not be called to see if a higher
priority task has been made ready to run.

Note that options are additive and thus, you can specify:
0S_POST_OPT_BROADCAST | 0S_POST_OPT_NO_SCHED

Returned Value

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the message has been sent.
0S_ERR_MBOX_FULL if the mailbox already contains a message. You can only send

one message at a time to a mailbox, and thus the message must
be consumed before you are allowed to send another one.

0S_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

0S_ERR_POST_NULL_PTR if you are attempting to post a NULL pointer. By convention, a
NULL pointer is not supposed to point to anything.

442

Notes/\Warnings
1. Mailboxes must be created before they are used.
2. You must never post a NULL pointer to a mailbox because this pointer indicates that the mailbox is empty.

3. If you need to use this function and want to reduce code space, you can disable code generation of
0SMboxPost() because 0SMboxPostOpt() can emulate 0SMboxPost().

4. The execution time of 0SMboxPostOpt() depends on the number of tasks waiting on the mailbox if you
set opt to 0S_POST_OPT_BROADCAST.

Example

OS_EVENT *CommMbox;
INT8U CommRxBuf[100] ;

void CommRxTask (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
err = OSMboxPostOpt(CommMbox,
(void *)&CommRxBuf[0],
OS_POST_OPT_BROADCAST) ;
}
}

443

OSMboxQuery ()

INT8U OSMboxQuery(0S_EVENT *pevent,
0S_MBOX_DATA *p_mbox_data);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX_EN && 0S_MBOX_QUERY_EN

OSMboxQuery() obtains information about a message mailbox. Your application must allocate an
0S_MBOX_DATA data structure, which is used to receive data from the event control block of the message
mailbox. 0SMboxQuery() allows you to determine whether any tasks are waiting for a message at the mailbox
and how many tasks are waiting (by counting the number of 1s in the .0SEventTbl[] field). You can also
examine the current contents of the mailbox. Note that the size of .0SEventTbl[] is established by the
#define constant 0S_EVENT_TBL_SIZE (see uCOS_11_H).

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is
created [see OSMboxCreate()].

P_mbox_data is a pointer to a data structure of type 0S_MBOX_DATA, which contains the following fields:

void *0SMsg; /* Copy of the message stored in the mailbox */
#if OS_LOWEST_PRIO <= 63

INT8U OSEventTbI[OS _EVENT_TBL_SIZE]; /* Copy of the mailbox wait list */
INT8U OSEventGrp;

#else

INT16U OSEventTbl[OS_EVENT_TBL_SI1ZE]; /* Copy of the mailbox wait list */
INT16U OSEventGrp;

#endif

Returned Value
0SMboxQuery() returns one of these error codes:

0S_ERR_NONE if the call is successful.

OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_EVENT_TYPE if you don’t pass a pointer to a message mailbox.
0S_ERR_PNAME_NULL You passed a NULL pointer for p_mbox_data.

Notes/\Warnings

1. Message mailboxes must be created before they are used.

444

Example

0S_EVENT *CommMbox;

void Task (void *p_arg)

{
0S_MBOXDATA mbox_data;
INT8U err;
(void)p_arg;
for (:3) {
err = OSMboxQuery(CommMbox, &mbox_data);
if (err == OS_ERR _NONE) {
/* Mailbox contains a message if ..
/* .. mbox _data.OSMsg is not NULL
}
}
}

445

*/
*/

OSMemCreate()

0S_MEM *0OSMemCreate(void *addr,

INT32U nblks,
INT32U blksize,
INT8U *perr);

Chapter File Called from Code enabled by

12

0S_MEM.C Task or startup code 0S_MEM_EN

OSMemCreate() creates and initializes a memory partition. A memory partition contains a user-specified
number of fixed-size memory blocks. Your application can obtain one of these memory blocks and, when done,
release the block back to the partition.

Arguments
addr

nblks

blksize

perr

is the address of the start of a memory area that is used to create fixed-size memory blocks.
Memory partitions can be created either using static arrays or mal loc() during startup. Note
that the partition MUST align on a pointer boundary. Thus, if a pointer is 16 bits wide then the
partition must start on a memory location with an address that ends with 0, 2, 4, 6, 8, etc. Ifa
pointer is 32 bits wide then the partition must start on a memory location with and address that
ends with 0, 4, 8 of C.

contains the number of memory blocks available from the specified partition. You must specify
at least two memory blocks per partition.

specifies the size (in bytes) of each memory block within a partition. A memory block must be
large enough to hold at least a pointer. Also, the size of a memory block must be a multiple of
the size of a pointer. In other words, if a pointer is 32 bits wide then the block size must be 4,
8, 12, 16, 20, etc. bytes (i.e. a multiple of 4 bytes).

is a pointer to a variable that holds an error code. 0SMemCreate() sets *perr to:

0S_ERR_NONE if the memory partition is created successfully

OS_ERR_MEM_INVALID_ADDR if you are specifying an invalid address (i.e., addr is a NULL
pointer) or your partition is not properly aligned.

0S_ERR_MEM_INVALID_PART if a free memory partition is not available
OS_ERR_MEM_INVALID_BLKS if you don’t specify at least two memory blocks per partition

OS_ERR_MEM_INVALID_SIZE if you don’t specify a block size that can contain at least a
pointer variable and if it’s not a multiple of a pointer size
variable.

Returned Value

OSMemCreate() returns a pointer to the created memory-partition control block if one is available. If no
memory-partition control block is available, 0SMemCreate () returns a NULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

446

Example

OS_MEM *CommMem;
INT32U CommBuf[16][32];

void main (void)

{
INT8U err;
oSInit(Q); /* Initialize pC/0S-11 */
CommMem = OSMemCreate (& CommBuf[0][0], 16, 32 * sizeof(INT32U), &err);
OSStart(); /* Start Multitasking */
3

447

OSMemGet()

void *0SMemGet(0OS_MEM *pmem,
INT8U *perr);

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN

OSMemGet obtains a memory block from a memory partition. It is assumed that your application knows the size
of each memory block obtained. Also, your application must return the memory block [using 0SMemPut()]
when it no longer needs it. You can call 0SMemGet() more than once until all memory blocks are allocated.

Arguments

pmem is a pointer to the memory-partition control block that is returned to your application from the
OSMemCreate() call.

perr is a pointer to a variable that holds an error code. OSMemGet() sets *perr to one of the
following:
0S_ERR_NONE if a memory block is available and returned to your application.

OS_ERR_MEM_NO_FREE_BLKS if the memory partition doesn’t contain any more memory
blocks to allocate.

0S_ERR_MEM_INVALID_PMEM if pmem is a NULL pointer.

Returned Value

OSMemGet() returns a pointer to the allocated memory block if one is available. If no memory block is
available from the memory partition, 0SMemGet () returns a NULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

448

Example

0S_MEM *CommMem;

void Task (void *p_arg)

{
INT8U *pmsg;
(void)p_arg;
for (G;) {
pmsg = OSMemGet(CommMem, &err);
if (pmsg 1= (INT8U *)0) {
/* Memory block allocated, use it. */
b
T
s

449

OSMemNameGet()

INT8U OSMemNameGet(OS_MEM *pmem,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.60 OS_MEM.C Task OS_MEM_NAME_SIZE

OSMemNameGet() allows you to obtain the name that you assigned to a memory partition. The name is an
ASCII string and the size of the name can contain up to 0S_MEM_NAME_SIZE characters (including the NUL
termination). This function is typically used by a debugger to allow associating a name to a resource.

Arguments

pmem is a pointer to the memory partition.

pname is a pointer to an ASCII string that will receive the name of the memory partition. The string
must be able to hold at least 0OS_MEM_NAME_S1ZE characters (including the NUL character).

perr a pointer to an error code and can be any of the following:
OS_ERR_NONE If the name of the semaphore, mutex, mailbox or queue was

copied to the array pointed to by pname.

OS_ERR_INVALID_PMEM You passed a NULL pointer for pmem.
0S_ERR_PNAME_NULL You passed a NULL pointer for pname.
0S_ERR_NAME_GET_ISR You called this function from an ISR.

Returned Values
The size of the ASCII string placed in the array pointed to by pname or 0 if an error is encountered.

450

Notes/\Warnings

1. The memory partition must be created before you can use this function and obtain the name of the
resource.

Example

0S_MEM *CommMem;
INT8U CommMemName [0OS_MEM_NAME_SI1ZE] ;

void Task (void *pdata)

{
INT8U err;
INT8U size;
pdata = pdata;
for (53 {
size = 0OSMemNameGet(CommMem, & CommMemName [0], &err);
}
}

451

OSMemNameSet()

void OSMemNameSet(0S_MEM *pmem,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.60 OS_MEM.C Task OS_MEM_NAME_SIZE

OSMemNameSet() allows you to assign a hame to a memory partition. The name is an ASCII string and the
size of the name can contain up to OS_MEM_NAME_SIZE characters (including the NUL termination). This
function is typically used by a debugger to allow associating a name to a resource.

Arguments

pmem is a pointer to the memory partition that you want to name. This pointer is returned to your
application when the memory partition is created (see OSMemCreate()).

pname is a pointer to an ASCII string that contains the name for the resource. The size of the string
must be smaller than or equal to 0S_MEM_NAME_SI1ZE characters (including the NUL character).

perr a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the event flag group was copied to the
array pointed to by pname.

0S_ERR_MEM_INVALID_PMEM You passed a NULL pointer for pmem.
0S_ERR_PNAME_NULL You passed a NULL pointer for pname.
OS_ERR_MEM_NAME_TOO_LONG If the name is not able to fit in the specified storage.
0S_ERR_NAME_SET_ISR You called this function from an ISR.

Returned Values
none

Notes/\Warnings

1. The memory partition must be created before you can use this function to set the name of the resource.

452

Example

0S_MEM *CommMem;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
OSMemNameSet(CommMem, “Comm. Buffer”, &err);
s
s

453

OSMemPut()

INT8U OSMemPut(0S_MEM *pmem,
void *pblk);

Chapter File Called from Code enabled by
12 OS_MEM.C Task or ISR OS_MEM_EN

0SMemPut() returns a memory block to a memory partition. It is assumed that you return the memory block to
the appropriate memory partition.

Arguments

pmem is a pointer to the memory-partition control block that is returned to your application from the
OSMemCreate() call.

pblk is a pointer to the memory block to be returned to the memory partition.

Returned Value
OSMemPut() returns one of the following error codes:

0S_ERR_NONE if a memory block is available and returned to your application.

OS_ERR_MEM_FULL if the memory partition can not accept more memory blocks.
This code is surely an indication that something is wrong
because you are returning more memory blocks than you
obtained using OSMemGet().

0S_ERR_MEM_INVALID_PMEM if pmem is a NULL pointer.

OS_ERR_MEM_INVALID_PBLK if pblk isa NULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

2. You must return a memory block to the proper memory partition.

454

Example

0S_MEM *CommMem;
INT8U *CommMsg;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
err = OSMemPut(CommMem, (void *)CommMsg) ;
if (err == 0S_ERR_NONE) {
/* Memory block released */
3
}
}

455

OSMemQuery ()

INT8U OSMemQuery(0S_MEM *pmem,
0S_MEM_DATA *p_mem_data);

Chapter File Called from Code enabled by
12 0S_MEM.C Task or ISR OS_MEM_EN && OS_MEM_QUERY_EN

OSMemQuery() obtains information about a memory partition. Basically, this function returns the same
information found in the OS_MEM data structure but in a new data structure called OS_MEM_DATA.
0S_MEM_DATA also contains an additional field that indicates the number of memory blocks in use.

Arguments

pmem is a pointer to the memory-partition control block that is returned to your application from the
OSMemCreate() call.

P_mem_data is a pointer to a data structure of type 0S_MEM_DATA, which contains the following fields

void *0SAddr ; /* Points to beginning address of the memory partition */

void *0SFreeList; /* Points to beginning of the free list of memory blocks */

INT32U OSBIkSize; /* Size (in bytes) of each memory block */
INT32U OSNBlks; /* Total number of blocks in the partition */
INT32U OSNFree; /* Number of memory blocks free */
INT32U OSNUsed; /* Number of memory blocks used */

Returned Value
0SMemQuery () returns one of the following error codes:

0S_ERR_NONE if a memory block is available and returned to your
application.

0S_ERR_MEM_INVALID_PMEM if pmem is a NULL pointer.

OS_ERR_MEM_INVALID_PDATA if pdata is a NULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

456

Example

457

OSMutexAccept()

INT8U OSMutexAccept(0OS_EVENT *pevent,

INT8U *perr);
Chapter File Called from Code enabled by
8 0S_MUTEX.C Task 0S_MUTEX_EN

OSMutexAccept() allows you to check to see if a resource is available. Unlike OSMutexPend(),
OSMutexAccept() does not suspend the calling task if the resource is not available. In other words,

OSMutexAccept() is non-blocking

Arguments

pevent is a pointer to the mutex that guards the resource. This pointer is returned to your application
when the mutex is created [see OSMutexCreate()].

perr is a pointer to a variable used to hold an error code. 0SMutexAccept() sets *perr to one of
the following:
0S_ERR_NONE if the call is successful.

0S_ERR_EVENT_TY
0S_ERR_PEVENT N
0S_ERR_PEND_ISR

0S_ERR_PIP_LOWE

Returned Value

If the mutex is available, OSMutexAccept() returns OS_TRUE. If the mutex is owned by another task,

PE

ULL

R

OSMutexAccept() returns OS_FALSE.

Notes/\Warnings

if pevent is not pointing to a mutex.

if pevent is a NULL pointer.

if you call 0SMutexAccept() from an ISR.

If the priority of the task that owns the Mutex is HIGHER (i.e.
a lower number) than the PIP. This error indicates that you did
not set the PIP higher (lower number) than ALL the tasks that
compete for the Mutex. Unfortunately, this is something that
could not be detected when the Mutex is created because we

don't know what tasks will be using the Mutex.

1. Mutexes must be created before they are used.

2. This function must not be called by an ISR.

3. If you acquire the mutex through OSMutexAccept(), you must call OSMutexPost() to release the

mutex when you are done with the resource.

458

Example

OS_EVENT *DispMutex;

void Task (void *p_arg)
{
INT8U err;
BOOLEAN test;

(void)p_arg;
for (G3) {
test = OSMutexAccept(DispMutex, &err);
if (test == 0S_TRUE) {
/* Resource available, process */

} else {
/* Resource NOT available */

459

OSMutexCreate()

0S_EVENT *0SMutexCreate(INT8U prio,

INT8U *perr);

Chapter

File

Called from

Code enabled by

8 OS_MUTEX.C

Task or startup code

0S_MUTEX_EN

OSMutexCreate() is used to create and initialize a mutex. A mutex is used to gain exclusive access to a

resource.

Arguments

prio is the priority inheritance priority (PIP) that is used when a high priority task attempts to
acquire the mutex that is owned by a low priority task. In this case, the priority of the low
priority task is raised to the PIP until the resource is released.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the mutex has been created.

OS_ERR_CREATE_ISR

0S_ERR_PRIO_EXIST

0S_ERR_PEVENT_NULL

0S_ERR_PRIO_INVALID

Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is available,

exists.

OSMutexCreate() returns a NULL pointer.

Notes/\Warnings

1. Mutexes must be created before they are used.

2. You must make sure that prio has a higher priority than any of the tasks that use the mutex to access the
resource. For example, if three tasks of priority 20, 25, and 30 are going to use the mutex, then prio must
be a number lower than 20. In addition, there must not already be a task created at the specified priority.

460

if you attempt to create a mutex from an ISR.

if a task at the specified priority inheritance priority already

if no more OS_EVENT structures are available.

if you specify a priority with a higher number than
0S_LOWEST_PRIO.

Example

OS_EVENT *DispMutex;

void main (void)

{
INT8U err;
oSInitQ); /*
DispMutex = OSMutexCreate(20, &err); /* Create Display Mutex
OSStart(); /* Start Multitasking
3

Initialize pC/0S-11

461

*/

*/

*/

OSMutexDel ()

0S_EVENT *0SMutexDel (0S_EVENT *pevent,
INT8U opt,
INT8U *perr);

Chapter File Called from Code enabled by

8 OS_MUTEX.C Task OS_MUTEX_EN and
OS_MUTEX_DEL_EN

OSMutexDel () is used to delete a mutex. This function is dangerous to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speaking,
before you delete a mutex, you must first delete all the tasks that can access the mutex.

Arguments
pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created
[see OSMutexCreate()].
opt specifies whether you want to delete the mutex only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the mutex regardless of whether
tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are readied.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the mutex has been deleted.
0S_ERR_DEL_ISR if you attempt to delete a mutex from an ISR.
OS_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the
opt argument.
OS_ERR_TASK_WAITING if one or more task are waiting on the mutex and you specify
0S_DEL_NO_PEND.
0S_ERR_EVENT_TYPE if pevent is not pointing to a mutex.
0S_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/\Warnings

1. You should use this call with care because other tasks might expect the presence of the mutex.

462

Example

OS_EVENT *DispMutex;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
while (1) {
DispMutex = OSMutexDel (DispMutex, OS_DEL_ALWAYS, &err);
if (DispMutex == (OS_EVENT *)0) {
/* Mutex has been deleted */
}
}
}

463

OSMutexPend()

void OSMutexPend(OS_EVENT *pevent,

INT16U timeout,
INT8U *perr);
Chapter File Called from Code enabled by
8 0S_MUTEX.C Task only 0S_MUTEX_EN

OSMutexPend() is used when a task desires to get exclusive access to a resource. |If a task calls
OSMutexPend() and the mutex is available, then 0SMutexPend() gives the mutex to the caller and returns to
its caller. Note that nothing is actually given to the caller except for the fact that if perr is set to
0S_ERR_NONE, the caller can assume that it owns the mutex. However, if the mutex is already owned by
another task, 0SMutexPend() places the calling task in the wait list for the mutex. The task thus waits until
the task that owns the mutex releases the mutex and thus the resource or until the specified timeout expires. If
the mutex is signaled before the timeout expires, HC/OS-11 resumes the highest priority task that is waiting for
the mutex. Note that if the mutex is owned by a lower priority task, then 0SMutexPend() raises the priority of
the task that owns the mutex to the PIP, as specified when you created the mutex [see OSMutexCreate()].

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created
[see OSMutexCreate()].

timeout is used to allow the task to resume execution if the mutex is not signaled (i.e., posted to) within
the specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait
forever for the mutex. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count starts being decremented on the next clock
tick, which could potentially occur immediately.

perr is a pointer to a variable that is used to hold an error code. 0OSMutexPend() sets *perr to one

of the following:

0S_ERR_NONE
0S_ERR_TIMEOUT
0S_ERR_EVENT_TYPE
0S_ERR_PEVENT_NULL
0S_ERR_PEND_LOCKED
0S_ERR_PEND_ISR

0S_ERR_PIP_LOWER

Returned Value

none

if the call is successful and the mutex is available.

if the mutex is not available within the specified timeout.
if you don’t pass a pointer to a mutex to 0SMutexPend().
if pevent is a NULL pointer.

if you called this function when the scheduler is locked

if you attempt to acquire the mutex from an ISR.

If the priority of the task that owns the Mutex is HIGHER (i.e.
a lower number) than the PIP. This error indicates that you
did not set the PIP higher (lower number) than ALL the tasks
that compete for the Mutex. Unfortunately, this is something
that could not be detected when the Mutex is created because
we don't know what tasks will be using the Mutex.

464

Notes/Warnings

1. Mutexes must be created before they are used.

2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other uC/OS-I1I
objects (i.e., semaphore, mailbox, or queue), and delay the task that owns the mutex. In other words, your
code should hurry up and release the resource as quickly as possible.

Example

OS_EVENT *DispMutex;

void DispTask (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G;) {
OSMutexPend(DispMutex, 0, &err);
/* The only way this task continues is if _ */
/* _ the mutex is available or signaled! */
b
3

465

OSMutexPost()

INT8U OSMutexPost(0S_EVENT *pevent);

Chapter File Called from Code enabled by
8 0S_MUTEX.C Task 0S_MUTEX_EN

A mutex is signaled (i.e., released) by calling 0SMutexPost(). You call this function only if you acquire the
mutex by first calling either 0SMutexAccept() or 0SMutexPend(). If the priority of the task that owns the
mutex has been raised when a higher priority task attempts to acquire the mutex, the original task priority of the
task is restored. If one or more tasks are waiting for the mutex, the mutex is given to the highest priority task
waiting on the mutex. The scheduler is then called to determine if the awakened task is now the highest priority
task ready to run, and if so, a context switch is done to run the readied task. If no task is waiting for the mutex,
the mutex value is simply set to available (OxFF).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created
[see OSMutexCreate()].

Returned Value
OSMutexPost() returns one of these error codes:

0S_ERR_NONE if the call is successful and the mutex is released.
OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to 0SMutexPost().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

0S_ERR_POST_ISR if you attempt to call 0SMutexPost() from an ISR.

0S_ERR_NOT_MUTEX_OWNER if the task posting (i.e., signaling the mutex) doesn’t actually
own the mutex.

OS_ERR_PIP_LOWER If the priority of the new task that owns the Mutex is HIGHER
(i.e. a lower number) than the PIP. This error indicates that
you did not set the PIP higher (lower number) than ALL the
tasks that compete for the Mutex. Unfortunately, this is
something that could not be detected when the Mutex is
created because we don't know what tasks will be using the
Mutex.

Notes/\Warnings

1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

466

Example

OS_EVENT *DispMutex;

void TaskX (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
err = OSMutexPost(DispMutex);
switch (err) {
case OS_ERR_NONE: /* Mutex signaled
break;
case OS_ERR_EVENT_TYPE:
break;
case OS_ERR_PEVENT_NULL:
break;
case 0OS_ERR _POST_ISR:
break;
}
}
}

467

*/

OSMutexQuery()

INT8U OSMutexQuery(0OS_EVENT *pevent,
0S_MUTEX_DATA *p_mutex_data);

Chapter File Called from Code enabled by
8 0S_MUTEX.C Task OS_MUTEX_EN && 0S_MUTEX_QUERY_EN

OSMutexQuery() is used to obtain run-time information about a mutex. Your application must allocate an
0S_MUTEX_DATA data structure that is used to receive data from the event control block of the mutex.
OSMutexQuery() allows you to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1s) in the .0SEventTbl[] field, obtain the PIP, and determine whether the
mutex is available (OS_TRUE) or not (0S_FALSE). Note that the size of .0SEventTbl[] is established by the
#define constant 0S_EVENT_TBL_SIZE (see uCOS_11_H).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is
created [see OSMutexCreate()].

p_mutex_data isa pointer to a data structure of type 0S_MUTEX_DATA, which contains the following fields

INT8U OSMutexPIP; /* The PIP of the mutex =/

INT8U 0SOwnerPrio; /* The priority of the mutex owner */

BOOLEAN OSValue; /* The current mutex value =/
/* OS_TRUE means available */
/* 0S_FALSE means unavailable */

#iT OS_LOWEST_PRIO <= 63

INT8U OSEventGrp; /* Copy of the mutex wait list */

INT8U OSEventTbl[0OS_EVENT _TBL_SIZE];

#else

INT16U OSEventGrp; /* Copy of the mutex wait list */

INT16U OSEventTbl[0S_EVENT_TBL_SIZE];

#endift

Returned Value
0SMutexQuery() returns one of these error codes:

0S_ERR_NONE if the call is successful.

OS_ERR_EVENT_TYPE if you don’t pass a pointer to a mutex to 0SMutexQuery().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

0S_ERR_PDATA NULL if p_mutex_data is a NULL pointer.

0S_ERR_QUERY_ISR if you attempt to call 0SMutexQuery() from an ISR.

Notes/\Warnings
1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

468

Example

In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_EVENT *DispMutex;

void Task (void *p_arg)

{
0S_MUTEX_DATA mutex_data;
INT8U err;
INT8U highest; /* Highest priority task waiting on mutex -
INT8U X;
INT8U y:
(void)p_arg;
for (G5) {
err = OSMutexQuery(DispMutex, &mutex data);
if (err == OS_ERR_NONE) {
/* Examine Mutex data */
}
}
}
}

469

O0SQAccept()

void *0SQAccept(0S_EVENT *pevent,
INT8U *perr);

Chapter File Called from Code enabled by
11 0S_Q-.C Task or ISR 0S_Q_EN

0SQAccept() checks to see if a message is available in the desired message queue. Unlike 0SQPend(),
0SQAccept() does not suspend the calling task if a message is not available. In other words, 0SQAccept() is
non-blocking. If a message is available, it is extracted from the queue and returned to your application. This
call is typically used by ISRs because an ISR is not allowed to wait for messages at a queue.

Arguments

pevent is a pointer to the message queue from which the message is received. This pointer is returned
to your application when the message queue is created [see 0SQCreate()].

perr is a pointer to a variable that is used to hold an error code. 0SQAccept() sets *perr to one of
the following:
0S_ERR_NONE if the call is successful and the mutex is available.
OS_ERR_EVENT_TYPE if you don’t pass a pointer to a queue to 0SQAccept().
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
OS_ERR_Q_EMPTY if the queue doesn't contain any messages.

Returned Value

A pointer to the message if one is available; NULL if the message queue does not contain a message or the
message received is a NULL pointer. If a message was available in the queue, it will be removed before
0SQAccept() returns.

Notes/\Warnings

1. Message queues must be created before they are used.

2. The API (Application Programming Interface) has changed for this function in V2.60 becausee you can
now post NULL pointers to queues. Specifically, the perr argument has been added to the call.

470

Example

OS_EVENT *CommQ;

void Task (void *p_arg)

{
void *pmsg;
(void)p_arg;
for (G3) {
pmsg = O0SQAccept(CommQ); /* Check queue for a message */
if (pmsg !'= (void *)0) {
/* Message received, process */
} else {
/* Message not received, do .. */
/* .. something else */
}
}
}

471

0SQCreate()

OS_EVENT *0SQCreate(void **start,
INT8U size);

Chapter File Called from Code enabled by
11 0S_Q.C Task or startup code 0S_Q_EN

0SQCreate() creates a message queue. A message queue allows tasks or ISRs to send pointer-sized variables
(messages) to one or more tasks. The meaning of the messages sent are application specific.

Arguments

start is the base address of the message storage area. A message storage area is declared as an array
of pointers to voids.

size is the size (in number of entries) of the message storage area.

Returned Value

0SQCreate() returns a pointer to the event control block allocated to the queue. If no event control block is
available, 0SQCreate() returns a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

Example

OS_EVENT *CommQ;
void *CommMsg[10];

void main (void)

{
oSInit(); /* Initialize pC/0S-11
CommQ = 0SQCreate(&CommMsg[0], 10); /* Create COMM Q
OSStart(); /* Start Multitasking
}

472

0SQDel)

0S_EVENT *0SQDel (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

Chapter File Called from Code enabled by
11 0S_Q.C Task 0S_Q_ENand 0S_Q_DEL_EN

0SQDel () is used to delete a message queue. This function is dangerous to use because multiple tasks could
attempt to access a deleted queue. You should always use this function with great care. Generally speaking,
before you delete a queue, you must first delete all the tasks that can access the queue.

Arguments
pevent is a pointer to the queue. This pointer is returned to your application when the queue is created
[see 0SQCreate()].
opt specifies whether you want to delete the queue only if there are no pending tasks
(OS_DEL_NO_PEND) or whether you always want to delete the queue regardless of whether
tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are readied.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the queue has been deleted.
OS_ERR_DEL_ISR if you attempt to delete the queue from an ISR.
0S_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the
opt argument.
OS_ERR_TASK_WAITING if one or more tasks are waiting for messages at the message
queue.
0S_ERR_EVENT_TYPE if pevent is not pointing to a queue.
0S_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the queue is deleted or pevent if the queue is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/\Warnings
1. You should use this call with care because other tasks might expect the presence of the queue.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the queue.

473

Example

0S_EVENT *DispQ;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
while (1) {
DispQ = 0SQDel(DispQ, OS_DEL_ALWAYS, &err);
if (DispQ == (OS_EVENT *)0) {
/* Queue has been deleted */
}
}
}

474

OSQFlush()

INT8U *0SQFlush(0OS_EVENT *pevent);

Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_FLUSH_EN

0SQFIush() empties the contents of the message queue and eliminates all the messages sent to the queue. This
function takes the same amount of time to execute regardless of whether tasks are waiting on the queue (and
thus no messages are present) or the queue contains one or more messages.

Arguments

pevent is a pointer to the message queue. This pointer is returned to your application when the
message queue is created [see 0SQCreate()].

Returned Value

0SQFlush() returns one of the following codes:

OS_ERR_NONE if the message queue is flushed.
0S_ERR_EVENT_TYPE if you attempt to flush an object other than a message queue.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

2. You should use this function with great care because, when to flush the queue, you LOOSE the references
to what the queue entries are pointing to and thus, you could cause 'memory leaks'. In other words, the
data you are pointing to that's being referenced by the queue entries should, most likely, need to be de-
allocated (i.e. freed). To flush a queue that contains entries, you should instead repeateadly use
0SQAccept().

Example

0OS_EVENT *CommQ;

void main (void)

{
INT8U err;
osSInit(); /* Initialize uC/0s-11 */
err = OSQFlush(CommQ) ;
OsStart(); /* Start Multitasking */
s

475

0SQPend ()

void *0SQPend(0S_EVENT *pevent,
INT16U timeout,
INT8U *perr);

Chapter File Called from Code enabled by
11 0S_Q.C Task only 0S_Q_EN

0SQPend() is used when a task wants to receive messages from a queue. The messages are sent to the task
either by an ISR or by another task. The messages received are pointer-sized variables, and their use is
application specific. If at least one message is present at the queue when 0SQPend() is called, the message is
retrieved and returned to the caller. If no message is present at the queue, 0SQPend() suspends the current task
until either a message is received or a user-specified timeout expires. If a message is sent to the queue and
multiple tasks are waiting for such a message, then pC/OS-I1 resumes the highest priority task that is waiting. A
pended task that has been suspended with 0STaskSuspend() can receive a message. However, the task
remains suspended until it is resumed by calling 0STaskResume ().

Arguments
pevent is a pointer to the queue from which the messages are received. This pointer is returned to your
application when the queue is created [see 0SQCreate()].
timeout allows the task to resume execution if a message is not received from the mailbox within the
specified number of clock ticks. A timeout value of 0 indicates that the task wants to wait
forever for the message. The maximum timeout is 65,535 clock ticks. The timeout value is not
synchronized with the clock tick. The timeout count starts decrementing on the next clock tick,
which could potentially occur immediately.
perr is a pointer to a variable used to hold an error code. 0SQPend() sets *perr to one of the
following:
0S_ERR_NONE if a message is received.
0S_ERR_TIMEOUT if a message is not received within the specified timeout.
OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
0S_ERR_PEND_ISR if you call this function from an ISR and puC/OS-1l has to
suspend it. In general, you should not call 0SQPend() from an
ISR. uC/OS-11 checks for this situation anyway.
0S_ERR_PEND_LOCKED if you called this function when the scheduler is locked.

Returned Value

0SQPend() returns a message sent by either a task or an ISR, and *perr is set to 0OS_ERR_NONE. If a timeout
occurs, 0SQPend () returns a NULL pointer and sets *perr to OS_ERR_TIMEOUT.

Notes/\Warnings

1. Queues must be created before they are used.
2. You should not call 0SQPend() from an ISR.

3. 0SQPend() was changed in VV2.60 to allow it to receive NULL pointer messages.

476

Example

OS_EVENT *CommQ;

void CommTask(void *p_arg)

{
INT8U err;
void *pmsg;
(void)p_arg;
for (G5) {
pmsg = 0SQPend(CommQ, 100, &err);
ifT (err == OS_ERR_NONE) {
/* Message received within 100 ticks! */
} else {
/* Message not received, must have timed out */
b
}
}

477

0SQPendAbort()

void *0SQPendAbort(0S_EVENT *pevent,

INT8U opt,
INT8U *perr);
New Function File Called from Code enabled by
V2.84 0S_Q.C Task only 0S_Q_EN
&&

0S_Q_PEND_ABORT_EN

0SQPendAbort() aborts & readies any tasks currently waiting on a queue. This function should be used to
fault-abort the wait on the queue, rather than to normally signal the queue via 0SQPost(), 0SQPostFront()

or OSQPostOpt().

Arguments

pevent is a pointer to the queue for which pend(s) need to be aborted. This pointer is returned to your
application when the queue is created [see 0SQCreate()].

opt determines what type of abort is performed.
OS_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the

queue.

OS_PEND_OPT_BROADCAST Aborts the pend of all the tasks waiting on the queue.

perr is a pointer to a variable that holds an error code. 0SQPendAbort() sets *perr to one of the
following:
0S_ERR_NONE if no tasks were waiting on the queue. In this case, the return

OS_ERR_PEND_ABORT

0S_ERR_EVENT_TYPE

0S_ERR_PEVENT_NULL

Returned Value

0SQPendAbort() returns the number of tasks made ready to run by this function. Zero indicates that no tasks

value is also 0.

at least one task waiting on the queue was readied and

informed of the aborted wait. Check the return value for the

number of tasks whose wait on the queue was aborted.

if pevent is not pointing to a queue.

if pevent is a NULL pointer.

were pending on the queue and thus this function had no effect.

Notes/\Warnings

1. Queues must be created before they are used.

478

Example

OS_EVENT *CommQ;

void CommTask(void *p_arg)

{
INT8U err;
INT8U nbr_tasks;
(void)p_arg;
for (G;) {
nbr_tasks = 0SQPendAbort(CommQ, OS _PEND_OPT_BROADCAST, &err);
if (err == 0S_ERR_NONE) {
/* No tasks were waiting on the queue */
} else {
/* All pends of tasks waiting on queue were aborted .. */
/* .. “nbr_tasks” indicates how many were made ready. */
3
3
3

479

0SQPost()

INT8U OSQPost(0S_EVENT *pevent,

void *pmsg) ;
Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_POST_EN

0SQPost() sends a message to a task through a queue. A message is a pointer-sized variable, and its use is
application specific. If the message queue is full, an error code is returned to the caller. In this case,
0SQPost() immediately returns to its caller, and the message is not placed in the queue. If any task is waiting
for a message at the queue, the highest priority task receives the message. If the task waiting for the message
has a higher priority than the task sending the message, the higher priority task resumes, and the task sending
the message is suspended; that is, a context switch occurs. Message queues are first-in first-out (FIFO), which
means that the first message sent is the first message received.

Arguments

pevent is a pointer to the queue into which the message is deposited. This pointer is returned to your
application when the queue is created [see 0SQCreate()].

pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application
specific. As of VV2.60, you are allowed to post a NULL pointer.

Returned Value
0SQPost() returns one of these error codes:

OS_ERR_NONE if the message is deposited in the queue.
0S_ERR_Q FULL if the queue is already full.
OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

2. As of V2.60, you are now allowed to post a NULL pointer. It is up to you’re application to check the perr
variable accordingly.

480

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100] ;

void CommTaskRx (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
err = 0SQPost(CommQ, (void *)&CommRxBuf[0]);
switch (err) {
case 0S_ERR_NONE:
/* Message was deposited into queue
break;
case OS_ERR_Q_FULL:
/* Queue is full
Break;
bs
}
}

481

*/

*/

OSQPostFront()

INT8U OSQPostFront(0S_EVENT *pevent,

void *pmsg) ;
Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_POST_FRONT_EN

0SQPostFront() sends a message to a task through a queue. 0SQPostFront() behaves very much like
0SQPost(), except that the message is inserted at the front of the queue. This means that 0SQPostFront()
makes the message queue behave like a last-in first-out (LIFO) queue instead of a first-in first-out (FIFO)
queue. The message is a pointer-sized variable, and its use is application specific. If the message queue is full,
an error code is returned to the caller. 0SQPostFront() immediately returns to its caller, and the message is
not placed in the queue. If any tasks are waiting for a message at the queue, the highest priority task receives
the message. If the task waiting for the message has a higher priority than the task sending the message, the
higher priority task is resumed, and the task sending the message is suspended,; that is, a context switch occurs.

Arguments

pevent is a pointer to the queue into which the message is deposited. This pointer is returned to your
application when the queue is created [see 0SQCreate()].

pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application
specific. As of VV2.60, you are allowed to post a NULL pointer.

Returned Value
0SQPostFront() returns one of these error codes:

OS_ERR_NONE if the message is deposited in the queue.
0S_ERR_Q FULL if the queue is already full.
OS_ERR_EVENT_TYPE if pevent is not pointing to a message queue.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

2. As of V2.60, you are now allowed to post a NULL pointer. It is up to you’re application to check the perr
variable accordingly.

482

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100] ;

void CommTaskRx (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
err = OSQPostFront(CommQ, (void *)&CommRxBuf[0]);
switch (err) {
case 0S_ERR_NONE:
/* Message was deposited into queue >/
break;
case OS_ERR_Q_FULL:
/* Queue is full */
break;
s
}
s

483

OSQPostOpt()

INT8U OSQPostOpt(0S_EVENT *pevent,

void *pmsg,
INT8U opt);
Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q_EN && 0S_Q_POST_OPT_EN

0SQPostOpt() is used to send a message to a task through a queue. A message is a pointer-sized variable, and
its use is application specific. If the message queue is full, an error code is returned indicating that the queue is
full. 0SQPostOpt() then immediately returns to its caller, and the message is not placed in the queue. If any
task is waiting for a message at the queue, 0SQPostOpt() allows you to either post the message to the highest
priority task waiting at the queue (opt set to 0S_POST_OPT_NONE) or to all tasks waiting at the queue (opt is
set to OS_POST_OPT_BROADCAST). In either case, scheduling occurs, and, if any of the tasks that receive the
message have a higher priority than the task that is posting the message, then the higher priority task is
resumed, and the sending task is suspended. In other words, a context switch occurs.

0SQPostOpt () emulates both 0SQPost() and 0SQPostFront() and also allows you to post a message to
multiple tasks. In other words, it allows the message posted to be broadcast to all tasks waiting on the queue.
0SQPostOpt() can actually replace 0SQPost() and 0SQPostFront() because you specify the mode of
operation via an option argument, opt. Doing this allows you to reduce the amount of code space needed by
pC/OS-II.

Arguments

pevent is a pointer to the queue. This pointer is returned to your application when the queue is created
[see 0SQCreate()].

pmsg is the actual message sent to the task(s). pmsg is a pointer-sized variable, and what pmsg points
to is application specific. As of VV2.60, you are now allowed to post a NULL pointer.

opt determines the type of POST performed:

0S_POST_OPT_NONE POST to a single waiting task [identical to 0SQPost()].
0S_POST_OPT_BROADCAST POST to all tasks waiting on the queue.
0S_POST_OPT_FRONT POST as LIFO [simulates 0SQPostFront()].
0S_POST_OPT_NO_SCHED Do not call the scheduler after the post.

Below is a list of some of the possible combination of these flags:

0S_POST_OPT_NONE is identical to 0SQPost()

0S_POST_OPT_FRONT is identical to 0SQPostFront()

0S_POST_OPT_BROADCAST s identical to 0SQPost() but broadcasts pmsg to all waiting
tasks

0S_POST_OPT_FRONT + 0S_POST_OPT_BROADCAST

is identical to 0SQPostFront() except that broadcasts pmsg
to all waiting tasks.

0S_POST_OPT_FRONT + 0S_POST_OPT_BROADCAST + 0S_POST_OPT_NO_SCHED

is identical to 0SQPostFront() except that broadcasts pmsg
to all waiting tasks and the scheduler will not be called

484

Returned Value

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the message has been sent.
0S_ERR_Q_FULL if the queue can no longer accept messages because it is full.
0S_ERR_EVENT_TYPE if pevent is not pointing to a mailbox.
0S_ERR_PEVENT_NULL if pevent is a NULL pointer.

Notes/Warnings

1. Queues must be created before they are used.

2. If you need to use this function and want to reduce code space, you can disable code generation of
0SQPost() (set 0S_Q_POST_EN to 0 in 0S_CFG.H) and 0SQPostFront() (set 0S_Q POST_FRONT_EN
to 0 in OS_CFG.H) because 0SQPostOpt() can emulate these two functions.

3. The execution time of 0SQPostOpt() depends on the number of tasks waiting on the queue if you set opt
to OS_POST_OPT_BROADCAST.

Example

OS_EVENT *CommQ;
INT8U CommRxBuf[100] ;

void CommRxTask (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
err = OSQPostOpt(CommQ,
(void *)&CommRxBuf[0],
OS_POST_OPT_BROADCAST) ;
}
}

485

0SQQuery()

INT8U 0SQQuery(0S_EVENT *pevent,
0S_Q DATA *p_q_data);

Chapter File Called from Code enabled by
11 0S_Q-.C Task or ISR 0S_Q_EN && 0S_QUERY_EN

0SQQuery() obtains information about a message queue. Your application must allocate an 0S_Q_DATA data
structure used to receive data from the event control block of the message queue. 0SQQuery() allows you to
determine whether any tasks are waiting for messages at the queue, how many tasks are waiting (by counting
the number of 1s in the .0SEventTbl[] field), how many messages are in the queue, and what the message
queue size is. 0SQQuery() also obtains the next message that is returned if the queue is not empty. Note that
the size of .0SEventTbl[] is established by the #define constant 0OS_EVENT_TBL_SIZE (see uCOS_11.H).

Arguments
pevent is a pointer to the message queue. This pointer is returned to your application when the queue is
created [see OSQCreate()].

pdata is a pointer to a data structure of type 0S_Q DATA, which contains the following fields
void *0SMsg; /* Next message if one available */
INT16U OSNMsgs; /* Number of messages in the queue */
INT16U 0SQSize; /* Size of the message queue */
#if OS_LOWEST_PRIO <= 63
INT8U OSEventTbI[OS_EVENT_TBL_SIZE]; /* Message queue wait list */
INT8U OSEventGrp;
#else
INT16U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Message queue wait list */
INT16U OSEventGrp;
#endif

Returned Value
0SQQuery() returns one of these error codes:

0S_ERR_NONE if the call is successful.
0S_ERR_EVENT_TYPE if you don’t pass a pointer to a message queue.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

0S_ERR_PDATA NULL if p_g_data is a NULL pointer.

Notes/\Warnings

1. Message queues must be created before they are used.

486

Example

OS_EVENT *CommQ;

void Task (void *p_arg)

{
0S_Q_DATA qdata;
INT8U err;
(void)p_arg;
for (53 {
err = 0SQQuery(CommQ, &qdata);
if (err == 0S_ERR_NONE) {
/* "qdata®" can be examined! */
¥
}
}

487

0SSchedLock()

void 0SSchedLock(void);

Chapter

File

Called from

Code enabled by

3 OS_CORE.C

Task or ISR

0S_SCHED_LOCK_EN

0SSchedLock() prevents task rescheduling until its counterpart, 0SSchedunlock(), is called. The task that
calls 0SSchedLock() keeps control of the CPU even though other higher priority tasks are ready to run.
However, interrupts are still recognized and serviced (assuming interrupts are enabled). 0SSchedLock() and
0SSchedunlock() must be used in pairs. uC/OS-1l allows 0SSchedLock() to be nested up to 255 levels
deep. Scheduling is enabled when an equal number of 0SSchedunlock() calls have been made.

Arguments
none

Returned Value
none

Notes/\Warnings

1. After calling 0SSchedLock(), your application must not make system calls that suspend execution of the
current task; that is, your application cannot call 0STimeDly(), OSTimeDlyHMSM(), OSFlagPend(),
0SSemPend(), 0SMutexPend(), 0SMboxPend(), or 0SQPend(). Because the scheduler is locked out,
no other task is allowed to run, and your system will lock up.

Example

void TaskX (void *p_arg)

{
(void)p_arg;
for (G3) {

0SSchedLock();

0SSchedunlock();

/* Prevent other tasks to run 77/

/* Code protected from context switch */

/* Enable other tasks to run 77/

488

0SSchedUnlock()

void 0SSchedUnlock(void);

Chapter

File

Called from

Code enabled by

3 OS_CORE.C Task or ISR

0S_SCHED_LOCK_EN

0SSchedunlock() re-enables task scheduling whenever it is paired with 0SSchedLock().

Arguments
none

Returned Value
none

Notes/\Warnings

1. After calling 0SSchedLock(), your application must not make system calls that suspend execution of the
current task; that is, your application cannot call 0STimeDly(), OSTimeDlyHMSM(), OSFlagPend(),
0SSemPend(), 0SMutexPend(), 0SMboxPend(), or 0SQPend(). Because the scheduler is locked out,
no other task is allowed to run, and your system will lock up.

Example

void TaskX (void *p_arg)

{
(void)p_arg;
for (G3) {

0SSchedLock();

0SSchedunlock();

/* Prevent other tasks to run

*/

/* Code protected from context switch */

/* Enable other tasks to run

489

*/

0SSemAccept()

INT16U 0SSemAccept(OS_EVENT *pevent);

Chapter File Called from Code enabled by

7 0S_SEM.C Task or ISR 0S_SEM_EN &&
0S_SEM_ACCEPT_EN

0SSemAccept() checks to see if a resource is available or an event has occurred. Unlike 0SSemPend(),
0SSemAccept() does not suspend the calling task if the resource is not available. In other words,
0SSemAccept() is non-blocking. Use 0SSemAccept() from an ISR to obtain the semaphore.

Arguments

pevent is a pointer to the semaphore that guards the resource. This pointer is returned to your
application when the semaphore is created [see 0SSemCreate()].

Returned Value

When 0SSemAccept() is called and the semaphore value is greater than 0, the semaphore value is
decremented, and the value of the semaphore before the decrement is returned to your application. If the
semaphore value is 0 when 0SSemAccept() is called, the resource is not available, and 0 is returned to your
application.

Notes/Warnings

1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void Task (void *p_arg)

{
INT16U value;
(void)p_arg;
for (G5) {
value = 0SSemAccept(DispSem); /* Check resource availability */
it (value > 0) {
/* Resource available, process */
}
}
}

490

0SSemCreate()

OS_EVENT *0SSemCreate(INT16U value);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or startup code 0S_SEM_EN

0SSemCreate() creates and initializes a semaphore. A semaphore
» allows a task to synchronize with either an ISR or a task (you initialize the semaphore to 0),

 gains exclusive access to a resource (you initialize the semaphore to a value greater than 0), and

 signals the occurrence of an event (you initialize the semaphore to 0).

Arguments

value is the initial value of the semaphore and can be between 0 and 65,535. A value of 0 indicates
that a resource is not available or an event has not occurred.

Returned Value

0SSemCreate() returns a pointer to the event control block allocated to the semaphore. If no event control
block is available, 0SSemCreate() returns a NULL pointer.

Notes/\Warnings

1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void main (void)

{
(;)Slnit(); /* Initialize pC/0S-11 */
I;)ispSem = 0SSemCreate(1); /* Create Display Semaphore */
oSStart(); /* Start Multitasking */
}

491

0SSemDel ()

0S_EVENT *0SSemDel (OS_EVENT *pevent,
INT8U opt,
INT8U *perr);

Chapter File Called from Code enabled by
7 0S_SEM.C Task 0S_SEM_EN and OS_SEM_DEL_EN

0SSemDel () is used to delete a semaphore. This function is dangerous to use because multiple tasks could
attempt to access a deleted semaphore. You should always use this function with great care. Generally
speaking, before you delete a semaphore, you must first delete all the tasks that can access the semaphore.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created [see 0SSemCreate()].

opt specifies whether you want to delete the semaphore only if there are no pending tasks
(0S_DEL_NO_PEND) or whether you always want to delete the semaphore regardless of whether
tasks are pending or not (0S_DEL_ALWAYS). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the semaphore has been deleted.
0S_ERR_DEL_ISR if you attempt to delete the semaphore from an ISR.
0S_ERR_INVALID_OPT if you don’t specify one of the two options mentioned in the

opt argument.

0S_ERR_TASK_WAITING if one or more tasks are waiting on the semaphore.
OS_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.
0S_ERR_PEVENT_NULL if no more OS_EVENT structures are available.

Returned Value

A NULL pointer if the semaphore is deleted or pevent if the semaphore is not deleted. In the latter case, you
need to examine the error code to determine the reason.

Notes/\Warnings
1. You should use this call with care because other tasks might expect the presence of the semaphore.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the semaphore.

492

Example

OS_EVENT *DispSem;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
DispSem = OSSemDel (DispSem, OS DEL_ALWAYS, &err);
if (DispSem == (OS_EVENT *)0) {
/* Semaphore has been deleted */
}
}
}

493

0SSemPend()

void 0SSemPend(0S_EVENT *pevent,

INT16U timeout,

INT8U *perr);

Chapter File

Called from Code enabled by

7 OS_SEM.C

Task only OS_SEM_EN

0SSemPend() is used when a task wants exclusive access to a resource, needs to synchronize its activities with
an ISR or a task, or is waiting until an event occurs. If a task calls 0SSemPend() and the value of the
semaphore is greater than 0, 0SSemPend () decrements the semaphore and returns to its caller. However, if the
value of the semaphore is 0, 0SSemPend() places the calling task in the waiting list for the semaphore. The
task waits until a task or an ISR signals the semaphore or the specified timeout expires. If the semaphore is
signaled before the timeout expires, uC/OS-11 resumes the highest priority task waiting for the semaphore. A
pended task that has been suspended with 0STaskSuspend() can obtain the semaphore. However, the task
remains suspended until it is resumed by calling 0STaskResume ().

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created [see 0SSemCreate()].

timeout allows the task to resume execution if a message is not received from the mailbox within the
specified number of clock ticks. A timeout value of 0 indicates that the task waits forever for

the message. The maximum

timeout is 65,535 clock ticks. The timeout value is not

synchronized with the clock tick. The timeout count begins decrementing on the next clock
tick, which could potentially occur immediately.

perr is a pointer to a variable used to hold an error code. 0SSemPend() sets *perr to one of the

following:

0S_ERR_NONE
0S_ERR_TIMEOUT
0S_ERR_EVENT_TYPE

0S_ERR_PEND_ISR

0S_ERR_PEND_LOCKED
0S_ERR_PEVENT NULL

Returned Value

none

Notes/\Warnings

if the semaphore is available.
if the semaphore is not signaled within the specified timeout.
if pevent is not pointing to a semaphore.

if you called this function from an ISR and puC/OS-Il has to
suspend it. You should not call 0SSemPend() from an ISR.
MC/OS-I1 checks for this situation.

if you called this function when the scheduler is locked.

if pevent is a NULL pointer.

1. Semaphores must be created before they are used.

494

Example

OS_EVENT *DispSem;

void DispTask (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
0SSemPend(DispSem, 0, &err);
/* The only way this task continues is if _ */
/* _ the semaphore is signaled! */
}
}

495

0SSemPendAbort()

void *0SSemPendAbort(0S_EVENT *pevent,
INT8U opt,
INT8U *perr);

New Function File Called from Code enabled by
V2.84 0S_SEM.C Task only 0S_SEM_EN
&&
0S_SEM_PEND_ABORT_EN

0SSemPendAbort() aborts & readies any tasks currently waiting on a semaphore. This function should be
used to fault-abort the wait on the semaphore, rather than to normally signal the semaphore via 0SSemPost().

Arguments
pevent is a pointer to the semaphore for which pend(s) need to be aborted. This pointer is returned to
your application when the semaphore is created [see 0SSemCreate()].
opt determines what type of abort is performed.
OS_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the
semaphore.
OS_PEND_OPT_BROADCAST Aborts the pend of all the tasks waiting on the semaphore.
perr is a pointer to a variable that holds an error code. 0SSemPendAbort() sets *perr to one of
the following:
0S_ERR_NONE if no tasks were waiting on the semaphore. In this case, the
return value is also 0.
0S_ERR_PEND_ABORT at least one task waiting on the semaphore was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the semaphore was aborted.
0S_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.

Returned Value

0SSemPendAbort() returns the number of tasks made ready to run by this function. Zero indicates that no
tasks were pending on the semaphore and thus this function had no effect.

Notes/\Warnings

1. Semaphores must be created before they are used.

496

Example

OS_EVENT *CommSem;

void CommTask(void *p_arg)

{
INT8U err;
INT8U nbr_tasks;
(void)p_arg;
for (G;) {
nbr_tasks = 0SSemPendAbort(CommSem, OS_PEND_OPT_BROADCAST, é&err);
if (err == 0S_ERR_NONE) {
/* No tasks were waiting on the semaphore */
} else {
/* All pends of tasks waiting on semaphore were aborted .. */
/* .. “nbr_tasks” indicates how many were made ready. */
3
3
3

497

0SSemPost()

INT8U 0SSemPost(0S_EVENT *pevent);

Chapter

File

Called from

Code enabled by

7 OS_SEM.C

Task or ISR

0S_SEM_EN

A semaphore is signaled by calling 0SSemPost(). If the semaphore value is 0 or more, it is incremented, and
0SSemPost() returns to its caller. If tasks are waiting for the semaphore to be signaled, 0SSemPost()
removes the highest priority task pending for the semaphore from the waiting list and makes this task ready to
run. The scheduler is then called to determine if the awakened task is now the highest priority task ready to run.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [see 0SSemCreate()].

Returned Value

0SSemPost() returns one of these error codes:

0S_ERR_NONE

0S_ERR_SEM_OVF

0S_ERR_EVENT_TYPE

0S_ERR_PEVENT_NULL

Notes/\Warnings

if the semaphore is signaled successfully.

if the semaphore count overflows.

if pevent is not pointing to a semaphore.

if pevent is a NULL pointer.

1. Semaphores must be created before they are used.

498

Example

OS_EVENT *DispSem;

void TaskX (void *p_arg)

{
INT8U err;

(void)p_arg;
for (G3) {

err = 0SSemPost(DispSem);

switch (err) {
case OS_ERR_NONE:

/* Semaphore signaled */
break;

case 0S_ERR_SEM OVF:

/* Semaphore has overflowed */
break;

499

0SSemQuery()

INT8U 0SSemQuery(0S_EVENT *pevent,
0S_SEM_DATA *p_sem data);

Chapter File Called from Code enabled by

7 OS_SEM.C Task or ISR OS_SEM_EN && OS_SEM_QUERY_EN

0SSemQuery () obtains information about a semaphore. Your application must allocate an 0S_SEM_DATA data
structure used to receive data from the event control block of the semaphore. 0SSemQuery() allows you to
determine whether any tasks are waiting on the semaphore and how many tasks are waiting (by counting the
number of 1s in the .0SEventTbl[] field) and obtains the semaphore count. Note that the size of
.0SEventTbl[] is established by the #define constant 0OS_EVENT_TBL_SIZE (see uCOS_11.H).

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [see 0SSemCreate()].

P_sem_data is a pointer to a data structure of type 0OS_SEM_DATA, which contains the following fields

INT16U OSCnt; /* Current semaphore count
#if OS_LOWEST_PRIO <= 63

INT8U OSEventTbI[OS_EVENT_TBL_SIZE]; /* Semaphore wait list
INT8U OSEventGrp;

#else

INT16U OSEventTbl[OS_EVENT_TBL_SIZE]; /* Semaphore wait list
INT16U OSEventGrp;

#endif

Returned Value
0SSemQuery() returns one of these error codes:

0S_ERR_NONE if the call is successful.
0S_ERR_EVENT_TYPE if you don’t pass a pointer to a semaphore.
0S_ERR_PEVENT_NULL if pevent is is a NULL pointer.
0S_ERR_PDATA_NULL if p_sem_data is is a NULL pointer.

Notes/\Warnings

1. Semaphores must be created before they are used.

500

*/

*/

*/

Example

In this example, the contents of the semaphore is checked to determine the highest priority task waiting at the
time the function call was made.

OS_EVENT *DispSem;

void Task (void *p_arg)

{
0S_SEM_DATA sem_data;
INT8U err;
INT8U highest; /* Highest priority task waiting on sem. */
INT8U X;
INT8U Y
(void)p_arg;
for (G5) {
err = 0SSemQuery(DispSem, &sem_data);
if (err == OS_ERR_NONE) {
/* Examine sem_data */
}
be
}
}

501

0SSemSet()

void 0SSemSet(0OS_EVENT *pevent,
INT16U cnt,
INT8U *perr);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or ISR OS_SEM_EN && OS_SEM_SET_EN

0SSemSet() is used to change the current value of the semaphore count. This function would normally be
used when a semaphore is used as a signaling mechanism. 0SSemSet() can then be used to reset the count to
any value. If the semaphore count is already 0 then, the count is only changed if there are no tasks waiting on
the semaphore.

Arguments

pevent is a pointer to the semaphore that is used as a signaling mechanism. This pointer is returned to
your application when the semaphore is created [see 0SSemCreate()].

cnt is the desired count that you want the semaphore set to.

perr is a pointer to a variable used to hold an error code. 0SSemSet() sets *perr to one of the
following:
OS_ERR_NONE if the count was changed or, not changed because there was

one or more tasks waiting on the semaphore.

0S_ERR_EVENT_TYPE if pevent is not pointing to a semaphore.
OS_ERR_PEVENT_NULL if pevent is a NULL pointer.
0S_ERR_TASK_WAITING if tasks are waiting on the semaphore.

Returned Value
None

Notes/\Warnings

1. Youshould NOT use this function if the semaphore is used to protect a shared resource.

502

Example

OS_EVENT *SignalSem;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
0SSemSet(SignalSem, 0, &err); /* Reset the semaphore count */
}
}

503

OSStart()

void 0OSStart(void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

0SStart() starts multitasking under uC/OS-11. This function is typically called from your startup code but
after you call 0SInit().

Arguments
none

Returned Value
none

Notes/\Warnings

1. 0SInit() must be called prior to calling 0SStart(). 0SStart() should only be called once by your
application code. If you do call 0SStart() more than once, it does not do anything on the second and
subsequent calls.

Example

void main (void)

{
/* User Code */
oSInit(); /* Initialize pC/0s-11 */
/* User Code */
oSsstart(); /* Start Multitasking */
/* Any code here should NEVER be executed! */
}

504

osStatinit()

void 0SStatlnit(void);

Chapter File Called from Code enabled by

3 OS_CORE.C | Startup code only 0S_TASK_STAT EN &&
0S_TASK_CREATE_EXT_EN

0SStatInit() determines the maximum value that a 32-bit counter can reach when no other task is executing.
This function must be called when only one task is created in your application and when multitasking has
started; that is, this function must be called from the first and, only, task created.

Arguments
none

Returned Value
none

Notes/\Warnings
none

Example

void FirstAndOnlyTask (void *p_arg)

{
OSStatinit(); /* Compute CPU capacity with no task running */
OSTaskCreate(); /* Create the other tasks */
OSTaskCreate();
for (G3) {
}

}

505

OSTaskChangePrio()

INT8U OSTaskChangePrio(INT8U oldprio,
INT8U newprio);

Chapter File Called from

Code enabled by

4 OS_TASK.C Task only

0S_TASK_CHANGE_PRIO_EN

OSTaskChangePrio() changes the priority of a task.

Arguments
oldprio is the priority number of the task to change.
newprio is the new task’s priority.

Returned Value

OSTaskChangePrio() returns one of the following error codes:

OS_ERR_NONE

0S_ERR_PRIO_INVALID

0S_ERR_PRIO_EXIST

0S_ERR_PRIO

0S_ERR_TASK_NOT_EXITS

Notes/\Warnings

1. The desired priority must not already have been assigned; otherwise, an error code is returned. Also,

if the task’s priority is changed.

if either the old priority or the new priority is equal to or

exceeds 0S_LOWEST_PRIO.

if newprio already exists.

if no task with the specified old priority exists (i.e., the task

specified by oldprio does not exist).

if the task is assigned to a Mutex PIP.

OSTaskChangePrio() verifies that the task to change exists.

Example

void TaskX (void *p_arg)

{
INT8U err;
for (G3) {
err = OSTaskChangePrio(10
}
}

, 15);

506

OSTaskCreate()

INT8U OSTaskCreate(void (*task)(void *pd),
void *pdata,
0S_STK *ptos,
INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task or startup code 0S_TASK_CREATE_EN

OSTaskCreate() creates a task so it can be managed by pC/OS-I1I. Tasks can be created either prior to the
start of multitasking or by a running task. A task cannot be created by an ISR. A task must be written as an
infinite loop, as shown below, and must not return.

OSTaskCreate() is used for backward compatibility with uC/OS and when the added features of
OSTaskCreateExt() are not needed.

Depending on how the stack frame is built, your task has interrupts either enabled or disabled. You need to
check with the processor-specific code for details.

void Task (void *p_arg)

{
. /* Do something with "pdata* */
for () { /* Task body, always an infinite loop. */
/* Must call one of the following services: */
/* OSMboxPend () */
/* OSFlagPend() */
/* OSMutexPend() */
/* 0SQPend () */
/* 0SSemPend() */
/* OSTimeDly() */
/* OSTimeDIyHMSM(Q) */
/* OSTaskSuspend() (Suspend self) */
/* OSTaskDel) (Delete self) */
}
}

507

Arguments

task
pdata

ptos

prio

is a pointer to the task’s code.

is a pointer to an optional data area used to pass parameters to the task when it is created.
Where the task is concerned, it thinks it is invoked and passes the argument pdata. pdata can
be used to pass arguments to the task created. For example, you can create a generic task that
handles an asynchronous serial port. pdata can be used to pass this task information about the
serial port it has to manage: the port address, the baud rate, the number of bits, the parity, and
more.

is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt. The size of the stack is
determined by the task’s requirements and the anticipated interrupt nesting. Determining the
size of the stack involves knowing how many bytes are required for storage of local variables
for the task itself and all nested functions, as well as requirements for interrupts (accounting for
nesting). If the configuration constant 0S_STK_GROWTH is set to 1, the stack is assumed to grow
downward (i.e., from high to low memory). ptos thus needs to point to the highest valid
memory location on the stack. If 0S_STK_GROWTH is set to 0, the stack is assumed to grow in
the opposite direction (i.e., from low to high memory).

is the task priority. A unique priority number must be assigned to each task, and the lower the
number, the higher the priority (i.e., the task importance).

Returned Value
OSTaskCreate() returns one of the following error codes:

0S_ERR_NONE if the function is successful.

OS_ERR_PRIO_EXIST if the requested priority already exists.
0S_ERR_PRIO_INVALID if prio is higher than 0S_LOWEST_PRI10.
0S_ERR_NO_MORE_TCB if uC/OS-I11 doesn’t have any more OS_TCBs to assign.

0S_ERR_TASK_CREATE_ISR if you attempted to create the task from an ISR.

Notes/\Warnings

1. The stack for the task must be declared with the 0S_STK type.

2. Atask must always invoke one of the services provided by pC/OS-I1 to wait for time to expire, suspend the
task, or wait for an event to occur (wait on a mailbox, queue, or semaphore). This allows other tasks to
gain control of the CPU.

3. You should not use task priorities O, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRI10-1, and 0OS_LOWEST_PRI0 because they are reserved for use by pC/OS-1I.

508

Example 1

This example shows that the argument that Task1() receives is not used, so the pointer pdata is set to NULL.
Note that | assume the stack grows from high to low memory because | pass the address of the highest valid
memory location of the stack Task1Stk[]. If the stack grows in the opposite direction for the processor you
are using, pass &Task1Stk[0] as the task’s top-of-stack.

Assigning pdata to itself is used to prevent compilers from issuing a warning about the fact that pdata is
not being used. In other words, if 1 had not added this line, some compilers would have complained about
‘WARNING - variable pdata not used.’

0S_STK Task1Stk[1024];

void main (void)

{
INT8U err;
oSInit(); /* Initialize uC/0s-11 */
OSTaskCreate(Task1,
(void *)O0,
&Task1Stk[1023],
25);
oSsStart(); /* Start Multitasking */
}

void Taskl (void *p_arg)

{
(void)p_arg; /* Prevent compiler warning */
for (G3) {
/* Task code */
}
}

509

Example 2

You can create a generic task that can be instantiated more than once. For example, a task that handles a serial
port could be passed the address of a data structure that characterizes the specific port (i.e., port address and
baud rate). Note that each task has its own stack space and its own (different) priority. In this example, I
arbitrarily decided that COML1 is the most important port of the two.

0S_STK *Comm1Stk[1024];
COMM_DATA CommlData; /* Data structure containing COMM port */
/* Specific data for channel 1 */

0S_STK *Comm2Stk[1024] ;
COMM_DATA Comm2Data; /* Data structure containing COMM port */
/* Specific data for channel 2 */

void main (void)

{
INT8U err;
oSInit(); /* Initialize pC/0S-11 */
/* Create task to manage COM1 */
OSTaskCreate(CommTask,
(void *)&CommlData,
&Comm1Stk[1023],
25);
/* Create task to manage COM2 */
OSTaskCreate(CommTask,
(void *)&Comm2Data,
&Comm2Stk[1023],
26);
OSStart(); /* Start Multitasking */
}
void CommTask (void *p_arg) /* Generic communication task */
{
for (G3) {
/* Task code */
}
}

510

OSTaskCreateExt()

INT8U OSTaskCreateExt(void

(*task) (void *pd),

void *pdata,
0S_STK *ptos,
INT8U prio,
INT16U id,
0S_STK *pbos,
INT32U stk _size,
void *pext,
INT16U opt);
Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code N/A

OSTaskCreateExt() creates a task to be managed by uC/OS-I1I. This function serves the same purpose as
OSTaskCreate(), except that it allows you to specify additional information about your task to uC/OS-II.
Tasks can be created either prior to the start of multitasking or by a running task. A task cannot be created by
an ISR. A task must be written as an infinite loop, as shown below, and must not return. Depending on how the
stack frame is built, your task has interrupts either enabled or disabled. You need to check with the processor-
specific code for details. Note that the first four arguments are exactly the same as the ones for
OSTaskCreate(). This was done to simplify the migration to this new and more powerful function.
highly recommended that you use OSTaskCreateExt() instead of the older OSTaskCreate() function

because it’s much more flexible.

void Task (void *p_arg)

{
- /* Do something with "pdata* */
for (G:;) { /* Task body, always an infinite loop. */
/* Must call one of the following services: */
/* OSMboxPend () */
/* OSFlagPend() */
/* OSMutexPend() */
/* 0SQPend() */
/* 0SSemPend() */
/* OSTimeDly(*/
/* OSTimeDIyHMSM(Q) */
/* OSTaskSuspend() (Suspend self) */
/* OSTaskDel) (Delete self) */
}
}

o011

Arguments

task
pdata

ptos

prio

pbos

stk_size

pext

opt

is a pointer to the task’s code.

is a pointer to an optional data area, which is used to pass parameters to the task when it is
created. Where the task is concerned, it thinks it is invoked and passes the argument pdata.
pdata can be used to pass arguments to the task created. For example, you can create a
generic task that handles an asynchronous serial port. pdata can be used to pass this task
information about the serial port it has to manage: the port address, the baud rate, the number of
bits, the parity, and more.

is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt.

The size of this stack is determined by the task’s requirements and the anticipated interrupt
nesting. Determining the size of the stack involves knowing how many bytes are required for
storage of local variables for the task itself and all nested functions, as well as requirements for
interrupts (accounting for nesting).

If the configuration constant 0S_STK_GROWTH is set to 1, the stack is assumed to grow
downward (i.e., from high to low memory). ptos thus needs to point to the highest valid
memory location on the stack. If 0S_STK_GROWTH is set to 0, the stack is assumed to grow in
the opposite direction (i.e., from low to high memory).

is the task priority. A unique priority number must be assigned to each task: the lower the
number, the higher the priority (i.e., the importance) of the task.

is the task’s ID number. At this time, the ID is not currently used in any other function and has
simply been added in 0STaskCreateExt() for future expansion. You should set id to the
same value as the task’s priority.

is a pointer to the task’s bottom-of-stack. If the configuration constant 0S_STK_GROWTH is set
to 1, the stack is assumed to grow downward (i.e., from high to low memory); thus, pbos must
point to the lowest valid stack location. If 0S_STK_GROWTH is set to O, the stack is assumed to
grow in the opposite direction (i.e., from low to high memory); thus, pbos must point to the
highest valid stack location. pbos is used by the stack-checking function 0STaskStkChk().

specifies the size of the task’s stack in number of elements. If 0S_STK is set to INT8U, then
stk_size corresponds to the number of bytes available on the stack. If 0S_STK is set to
INT16U, then stk_size contains the number of 16-bit entries available on the stack. Finally, if
0S_STK is set to INT32U, then stk_size contains the number of 32-bit entries available on the
stack.

is a pointer to a user-supplied memory location (typically a data structure) used as a TCB
extension. For example, this user memory can hold the contents of floating-point registers
during a context switch, the time each task takes to execute, the number of times the task is
switched in, and so on.

contains task-specific options. The lower 8 bits are reserved by uC/OS-11, but you can use the
upper 8 bits for application-specific options. Each option consists of one or more bits. The
option is selected when the bit(s) is set. The current version of pC/OS-I1 supports the following
options:

0S_TASK_OPT_NONE specifies that there are no options.

0S_TASK_OPT_STK_CHK specifies whether stack checking is allowed for the task.
0S_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.
OS_TASK_OPT_SAVE_FP specifies whether floating-point registers are saved. This option

is only valid if your processor has floating-point hardware and
the processor-specific code saves the floating-point registers.

Refer to uCOS_11_H for other options.

512

Returned Value
OSTaskCreateExt() returns one of the following error codes:

0S_ERR_NONE if the function is successful.

OS_ERR_PRIO_EXIST if the requested priority already exists.
0S_ERR_PRIO_INVALID if prio is higher than 0S_LOWEST_PRI10.
0S_ERR_NO_MORE_TCB if uC/OS-I11 doesn’t have any more OS_TCBs to assign.

0S_ERR_TASK_CREATE_ISR if you attempted to create the task from an ISR.

Notes/\Warnings

1. The stack must be declared with the 0S_STK type.

2. Atask must always invoke one of the services provided by pC/OS-I1 to wait for time to expire, suspend the
task, or wait an event to occur (wait on a mailbox, queue, or semaphore). This allows other tasks to gain
control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PR10-1, and 0S_LOWEST_PRI0 because they are reserved for use by pC/OS-11.

Example 1

E1(1) The task control block is extended using a user-defined data structure called 0S_TASK_USER_DATA,
which in this case contains the name of the task as well as other fields.

E1(2) The task name is initialized with the standard library function strcpy().

E1(4) Note that stack checking has been enabled for this task, so you are allowed to call
0STaskStkChk().

E1(3) Also, assume here that the stack grows downward on the processor used (i.e., 0S_STK_GROWTH is set

to 1; TOS stands for top-of-stack and BOS stands for bottom-of-stack).

513

typedef struct { /* User defined data structure */)
char OSTaskName[20] ;
INT16U OSTaskCtr;
INT16U OSTaskExecTime;
INT32U OSTaskTotExecTime;
} 0S_TASK_USER_DATA;

0S_STK TaskStk[1024];
TASK_USER_DATA TaskUserData;

void main (void)

{
INT8U err;
oSInit(Q); /* Initialize pC/0S-11 */
strcpy(TaskUserData. TaskName, **MyTaskName'™); /* Name of task */)
err = OSTaskCreateExt(Task,
(void *)O0,
&TaskStk[1023], /* Stack grows down (TOS) */ 3)
10,
&TaskStk[0], /* Stack grows down (BOS) */ (€))
1024,
(void *)&TaskUserData, /* TCB Extension */
0S_TASK_OPT_STK_CHK) ; /* Stack checking enabled */ (4)
OSStart(); /* Start Multitasking */
3

void Task(void *p_arg)

{
(void)p_arg; /* Avoid compiler warning */
for (55 {
/* Task code */
}
¥
Example 2

E2(1) We now create a task, but this time on a processor for which the stack grows upward. The Intel
MCS-51 is an example of such a processor. In this case, 0S_STK_GROWTH is set to 0.

514

E2(2) Note that stack checking has been enabled for this task so you are allowed to call 0STaskStkChk()
(TOS stands for top-of-stack and BOS stands for bottom-of-stack).

0S_STK *TaskStk[1024];

void main (void)

{
INT8U err;
oSInit(Q); /* Initialize pC/0S-11 */
err = OSTaskCreateExt(Task,
(void *)O0,
&TaskStk[0], /* Stack grows up (TOS) */ (€D)
10,
10,
&TaskStk[1023], /* Stack grows up (BOS) */ (€D)
1024,
(void *)O0,
0S_TASK_OPT_STK_CHK); /* Stack checking enabled */)
OSStart(); /* Start Multitasking */
b

void Task (void *p_arg)

{
(void)p_arg; /* Avoid compiler warning */
for (G;) {
/* Task code */
3
3

515

OSTaskDel ()

INT8U OSTaskDel (INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only OS_TASK_DEL_EN

OSTaskDel () deletes a task by specifying the priority number of the task to delete. The calling task can be

deleted by specifying its own priority number or OS_PRIO_SELF (if the task doesn’t know its own priority

number). The deleted task is returned to the dormant state. The deleted task can be re-created by calling either

OSTaskCreate() or OSTaskCreateExt() to make the task active again.

Arguments

prio is the priority number of the task to delete. You can delete the calling task by passing
OS_PRIO_SELF, in which case the next highest priority task is executed.

Returned Value

0STaskDel () returns one of the following error codes:

0S_ERR_NONE if the task doesn’t delete itself.

0S_ERR_TASK_IDLE if you try to delete the idle task, which is of course is not
allowed.

0S_ERR_TASK_DEL if the task to delete does not exist.

OS_ERR_PRIO_INVALID if you specify a task priority higher than
0S_LOWEST_PRIO.

0S_ERR_TASK_DEL_1ISR if you try to delete a task from an ISR.

0S_ERR_TASK_DEL if the task is assigned to a Mutex.

OS_ERR_TASK_NOT_EXIST if the task is assigned to a Mutex PIP.

Notes/\Warnings
1. 0STaskDel () verifies that you are not attempting to delete the pC/OS-I1 idle task.

2. You must be careful when you delete a task that owns resources. Instead, consider using
OSTaskDelReq() as a safer approach.

516

Example

void TaskX (void *p_arg)

{
INT8U err;
for (G3) {
err = OSTaskDel (10); /* Delete task with priority 10 */
if (err == OS_ERR_NONE) {
/* Task was deleted */
}
}
}

o17

OSTaskDelReg()

INT8U OSTaskDelReq(INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_DEL_EN

OSTaskDelReq() requests that a task delete itself. Basically, use 0STaskDe IReq() when you need to delete a
task that can potentially own resources (e.g., the task might own a semaphore). In this case, you don’t want to
delete the task until the resource is released. The requesting task calls 0STaskDelReq() to indicate that the
task needs to be deleted. Deletion of the task is, however, deferred to the task being deleted. In other words, the
task is actually deleted when it regains control of the CPU. For example, suppose Task 10 needs to be deleted.
The task wanting to delete this task (example Task 5) calls 0STaskDelReq(10). When Task 10 executes, it
calls 0STaskDelReq(OS_PRIO_SELF) and monitors the return value. If the return value is
OS_ERR_TASK_DEL_REQ, then Task 10 is asked to delete itself. At this point, Task 10 calls
OSTaskDel (0S_PRIO_SELF). Task 5 knows whether Task 10 has been deleted by calling
OSTaskDelReq(10) and checking the return code. If the return code is 0S_ERR_TASK_NOT_EXIST, then Task
5 knows that Task 10 has been deleted. Task 5 might have to check periodically until
0S_ERR_TASK_NOT_EXIST is returned.

Arguments

prio is the task’s priority number of the task to delete. If you specify 0S_PR10_SELF, you are
asking whether another task wants the current task to be deleted.

Returned Value
0STaskDelReq() returns one of the following error codes:
0S_ERR_NONE if the task deletion has been registered.

OS_ERR_TASK_NOT_EXIST if the task does not exist. The requesting task can monitor this
return code to see if the task is actually deleted.

0S_ERR_TASK_IDLE if you ask to delete the idle task (which is obviously not
allowed).

OS_ERR_PRIO_INVALID if you specify a task priority higher than
0S_LOWEST_PRI10 or do not specify 0S_PRIO_SELF.

0S_ERR_TASK_DEL if the task is assigned to a Mutex.

OS_ERR_TASK_DEL_REQ if a task (possibly another task) requests that the running task
be deleted.

Notes/\Warnings
1. 0STaskDelReq() verifies that you are not attempting to delete the pC/OS-I1 idle task.

518

Example

void TaskThatDeletes (void *p_arg) /* My priority is 5 */
{
INT8U err;
for (:2) {
err = OSTaskDelReq(10); /* Request task #10 to delete itself */
it (err == 0S_ERR_NONE) {
while (err 1= 0S_ERR_TASK_NOT_EXIST) {
err = OSTaskDelReq(10);
OSTimeDly(1); /* Wait for task to be deleted */
3
/* Task #10 has been deleted */
3
3
3
void TaskToBeDeleted (void *p_arg) /* My priority is 10 */
{
(void)p_arg;
for (::) {
OSTimeDly(1);
if (0STaskDelReq(OS_PRIO_SELF) == 0S_ERR_TASK_DEL_REQ) {
/* Release any owned resources; */
/* De-allocate any dynamic memory; */
0STaskDel (0S_PRIO_SELF);
3
3
3

519

OSTaskNameGet()

INT8U OSTaskNameGet(INT8U prio,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.60 OS_TASK.C Task OS_TASK_NAME_SIZE

OSTaskNameGet() allows you to obtain the name that you assigned to a task. The name is an ASCII string
and the size of the name can contain up to 0S_TASK_NAME_SI1ZE characters (including the NUL termination).
This function is typically used by a debugger to allow associating a name to a task.

Arguments

prio is the priority of the task from which you would like to obtain the name from. If you specify
0S_PRI10_SELF, you would obtain the name of the current task.

pname is a pointer to an ASCI|I string that will receive the name of the task. The string must be able to
hold at least 0S_TASK_NAME_SIZE characters (including the NUL character).

perr a pointer to an error code and can be any of the following:
OS_ERR_NONE If the name of the task was copied to the array pointed to by

pname.

OS_ERR_TASK_NOT_EXIST The task you specified was not created or has been deleted.

OS_ERR_PRIO_INVALID If you specified an invalid priority - a priority higher than the
idle task (OS_LOWEST_PRIO) or you didn't specify
0S_PRIO_SELF.

0S_ERR_PNAME_NULL If you passed a NULL pointer for pname.
OS_ERR_NAME_GET_ISR You called this function from an ISR.
Returned Values
The size of the ASCII string placed in the array pointed to by pname or O if an error is encountered.

Notes/\Warnings
1. The task must be created before you can use this function and obtain the name of the task.

2. You must ensure that you have sufficient storage in the destination string to hold the name of the task.

520

Example

INT8U EngineTaskName[30] ;

void Task (void *p_arg)

{
INT8U err;
INT8U size;
(void)p_arg;
for (G3) {
size = OSTaskNameGet(OS_PRIO_SELF, &EngineTaskName[0], &err);
}
}

521

OSTaskNameSet()

void OSTaskNameSet(INT8U prio,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.60 OS_TASK.C Task OS_TASK_NAME_SIZE

OSTaskNameSet() allows you to assign a name to a task. The name is an ASCII string and the size of the
name can contain up to OS_TASK_NAME_SIZE characters (including the NUL termination). This function is
typically used by a debugger to allow associating a name to a task.

Arguments

prio is the priority of the task that you want to name. If you specify 0S_PRI10_SELF, you would set
the name of the current task.

pname is a pointer to an ASCII string that hold the name of the task. The string must be smaller than
or equal to 0S_TASK_NAME_SIZE characters (including the NUL character).

perr a pointer to an error code and can be any of the following:
OS_ERR_NONE If the name of the task was set.
OS_ERR_TASK_NOT_EXIST The task you specified was not created or has been

deleted.

OS_ERR_PRIO_INVALID If you specified an invalid priority - a priority higher than

the idle task (OS_LOWEST_PRI10) or you didn't specify
0S_PRIO_SELF.

OS_ERR_TASK_NAME_TOO_LONG If the name you are giving to the task exceeds the storage
capacity of a task name as specified by
0S_TASK_NAME_SIZE.

OS_ERR_PNAME_NULL If you passed a NULL pointer for pname.

0S_ERR_NAME_SET ISR You called this function from an ISR.

Returned Values
None.

Notes/\Warnings

1. The task must be created before you can use this function to set the name of the task.

522

Example

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
OSTaskNameSet(0S_PRIO_SELF, “Engine Task™, &err);
}
}

523

OSTaskResume()

INT8U OSTaskResume(INT8U prio);

Chapter File

Called from

Code enabled by

4 OS_TASK.C

Task only

0S_TASK_SUSPEND_
EN

OSTaskResume() resumes a task suspended through the OSTaskSuspend() function.

OSTaskResume() is the only function that can unsuspend a suspended task.

Arguments

prio specifies the priority of the task to resume.

Returned Value

OSTaskResume() returns one of the these error codes:

0S_ERR_NONE
0S_ERR_TASK_RESUME_PRIO
0S_ERR_TASK_NOT_SUSPENDED
0S_ERR_PRIO_INVALID
0S_ERR_TASK_NOT_EXIST

Notes/\Warnings
none

Example

void TaskX (void *p_arg)

{
INT8U err;
for (G3) {
err = OSTaskResume(10);
if (err == OS_ERR_NONE) {
}
}
}

if the call is successful.

In fact,

if the task you are attempting to resume does not exist.

if the task to resume has not been suspended.

if prio is higher or equal to 0S_LOWEST_PRIO.

if the task is assigned to a Mutex PIP .

/* Resume task with priority 10 */

/* Task was resumed */

524

0STaskStkChk()

INT8U OSTaskStkChk(INT8U prio,
0S_STK_DATA *p_stk data);

Chapter File Called from Code enabled by
4 0S_TASK.C Task code 0S_TASK_CREATE_EXT

0STaskStkChk() determines a task’s stack statistics. Specifically, it computes the amount of free stack space,
as well as the amount of stack space used by the specified task. This function requires that the task be created
with OSTaskCreateExt() and that you specify 0S_TASK_OPT_STK_CHK in the opt argument.

Stack sizing is done by walking from the bottom of the stack and counting the number of O entries on the
stack until a nonzero value is found. Of course, this assumes that the stack is cleared when the task is created.
For that purpose, you need to set 0S_TASK_OPT_STK_CLR to 1 as an option when you create the task. You
could set 0S_TASK_OPT_STK_CLR to 0 if your startup code clears all RAM and you never delete your tasks.
This reduces the execution time of 0STaskCreateExt().

Arguments

prio is the priority of the task about which you want to obtain stack information. You can check the
stack of the calling task by passing 0S_PRIO_SELF.

P_stk data isa pointer to a variable of type 0S_STK_DATA, which contains the following fields:

INT32U OSFree; /* Number of bytes free on the stack =/
INT32U OSUsed; /* Number of bytes used on the stack */

Returned Value
0STaskStkChk() returns one of the these error codes:
0S_ERR_NONE if you specify valid arguments and the call is successful.

0S_ERR_PRIO_INVALID if you specify a task priority higher than
0S_LOWEST_PRI10 or you don’t specify 0S_PRI10_SELF.

OS_ERR_TASK_NOT_EXIST if the specified task does not exist.

0S_ERR_TASK_OPT_ERR if you do not specify 0S_TASK_OPT_STK_CHK when the task
was created by OSTaskCreateExt() or if you create the task
by using OSTaskCreate().

0S_ERR_PDATA_NULL if p_stk_data is a NULL pointer.

Notes/\Warnings
1. Execution time of this task depends on the size of the task’s stack and is thus nondeterministic.

2. Your application can determine the total task stack space (in number of bytes) by adding the two fields
.OSFree and .0SUsed of the 0S_STK_DATA data structure.

3. Technically, this function can be called by an ISR, but because of the possibly long execution time, it is not
advisable.

525

Example

void Task (void *p_arg)

{
0S_STK DATA stk data;
INT32U stk_size;
(void)p_arg;
for (G5) {
err = OSTaskStkChk(10, &stk _data);
if (err == OS_ERR_NONE) {
stk _size = stk data.OSFree + stk data.OSUsed;
bs
}
}

526

OSTaskSuspend()

INT8U OSTaskSuspend(INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_SUSPEND_EN

OSTaskSuspend() suspends (or blocks) execution of a task unconditionally. The calling task can be
suspended by specifying its own priority number or 0S_PRIO_SELF if the task doesn’t know its own priority
number. In this case, another task needs to resume the suspended task. If the current task is suspended,
rescheduling occurs, and pC/OS-I1 runs the next highest priority task ready to run. The only way to resume a
suspended task is to call 0STaskResume().

Task suspension is additive, which means that if the task being suspended is delayed until n ticks expire, the
task is resumed only when both the time expires and the suspension is removed. Also, if the suspended task is
waiting for a semaphore and the semaphore is signaled, the task is removed from the semaphore-wait list (if it is
the highest priority task waiting for the semaphore), but execution is not resumed until the suspension is
removed.

Arguments

prio specifies the priority of the task to suspend. You can suspend the calling task by passing
OS_PRIO_SELF, in which case, the next highest priority task is executed.

Returned Value
0STaskSuspend() returns one of the these error codes:

0S_ERR_NONE if the call is successful.

OS_ERR_TASK_SUSPEND_IDLE if you attempt to suspend the _C/OS-II idle task, which is
not allowed.

0S_ERR_PRIO_INVALID if you specify a priority higher than the maximum

allowed (i.e., you specify a priority of 0S_LOWEST_ PRIO
or more) or you don’t specify 0S_PRIO_SELF.

OS_ERR_TASK_SUSPEND_PRIO if the task you are attempting to suspend does not exist.

0S_ERR_TASK_NOT_EXITS if the task is assigned to a Mutex PIP.

Notes/Warnings
1. 0STaskSuspend() and 0OSTaskResume() must be used in pairs.
2. A suspended task can only be resumed by 0STaskResume() .

527

Example

void TaskX (void *p_arg)

{
INT8U err;
(void)p_arg;
for (53 {
err = OSTaskSuspend(OS_PRIO_SELF); /* Suspend current task */
/* Execution continues when ANOTHER task .. */
/* .. explicitly resumes this task. */
}
}

528

OSTaskQuery()

INT8U OSTaskQuery(INT8U prio,
0S_TCB *p_task data);

Chapter File Called from Code enabled by
4 0S_TASK.C Task or ISR N/A

OSTaskQuery() obtains information about a task. Your application must allocate an 0S_TCB data structure to
receive a snapshot of the desired task’s control block. Your copy contains every field in the 0S_TCB structure.
You should be careful when accessing the contents of the 0S_TCB structure, especially OSTCBNext and
OSTCBPrev, because they point to the next and previous 0S_TCBs in the chain of created tasks, respectively.
You could use this function to provide a debugger kernel awareness.

Arguments

prio is the priority of the task from which you wish to obtain data. You can obtain information
about the calling task by specifying 0S_PR10_SELF.

p_task data is a pointer to a structure of type 0S_TCB, which contains a copy of the task’s control block.

Returned Value
0STaskQuery() returns one of these error codes:

0S_ERR_NONE if the call is successful.
0S_ERR_PRIO_INVALID if you specify a priority higher than 0S_LOWEST_PRI10.
0S_ERR_PRIO if you try to obtain information from an invalid task.

0S_ERR_TASK_NOT_EXIST if the task is assigned to a Mutex PIP .

OS_ERR_PDATA_NULL if p_task_data is a NULL pointer.

Notes/\Warnings

1. The fields in the task control block depend on the following configuration options (see 0S_CFG.H) :
« 0S_TASK_CREATE_EN
- 0S_Q_EN
 0S_FLAG_EN
- 0S_MBOX_EN
- 0S_SEM_EN
» 0S_TASK_DEL_EN

529

Example

void Task (void *p_arg)

{
OS_TCB task data;
INT8U err;
void *pext;
INT8U status;
(void)p_arg;
for (G3) {
err = OSTaskQuery(OS_PRIO_SELF, &task data);
it (err == 0S_ERR_NONE) {
pext = task_data.OSTCBExtPtr; /* Get TCB extension pointer */
status = task data.OSTCBStat; /* Get task status */
3
3
3

530

OSTimeDly()

void OSTimeDIy(INT16U ticks);

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

0STimeDly() allows a task to delay itself for an integral number of clock ticks. Rescheduling always occurs
when the number of clock ticks is greater than zero. Valid delays range from one to 65,535 ticks. A delay of 0
means that the task is not delayed, and 0STimeDly () returns immediately to the caller. The actual delay time
depends on the tick rate (see 0S_TICKS_PER_SEC in the configuration file 0S_CFG.H).

Arguments

ticks is the number of clock ticks to delay the current task.
Returned Value

none

Notes/\Warnings

1. Note that calling this function with a value of 0 results in no delay, and the function returns immediately to
the caller.

2. Toensure that a task delays for the specified number of ticks, you should consider using a delay value that
is one tick higher. For example, to delay a task for at least 10 ticks, you should specify a value of 11.

Example

void TaskX (void *p_arg)

{
for (53) {

OSTimeDly(10); /* Delay task for 10 clock ticks */

531

OSTimeDIyHMSM(O)

void OSTimeDIyHMSM (INT8U hours,

INT8U minutes,
INT8U seconds,

INT8U ms);
Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

0STimeDIyHMSMQ) allows a task to delay itself for a user-specified amount of time specified in hours, minutes,
seconds, and milliseconds. This format is more convenient and natural than ticks. Rescheduling always occurs
when at least one of the parameters is nonzero.

Arguments

hours
minutes
seconds

ms

is the number of hours the task is delayed. The valid range of values is 0 to 255.
is the number of minutes the task is delayed. The valid range of values is 0 to 59.
is the number of seconds the task is delayed. The valid range of values is 0 to 59.

is the number of milliseconds the task is delayed. The valid range of values is 0 to 999. Note
that the resolution of this argument is in multiples of the tick rate. For instance, if the tick rate is
set to 100Hz, a delay of 4ms results in no delay. The delay is rounded to the nearest tick. Thus,
a delay of 15ms actually results in a delay of 20ms.

Returned Value
OSTimeDIyHMSM(Q) returns one of the these error codes:

0S_ERR_NONE if you specify valid arguments and the call is successful.
OS_ERR_TIME_INVALID_MINUTES if the minutes argument is greater than 59.

OS_ERR_TIME_INVALID_SECONDS if the seconds argument is greater than 59.

0S_ERR_TIME_INVALID_MS if the milliseconds argument is greater than 999.
0S_ERR_TIME_ZERO_DLY if all four arguments are 0.
OS_ERR_TIME_DLY_ISR if you called this function from an ISR.

Notes/\Warnings

1. Note that OSTimeDlyHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) results in no delay,
and the function returns to the caller. Also, if the total delay time is longer than 65,535 clock ticks, you
cannot abort the delay and resume the task by calling 0STimeDlyResume().

532

Example

void TaskX (void *p_arg)

{
for (53) {

OSTimeDIyHMSM(O, 0, 1, 0); /* Delay task for 1 second */

533

OSTimeDlyResume()

INT8U OSTimeDlyResume(INT8U prio);

Chapter File Called from Code enabled by
5 OS_TIME.C Task only N/A

OSTimeDlyResume() resumes a task that has been delayed through a call to either OSTimeDly() or
0STimeDIyHMSMQ).

Arguments

prio specifies the priority of the task to resume.

Returned Value
0STimeDlyResume() returns one of the these error codes:

0S_ERR_NONE if the call is successful.
OS_ERR_PRIO_INVALID if you specify a task priority greater than 0S_LOWEST_PRIO.
0S_ERR_TIME_NOT_DLY if the task is not waiting for time to expire.

OS_ERR_TASK_NOT_EXIST if the task has not been created or has been assigned to a Mutex
PIP.

Notes/\Warnings

1. Note that you must not call this function to resume a task that is waiting for an event with timeout. This
situation makes the task look like a timeout occurred (unless you desire this effect).

2. You cannot resume a task that has called 0OSTimeDlyHMSM() with a combined time that exceeds 65,535
clock ticks. In other words, if the clock tick runs at 100Hz, you cannot resume a delayed task that called
OSTimeDIyHMSM(0, 10, 55, 350) or higher.

(10 minutes * 60 + (55 + 0.35) seconds) * 100 ticks/second

Example
void TaskX (void *pdata)
{
INT8U err;
pdata = pdata;
for (G3) {
err = OSTimeDlyResume(10); /* Resume task with priority 10 */
if (err == 0OS_ERR_NONE) {
- /* Task was resumed */
}
}
}

534

OSTimeGet()

INT32U OSTimeGet(void);

Chapter File Called from Code enabled by
5 0S_TIME.C Task or ISR N/A

0STimeGet() obtains the current value of the system clock. The system clock is a 32-bit counter that counts
the number of clock ticks since power was applied or since the system clock was last set.

Arguments
none

Returned Value
The current system clock value (in number of ticks).

Notes/Warnings
none

Example

void TaskX (void *p_arg)

{
INT32U clk;
for (G5) {
clk = OSTimeGet(); /* Get current value of system clock */
}
s

535

OSTimeSet()

void OSTimeSet(INT32U ticks);

Chapter File Called from Code enabled by
5 0S_TIME.C Task or ISR N/A

0STimeSet() sets the system clock. The system clock is a 32-bit counter that counts the number of clock ticks
since power was applied or since the system clock was last set.

Arguments

ticks s the desired value for the system clock, in ticks.

Returned Value
none

Notes/\Warnings
none

Example

void TaskX (void *p_arg)
{
for (53) {

OSTimeSet(OL); /* Reset the system clock */

536

OSTimeTick()

void OSTimeTick(void);

Chapter File Called from Code enabled by
5 0S_TIME.C Task or ISR N/A

0STimeTick() processes a clock tick. uC/OS-I1 checks all tasks to see if they are either waiting for time to
expire [because they called 0OSTimeDly() or OSTimeDIyHMSM()] or waiting for events to occur until they
timeout.

Arguments
none

Returned Value
none
Notes/\Warnings

1. The execution time of 0STimeTick() is directly proportional to the number of tasks created in an
application. 0STimeTick() can be called by either an ISR or a task. If called by a task, the task priority
should be very high (i.e., have a low priority number) because this function is responsible for updating
delays and timeouts.

537

Example

(Intel 80x86, real mode, large model)

_OSTickISR PROC FAR

_0STickISR

PUSHA
PUSH ES
PUSH DS

MOV AX, SEG(_OSIntNesting)
MOV DS, AX

INC BYTE PTR DS:_OSIntNesting

CMP BYTE PTR DS:_OSIntNesting, 1

JNE SHORT _OSTickISR1
MOV AX, SEG(_OSTCBCur)
MOV DS, AX

LES BX, DWORD PTR DS:_OSTCBCur

MOV ES:[BX+2], SS
MOV ES:[BX+0], SP
CALL FAR PTR _OSTimeTick

CALL FAR PTR _OSIntExit
POP DS

POP ES

POPA

IRET
ENDP

538

Save processor context

Reload DS

Notify pC/0S-11 of ISR

if (OSIntNesting == 1)

Reload DS

OSTCBCur->0STCBStkPtr = SS:SP

Process clock tick

User Code to clear interrupt

Notify uC/0S-11 of end of ISR

Restore processor registers

Return to interrupted task

OSTmrCreate()

0S_TMR *0STmrCreate(INT32U dly,

INT32U period,
INT8U opt,
0S_TMR_CALLBACK callback,
void *callback_arg,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by

New in V2.83 OS_TMR.C Task OS_TMR_EN

OSTmrCreate() allows you to create a timer. The timer can be configured to run continuously (opt set to
OS_TMR_OPT_PERIODIC) or only once (opt set to 0S_TMR_OPT_ONE_SHOT). When the timer counts down to
0 (from the value specified in period), an optional ‘cal Iback’ function can be executed. The callback can be
used to signal a task that the timer expired or, perform any other function. However, it’s recommended that
you keep the callback function as short as possible.

You MUST call 0STmrStart() to actually start the timer. If you configured the timer for one shot mode and
the timer expired, you need to call 0STmrStart() to retrigger the timer or 0OSTmrDel () to delete the timer if
you don’t plan on retriggering it and or not use the timer anymore. Note that you can use the callback function
to delete the timer if you use the one shot mode.

Arguments
dly

period

opt

specifies an initial delay used by the timer (see drawing below).

In ONE-SHOT mode, this is the time of the one-shot.

If in PERIODIC mode, this is the initial delay before the timer enters periodic mode.

The units of this time depends on how often you call 0STmrSignal (). In other words, if
0STmrSignal Q) is called every 1/10 of a second (i.e. 0OS_TMR_CFG_TICKS_PER_SEC set to
10) then, dly specifies the number of 1/10 of a second before the delay expires. Note that
the timer is NOT started when it is created.

specifies the amount of time it will take before the timer expires. You should set the
‘period’ to 0 when you use one-shot mode. The units of this time depends on how often
you call 0STmrSignal (). In other words, if 0STmrSignal () is called every 1/10 of a
second (i.e. 0S_TMR_CFG_TICKS_PER_SEC set to 10) then, period specifies the number of
1/10 of a second before the timer times out.

0S_TMR_OPT_PERIODIC:
specifies whether you want to timer to automatically reload itself.

0S_TMR_OPT_ONE_SHOT:
specifies to stop the timer when it times out.

Note that you MUST select one of these two options.

539

callback

callback_arg

pname

perr

specifies the address of a function (optional) that you want to execute when the timer expires
or, is terminated before it expires (i.e. by calling 0STmrStop()). The callback function must
be declared as follows:

void MyCallback (void *ptmr, void *callback_arg);

When the timer expires, this function will be called and passed the timer ‘handle’ of the
expiring timer as well as the argument specified by cal Iback_arg.

You should note that you don’t have to specify a callback and, in this case, simply pass a
NULL pointer.

Is the argument passed to the callback function when the timer expires or is terminated.
cal lback_arg can be a NULL pointer if the callback function doesn’t require arguments.

Is a pointer to an ASCII string that allows you to give a name to your timer. You can retrieve
this name by calling 0STmrNameGet().

a pointer to an error code and can be any of the following:

0S_ERR_NONE If the name of the task was copied to the array pointed to by
pname.

0S_ERR_TMR_INVALID_DLY
You specified a delay of 0 when in ONE SHOT mode.

0S_ERR_TMR_INVALID_PERIOD
You specified a period of 0 when in PERIODIC mode.

0S_ERR_TMR_INVALID_OPT
If you did not specify either OS_TMR_OPT_PERIODIC or
0S_TMR_OPT_ONE_SHOT.

OS_ERR_TMR_ISR
If you called this function from an ISR, which you are not
allowed to do.

0S_ERR_TMR_NON_AVAIL
You get this error when you cannot start a timer because all
timer elements (i.e. objects) have already been allocated.

0S_ERR_TMR_NAME_TOO_LONG
The name you are giving to the timer is too long and must be
less than OS_TMR_CFG_NAME_SIZE.

540

PERIODIC MODE (see ‘opt’)-dly > 0
dly period

‘ | |T T |T I + Time.
OSTmrStart() T cal Iback T
CaI Ied called

PERIODIC MODE (see ‘opt’) —dly ==

period

v

Pttt e

OSTmrStart() cal Iback
Called called

ONE-SHOT MODE (see ‘opt’) —dly MUST be non-zero
dly

I
‘ Time
osTnrStare() gtk

v

v

o241

Returned Values

A pointer to an 0S_TMR object that you MUST use to reference the timer that you just created. A NULL pointer
is returned if the timer was not created because of errors (see returned error codes).

Notes/\Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

3. Note that the timer is NOT started when it is created. To start the timer, you MUST call
OSTmrStart().

Example

0S_TMR *CloseDoorTmr;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
CloseDoorTmr = OSTmrCreate(10,
100,
OS_TMR_OPT_PERIODIC,
DoorCloseFnct,
(void *)O0,
“Door Close”,
&err);
if (err == OS_ERR_NONE) {
/* Timer was created but NOT started */
}
}
}

542

OSTmrDel ()

BOOLEAN OSTmrDel (0OS_TMR *ptmr,

INT8U *perr);
Chapter File Called from Code enabled by
New in VV2.83 OS_TMR.C Task OS_TMR_EN

0STmrDel () allows you to delete a timer. If a timer was running, it will be stopped and then deleted. If the
timer has already timed out and is thus stopped, it will simply be deleted.

It is up to you to delete unused timers. If you delete a timer you MUST NOT reference it anymore.

Arguments

ptmr is a pointer to the timer that you want to delete. This pointer is returned to you when the timer
is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the function returned the time remaining for the timer.
OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

0S_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.
0S_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

0S_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

A pointer to an 0S_TMR object that you MUST use to reference the timer that you just started. A NULL pointer
is returned if the timer was not started because of errors (see returned error codes).

Notes/Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

3. If you delete a timer you MUST NOT reference it anymore.

543

Example

0S_TMR *CloseDoorTmr;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
CloseDoorTmr = OSTmrDel (CloseDoorTmr,
&err);
it (err == OS_ERR_NONE) {
/* Timer was deleted ... DO NOT reference it anymorel! */
}
}
}

544

OSTmrNameGet()

void OSTmrNameGet(OS_TMR *ptmr,

INT8U *pdest,
INT8U *perr);

Chapter

File Called from Code enabled by

New in V2.81

0S_TMR.C Task 0S_TMR_EN

OSTmrNameGet() allows you to retrieve the name associated with the specified timer. O0STmrNameGet()
places the name of the timer in an array of characters which must be as big as 0S_TMR_CFG_NAME_SI1ZE (see

0S_CFG.H).

Arguments

ptmr

pdest

perr

is a pointer to the timer that you are inquiring about. This pointer is returned to you when the
timer is created (see OSTmrCreate()).

is a pointer to where you would like the name of the timer to be copied to. You MUST ensure
that your destination string holds sufficient storage to hold as mush as
0S_CFG_TMR_NAME_SIZE characters (see 0S_CFG.H).

a pointer to an error code and can be any of the following:

OS_ERR_NONE If the name of the task was copied to the array pointed to by
pname.

0S_ERR_TMR_INVALID_DEST You specified a NULL pointer for pdest.
OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.
0S_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

0S_ERR_NAME_GET_ISR You called this function from an ISR which is NOT allowed.

0S_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
The length of the timer name (in number of characters).

Notes/\Warnings

1. You MUST ensure that your destination string holds sufficient storage to hold as mush as
0S_CFG_TMR_NAME_SIZE characters (see 0S_CFG.H).

2. You should examine the return value of this function.
3. You MUST NOT call this function from an ISR.

545

Example

INT8U CloseDoorTmrName[80] ;
0S_TMR *CloseDoorTmr;

void Task (void *p_arg)

{
INT8U err;

(void)p_arg;

for (G3) {
OSTmrNameGet(CloseDoorTmr, &CloseDoorTmrName[0], &err);

it (err == OS_ERR_NONE) {
/* CloseDoorTmrName[] holds the name of the timer */

546

OSTmrRemainGet()

INT32U OSTmrRemainGet(0OS_TMR *ptmr,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.81 OS_TMR.C Task OS_TMR_EN

O0STmrRemainGet() allows you to obtain the time remaining (before it times out) of the specified timer. The
value returned depends on the rate (in Hz) at which the timer task is signaled (see
0S_TMR_CFG_TICKS_PER_SEC in 0S_CFG.H). In other words, if 0S_TMR_CFG_TICKS_PER_SEC is set to 10
then the value returned is the number of 1/10 of a second before the timer times out. If the timer has timed out,
the value returned will be 0.

Arguments

ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the
timer is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the function returned the time remaining for the timer.
OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

0S_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.
0S_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

0S_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

The time remaining for the timer. The value returned depends on the rate (in Hz) at which the timer task is
signaled (see OS_TMR_CFG_TICKS_PER_SEC in 0S_CFG.H). In other words, if
0S_TMR_CFG_TICKS_PER_SEC is set to 10 then the value returned is the number of 1/10 of a second before
the timer times out. If you specified an invalid timer, the returned value will be 0. If the timer has already
expired then the returned value will be 0.

Notes/\Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

47

Example

INT32U TimeRemainToCloseDoor ;
0S_TMR *CloseDoorTmr;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
TimeRemainToCloseDoor = OSTmrRemainGet(CloseDoorTmr, &err);
it (err == OS_ERR_NONE) {
/* Call was successful */
}
}
}

548

OSTmrSignal ()

void OSTmrSignal (void);

Chapter File Called from Code enabled by
New in V2.81 OS_TMR.C Task or ISR OS_TMR_EN

0STmrSignal Q) is called either by a task or an ISR to indicate that it’s time to update the timers. Typically,
0STmrSignal () would be called by 0STimeTickHook() at a multiple of the tick rate. In other words, if
0S_TICKS_PER_SEC is set to 1000 in 0S_CFG.H then you should call 0STmrSignal () every 10" or 100" tick
interrupt (100 Hz or 10 Hz, respectively). You should typically call 0STmrSignal () every 1/10 of a second.
The higher the timer rate, of course, the more overhead timer management will impose on your system.
Generally, we recommend 10 Hz (1/10 of a second).

You ‘could’ call 0STmrSignal () from the pC/OS-I11 tick ISR hook function (see example below). If the tick
rate occurs at 1000 Hz then you can simply call 0STmrSignal () every 100" tick. Of course, you would have
to implement a simple counter to do this.

Arguments

None.

Returned Values

0STmrSignal () uses semaphores to implement the signaling mechanism. Because of that, 0OSTmrSignal)
can return one of the following errors. However, it’s very unlikely you will get anything else but
0OS_ERR_NONE.

0S_ERR_NONE The call was successful and the timer task was signaled.

0S_ERR_SEM_OVF If OSTmrSignal () was called more often than 0STmr_Task() can handle the
timers. This would indicate that your system is heavily loaded.

OS_ERR_EVENT_TYPE Unlikely you would get this error because the semaphore used for signaling is
created by pC/OS-II.

OS_ERR_PEVENT_NULL Again, unlikely you would ever get this error because the semaphore used for

signaling is created by pC/OS-I1.

549

Notes/Warnings
None.

Example

#if OS_TMR_EN > O
static INT16U OSTmrTickCtr = O;
#endif

void OSTimeTickHook (void)
{
#if OS_TMR_EN > O
OSTmrTickCtr++;
if (OSTmrTickCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {
OSTmrTickCtr = 0;
OSTmrSignal Q) ;

s
#endif

}

550

OSTmrStart()

BOOLEAN OSTmrStart(0OS_TMR *ptmr,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.81 OS_TMR.C Task OS_TMR_EN

0STmrStart() allows you to start (or restart) the countdown process of a timer. The timer to start MUST
have previously been created.

Arguments

ptmr is a pointer to the timer that you want to start (or restart). This pointer is returned to you when
the timer is created (see OSTmrCreate()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the timer was started.
0S_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.
0S_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

0S_TRUE if the timer was started
0S_FALSE if an error occurred.

Notes/\Warnings
1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

3. The timer to start MUST have previously been created.

551

Example

0S_TMR *CloseDoorTmr;
BOOLEAN status;

void Task (void *p_arg)

{
INT8U err;

(void)p_arg;
for (G5) {
status = OSTmrStart(CloseDoorTmr,
&err);
if (err == OS_ERR_NONE) {
/* Timer was started */

552

OSTmrStateGet()

INT8U OSTmrStateGet(0S_TMR *ptmr,

INT8U *perr);

Chapter

File Called from Code enabled by

New in VV2.83

0S_TMR.C Task 0S_TMR_EN

0STmrStateGet() allows you to obtain the current state of a timer. A timer can be in one of 4 states:

0OS_TMR_STATE_UNUSED The timer has not been created
0OS_TMR_STATE_STOPPED The timer has been created but has not been started or has been
stopped.
OS_TMR_STATE_COMPLETED The timer is in ONE-SHOT mode and has completed its delay.
0S_TMR_STATE_RUNNING The timer is currently running
Arguments
ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the
timer is created (see OSTmrCreate()).
perr a pointer to an error code and can be any of the following:

0S_ERR_NONE If the function returned the time remaining for the timer.
OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.
0S_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

0S_ERR_TMR_ISR You called this function from an ISR which is NOT allowed.

0S_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values
The state of the timer (see description).

Notes/\Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

553

Example

INT8U CloseDoorTmrState;
0S_TMR *CloseDoorTmr;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G5) {
CloseDoorTmrState = OSTmrStateGet(CloseDoorTmr, &err);
it (err == OS_ERR_NONE) {
/* Call was successful */
}
}
}

554

OSTmrStop()

BOOLEAN OSTmrStop(0S_TMR *ptmr,
INT8U opt,
void *callback_arg,
INT8U *perr);

Chapter File Called from Code enabled by
New in VV2.81 OS_TMR.C Task OS_TMR_EN

0STmrStop() allows you to stop (i.e. abort) a timer. You can execute the callback function of the timer when
it’s stopped and pass this callback function a different argument than what was specified when the timer was
started. This allows your callback function to know that the timer was stopped because the callback argument
can be made to indicate this (this, of course, is application specific). If the timer is already stopped, the
callback function is not called.

Arguments

ptmr Is a pointer to the timer you want to stop. This ‘handle’ was returned to your application
when you called 0STmrStart() and uniquely identifies the timer.

opt specifies whether you want the timer to:

1) 0S_TMR_OPT_NONE:
Do NOT call the callback function.
2) 0S_TMR_OPT_CALLBACK:

Call the callback function and pass it the callback argument specified when you started
the timer (see OSTmrCreate()).

3) 0S_TMR_OPT_CALLBACK_ARG:
Call the callback function BUT pass it the callback argument specified in the
0STmrStop () function INSTEAD of the one defined in 0OSTmrCreate().

callback_arg If you set opt to OS_TMR_OPT_CALLBACK_ARG then this is the argument passed to the
callback function when it’s executed.

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the timer was started.
OS_ERR_TMR_INVALID If you passed a NULL pointer for the ptmr argument.

OS_ERR_TMR_INVALID_TYPE ‘ptmr’ is not pointing to a timer.

0S_ERR_TMR_ISR You called this function from an ISR which is NOT
allowed.

0S_ERR_TMR_INVALID _OPT You specified an invalid option for ‘opt’.

0S_ERR_TMR_STOPPED The timer was already stopped. However, this is NOT
considered an actual error since it’s OK to attempt to stop a
timer that is already stopped.

OS_ERR_TMR_INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has
been deleted or was not created.

555

0S_ERR_TMR_NO_CALLBACK If you wanted the callback to be called but no callback has
been specified for this timer.

Returned Values

0S_TRUE if the timer was stopped (even if it was already stopped).
0S_FALSE if an error occurred.

Notes/Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

3. The callback function is NOT called if the timer is already stopped.

Example

0S_TMR *CloseDoorTmr;

void Task (void *p_arg)

{
INT8U err;
(void)p_arg;
for (G3) {
OSTmrStop(CloseDoorTmr,
OS_TMR_OPT_CALLBACK,
(void *)0,
&err);
if (err == OS_ERR_NONE || err == OS_ERR_TMR_STOPPED) {
/* Timer was stopped ... */
/* ... callback was called only if timer was running */
}
}
}

556

OSVersion()

INT16U OSVersion(void);

Chapter

File

Called from

Code enabled by

3 OS_CORE.C

Task or ISR

N/A

OSVersion() obtains the current version of uC/OS-II.

Arguments
none

Returned Value

The version is returned as x.yy multiplied by 100. For example, v2.85 is returned as 285.

Notes/\Warnings
none

Example

void TaskX (void *p_arg)
{

INT16U os_version;

for (53) {

os_version = OSVersion();

/* Obtain pC/0S-11"s version */

557

	OS_ENTER_CRITICAL()
	OSEventNameGet()
	OSEventNameSet()
	OSFlagAccept()
	OSFlagCreate()
	OSFlagDel()
	OSFlagNameGet()
	OSFlagNameSet()
	OSFlagPend()
	OSFlagPendGetFlagsRdy()
	OSFlagPost()
	OSFlagQuery()
	OSInit()
	OSIntEnter()
	OSIntExit()
	OSMboxAccept()
	OSMboxCreate()
	OSMboxDel()
	OSMboxPend()
	OSMboxPendAbort()
	OSMboxPost()
	OSMboxPostOpt()
	OSMboxQuery()
	OSMemCreate()
	OSMemGet()
	OSMemNameGet()
	OSMemNameSet()
	OSMemPut()
	OSMemQuery()
	OSMutexAccept()
	OSMutexCreate()
	OSMutexDel()
	OSMutexPend()
	OSMutexPost()
	OSMutexQuery()
	OSQAccept()
	OSQCreate()
	OSQDel()
	OSQFlush()
	OSQPend()
	OSQPendAbort()
	OSQPost()
	OSQPostFront()
	OSQPostOpt()
	OSQQuery()
	OSSchedLock()
	OSSchedUnlock()
	OSSemAccept()
	OSSemCreate()
	OSSemDel()
	OSSemPend()
	OSSemPendAbort()
	OSSemPost()
	OSSemQuery()
	OSSemSet()
	OSStart()
	OSStatInit()
	OSTaskChangePrio()
	OSTaskCreate()
	OSTaskCreateExt()
	OSTaskDel()
	OSTaskDelReq()
	OSTaskNameGet()
	OSTaskNameSet()
	OSTaskResume()
	OSTaskStkChk()
	OSTaskSuspend()
	OSTaskQuery()
	OSTimeDly()
	OSTimeDlyHMSM()
	OSTimeDlyResume()
	OSTimeGet()
	OSTimeSet()
	OSTimeTick()
	OSTmrCreate()
	OSTmrDel()
	OSTmrNameGet()
	OSTmrRemainGet()
	OSTmrSignal()
	OSTmrStart()
	OSTmrStateGet()
	OSTmrStop()
	OSVersion()

