. u
Micripm
© Copyright 2006-2007, Micripm
All Rights reserved

uC/OS-II

ARM Processors

(For ARM7 or ARM9)
(For ARM and Thumb Mode)

Application Note
AN-1014 Rev. E

www.Micrium.com

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Table of Contents

1.00

2.00

3.00

3.01

3.02

3.02.01
3.02.02
3.02.03
3.02.04
3.02.05
3.02.06

3.03

3.03.01
3.03.02
3.03.03
3.03.04
3.03.05
3.03.06
3.03.07
3.03.08
3.03.09

3.04

3.04.01
3.04.02
3.04.03
3.04.04
3.04.05
3.04.06

3.05

INEFOAUCTION .. e e e s 4
The ARM programmer’s MOdelooooiiiiiiiiiiie e 6
HC/OS-II Port for ARM ProCESSOISuuiiieeeiiiiiiiiee e e e eee e e e 11
Directories and FileSoo oo 12
L@ 1 T O = U o 13
OS_CPU.H, macros for ‘externals’...........cccooeuiiiiiiiie e 13
OS_CPU.H, Data TYPES ...eeieeeeeeeeeie ettt e e e 13
OS_CPU.H, Critical SECLONScuuiiiieiiie e 14
OS_CPU.H, Stack growthccooemiiiiiiiieeeeee e 14
OS_CPU.H, Task Level Context SwitCh............ccoooiiiiiiiiiii e 15
OS_CPU.H, Function Prototypescccoeieeiiiiiiiiiiieee e 15
L@ 1 T O = U X 17
OS_CPU_C.C, OSINItHOOKBEQGIN() ...vvvvvvrrrrnrniiniiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeneieeeees 17
OS_CPU_C.C, OSINItHOOKENA() +.vvvvveieeeeeeieeeieiiie e 18
OS_CPU_C.C, OSTaskCreateHOOK()uuuuuummmmmmmmiiiiiiiiiiiiiiiiiiiiiiiiiiieiennees 18
OS_CPU_C.C, OSTaSKSEKINIE() ..vevvrverrrrnnmnnnemnnniniiiiiiiiinniiiieiiiniinnieeeennennnennnee 19
OS_CPU_C.C, OSTaSKSWHOOK() ... vvvvrrrrumnnnnnniniiimiiiiiiiiiiiiiiiiiiiiiiiieieenneenenees 21
OS_CPU_C.C, OSTIMETICKHOOK() ... ueeeeeeeeieeeiiiiee e 21
OS_CPU_C.C, OS_CPU_IntDisMeasInit()......c.uuueeeeeeeeeeeeeiiiiieeeeeeeeeeeiiinnnnn 22
OS_CPU_C.C, OS_CPU_IntDisMeasStart()........ccceceeeeeeeeevrrniiieeeeeeeeeeiiiinnnn 23
OS_CPU_C.C, OS_CPU_INtDiSMeasSStOP() .. vvvvuunreeeeeereeeeenniaaeeeeeeeeeeennnnnnnns 24
OS_CPU_AASM ...ttt assessnsnsssnnssnnnnsnnnnnnnnnnnnnns 25
OS_CPU_A.ASM, OS_CPU_SR_SAVE() ..evvvrrrrmmrrmrmmnnnnnrnnininnninnnnnnnnnnnnnnnnnnnes 25
OS_CPU_A.ASM, OS_CPU_SR _ResStore()....c.uceeueeeeeeieeeiiiieeee e 26
OS_CPU_A.ASM, OSStartHIghRAY()evvueerereremeeniinineeniieieeinneninnnnnennnnnennnnnes 26
OS_CPU_A ASM, OSCEXSW() +evvrrvurrrrnrnnnnnnnnnnnnnnnnnnnnnneenennnnnsnnennnsnennnnnnnennnnne 28
OS_CPU_A.ASM, OSINTCIXSW() +evvvrrrrrrnnnnnnennnnnneneeieeenennaennnnnnnnnnnnnnnnnnnnnnnnnnes 30
OS_CPU_A.ASM, OS_CPU_ARM_EXcept XYZ () ...vuverermmmmmmmnmnnnnnnnnnnnnnnnnnns 31
L@ 1S T = C X 36

4.00
4.01
4.02
4.02.01

4.02.02
4.02.03

5.00

6.00
6.01
6.02

7.00

8.00

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Exception Vector Table ... 37
Exception Handling SEqUENCEcoomiiiiiiiiece e 39
Interrupt CONrollErs ... 39
Interrupt Controllers, Atmel's AlC..........oooiii e 40
Interrupt Controllers, Philips and Sharp’s VIC ... 41
Interrupt Controllers, Freescale i.MX............oiiiiiiiiiiicce e 42
Debugging in RAM ... 45
F Y o] o] [To%= 1 T0] o I @7 Yo -SSP 46
APP.C,APP.Hand APP_CFG.H ..., 47
INCLUDES . H ..o 50
BSP (Board Support Package)...........cooooiiiiiiie 51
(7] a1 1113 o o 52
ACKNOWIEAGEMENTS ... 53
(o7 =T o £S31 T [PRR 53
REEIENCES ... e e e e eeeeees 53
L7 0] 01 =T - 53
NN] (PR 54

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

1.00 Introduction

pC/OS-Il has been running on ARM based processors since 1995 (in fact pyC/OS V1.x has). There has
been a number of ARM ports posted on the Micrium web site. The differences have mostly to do with
differences in compilers and what target board they run on.

This application note describes the ‘official’ Micrium port for pC/OS-1l. Figure 1-1 shows a block diagram

showing the relationship between your application, pC/OS8-Il, the port code and the BSP (Board Support
Package). Relevant sections of this application note are referenced on the figure.

Note that the port described in this application note applies to both ARM7 and ARM9 processors and you
can use this port for both ARM and Thumb-based applications. Previous ports either worked in ARM-
mode or in Thumb-mode. This port handles both.

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Section 6

Your Application

APP.C
APP CFG.H
INCLUDES.H
0S_CFG.H

f

pC/0S-ll
Book

uC/0S-1l

0S_CORE.C
0S_FLAG.C
0S_MBOX.C
0S_MEM.C
0S_MUTEX.C
0s_Q.C
0S_SEM.C
0S_TASK.C
0S_TIME.C
0S_TMR.C
ucoS II.H

A

Section 3

uC/0S-1l
ARM Port

0S CPU C.C
0S_CPU_A.ASM
0OS CPU.H
0S8 DRG.C

BSP

BSP.C Section 7
BSP.H

e sy B

Section 2

ARM / Target Board

Figure 1-1, Relationship between modules.

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

2.00

The ARM programmer’s model

Some of the most popular variant of the ARM processors are the ARM7TDMI and ARM92xT. The four
letters stand for:

T (Thumb)

The T stands for Thumb instruction set which addresses the issue of code density. Specifically,
Thumb mode allows instructions to be 16-bits instead of 32-bits thus reducing code density. A
processor having the T suffix can thus run Thumb code.

D (Debug)
The D stands for debug support. This means that the specific ARM7 you are using offers on-chip
debug support, generally through a J-Tag interface.

M (Multiply)
The M means that the CPU contains a hardware multiply instruction.

| (EmbeddedICE macrocell)
Is the debug hardware built into the processor that allows breakpoints and watchpoints to be set.

The visible registers in an ARM processor are shown in Figure 2-1. The ARM has a total of 37 registers.
Each register is 32 bits wide. At any time, only 18 of those registers are directly ‘visible’ by the processor:
RO through R15, CPSR and SPSR (SPSR is not visible in SYS mode).

RO-

R13

R14

R15

R12 RO through R12 are general purpose registers that can be used to hold data as well as
pointers.

Is generally designated as the stack pointer (also called the sP) but could be the recipient
of arithmetic operations.

Is called the Link Register (LR) and is used to store the contents of the PC when a Branch
and Link (BL) instruction is executed. The LR allows you to return to the caller. The LR is
also used during exception processing to store the contents of the PC prior to the
exception.

Is dedicated to be used as the Program Counter (PC) and points to the current instruction
being executed. As instructions are executed, the PC is incremented by either 2 (Thumb
mode) or 4 (ARM mode).

0S-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

RO RO RO RO RO RO

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8_fig R8

R9 R9 R9 R9 R9_fig R9

R10 R10 R10 R10 R10_fig R10

R11 R11 R11 R11 R11_fiq R11

R12 R12 R12 R12 R12_fiq R12

R13 (SP) R13_svc R13_irq R13_abt R13_fig R13_und

R14 (LR) R14_svc R14_irq R14_abt R14_fiq R14_und

R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

CPSR CPSR CPSR CPSR CPSR CPSR

SPSR_svc SPSR_irq SPSR_abt SPSR_fiq SPSR_und

User/SYS SVC IRQ Abort FIQ Undef

Mode Mode Mode Mode Mode Mode
0x10/0x1F 0x13 0x12 0x17 O0x11 0x1B

Figure 2-1, ARM Register Model.

CPSR The cPSR (Current Processor Status Register) is used to store the condition code bits.
These bits are used, for example, to record the result of a comparison operation and to
control whether or not a conditional branch is taken. Figure 2-2 shows the contents of

the CPSR.
31 24 15 8
NZCV IFT MODE
23 16 7 0
Flags Status eXtension Control
\fl \SI \XI \CI

Figure 2-2, The CPSR Register.

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)
MODE

The bottom 5 bits of the register control the processor mode (described later).

T
Bit 5 determines whether the processor is executing Thumb (T == 1) or ARM code
(T==0).

F
Bit 6 is the FIQ (Fast Interrupt Request) interrupt enable flag. Interrupts are recognized
on the FIQ input of the processor when this bit is 0. Interrupts are disabled when it's a 1.

|
Bit 7 is the IRQ (Interrupt Request) interrupt enable flag. Interrupts are recognized when
the bit is 0 and ignored when it’'s a 1.

N
Bit 31 is the ‘negative’ bit and is set when the last ALU operation produced a negative
result (i.e. the top bit of a 32-bit result was a one).

z
Bit 30 is the ‘zero’ bit and is set when the last ALU operation produced a zero result
(every bit of the 32-bit result was zero).

C
Bit 29 is the ‘carry’ bit and is set when the last ALU operation generated a carry-out,
either as a result of an arithmetic operation in the ALU or from the shifter.

Vv
Bit 28 is the ‘overflow’ bit and is set when the last arithmetic ALU operation generated an
overflow into the sign bit.

The CPU can be in any of 7 modes: USER, SYS, SVC, IRQ, FIQ, ABORT and UNDEF (see Figure 2-1).

USER

SYS

SvC

The USER mode is the least ‘privileged’ mode and in fact, certain instructions cannot be
executed when in this mode. For this reason, uC/OS-Il applications will never be in this
mode. Only registers RO-R15 and CPSR are ‘visible’ by the processor in this mode.

The SYS mode uses the same registers as in USER mode except that code running in
SYS mode has all the privileges of the other modes. Only registers RO-R15 and CPSR
are ‘visible’ by the processor in this mode.

The SVC (Supervisor) mode is the default mode at power up. The processor can
execute any instruction in this mode. In this mode, register R13 and R14 are not visible.
Instead, alternate registers replace R13 and R14 and these are called R13 svc and
R14 svc. In other words, only the registers in the SVC column of Figure 2-1 are visible.
We decided to run the uyC/OS-Il port in SVC mode. The reason for choosing this will
become apparent as we describe the port.

IRQ

FlQ

ABORT

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

When the I-bit of the CPSR is 0, the CPU will recognize interrupt requests from the IRQ
input of the processor. When an interrupt occurs, the CPU does the following:

Switches mode to IRQ mode (MODE = 0x12)

Saves the CPSR into the SPSR_irq register

Saves the PC into R14 irq (i.e. the Link Register of the IRQ mode)
The I-bit of the CPSR is set to 1 disabling further IRQs

The PC is forced to address 0x00000018

Note that registers RO-R12 are the same as SYS mode except that the IRQ mode has its
own set of R13_irqg (the SP), R14 irqg (the LR) and SPSR_irgq registers. In fact, when
an interrupts occurs, the CPSR of the SVC mode is saved in the SPSR_irq.

When the F-bit of the CPsSR is 0, the CPU will recognize interrupt requests from the FIQ
input of the processor. When an interrupt occurs, the CPU does the following:

Switches mode to FIQ mode (MODE = 0x11)

Saves the CPSR into the SPSR_fiq register

Saves the pPC into R14 fiqg (i.e. the Link Register of the FIQ mode)

The F-bit and the I-bit of the CPSR are both set to 1 disabling further FIQs and
IRQs

The pc is forced to address 0x0000001C

Note that registers R0O-R7 are the same as SYS mode except that the FIQ mode has its
own set of R8 fig to R12 fig and R13 fiq (the SP), R14 fig (the LR) and
SPSR_figqg registers. In fact, when an interrupts occurs, the CPSR of the current mode is
saved in the SPSR_figq.

A memory abort is signaled by the memory system. Activating an abort in response to an
instruction fetch marks the fetched instruction as invalid. An abort will take place if the
processor attempts to execute the invalid instruction.

Switches mode to ABORT mode (MODE = 0x17)

Saves the CPSR into the SPSR_abt register

Saves the PC into R14 abt (i.e. the Link Register of the ABORT mode)
The I-bit of the CPSR is set to disable IRQs

The pc is forced to address 0x0000000C

Activating an abort in response to a data access (Load or Store) marks the data as
invalid. A data abort will result in the following actions:

Switches mode to ABORT mode (MODE = 0x17)

Saves the CPSR into the SPSR_abt register

Saves the PC into R14 abt (i.e. the Link Register of the ABORT mode)
The I-bit of the CPSR is set to disable IRQs

The pC is forced to address 0x00000010

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

UNDEF If ARM executes a coprocessor instruction, it waits for any external coprocessor to
acknowledge that it can execute the instruction. If no coprocessor responds, an
undefined instruction exception occurs.

Switches mode to UNDEF mode (MODE = 0x1B)

Saves the CPSR into the SPSR_und register

Saves the PC into R14 und (i.e. the Link Register of the UNDEF mode)
The I-bit of the CPSR is set to disable IRQs

The pC is forced to address 0x00000004

10

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.00 pC/OS-Il Port for ARM processors

We used the IAR EWARM V4.40A (Embedded Workbench for the ARM) to test the port. The EWARM
contains an editor, a C/EC++ compiler, an assembler, a linker/locator and the C-Spy debugger. The
C-Spy debugger actually contains an ARM simulator which allows you to test code prior to run it on actual
hardware. We tested the ARM port on a number of different ARM7 and ARM9 target processors.

You can adapt the port provided in this application note to other ARM based compilers. The instructions
(i.e. the code) should be identical and all you have to do is adapt the port to your compiler specifics. We
will describe some of these when we cover the contents of the different files.

IMPORTANT

The IAR compiler version that we used assumed that application code was running in SYS mode. In fact,
the compiler calls main () in SYS mode. However, when we start pC/OS-Il, we switch the mode to SVC
mode and run all tasks in SVC mode.

Below are a few assumptions about the port:
- You have pC/OS-Il V2.77 or higher
pC/OS-1I runs in either ARM mode or Thumb mode
- Tasks are created in the same mode as the one selected for running uC/0S-Il

o Tasks can call either ARM or Thumb mode functions
Tasks will run in SVC mode

You can build the example code using either ARM (see figure 3-1) or Thumb (see figure 3-2) mode. Note
that you need to enable ‘Generate interwork code’. The screen shots are for the IAR's EWARM
toolchain.

&1 C APP _
@ e Categon:
B CaBSP General Options
B bsp.c C/C++ Compiler Target] Output 1 Library Cnnf\guratinn] Library oplions]
& CauC/os-l ssembler Processor variant
Blos_rore o Custom Build
Bl os_flag.c E‘:Cz’gger " Core -
% M <IN Simulator @ Chip [$TOOLKIT_DIRghconfighohip!Philps\LPC21 06,7 _J
05_tnem.c
= Angel
[os_mutexe 18R ROM-monitor
Bos_gc J-Link. L
Bl os_semc Macsaigor None -
B os_task.c ROI
Bl os_time.c Third-Party Driver W Generate interwork code
F&a £33 uCHOSHI Port Processor mods Endian maode | Stack align
B 0s_Cpl_a.asm % A i Little & A bptes
%Ds_gﬁu_c.c i " Big " Bhytes
os_dhg.c
E Output

Figure 3-1, Building the example using ARM mode in IAR’s EWARM.

11

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

= E uC0s-Il

B os_corec

Bl os_flag.c

[os_mbaxc

[F os_mem.c

B os_mutexc
Bos_gc

Bl os_semc

B os_task.c

[E os_tirme o

= E3 uC/0s-ll Port

[os_cpu_aasm
Bl ns_cpu_ce

B os_dbog.c

L= [Output

B Thumb-0S d79
L— B Thurnh-0S map

Categary:

General Dptions
C/C++ Compiler
Assembler
Custarm Build
Linker
Debugger

Simulator

Angel

14F ROM-monitar
J-Link

M acraigar

RDI

Third-Party Driver

Target 1 Dutputi Librarp Configuration | Librar options

- Processor variant —

" Core

@ Chip |$TOOLKIT_DIRS\configchip'PhiipsL PC2106.7 _J

FPU

Mone vl

v Generate interwork code

-Processor mode—— -~ Endian mode- 1 Stack align
A o Little 4 bytes

& Thumb " Big 2 bytes

Cancel

Figure 3-2, Building the example using Thumb mode in IAR’s EWARM.

3.01

Directories and Files

The software that accompanies this application note is assumed to be placed in the following directory:

\Micrium\Software\uCOS-II\ARM\Generic\IAR

Like all pC/OS-Il ports, the source code for the port is found in the following files:

0S_CPU.H
0S_CPU C.C
0S_CPU_A.ASM
0S_DBG.C

Test code and configuration files are found in their appropriate directories and are described later.

12

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.02

0S_CPU.H

OS CPU.H contains processor- and implementation-specific #defines constants, macros, and
typedefs.

3.02.01 OS_CPU.H, macros for ‘externals’

OS CPU GLOBALS and 0S_CPU EXT allows us to declare global variables that are specific to this port
(described later).

Listing 3-1, OS_CPU.H, Globals and Externs

#ifdef
#define
#else
#define
#endif

0S_CPU_GLOBALS
0S_CPU_EXT

OS _CPU_EXT extern

3.02.02 OS_CPU.H, Data Types

Listing 3-2, OS_CPU.H, Data Types

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

typedef
typedef

L3-2(1)

L3-2(2)

L3-2(3)

L3-2(4)

unsigned char BOOLEAN;

unsigned char INT8U;

signed char INT8S;

unsigned short INT16U; // (1)
signed short INT16S;

unsigned int INT32U;

signed int INT32S;

float FP32; /] (2)

double FP64;

unsigned int OS STK; // (3)

unsigned int 0S_CPU_SR; // (4)
If you were to consult the IAR compiler documentation, you would find that an short is
16 bits and an int is 32 bits. Most ARM compilers should have the same definitions.
Floating-point data types are included even though pC/OS-ll doesn't make use of
floating-point numbers.
A stack entry for the ARM processor is always 32 bits wide; thus, 0S_STK is declared
accordingly. All task stacks must be declared using OS_STK as its data type.
The status register (the CPSR and SPSR) on the ARM processor is 32 bits wide. The

OS_CPU_SR data type is used when OS CRITICAL METHOD #3 is used (described
below). In fact, this port only supports 0S CRITICAL METHOD #3 because it's the

preferred method for pC/OS-Il ports.

13

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.02.03 OS_CPU.H, Critical Sections

pC/OS-I1, as with all real-time kernels, needs to disable interrupts in order to access critical sections of
code and re-enable interrupts when done. pC/OS-Il defines two macros to disable and enable
interrupts: 0S_ENTER CRITICAL() and OS_EXIT CRITICAL (), respectively. pC/OS-Il defines three
ways to disable interrupts but, you only need to use one of the three methods for disabling and enabling
interrupts. The book (MicroC/OS-Il, The Real-Time Kernel) describes the three different methods. The
one to choose depends on the processor and compiler. In most cases, the prefered method is
OS_CRITICAL METHOD #3.

OS_CRITICAL METHOD #3 implements OS _ENTER CRITICAL () by writing a function that will save the
status register of the CPU in a variable. 0S EXIT CRITICAL () invokes another function to restore the
status register from the variable. In the book, Mr. Labrosse recommends that you call the functions
expected in OS ENTER CRITICAL() and OS EXIT CRITICAL(): OS _CPU SR Save() and
OS CPU SR Restore (), respectively. The code for these two functions is declared in 0S CPU A.S
(described later).

Listing 3-3, OS_CPU.H, 0S_ENTER CRITICAL() and OS_EXIT CRITICAL ()

#define OS_CRITICAL METHOD 3
$if 0S_CRITICAL METHOD ==
#if 0S_CPU_INT DIS MEAS EN > 0

#define OS ENTER CRITICAL() {cpu sr = OS CPU SR Save(); \
OS CPU IntDisMeasStart();}

#define OS EXIT CRITICAL() {OS_CPU_IntDisMeasStop(); \
OS CPU_SR Restore(cpu_sr);}

#else

#define OS _ENTER CRITICAL () {cpu sr = 0OS CPU SR Save();}
#define OS _EXIT CRITICAL() {OS_CPU SR Restore (cpu_sr);}
#endif

#endif

3.02.04 OS_CPU.H, Stack growth

The stack on the ARM grows from high memory to low memory and thus, 0S STK GROWTH is set to 1 to
indicate this to pC/OS-Il.

Listing 3-4, OS_CPU.H, Stack Growth

#define OS_ STK GROWTH 1

14

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.02.05 OS_CPU.H, Task Level Context Switch

Task level context switches are performed when pC/OS-Il invokes the macro 0S_TASK Sw (). Because
context switching is processor specific, 0S TASK SW() needs to execute an assembly language
function. In this case, 0SCtxSw () which is declared in 0S_CPU_ A.ASM (described later).

Listing 3-5, OS_CPU.H, Task Level Context Switch

#define OS TASK SW() OSCtxSw ()

3.02.06 OS_CPU.H, Function Prototypes

The prototypes in Listing 3-6 are for the functions used to disable and re-enable interrupts using
OS_CRITICAL METHOD #3 and are described later. You should note that these prototypes are prefixed
with the special keyword arm. This is an IAR keyword that indicates that these functions will run in
ARM mode and thus, when called, the compiler will generate the appropriate instructions.

Listing 3-6, OS_CPU.H, Function Prototypes

#if OS CRITICAL METHOD ==

__arm OS CPU SR 0S CPU_SR Save(void);

__arm void OS CPU_SR Restore (OS _CPU SR cpu_sr);
#endif

The prototypes in Listing 3-7 are the exception handling related functions. 0S CPU InitExceptVect()
must be called from the BSP to initialize the CPU exception vectors to the eight exception handlers.
These eight exception handlers are the 0S_CPU_ARM XYz assembly functions. These handlers save the
CPU state and branch immediately to a common exception handler, 0S CPU ARM ExceptHndlr ().
The common exception handler will do uC/OS-Il internal task management (save state, etc) and will
eventually call a board and application dependant exception handler, 0S CPU ExceptHndlr (), located
in BSP. Specifically, the arm keyword indicates that these function will execute in ARM mode whether
called from Thumb or ARM mode code.

Listing 3-7, OS_CPU.H, Function Prototypes

void OS CPU InitExceptVect (void);
__arm void OS_CPU_ARM ExceptResetHndlr (void);
__arm void OS CPU ARM ExceptUndefInstrHndlr (void);
__arm void OS CPU ARM ExceptSwiHndlr (void);
__arm void OS CPU ARM ExceptPrefetchAbortHndlr (void);
__arm void OS_CPU_ARM ExceptDataAbortHndlr (void);
__arm void 0OS_CPU_ARM ExceptAddrAbortHndlr (void);
__arm void OS CPU ARM ExceptIrgHndlr (void);
__arm void OS CPU ARM ExceptFigHndlr (void);

void OS_CPU_ExceptHndlr (INT32U except type);

15

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

As of V2.77, the prototypes for 0SCtxSw (), 0SIntCtxSw() and OSStartHighRdy () need to be
placed in 0S CPU.H. In fact, it makes sense to do this since these are all port specific files. The reason
we made the change is to allow for declarations as shown in Figure 3-8. Specifically, the arm keyword
indicates that these functions will execute in ARM mode whether called from Thumb or ARM mode code.

Listing 3-8, OS_CPU.H, Function Prototypes

__arm void OSCtxSw (void) ;
__arm void OSIntCtxSw (void) ;
arm void OSStartHighRdy (void) ;

The prototypes in Listing 3-9 are for functions used to measure the interrupt disable time. Basically, we
read the value of a timer just after disabling interrupts and read it again before enabling interrupts. The
difference in timer counts indicates the amount of time interrupts were disabled.
OS_CPU_IntDisMeasStop () actually keeps track of the highest value of this delta counts and thus, the
maximum interrupt disable time. We’'ll describe this in greater details later.

Listing 3-9, OS_CPU.H, Function Prototypes

#if OS CRITICAL METHOD ==

void OS_CPU_IntDisMeasInit (void);
void OS _CPU IntDisMeasStart (void);
void OS CPU_ IntDisMeasStop (void) ;
INT16U OS CPU IntDisMeasTmrRd (void) ;
#endif

16

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03 0OS_CPU C.C

A pC/0S-1l port requires that you write ten fairly simple C functions:

OSInitHookBegin ()
OSInitHookEnd ()
OSTaskCreateHook ()
OSTaskDelHook ()
OSTaskIdleHook ()
OSTaskStatHook ()
OSTaskStkInit ()
OSTaskSwHook ()
OSTCBInitHook ()
OSTimeTickHook ()

Typically, pC/OS-Il only requires 0STaskStkInit (). The other functions allow you to extend the
functionality of the OS with your own functions. The functions that are highlighted will be discussed in this

section. The following functions have been added in order to measure interrupt disable time and will be
described later:

OS_CPU_IntDisMeasInit()
OS_CPU_IntDisMeasStart()
OS_CPU_IntDisMeasStop ()

Note that you will also need to set the #define constant 0OS CPU HOOKS EN to 1in OS CFG.H in order
for the compiler to use the functions declared in this file.

3.03.01 OS_CPU_C.C, OSInitHookBegin()

This function is called by pC/OS-II's 0SInit () at the very beginning of 0sInit (). It gives the
opportunity to add additional initialization code specific to the port. In this case, we initialize the global
variable (global to 0S _CPU C.C) 0STmrCtr (which is used by the 0S_TMR.C module (if 0S_TMR EN is
setto 1).

Listing 3-10, OS_CPU_C.C, 0SInitHookEnd ()

void OSInitHookBegin (void)
{
#if OS_TMR EN > 0
OSTmrCtr = 0;
#endif
}

17

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03.02 OS_CPU_C.C, OSInitHookEnd()

This function is called by pC/OS-II's 0sInit () at the very end of 0SInit (). It gives the opportunity to
add additional initialization code specific to the port. In this case, we initialize global variables which are
used by the interrupt disable measurement code (if 0S_CPU INT DIS MEAS ENis setto 1).

Listing 3-10, OS_CPU_C.C, 0SInitHookEnd ()

void OSInitHookEnd (void)

{

#if OS CPU INT DIS MEAS EN > 0
0S CPU IntDisMeasInit();

fendif

}

3.03.03 OS_CPU_C.C, OSTaskCreateHook()

This function is called by pC/OS-II's 0STaskCreate () or OSTaskCreateExt () when a task is
created. OSTaskCreateHook () gives the opportunity to add code specific to the port when a task is
created. In our case, we call the initialization function of pC/OS-View (an optional module available for
pC/OS-Il which performs task profiling at run-time, See www.micrium.com. for details).

Note that for OSView TaskCreateHook () to be called, the target resident code for uC/OS-View must
be included as part of your build. In this case, you need to add a #define OS VIEW MODULE 1 in
OS_CFG. H of your application.

Note that if 0S VIEW MODULE is 0, we simply tell the compiler that ptcb is not actually used (i.e.
(void)ptcb)) and thus avoid a compiler warning.

Listing 3-11, 0S_CPU_C.C, 0SInitHookEnd ()

void OSTaskCreateHook (0OS TCB *ptcb)
{
#if OS_VIEW MODULE > 0

OSView TaskCreateHook (ptcb);
felse

(void) ptcb;
#endif
}

18

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03.04 OS_CPU_C.C, OSTaskStkinit()

pC/OS-II assumes that tasks run in SVC mode (the CPSR of the task is initialized to ARM SVC MODE
(0x13 if in ARM mode or 0x33 if in Thumb mode).

It is typical for ARM compilers to pass the first argument of a function into the RO register. Recall that a
task is declared as shown in listing 3-12.

Listing 3-12, pC/OS-Il Task

void MyTask (void *p_ arg)
{
/* Do something with ‘p arg’, optional */
while (1) {
/* Task body */
}
}

The code in Listing 3-13 initializes the stack frame for the task being created. The task received an
optional argument ‘v _arg’. That's why ‘v _arg’ is passed in RO when the task is created. The initial
value of most of the CPU registers is not important so, we decided to initialize them to values
corresponding to their register number. This makes it convenient when debugging and examining stacks
in RAM. The initial values are thus useful when the task is first created but, of course, the register values
will most likely change as the task code is executed.

Listing 3-13, OS_CPU_C.C, 0STaskStkInit()

0S_STK *0STaskStkInit (void (*task) (void *pd), void *p arg, OS STK *ptos, INT16U opt)
{

0S STK *stk;

INT32U0 task addr;

opt = opt; /* 'opt' is not used, prevent warning */
stk = ptos; /* Load stack pointer */
task addr = (INT32U)task & ~1;
* (stk) = (INT32U) task _addr; /* Entry Point */
(--stk) = (INT32U)0x14141414L; / R14 (LR) */
* (--stk) = (INT32U0)0x12121212L; /* R12 */
* (--stk) = (INT32U)O0x11111111L; /* R11 */
* (--stk) = (INT32U)0x10101010L; /* R10 */
(--stk) = (INT32U0)0x09090909L; / R9 */
* (--stk) = (INT32U)0x08080808L; /* R8 */
* (--stk) = (INT32U)0x07070707L; /* R7 */
* (--stk) = (INT32U)0x06060606L; /* R6 */
(--stk) = (INT32U)0x05050505L; / R5 */
* (--stk) = (INT32U)0x04040404L; /* R4 */
(--stk) = (INT32U)0x03030303L; / R3 */
* (--stk) = (INT32U)0x02020202L; /* R2 */
(--stk) = (INT32U0)0x01010101L; / R1 */
(--stk) = (INT32U)p arg; / RO : argument */
if ((INT32U)task & 0x01) { /* See if task runs in Thumb or ARM mode */

(--stk) = (INT32U)ARM SVC MODE THUMB; / CPSR THUMB-mode) */
} else {

* (--stk) = (INT32U)ARM_SVC_MODE_ARM; /* CPSR ARM-mode) */

}

return (stk);

19

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Figure 3-2 shows how the stack frame is initialized for each task when it's created.

stk ?27? Low Memory

ptos High Memory

Figure 3-3, The Stack Frame for each Task for ARM port.

When the task is created, the final value of stk is placed in the 0S_TCB of that task by the pC/0S-II
function that calls 0STaskStkInit () (i.e. OSTaskCreate () or OSTaskCreateExt ()).

20

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03.05 OS_CPU_C.C, OSTaskSwHook()

OSTaskSwHook () is called when a context switch occurs. This function allows the port code to be
extended and do things such as measuring the execution time of a task, output a pulse on a port pin
when a contact switch occurs, etc. In this case, we call the pC/0OS-View task switch hook called

OSView TaskSwHook (). This assumes that you have pC/0S-View as part of your build and that you
set 0S_VIEW MODULE to 1in OS_ CFG.H.

Listing 3-14, 0S_CPU_C.C, OSTaskSwHook()

void OSTaskSwHook (void)

{

#if OS_VIEW MODULE > 0
OSView TaskSwHook () ;

#endif

}

3.03.06 OS_CPU_C.C, OSTimeTickHook()

0STimeTickHook () is called at the very beginning of 0STimeTick (). This function allows the port
code to be extended and, in our case, we call the pC/OS-View function 0SvView TickHook (). Again,
this assumes that you have pC/OS-View as part of your build and that you set 0S VIEW MODULE to 1
in 0S_CFG.H.

0STimeTickHook () also determines whether it's time to update the pC/OS-1l timers. This is done by
signaling the timer task.

Listing 3-15, 0S_CPU_C.C, OSTimeTickHook()

void OSTimeTickHook (void)

{

#if OS_VIEW MODULE > 0
OSView TickHook();

fendif

#if OS TMR EN > 0
OSTmrCtr++;
if (OSTmrCtr >= (0S_TICKS PER SEC / OS _TMR CFG TICKS PER SEC)) |{
OSTmrCtr = 0;
OSTmrSignal () ;
}
fendif
}

21

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03.07 OS_CPU_C.C, OS_CPU_IntDisMeaslnit()

OS_CPU_ IntDisMeasInit () is called by 0SInitHookEnd() (see section 3.03.01) to initialize the
interrupt disable time measurement variables as shown below.

Basically, we added functions to the port to allow us to measure the amount of time that interrupts are
disabled. This is not something that is needed by the port but it can provide valuable information about
the responsiveness of your system to interrupts.

The way interrupt disable time measurement works is simple. Just after disabling interrupts, we read the
contents of a free running 16-bit (or 32-bit) timer. Just before re-enabling interrupts, we read the free
running counter again and compute the difference between the two readings. Maximum interrupt disable
time is obtained by tracking the highest value of the difference. The value of the difference represents
timer counts and thus, to convert to actual time, you need to know how fast the counter is being
incremented (or decremented).

The function in listing 3-16 initializes the measurement and can actually be called at any time to ‘reset’ the
maximum count.

Listing 3-16, OS_CPU_C.C, OS_CPU_IntDisMeasiInit()

#if OS CPU INT DIS MEAS EN > 0
void OS_CPU_IntDisMeasInit (void)
{
0S_CPU_IntDisMeasNestingCtr
0S CPU_IntDisMeasCntsEnter
0S CPU IntDisMeasCntsExit
0S CPU_ IntDisMeasCntsMax
O0S CPU_IntDisMeasCntsDelta
0S CPU_ IntDisMeasCntsOvrhd
0S CPU_IntDisMeasStart(); /* Measure the overhead of the functions */
0S CPU_IntDisMeasStop () ;
0S CPU_IntDisMeasCntsOvrhd = OS CPU IntDisMeasCntsDelta;

/* Clear variables used by these functions */

O O OO oo
Ne Ne e N N S

}
#endif

22

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03.08 OS_CPU_C.C, 0S_CPU_IntDisMeasStart()

OS_CPU IntDisMeasStart () is called when interrupts are disabled by OS ENTER CRITICAL ().

Listing 3-17, OS_CPU_C.C, OS_CPU_IntDisMeasStart()

#if OS_CPU_INT DIS MEAS EN > 0

void OS CPU IntDisMeasStart (void)

{
0S CPU_ IntDisMeasNestingCtr++; (1)
if (OS_CPU IntDisMeasNestingCtr == 1) { (2)

0S CPU_IntDisMeasCntsEnter = OS CPU IntDisMeasTmrRd();

}

}

#endif
L3-17(1) A nesting counter is maintained in case you nest 0OS ENTER CRITICAL () calls.
L3-17(2) If this is the first level of nesting for 0S_ENTER CRITICAL () then, we call a function that

you would define in your application called 0S CPU IntDisMeasTmrRd () to read the
value of a 16-bit free-running timer. Note that you could also use a 32-bit timer. In this
case, you would simply redeclare the variables and prototypes accordingly. The value of
the timer is saved in 0S_CPU_IntDisMeasCntsEnter

23

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.03.09 OS_CPU_C.C, OS_CPU_IntDisMeasStop()

OS_CPU_IntDisMeasStop () is called when interrupts are re-enabled by 0S EXIT CRITICAL().

Listing 3-18, OS_CPU_C.C, OS_CPU_IntDisMeasStop()

#if OS CPU INT DIS MEAS EN > 0
void OS CPU IntDisMeasStop (void)
{

0S CPU_ IntDisMeasNestingCtr--; (1)
if (0OS_CPU IntDisMeasNestingCtr == 0) {
0S CPU_IntDisMeasCntsExit = 0OS CPU IntDisMeasTmrRd();
OS CPU_IntDisMeasCntsDelta = OS CPU IntDisMeasCntsExit (2)
- 0S CPU IntDisMeasCntsEnter;
if (OS_CPU_IntDisMeasCntsDelta > OS_CPU_IntDisMeasCntsOvrhd) { (3)
0S CPU_IntDisMeasCntsDelta -= OS CPU IntDisMeasCntsOvrhd;
} else {
0S CPU_IntDisMeasCntsDelta = 0OS CPU IntDisMeasCntsOvrhd;
}
if (OS_CPU IntDisMeasCntsDelta > OS CPU IntDisMeasCntsMax) { (4)

O0S CPU_IntDisMeasCntsMax = OS CPU IntDisMeasCntsDelta;
}

}

#endif

L3-18(1) The nesting counter is decremented so that we only take a time measurement at the last
nested OS EXIT CRITICAL () calls.

L3-18(2) We measure the difference in timer value since interrupts were disabled.

L3-18(3) We make sure that the counts are higher than the measured overhead so we don'’t
subtract a number that is larger than the delta. This would cause a ‘large’ count for the
measured interrupt disable time.

L3-18(4) We record the highest value in 0S_CPU_IntDisMeasCntsMax.

24

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.04 OS_CPU_A.ASM

A pC/OS-Il port requires that you write five fairly simple assembly language functions. The ARM port
actually contains fourteen functions because portions of the exception handling code are written in
assembly language as discussed in this section. These functions are needed because you normally
cannot save/restore registers from C functions. The fourteen functions are:

0S _CPU_SR Save()

OS CPU_SR Restore()
OSStartHighRdy ()
OSCtxSw ()
OSIntCtxSw ()

OS CPU InitExceptVect ()

OS_CPU_ARM ExceptResetHndlr ()

OS CPU _ARM ExceptUndefInstrHndlr ()
0S_CPU_ARM ExceptSwiHndlr ()

OS CPU_ARM ExceptPrefetchAbortHndlr ()
OS _CPU_ARM ExceptDataAbortHndlr ()
OS_CPU_ARM ExceptAddrAbortHndlr ()

OS CPU _ARM ExceptIrgHndlr ()
0S_CPU_ARM ExceptFigHndlr ()

3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save()

The code in listing 3-19 implements the saving of the CPSR register and then disabling interrupts for
OS CRITICAL METHOD #3. The code follows the application note published by Atmel (“Disabling
Interrupts at Processor Level”) for properly disabling interrupts on the ARM. In this implementation, both
the FIQ and IRQ interrupts are disabled.

You should note that we use the BX LR instruction to return to the appropriate mode. Specifically, if
OS CPU SR Save () was called from ARM mode code, CPSR bit 5 would stay at 0. If we return to
Thumb mode code then CPSR bit 5 will be set to 1 by the BX instruction.

When this function returns, RO contains the state of the CPSR register prior to disabling interrupts.
Listing 3-19, OS_CPU_SR Save()

0S_CPU_SR Save

MRS RO, CPSR
; Set IRQ and FIQ bits in CPSR to disable all interrupts.
ORR R1, RO, #0S CPU ARM CONTROL INT DIS
MSR CPSR c, R1
BX LR ; Disabled, return the original CPSR contents in RO.

25

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore()

The code in the listing below implements the function to restore the CPSR register for
OS_CRITICAL METHOD #3. When called, it's assumed that RO contains the desired state of the CPSR
register. You should note that we only update the ‘control’ field of the CPSR (i.e. lower 8 bits of the CPSR).

Again, the BX LR instruction returns to the appropriate mode (ARM or Thumb).

Listing 3-20, 0S_CPU_SR Restore()

OS_CPU_SR Restore
MSR CPSR_c, RO
BX LR

3.04.03 OS_CPU_A.ASM, OSStartHighRdy()

OSStartHighRdy () is called by 0SStart () to start running the highest priority task that was created
before calling 0SStart (). OSStart() sets OSTCBHighRdy to point to the 0S TCB of the highest
priority task.

Listing 3-21, OSStartHighRdy ()

OSStartHighRdy
; (1) Change to SVC mode.
MSR CPSR ¢, #(0OS CPU ARM CONTROL INT DIS | OS CPU ARM MODE SVC)
LDR RO, ?0S_TaskSwHook ; (2) OSTaskSwHook () ;
MOV LR, PC
BX RO
LDR RO, ?0S Running ; (3) OSRunning = TRUE;
MOV R1, #1
STRB R1, [RO]
; SWITCH TO HIGHEST PRIORITY TASK.
LDR RO, ?0S TCBHighRdy ; (4) Get highest priority task TCB address.
LDR RO, [RO] ; get stack pointer.
LDR SP, [RO] ; switch to the new stack.
LDR RO, [SP], #4 ; (5) Prepare to return to proper mode ..
MSR SPSR cxsf, RO .. (ARM or Thumb)
LDMFED sp!, {RO-R12, LR, PC}"*; (6) pop new task's context.

26

L3-21(1)

L3-21(2)

L3-21(3)

L3-21(4)

L3-21(5)

L3-21(6)

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

The IAR compiler startup code sets the mode to SYS mode prior to calling main (). We
decided to use SVC mode for the uC/OS-ll because it allows us to use the SPSR

register to return to the proper mode (ARM or Thumb) as described in L3-21(7).
Interrupts should not be enabled at this point but, just to make sure, we disable them.

Before starting the highest priority task, we call 0STaskSwHook () in case a hook call
has been declared. Note that we use a BX instruction because 0STaskSwHook () could
be compiled in either ARM or Thumb mode. All ARM instructions are all 32 bits and thus,
the ARM is not able to specify a 32-bit address as part of the instruction. Because of
that, the address of 0STaskSwHook () is actually declared at the end of the file and the
ARM obtains this address via a PC-relative address. Specifically:

?0S_ TaskSwHook:
DC32 OSTaskSwHook

DC32 is an assembler directive that declares storage for a 32 bit constant that resides in
code. ?0S Running is thus just a local label.

The pC/OS-Il flag OSRunning is set to TRUE indicating that uC/OS-11 will be running
once the first task is started. All ARM instructions are all 32 bits and thus, the ARM is not
able to specify a 32-bit address as part of the instruction. Because of that, the address of
OSRunning is actually declared at the end of the file and the ARM obtains this address
via a PC-relative address. Specifically:

?0S_Running:
DC32 OSRunning

We then get the pointer to the task’s top-of-stack (was stored by 0STaskCreate () or
OSTaskCreateExt ()). See figure 3-1 (stk is stored in the 0s_TCB of the created
task).

We then pop the CPSR from the task’s stack but we place it in the SPSR register. Recall
that when the task was created, the CPSR register on the stack frame was initialized with
ARM SVC _MODE ?727? (0x00000013 for ARM mode or 0x00000033 for Thumb mode).
The next instruction will restore the CPSR register from the SPSR register and place the
task in the proper mode (ARM or Thumb) according to the value retrieved for the SPSR.

We then pop the remaining registers of the task’s context from the stack. Because the
PC is the last element popped off the stack, the CPU immediately jumps to that address
when it's loaded. In other words, we will run the beginning of the task code as soon as
the pC is loaded. Note that the V' indicates to also copy the SPSR to the CPSR register
which places the task in the proper mode (ARM or Thumb).

27

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.04.04 OS_CPU_A.ASM, OSCtxSw()

The code to perform a ‘task level’ context switch is shown below in pseudo-code. 0SCtxSw () is called
when a higher priority task is made ready to run by another task or, when the current task can no longer
execute (e.g. it calls 0STimeDly (), OSSemPend () and the semaphore is not available, etc.).

Recall that all tasks run in SVC mode. A task level context switch simply consists of saving the SVC
registers on the task to suspend and restore the SVC registers of the new task (see also Figure 3-2). The
pseudo code for this is shown below:

Save the CPU registers onto the old task’s stack; /* (1) */
0OSPrioCur = OSPrioHighRdy; /* (2) */
OSTCBCur->0STCBStkPtr = SP; /* (3) */
OSTaskSwHook () ; /* (4) */
SP = OSTCBHighRdy->0OSTCBStkPtr; /* (5) */
OSTCBCur = OSTCBHighRdy; /* (6) */
Restore the CPU registers from the new task’s stack; /* (7)) */

You will notice that we don’t actually save and restore the SPSR register as part of a context switch. The
reason is that the SPSR is only used to return to the appropriate task and is always used with interrupts
disabled.

After RO Refore
CPSR < R1 r-—=----- | CPSR
RO R2 i RO
R1 R3 : R1
R2 R4 | R2
R3 R5 : R3
Ra (1 6 (7 Ra
R5 ’ R7) ! R5
R6 RS : R6
R7 R9 : R7
R8 R10 ' R8
R9 R11 ' RO
R10 R12 ' R10
R11 SP R11
R12 i LR R12
LR : PC LR
PC | PC

Refore l CPSR After

|
|
|
|
|
'
|
A

(5
0s TCR svc 0s TCR

SP SP
N Mode e
OSTCBHighRdy

OSTCRCur

Figure 3-4, Task Level Context Switch.

28

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

The actual code for the task level context switch is shown in Listing 3-22.

Listing 3-22, OSCtxSw ()

OSCtxSw

STMED
STMFED
STMED
MRS

TST

ORRNE
STMED

LDR
LDR
STR

LDR
MOV
BX

LDR
LDR
LDRB
STRB

LDR
LDR
LDR
STR
LDR
LDMED

MSR

LDMF'D

SP!, {LR}
SP!, {LR}
SP!, {RO-R12}
RO, CPSR

LR, #1

RO, RO, #0S CPU ARM CONTROL THUMB

SP!, {RO}

RO, ?20S TCBCur
R1, [RO]
SP, [R1]

RO, ?0S_TaskSwHook
LR, PC
RO

RO, ?0S PrioCur

R1, ?0S PrioHighRdy
R2, [R1]

R2, [RO]

RO, ?0S_TCBCur
R1, ?0S_TCBHighRdy
R2, [R1]

R2, [RO]
SP, [R2]
SP!, {RO}

SPSR_cxsf, RO

SP!, {RO-R12, LR, PC}"

29

’

’

’

SAVE CURRENT TASK'S CONTEXT
Push return address

Push registers

Push current CPSR

See if called from Thumb mode
If yes, Set the T-bit

OSTCBCur->0STCBStkPtr = SP;

OSTaskSwHook () ;

OSPrioCur = OSPrioHighRdy;

OSTCBCur = OSTCBHighRdy;

SP = OSTCBHighRdy->OSTCBStkPtr;

RESTORE NEW TASK'S CONTEXT
Pop new task's CPSR

Pop new task's context

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.04.05 OS_CPU_A.ASM, OSIntCtxSw()

When an exception handler completes, 0SIntExit () is called to determine whether a more important
task than the interrupted task needs to execute. If that's the case, 0SIntExit () determines which task
to run next and calls 0sIntCtxSw () to perform the actual context switch to that task. You will notice that
0SIntCtxSw() is identical to the second half of 0SCtxSw (). The reason we have these as two
separate functions is to simplify debugging. Specifically, if you wanted to set a breakpoint in
0SIntCtxSw (), you would hit the breakpoint during a task level context switch (if 0SIntCtxSw () was
just a label in 0sctxsSw ()). Of course this would make debugging a bit difficult.

Listing 3-23, OSIntCtxSw ()

OSIntCtxSw

LDR RO, ?0S_TaskSwHook ; OSTaskSwHook () ;

MOV LR, PC

BX RO

LDR RO, ?0S PrioCur ; OSPrioCur = OSPrioHighRdy;

LDR R1, ?20S PrioHighRdy

LDRB R2, [R1]

STRB R2, [RO]

LDR RO, ?0S_TCBCur ; OSTCBCur = OSTCBHighRdy;

LDR R1, ?0S_TCBHighRdy

LDR R2, [R1]

STR R2, [RO]

LDR SP, [R2] ; SP = OSTCBHighRdy->OSTCBStkPtr;
; RESTORE NEW TASK'S CONTEXT.

LDMFED SP!, {RO} ; Pop new task's CPSR.

MSR SPSR cxsf, RO

LDMFD sp!, {RO-R12, LR, PC}" ; Pop new task's context.

30

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.04.06 OS_CPU_A.ASM, Exception Handlers

The eight ARM exception handlers are part of the uC/OS-1l port to reduce the amount of work needed by
the programmer that’s integrating pC/OS-Il in his or her product.

In fact, the eight exception handlers are written in a generic way and can actually be used by ANY ARM
processor whether it has a built-in interrupt controller or not.

The CPU exception vectors are initialized by the 0S CPU ARM InitExceptVect () function. This
function maps the eight exception vectors to eight handlers, 0S CPU ARM Except XYZ Hndlr ().
Listing 3-24 presents one of those handlers, 0S_CPU_ARM ExceptIrgHnldr ().

The eight handlers all need to save registers RO to R12, the LR (offseted to compensate for the pipeline),
and branch to a global handler called 0S CPU ARM ExceptHndlr (), presented in listing 3-25. This
handler determines if the exception broke a task or another lower priority exception. This leads to a
branch, respectively to 0S CPU ARM ExceptHndlr BreakTask() (listing 3-26) or
OS_CPU ARM ExceptHndlr BreakExcept (), listing 3-27.

Both these branches eventually call a board & CPU dependent exception handler,
OS_CPU ExceptHndlr (), located in the BSP (Board Support Package).

All those handlers (except 0S CPU_ExceptHndlr ()) are written in assembly language because we
simply can’t manipulate CPU registers directly from C.

31

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Listing 3-24, 0S_CPU_ARM ExceptIrgHndlr ()

P R R R R R
’

; INTERRUPT REQUEST EXCEPTION HANDLER

; Register Usage: RO Exception Type
; R1

; R2

; R3 Return PC

P R R R R R R
’

0S CPU_ARM ExceptIrgHndlr

SUB LR, LR, #4 ; LR offset to return from this exception: -4.
STMFD SP!, {RO-R12, LR} ; Push working registers.
MOV R3, LR ; Save link register.

; Set exception ID to OS_CPU_ARM EXCEPT IRQ.
MOV RO, #0S_CPU ARM EXCEPT IRQ

; Branch to global exception handler.
B 0S CPU_ARM ExceptHndlr

Listing 3-25, 0S_CPU_ARM ExceptHndlr ()

P R i R R R R R
’

; GLOBAL EXCEPTION HANDLER

; Register Usage: RO Exception Type

; R1 Exception's SPSR
; R2 0ld CPU mode

; R3 Return PC

P e R R R R R
’

0S_CPU_ARM ExceptHndlr
MRS R1, SPSR ; Save CPSR (i.e. exception's SPSR).

; DETERMINE IF WE INTERRUPTED A TASK
; OR ANOTHER LOWER PRIORITY EXCEPTION.
; SPSR.Mode = FIQ, IRQ, ABT, UND : Other exception

; SPSR.Mode = SVC : Task

; SPSR.Mode = USR : *unsupported state*
AND R2, R1, #057CPU7ARM7MODE7MASK
CMP R2, #0S_CPU_ARM MODE_SVC
BNE O0S_CPU_ARM ExceptHndlr BreakExcept

32

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Listing 3-26, 0S_CPU_ARM ExceptHndlr BreakTask ()

,-**

; EXCEPTION HANDLER: TASK INTERRUPTED

; Register Usage: RO Exception Type

; R1 Exception's SPSR
; R2 Exception's CPSR
; R3 Return PC

; R4 Exception's SP

,-**

0S_CPU_ARM ExceptHndlr BreakTask
MRS R2, CPSR ; Save exception's CPSR.
MOV R4, SP ; Save exception's stack pointer.

; Change to SVC mode & disable interruptions.
MSR CPSR_c, #(OS_CPU_ARM CONTROL_INT DIS | OS_CPU_ARM MODE_SVC)

; SAVE TASK'S CONTEXT ONTO TASK'S STACK.

STMFD SP!, {R3} ; Push task's PC.
STMFD Sp!, {LR} ; Push task's LR.
STMFD SP!, {R5-R12} ; Push task's R12-R5.
LDMFD R4!, {R5-R9} ; Move task's R4-RO from exception stack to task stack.
STMFD SP!, {R5-R9}
STMFD SP!, {R1} ; Push task's CPSR (i.e. exception SPSR).
LDR R1, ?0S_Running ; 1if (OSRunning == 1)
LDRB R1, [R1]
CMP R1, #1
BNE O0S_CPU_ARM ExceptHndlr BreakTask 1
; HANDLE NESTING COUNTER.
LDR R3, ?0S_IntNesting ; OSIntNesting++;
LDRB R4, [R3]
ADD R4, R4, #1
STRB R4, [R3]
LDR R3, ?0S_TCBCur ; OSTCBCur->0OSTCBStkPtr = SP;
LDR R4, [R3]
STR SP, [R4]

0S_CPU_ARM ExceptHndlr BreakTask 1
MSR CPSR _cxsf, R2 ; RESTORE INTERRUPTED MODE.

; EXECUTE EXCEPTION HANDLER:
; OS_CPU_ExceptHndlr () ;
LDR R1, ?0S_CPU_ExceptHndlr

MOV LR, PC
BX R1
; Adjust exception stack pointer. This is needed because
; exception stack is not used when restoring task context.
ADD SP, SP, #(14*4)
; Change to SVC mode & disable interruptions.
MSR CPSR _c, #(0S_CPU_ARM CONTROL INT DIS | OS_CPU ARM MODE_SVC)
; Call OSIntExit (). This call MAY never return
; 1f a ready task with higher priority than
; the interrupted one is found.
LDR RO, ?0S_ IntExit
MOV LR, PC
BX RO
; RESTORE NEW TASK'S CONTEXT.
LDMFD Sp!, {RO} ; Pop new task's CPSR.
MSR SPSR_cxsf, RO
LDMFD sp!, {RO-R12, LR, PC}"; Pop new task's context.

33

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Listing 3-27, 0S_CPU_ARM ExceptHndlr BreakExcept ()

P R R R
’

EXCEPTION HANDLER: EXCEPTION INTERRUPTED

; Register Usage: RO Exception Type

R1
R2
R3

;***

OS_CPU_ARM ExceptHndlr BreakExcept

MRS

MSR

LDR
LDRB
ADD
STRB

MSR

LDR
MOV
BX

MSR

LDR
LDRB
SUB
STRB

MSR

LDMFD

R2, CPSR ; Save exception's CPSR.

; Change to SVC mode & disable interruptions.
CPSR_c, #(OS_CPU ARM CONTROL INT DIS | OS_CPU ARM MODE SVC)

; HANDLE NESTING COUNTER.

R3, ?0S_IntNesting ; OSIntNesting++;

R4, [R3]

R4, R4, #1

R4, [R3]

CPSR cxsf, R2 ; RESTORE INTERRUPTED MODE.

; EXECUTE EXCEPTION HANDLER:
; OS_CPU_ExceptHndlr() ;

R3, ?0S CPU ExceptHndlr

LR, PC

R3

; Change to SVC mode & disable interruptions.
CPSR_c, #(OS_CPU ARM CONTROL INT DIS | OS_CPU ARM MODE SVC)

; HANDLE NESTING COUNTER.

R3, ?0S_IntNesting ; OSIntNesting--;

R4, [R3]

R4, R4, #1

R4, [R3]

CPSR _cxsf, R2 ; RESTORE INTERRUPTED MODE.

; RESTORE OLD CONTEXT:
sp!, {RO-R12, PC}" ; Pull working registers and return from exception.

34

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

You should note that MOST of the work done by the exception handler is actually handled in
OS_CPU ExceptHndlr () (located in the BSP) which is written in C. The pseudo-code for
OS CPU ExceptHndlr () is shown in listing 3-28. The handler is responsible for discriminate
exceptions and interruptions, determining the source of the interruptions and for executing the appropriate
code to handle the interrupting device.

Listing 3-28, OS_CPU_ExceptHndlIr ()

void OS_CPU_ExceptHndlr (INT32U except_ type)
{

/* Determine behavior according to exception type (except type) */

/* If an IRQ or FIQ */

while (there are interrupting devices) {
/* Clear interrupting device */
/* Handle interrupt */

OS_CPU_ExceptHndlr () is actually part of YOUR application and not part of the pyC/OS-Il port. The
reason is that the handler will most likely change depending on the presence of an interrupt controller or
not and, if there is an interrupt controller, the actual type of controller.

It's important to note that the handler should ‘look’ to see whether there are more than one interrupting
devices and process each one before returning to 0S_CPU_ARM ExceptHndlr (). This avoids going
through the overhead of saving the CPU registers upon entry of the exception handlers and restoring
them upon exit if multiple interruptions occur either at the same time or, during processing of an
interruption.

Note that this port now supports nested interruptions.
Finally, as a general rule, you should always make your exception handlers as shorts as possible. Take
care of the device, buffer data (if necessary) and signal a task to do most of the work of servicing the

data. For example, if you have an Ethernet controller, simply notify a task that an Ethernet packet has
arrived and let the task extract the packet from the Ethernet controller.

35

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

3.05 OS_DBG.C

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information
about uC/0OS-Il and its configuration. Specifically, 0S DBG.C contains a humber of constants that are

placed in ROM (code space) which the debugger can read and display. Because you may not be using a
debugger that needs that file, you may omit it in your build.

For the IAR compiler as well as Nohau’s emulators, Micrium has introduced a Windows-based ‘Plug-In’

module that makes use of this file and thus needs to be included if you use IAR’s C-Spy or Nohau’s
Seehau.

36

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

4.00 Exception Vector Table

The ARM contains an exception vector table (also called the interrupt vector table) starting at address
0x00000000. There are only eight (8) entries in the vector table. Each entry has enough room to hold a
single 32-bit instruction. The instruction placed in this table is generally a branch instruction with a signed
26-bit destination address. In other words, the ARM can branch to an address that is roughly +/-
0x0200000 from the vector location. The code that you branch to has to determine the interrupt source
because there is only one address for all devices that can interrupt the ARM.

The exception vector table for the ARM is shown in table 4-1:

Exception Mode Vector Address
Reset SVC 0x00000000
Undefined Instruction UND 0x00000004
Software Interrupt (SWI) SVC 0x00000008
Prefetch abort Abort 0x0000000C
Data abort Abort 0x00000010
Address abort Abort 0x00000014
IRQ (Normal Interrupt) IRQ 0x00000018
FIQ (Fast Interrupt) FlQ 0x0000001C

Table 4-1, ARM’s Exception Vector Table

When the CPU recognizes an IRQ from an interrupting device (i.e. IRQ interrupts are enabled), the CPU
vectors to address 0x00000018 where it expects to find an instruction that jumps to
OS CPU ARM ExceptIrgHndlr (). However, itts possible that the code for
OS CPU ARM ExceptIrgHndlr () is located outside the reach of a normal ‘branch’ instruction (i.e.
beyond the reach of a 26-bit address) and thus we do not want to place a ‘B
OS CPU ARM ExceptIrgHndlr’ at address 0x00000018. Instead, we place the following instruction:
‘LDR PC, [PC,#0x18]". This instruction simply specifies to load the PC with the contents of location
0x00000038. At location 0x00000038, we simply place the full 32-bit address of
OS CPU ARM ExceptIrgHndlr (). This allows the exception handler to be placed anywhere within the
32-bit addressing range of the ARM. The same reasoning applies to the FIQ. To summarize, we need to
place the following values for the interrupt vectors:

Exception Mode Vector Address Contents
IRQ (Normal IRQ 0x00000018 LDR PC, [PC, #0x18]
Interrupt) or
0xE59FF018
FIQ (Fast Interrupt) FIQ 0x0000001C LDR PC, [PC,#0x18]
or
0XE59FF018
0x00000038 Address of
0S_CPU_ARM ExceptIrgHndlr ()
0x0000003C Address of
0S_CPU_ARM ExceptFigHndlr ()

Table 4-2, Interrupt Vectors

37

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

If you are debugging your <code in RAM, ensure that the BSP «calls the
OS_CPU ARM InitExceptVect (). This will initialize exception vector table to exception handlers.

Listing 4-1, Installing the interrupt vectors in RAM

[..]

(* (INT32U *)0S_CPU ARM EXCEPT IRQ VECT ADDR) =
OS CPU ARM INSTR JUMP TO HANDLER;
(* (INT32U *)0S_CPU ARM EXCEPT IRQ HANDLER ADDR) =
(INT32U)OS CPU ARM ExceptIrgHndlr;

[..]

This assumes that you have RAM at address 0x00000000. Most ARM processors allow you to re-map
RAM to location 0x00000000. This is done in the example BSP before calling
OS_CPU_ARM InitExceptVect ().

If you have Flash (or ROM) at location 0x00000000, ensure your startup file correctly initialize the
exception vector table at compile time.

38

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

4.01 Exception Handling Sequence

Below is the sequence of events that take place when an IRQ occurs
(assuming the I-bit in the CPSR is 0):

The CPU switches mode to IRQ mode (MODE = 0x12);

The CPSR is saved into the SPSR_1irq register;

The return address PC is saved into R14_irq (i.e. the Link Register of the IRQ mode);

The I-bit of the CPSR is set to 1 disabling further IRQs;

The pC is forced to address 0x00000018;

The PpC is loaded with the address of 0S CPU ARM ExceptIrgHndlr () because of the
LDR PC, [PC, #0x18] instruction that we placed at address 0x00000018.

The CPU executes the code in 0S CPU ARM ExceptIrgHndlr(), then
OS_CPU_ARM ExceptHndlr () (foundin 0S_CPU A.S).

OS_CPU_ARM ExceptHndlr () calls OS CPU ExceptHndlr() (found in BSP.C) to
determine the source of the interrupt and handle it accordingly.

When 0S CPU ARM ExceptHndlr () returns from OS CPU ExceptHndlr(), it calls
0SIntExit () (in case of task interrupted) which determines whether there has been a
more important task that has been made ready to run by the exception handler or,
whether we simply need to return to the interrupted task.

If the interrupted task is still the highest priority task, OSIntExit() returns to
OS_CPU_ARM ExceptHndlr () which simply returns to this task.

If there is a more important task, 0SIntExit () calls 0OSIntCtxSw () (see OS CPU_A.S) which
takes care of switching to the more important task.

A similar sequence occurs for FIQ interrupts.

4.02 Interrupt Controllers

Some ARM implementations contain a ‘smart’ interrupt controller that supplies a vector (i.e. an address)
for each interrupt source. This allows the proper interrupt handler to be called quickly instead of having
the interrupt handler ‘poll’ each possible interrupting device to determine if it needs servicing.

39

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

4.02.01 Interrupt Controllers, Atmel’s AIC

The Atmel AT91 and SAMY7 families of processors have an Advanced Interrupt Controller (AIC). Once
initialized, the AIC provides the 32-bit address of the ISR for the highest priority interrupting device at
location OxFFFFF100. In other words, the interrupting device’s ISR address can be read from location
OxFFFFF100. When there are no more interrupting devices, location OxFFFFF100 contains
0x00000000. Refer to the AIC documentation for additional details.

Similarly, the address of the ISR for the FIQ interrupting device is found at address OxFFFFF104.
OS_CPU ExceptHndlr () can thus be written as shown in listing 4-3.

Listing 4-3, OS_CPU_ExceptHndIr() for Atmel’s AIC.

#define AIC IVR (*(INT32U *)OxFFFFF100)
#define AIC FVR (* (INT32U *)OxFFFFF104)

typedef wvoid (*BSP_FNCT PTR) (void);

void OS CPU ExceptHndlr (CPU DATA except type)

{
BSP_FNCT PTR pfnct;

CPU_INT32U *sp;
if (except type == 0S CPU ARM EXCEPT FIQ) {
pfnct = (BSP_FNCT PTR)*AT91C AIC FVR; /* Read the FIQ handler from the AIC. */
while (pfnct != (BSP_FNCT_PTR)O0) { /* Make sure we don't have a NULL pointer.*/
(*pfnct) () ; /* Execute the handler. */
AT91C AIC EOICR = ~0; / End of handler. */
pfnct = (BSP_FNCT_PTR)*AT91C_AIC_FVR;/* Read the FIQ handler from the AIC. */
}
AT91C_AIC EOICR = ~0; / End of handler. */
} else if (except type == 0S CPU ARM EXCEPT IRQ) {
pfnct = (BSP_FNCT PTR)*AT91C AIC IVR; /* Read the IRQ handler from the AIC. */
while (pfnct != (BSP_FNCT PTR)O0) { /* Make sure we don't have a NULL pointer.*/
(*pfnct) () ; /* Execute the handler. */
AT91C AIC EOICR = ~0; / End of handler. */
pfnct = (BSP_FNCT_PTR)*AT91C_AIC_IVR;/* Read the IRQ handler from the AIC. */
}
AT91C_AIC EOICR = ~0; / End of handler. */
} else {

/* Other exception handling */
}

Its IMPORTANT to note that you MUST place the address of the ISR handler in the proper AIC register
in order for 0S_CPU ExceptHndlr () to work properly. You DO NOT want to place the address of
OS _CPU ExceptHndlr () as the ISR address for the AIC.

Your ISR handlers should be written as follows:

void MyISR Hndlr (void)
{

/* Service the interrupting device */
/* Buffer the data (if any) and signal a task to process the data */
/* Clear the interrupting device (i.e. acknowledge the device) */

40

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

4.02.02 Interrupt Controllers, Philips and Sharp’s VIC

The Philips LPC2000 series (ARM7), Sharp ARM7 and ARM9 families of processors have a Vectored
Interrupt Controller (VIC). Once initialized, the VIC provides the 32-bit address of the ISR for the highest
priority interrupting device at location OxFFFFF030. In other words, the interrupting device’s ISR can be
read from location 0xFFFFF030. When there are no more interrupting devices, location 0xFFFFF030
contains 0x00000000.

Similarly, the address of the ISR for the FIQ interrupting device is found at address O0xFFFFF034.

OS_CPU ExceptHndlr () can thus be written as shown in listing 4-4.

Listing 4-4, OS_CPU_ExceptHndIr() for Philips and Sharp’s VIC.

#define VIC IRQ (* (INT32U *)OxFFFFF030)
#define VIC FIQ (* (INT32U *)OxFFFFF034)

typedef wvoid (*BSP_FNCT PTR) (void);
void OS CPU ExceptHndlr (CPU DATA except type)

{
BSP_FNCT PTR pfnct;

CPU_INT32U *sp;
if (except type == 0S CPU ARM EXCEPT FIQ) {
pfnct = (BSP_FNCT PTR)*VIC FIQ; /* Read the FIQ handler from the VIC. */
while (pfnct != (BSP_FNCT PTR)O0) { /* Make sure we don't have a NULL pointer.*/
(*pfnct) () ; /* Execute the handler. */
AT91C AIC EOICR = ~0; / End of handler. */
pfnct = (BSP_FNCT PTR)*VIC FIQ; /* Read the FIQ handler from the VIC. */
}
AT91C_AIC EOICR = ~0; / End of handler. */
} else if (except type == 0S CPU ARM EXCEPT IRQ) {
pfnct = (BSP_FNCT PTR)*VIC IRQ; /* Read the IRQ handler from the VIC. */
while (pfnct != (BSP_FNCT PTR)O0) { /* Make sure we don't have a NULL pointer.*/
(*pfnct) () ; /* Execute the handler. */
AT91C AIC EOICR = ~0; / End of handler. */
pfnct = (BSP_FNCT PTR) *VIC IRQ; /* Read the IRQ handler from the VIC. */
}
AT91C AIC EOICR = ~0; / End of handler. */
} else {

/* Other exception handling */
}

}

Its IMPORTANT to note that you MUST place the address of the ISR handler in the proper VIC register
in order for 0S_CPU ExceptHndlr () to work properly. You DO NOT want to place the address of
OS CPU ExceptHndlr () as the ISR address for the VIC.

Your ISR handlers should be written as follows:

void MyISR Hndlr (void)
{

/* Service the interrupting device */
/* Buffer the data (if any) and signal a task to process the data */
/* Clear the interrupting device (i.e. acknowledge the device) */

41

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

4.02.03 Interrupt Controllers, Freescale i.MX

The Freescale i.MX series have an Interrupt Controller called the AITC. Once initialized, the AITC
provides the ‘index’ (a number between 0 and 63, incl.) of the highest priority interrupting device. The
index can then be used as an index into a table of interrupt vectors. The index for the highest priority
interrupting device is found at location 0x00223040 (for the i.MX1). This is called the Normal Interrupt
Vector and Status Register (NIVECSR).

Similarly, the index of the interrupting device for the FIQ interrupting device is found at address
0x00223044. The is called the Fast Interrupt Vector and Status Register (FIVECSR).

There are a number of things we need to setup to use the AITC as shown in the following listings. This
code would normally be placed in the BSP of the target board.

Listing 4-5, #defines

#define BSP NIVECSR (* (INT32U *)0x00223040L)
#define BSP FIVECSR (* (INT32U *)0x00223044L)

These are the addresses of the NIVECSR and FIVECSR registers, respectively.

Listing 4-6, Data Types
typedef wvoid (*BSP _FNCT PTR) (void);

This declares a new data type for a pointer to a function.

Listing 4-7, Exception handler address table

BSP _FNCT PTR BSP ExceptHndlrVectTbl[64];

This declares an array of pointers to functions. Each interrupting device is identified by an index from 0 to
63 which is contained in the BSP_NIVECSR for an IRQ and the BSP_FIVECSR for an FIQ. We would
use this index to extract the address of the exception handler from this table (see
OS_CPU_ExceptHndlr () for details).

Listing 4-8, Unused exception handler

static void BSP ExceptDummyHndlr (void)
{
}

Here we declare a ‘dummy’ function in order to populate the exception vector table (i.e.
BSP ExceptHndlrVectTbl[]) with a pointer to this function. This is used in case there is no handler
associated with an interrupting device.

42

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Listing 4-9, Initialization of the exception vector table

static void BSP Init (void)
{

[..]
INT16U i;

[...]
for (i = 0; 1 < 64; i++) {
BSP ExceptHndlrVectTbl[i] = BSP_ ExceptDummyHndlr;
}
}

We initialize the table containing the addresses of the exception handler for each interrupting device.
When you want the CPU to service a specific device, you would simply ‘install’ the exception handler by
calling BSP_ExceptHndlrSet () as described in Listing 4-10.

Listing 4-10, Specifying the address of an exception handler

void BSP ExceptHndlrSet (INT32U except type, BSP_FNCT PTR pHndlr) (1)
{ if (except type < 64) { (2)
BSP ExceptHndlrVectTbl [except type] = pHndlr; (3)
: }
L4-10(1) When you want the CPU to service a specific device, you would simply ‘install’ the

exception handler by calling BSP_ExceptHndlrSet () and specify the ‘except_type’ as
well as the address for the exception handler. You MUST declare your handlers as
follows:

void MyExceptHndlr (void)

{
Handle the device that generated the exception.
Possibly buffer and signal a task to handle the data;
Don’t forget to ‘CLEAR’ the interrupting device.

}

L4-10(2) You MUST specify an exception id between 0 and 63, inclusively.

L4-10(3) The address of the exception handler is saved in the table.

Listing 4-11, OS_CPU_ExceptHndIr() for the Freescale’s AITC

void OS _CPU ExceptHndlr (void)
{
INT16U except type;
BSP_FNCT PTR pfnct;

except type = (BSP_NIVECSR >> 16) & OxO00FF; (1)
while (except type < 64) { (2)
pfnct = BSP_ExceptHndlrVectTbl [except typel; (3)
if (pfnct != (BSP _FNCT PTR)0) { (4)
pfnct () ; (5)

t
except type = (BSP_NIVECSR >> 16) & OxO0FF; (6)

43

L4-11(1)

L4-11(2)

L4-11(3)

L4-11(4)

L4-11(5)

L4-11(6)

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

We get the ‘except_type’ of the highest priority exception to service which is found in the
upper 16 bits of the BSP_NIVECSR register.

We want to service ALL interrupting devices. In other words, there is no point of
returning from an exception if there are ‘more’ devices interrupting the CPU. This
reduces the overhead associated with servicing multiple consecutive exceptions. Note
the BSP_NIVECSR will contain an index higher than 63 when there are no more devices
interrupting the CPU.

If we have a valid index, we obtain the address of the exception handler associated with
the interrupting device.

Just in case, we make sure a ‘distracted’ programmer didn’t decide to place a NULL
pointer as an exception handler.

We execute the exception handler for the interrupting device.

Finally, we check to see whether there are other interrupts to service.

44

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

5.00 Debugging in RAM

A large number of ARM chips allow you to re-map RAM at location 0x00000000 which allows you to
change exception and interrupt vectors at run-time (especially useful during debug).

The remapping of RAM at location 0x00000000 allows you to install the IRQ and FIQ interrupt vectors as
discussed in the previous section.

Some ARM cores contain an MMU. In order to ‘remap’ RAM at address 0x00000000, the MMU needs to
be initialized and the remapping is actually done by the MMU. MMU initialization is assumed to be part of
the application code. As far as uC/OS-Il is concerned, you need to locate some RAM from address
0x00000000 to 0x0000003F during debugging in order to setup the interrupt vectors.

45

pC/OS-Il Port for ARM Processors

(ARM7 or ARM9)

(ARM or Thumb Mode)

6.00 Application Code

Your application code can make use of the port presented in this application note as described in this
section. Figure 6-1 shows a block diagram of the relationship between your application, pC/OS-Il, the
pC/0S-Il port, the BSP (Board Support Package), the ARM CPU and the target hardware.

Your Application

APP.C

APP CFG.H
INCLUDES.H
0S_CFG.H

¢ A
uC/0S-1l

0S_CORE.C
0S_FLAG.C
0S_MBOX.C
0S_MEM.C
0S_MUTEX.C
0s_0.C
0S_SEM.C
0S_TASK.C
0S_TIME.C
ucos II.H
A

pC/OS-II

ARM Port g
0S CPU C.C BSP.H
OS CPU_A.ASM
OS CPU.H

0S DRG.C %

ARM / Target Board

Figure 6-1, Relationship between modules.

46

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

6.01 APP.C, APP.H and APP_CFG.H

For sake of discussion, your application is placed in files called APP.C and APP CFG.H. Of course, your
application (i.e. product) can contain many more files.

APP.C would be where you would place main () but, of course, you can place main () anywhere you
want.

APP CFG.H contains #define constants to configure the application. We placed task stack sizes task
priorities and other #defines in this file. This allows you to locate task priorities and sizes in one place.

APP.C is a standard test file for uyC/OS-Il examples. The two important functions are main () (listing 6-
1) and AppStartTask () (listing 6-2).

Listing 6-1, main ()

int main (void)

{

#if (0S_TASK _NAME SIZE >= 16)
CPU_INTO8U os_err;

#endif

(void) &App Clk UTC Offset;

os_err = 0; /* Warning: With some debuggers the first call is */

/* ignored. */
BSP Init(); /* Initialize BSP. */
CPU Init(); /* Initialize CPU. */

APP_TRACE DEBUG (("\n\n\n"));
APP_TRACE_DEBUG (("Initialize 0S...\n"));
0SInit () ; /* Initialize O0S. (1) */

/* Create start task. (2) */

OSTaskCreateExt (App TaskStart,

(void *)O0,

(OS_STK *)&App_StartTaskStk[APP START OS CFG_TASK STK SIZE - 1],

APP_START OS_CFG_TASK_PRIO,

APP START OS CFG TASK PRIO,

(OS_STK *) &App StartTaskStk[O0],

APP_START OS CFG_TASK_STK SIZE,

(void *)O0,

OS_TASK OPT STK CHK | OS_TASK OPT STK CLR);

/* Give a name to tasks. */

#if (OS_TASK NAME SIZE >= 16)

OSTaskNameSet (OS_TASK IDLE PRIO, "Idle", &os_err); (3)
#if (OS_TASK STAT EN > 0)

OSTaskNameSet (OS_TASK STAT PRIO, "Stat", &0s_err) ;
#endif

OSTaskNameSet (APP_START OS CFG_TASK_PRIO, "Start", &os_err); (4)
#endif

APP_TRACE_DEBUG (("Start 0S...\n"));
Osstart () ; /* Start OS. (5) */

47

L6-1(1)

L6-1(2)

L6-1(3)

L6-1(4)

L6-1(5)

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

As with all pC/OS-Il based applications, you need to initialize pC/OS-11 by calling
OSInit ().

You need to create at least one task. In this case, we created the task using the extended
task create call. This allows pC/OS-1l to have more information about your task.
Specifically, with the IAR toolchain, the extra information allows the C-Spy debugger to
display stack usage information when you use the pC/OS-Il Kernel Awareness Plug-In.

pC/OS-Il doesn’t name the idle task nor the statistic task by default and thus, we can do this
at this point. In fact, we could have name these task immediately after calling 0OSInit ().

We can now give names to tasks and those can be displayed by Kernel Aware debuggers
such as IAR’s C-Spy.

In order to start multitasking, you need to call 0Sstart (). Note that 0SStart () will not
return from this call.

Listing 6-2, AppStartTask ()

static void App TaskStart (void *p arg)

{

#if (CPU_CFG_NAME EN == DEF ENABLED)
CPU_ERR err;
#endif
(void) &p_arg; /* Prevent compiler warning. */

APP TRACE DEBUG(("Initialize OS timer...\n"));
Tmr Init(); /* Initialize OS timer. */

#if (OS_TASK STAT EN > 0)
APP_TRACE DEBUG(("Initialize OS statistic task...\n"));
O0SStatInit(); /* Initialize OS statistic task. (1) */

#endif

APP TRACE DEBUG(("Create application task...\n"));

App TaskCreate () ; /* Create application task. (2) */
[...]
(3)
LED Off (1); (4)
LED Off(2);
LED Off(3);
while (DEF YES) { /* Task body, always written as an infinite loop. */

OSTimeDlyHMSM (0, 0, 0, 500);

If you enabled the statistic task by setting 0S TASK STAT EN in OS CFG.H to 1) then, you
need to call it here. Please note that you need to make sure that you initialized and enabled
the pC/OS-II clock tick because 0sStatInit () assumes the presence of clock ticks. In
other words, if the tick interruption handler is not active when you call 0SStatInit (), your
application will end up in pC/OS-II's idle task and not be able to run any other tasks.

48

L6-2(3)

L6-2(4)

L6-2(5)

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

At this point, you can create additional tasks. We decided to place all our task initialization in
one function called AppTaskCreate () but, you are certainly welcome to use a different
technique.

You can now perform whatever additional function you want for this task.

We decided to toggle an LED at a rate of 10 Hz (LED will blink at 2 Hz) when this task is
running (see section 7.00, Board Support Package).

49

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

6.02 INCLUDES.H

INCLUDES.H is a master include file and is found at the top of all . C files. INCLUDES.H allows every .C
file in your project to be written without concern about which header file is actually needed. The only
drawbacks to having a master include file are that INCLUDES.H may include header files that are not
pertinent to the actual .cC file being compiled and the compilation process may take longer. These
inconveniences are offset by code portability. You can edit INCLUDES.H to add your own header files,
but your header files should be added at the end of the list. Listing 6-3 shows the typical contents of
INCLUDES.H. Of course, you can add your own header files as needed.

Listing 6-3, INCLUDES.H

#include <ctype.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <app cfg.h>

#include <ucos_ii.h>
#include <bsp.h>

50

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

7.00 BSP (Board Support Package)

It is often convenient to create a Board Support Package (BSP) for your target hardware. A BSP could
allow you to encapsulate the following functionality:

Timer initialization

Exception handlers

LED control functions

Reading switches

Setting up the interrupt controller
Setting up communication channels
Etc.

A BSP consist of 2 files: BSP.C and BSP. H.

For example, because a number of evaluation boards are equipped with LEDs, we decided to create LED
control functions as follows:

void LED Init (void);

void LED On(INT8U led id);
void LED Off (INT8U led id);
void LED Toggle (INT8U led id);

In this case, LEDs are referenced ‘logically’ instead of physically. When you write the BSP, you
determine which LED is LED #1, which is LED #2, etc. When you want to turn on LED #1, you simply call
LED On(1l). If you want to toggle LED #2, you simply call LED Toggle (2). In fact, you can (and
should) associate names to your LEDs using #defines. You could thus specify LED Off (LED PM).

Each BSP should contain a BSP initialization function. We called ours BSP_Init () and should be
called by your application code.

We decided to encapsulate the uC/OS-11 clock tick handler in the BSP because exception handlers really

belong into your application code and not pC/OS-Il. Doing this makes it easier to adapt the pC/O0S-Il
port to different target hardware since you could simply change the BSP to select whichever timer or
interrupt source for the clock tick. The clock tick interruption handler is found in BSP.C and is called
Tmr_ TickHndlr ().

It's assumed that the generic exception handler (OS CPU ExceptHndlr ()) is declared in BSP.C (see
section 4 for details).

51

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

8.00 Conclusion

This application note presented a ‘generic’ port for ARM processors (ARM7 or ARM9). The port should
be easily adapted to different compilers (the code itself should be identical). Of course, if you use

pC/OS-Il and use the port on actual hardware, you will need to initialize and properly handle hardware
interrupts.

52

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Acknowledgements

| would like to thank Mr. Harry Barnett (R.1.P.) and Mr. Michael Anburaj for their contribution of the original
ARM port.

Licensing

If you intend to use pC/OS-Il in a commercial product, remember that you need to contact Micrium to
properly license its use in your product.

References

MicroC/OS-Il, The Real-Time Kernel, 2" Edition

Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-5782-0103-9

Contacts

CMP Books, Inc.

1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950

USA

+1 785 841 1631

+1 785 841 2624 (FAX)

WEB: http://www.rdbooks.com

e-mail: rdorders@rdbooks.com.

IAR Systems, Inc.

Century Plaza

1065 E. Hillsdale Blvd
Foster City, CA 94404

USA

+1 650 287 4250

+1 650 287 4253 (FAX)
WEB: http://www.IAR.com

e-mail: .info@IAR.com.

Macraigor Systems LLC
PO Box 471008

Brookline Village, MA 02445
+1 206 855 9269

+1 206 855 9297 (FAX)

WEB: .http://www.Macraigor.com.

Micripm

949 Crestview Circle

Weston, FL 33327

USA

+1 954 217 2036

+1 954 217 2037 (FAX)

e-mail: Licensing@Micrium.com.

WEB: www.Micrium.com

Nohau Corporation

51 E. Campbell Ave

Campbell, CA 95008

USA

+1 408 866 1820

+1 408 378 7869 (FAX)

WEB: http://www.Nohau.com
e-mail: support@Nohau.com

pC/OS-Il Port for ARM Processors
(ARM7 or ARM9)
(ARM or Thumb Mode)

Notes

54

