
MicriµmMicriµmMicriµmMicriµm
© Copyright 2006-2007, Micriµm

All Rights reserved

µC/OS-II
and

ARM Processors
(For ARM7 or ARM9)

(For ARM and Thumb Mode)

Application Note
AN-1014 Rev. E

HTUwww.Micrium.comUTH

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 2

Table of Contents

1.00 Introduction ... 4

2.00 The ARM programmer’s model ... 6

3.00 µC/OS-II Port for ARM processors .. 11

3.01 Directories and Files ... 12

3.02 OS_CPU.H.. 13
3.02.01 OS_CPU.H, macros for ‘externals’.. 13
3.02.02 OS_CPU.H, Data Types ... 13
3.02.03 OS_CPU.H, Critical Sections .. 14
3.02.04 OS_CPU.H, Stack growth ... 14
3.02.05 OS_CPU.H, Task Level Context Switch.. 15
3.02.06 OS_CPU.H, Function Prototypes .. 15

3.03 OS_CPU_C.C ... 17
3.03.01 OS_CPU_C.C, OSInitHookBegin() ... 17
3.03.02 OS_CPU_C.C, OSInitHookEnd() .. 18
3.03.03 OS_CPU_C.C, OSTaskCreateHook()... 18
3.03.04 OS_CPU_C.C, OSTaskStkInit() .. 19
3.03.05 OS_CPU_C.C, OSTaskSwHook()... 21
3.03.06 OS_CPU_C.C, OSTimeTickHook()... 21
3.03.07 OS_CPU_C.C, OS_CPU_IntDisMeasInit().. 22
3.03.08 OS_CPU_C.C, OS_CPU_IntDisMeasStart()... 23
3.03.09 OS_CPU_C.C, OS_CPU_IntDisMeasStop() ... 24

3.04 OS_CPU_A.ASM .. 25
3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save() .. 25
3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore().. 26
3.04.03 OS_CPU_A.ASM, OSStartHighRdy() ... 26
3.04.04 OS_CPU_A.ASM, OSCtxSw() .. 28
3.04.05 OS_CPU_A.ASM, OSIntCtxSw() .. 30
3.04.06 OS_CPU_A.ASM, OS_CPU_ARM_Except_XYZ () 31

3.05 OS_DBG.C.. 36

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 3

4.00 Exception Vector Table ... 37

4.01 Exception Handling Sequence .. 39

4.02 Interrupt Controllers .. 39
4.02.01 Interrupt Controllers, Atmel’s AIC.. 40
4.02.02 Interrupt Controllers, Philips and Sharp’s VIC... 41
4.02.03 Interrupt Controllers, Freescale i.MX... 42

5.00 Debugging in RAM .. 45

6.00 Application Code ... 46
6.01 APP.C, APP.H and APP_CFG.H .. 47
6.02 INCLUDES.H .. 50

7.00 BSP (Board Support Package).. 51

8.00 Conclusion .. 52

 Acknowledgements ... 53

 Licensing... 53

 References.. 53

 Contacts.. 53

 Notes... 54

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 4

1.00 Introduction

µC/OS-II has been running on ARM based processors since 1995 (in fact µC/OS V1.x has). There has

been a number of ARM ports posted on the Micriµm web site. The differences have mostly to do with
differences in compilers and what target board they run on.

This application note describes the ‘official’ Micrium port for µC/OS-II. Figure 1-1 shows a block diagram

showing the relationship between your application, µC/OS-II, the port code and the BSP (Board Support

Package). Relevant sections of this application note are referenced on the figure.

Note that the port described in this application note applies to both ARM7 and ARM9 processors and you
can use this port for both ARM and Thumb-based applications. Previous ports either worked in ARM-
mode or in Thumb-mode. This port handles both.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 5

Figure 1-1, Relationship between modules.

µC/OS-II
OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C

OS_MUTEX.C
OS_Q.C

OS_SEM.C
OS_TASK.C
OS_TIME.C
OS_TMR.C
uCOS_II.H

µC/OS-II

ARM Port
OS_CPU_C.C

OS_CPU_A.ASM
OS_CPU.H
OS_DBG.C

Your Application
APP.C

APP_CFG.H
INCLUDES.H
OS_CFG.H

ARM / Target Board

BSP
BSP.C
BSP.H

Section 2

Section 3 Section 7

Section 6

µC/OS-II

Book

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 6

2.00 The ARM programmer’s model

Some of the most popular variant of the ARM processors are the ARM7TDMI and ARM92xT. The four
letters stand for:

 T (Thumb)

The T stands for Thumb instruction set which addresses the issue of code density. Specifically,
Thumb mode allows instructions to be 16-bits instead of 32-bits thus reducing code density. A
processor having the T suffix can thus run Thumb code.

D (Debug)
The D stands for debug support. This means that the specific ARM7 you are using offers on-chip
debug support, generally through a J-Tag interface.

M (Multiply)
The M means that the CPU contains a hardware multiply instruction.

I (EmbeddedICE macrocell)
Is the debug hardware built into the processor that allows breakpoints and watchpoints to be set.

The visible registers in an ARM processor are shown in Figure 2-1. The ARM has a total of 37 registers.
Each register is 32 bits wide. At any time, only 18 of those registers are directly ‘visible’ by the processor:

R0 through R15, CPSR and SPSR (SPSR is not visible in SYS mode).

R0-R12 R0 through R12 are general purpose registers that can be used to hold data as well as

pointers.

R13 Is generally designated as the stack pointer (also called the SP) but could be the recipient

of arithmetic operations.

R14 Is called the Link Register (LR) and is used to store the contents of the PC when a Branch

and Link (BL) instruction is executed. The LR allows you to return to the caller. The LR is

also used during exception processing to store the contents of the PC prior to the

exception.

R15 Is dedicated to be used as the Program Counter (PC) and points to the current instruction

being executed. As instructions are executed, the PC is incremented by either 2 (Thumb

mode) or 4 (ARM mode).

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 7

Figure 2-1, ARM Register Model.

CPSR The CPSR (Current Processor Status Register) is used to store the condition code bits.

These bits are used, for example, to record the result of a comparison operation and to
control whether or not a conditional branch is taken. Figure 2-2 shows the contents of

the CPSR.

Figure 2-2, The CPSR Register.

MODE NZCV IFT

31

0 7

24

Flags
‘f’

Status
‘s’

eXtension
‘x’

Control
‘c’

23 16

15 8

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

CPSR

SPSR_svc

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

CPSR

SPSR_irq

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

CPSR

SPSR_abt

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

CPSR

SPSR_fiq

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

CPSR

SPSR_und

User/SYS
Mode

0x10/0x1F

SVC
Mode
0x13

IRQ
Mode
0x12

Abort
Mode
0x17

FIQ
Mode
0x11

Undef
Mode
0x1B

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 8

MODE

The bottom 5 bits of the register control the processor mode (described later).

T
Bit 5 determines whether the processor is executing Thumb (T == 1) or ARM code
(T == 0).

F
Bit 6 is the FIQ (Fast Interrupt Request) interrupt enable flag. Interrupts are recognized
on the FIQ input of the processor when this bit is 0. Interrupts are disabled when it’s a 1.

I
Bit 7 is the IRQ (Interrupt Request) interrupt enable flag. Interrupts are recognized when
the bit is 0 and ignored when it’s a 1.

N
Bit 31 is the ‘negative’ bit and is set when the last ALU operation produced a negative
result (i.e. the top bit of a 32-bit result was a one).

 Z
Bit 30 is the ‘zero’ bit and is set when the last ALU operation produced a zero result
(every bit of the 32-bit result was zero).

C
Bit 29 is the ‘carry’ bit and is set when the last ALU operation generated a carry-out,
either as a result of an arithmetic operation in the ALU or from the shifter.

V
Bit 28 is the ‘overflow’ bit and is set when the last arithmetic ALU operation generated an
overflow into the sign bit.

The CPU can be in any of 7 modes: USER, SYS, SVC, IRQ, FIQ, ABORT and UNDEF (see Figure 2-1).

USER The USER mode is the least ‘privileged’ mode and in fact, certain instructions cannot be

executed when in this mode. For this reason, µC/OS-II applications will never be in this

mode. Only registers R0-R15 and CPSR are ‘visible’ by the processor in this mode.

SYS The SYS mode uses the same registers as in USER mode except that code running in

SYS mode has all the privileges of the other modes. Only registers R0-R15 and CPSR

are ‘visible’ by the processor in this mode.

SVC The SVC (Supervisor) mode is the default mode at power up. The processor can

execute any instruction in this mode. In this mode, register R13 and R14 are not visible.

Instead, alternate registers replace R13 and R14 and these are called R13_svc and

R14_svc. In other words, only the registers in the SVC column of Figure 2-1 are visible.

We decided to run the µC/OS-II port in SVC mode. The reason for choosing this will
become apparent as we describe the port.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 9

IRQ When the I-bit of the CPSR is 0, the CPU will recognize interrupt requests from the IRQ

input of the processor. When an interrupt occurs, the CPU does the following:

 Switches mode to IRQ mode (MODE = 0x12)

 Saves the CPSR into the SPSR_irq register

 Saves the PC into R14_irq (i.e. the Link Register of the IRQ mode)

 The I-bit of the CPSR is set to 1 disabling further IRQs

 The PC is forced to address 0x00000018

Note that registers R0-R12 are the same as SYS mode except that the IRQ mode has its

own set of R13_irq (the SP), R14_irq (the LR) and SPSR_irq registers. In fact, when

an interrupts occurs, the CPSR of the SVC mode is saved in the SPSR_irq.

FIQ When the F-bit of the CPSR is 0, the CPU will recognize interrupt requests from the FIQ

input of the processor. When an interrupt occurs, the CPU does the following:

 Switches mode to FIQ mode (MODE = 0x11)

 Saves the CPSR into the SPSR_fiq register

 Saves the PC into R14_fiq (i.e. the Link Register of the FIQ mode)

 The F-bit and the I-bit of the CPSR are both set to 1 disabling further FIQs and

IRQs

 The PC is forced to address 0x0000001C

Note that registers R0-R7 are the same as SYS mode except that the FIQ mode has its

own set of R8_fiq to R12_fiq and R13_fiq (the SP), R14_fiq (the LR) and

SPSR_fiq registers. In fact, when an interrupts occurs, the CPSR of the current mode is

saved in the SPSR_fiq.

ABORT A memory abort is signaled by the memory system. Activating an abort in response to an

instruction fetch marks the fetched instruction as invalid. An abort will take place if the
processor attempts to execute the invalid instruction.

 Switches mode to ABORT mode (MODE = 0x17)

 Saves the CPSR into the SPSR_abt register

 Saves the PC into R14_abt (i.e. the Link Register of the ABORT mode)

 The I-bit of the CPSR is set to disable IRQs

 The PC is forced to address 0x0000000C

 Activating an abort in response to a data access (Load or Store) marks the data as

invalid. A data abort will result in the following actions:

 Switches mode to ABORT mode (MODE = 0x17)

 Saves the CPSR into the SPSR_abt register

 Saves the PC into R14_abt (i.e. the Link Register of the ABORT mode)

 The I-bit of the CPSR is set to disable IRQs

 The PC is forced to address 0x00000010

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 10

UNDEF If ARM executes a coprocessor instruction, it waits for any external coprocessor to

acknowledge that it can execute the instruction. If no coprocessor responds, an
undefined instruction exception occurs.

 Switches mode to UNDEF mode (MODE = 0x1B)

 Saves the CPSR into the SPSR_und register

 Saves the PC into R14_und (i.e. the Link Register of the UNDEF mode)

 The I-bit of the CPSR is set to disable IRQs

 The PC is forced to address 0x00000004

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 11

3.00 µC/µC/µC/µC/OSOSOSOS----IIIIIIII Port for ARM processors

We used the IAR EWARM V4.40A (Embedded Workbench for the ARM) to test the port. The EWARM
contains an editor, a C/EC++ compiler, an assembler, a linker/locator and the C-Spy debugger. The
C-Spy debugger actually contains an ARM simulator which allows you to test code prior to run it on actual
hardware. We tested the ARM port on a number of different ARM7 and ARM9 target processors.

You can adapt the port provided in this application note to other ARM based compilers. The instructions
(i.e. the code) should be identical and all you have to do is adapt the port to your compiler specifics. We
will describe some of these when we cover the contents of the different files.

IMPORTANT

The IAR compiler version that we used assumed that application code was running in SYS mode. In fact,

the compiler calls main() in SYS mode. However, when we start µC/OS-II, we switch the mode to SVC

mode and run all tasks in SVC mode.

Below are a few assumptions about the port:

- You have µC/OS-II V2.77 or higher

- µC/OS-II runs in either ARM mode or Thumb mode

- Tasks are created in the same mode as the one selected for running µC/OS-II

o Tasks can call either ARM or Thumb mode functions
- Tasks will run in SVC mode

You can build the example code using either ARM (see figure 3-1) or Thumb (see figure 3-2) mode. Note
that you need to enable ‘Generate interwork code’. The screen shots are for the IAR’s EWARM
toolchain.

Figure 3-1, Building the example using ARM mode in IAR’s EWARM.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 12

Figure 3-2, Building the example using Thumb mode in IAR’s EWARM.

3.01 Directories and Files

The software that accompanies this application note is assumed to be placed in the following directory:

 \Micrium\Software\uCOS-II\ARM\Generic\IAR

Like all µC/OS-II ports, the source code for the port is found in the following files:

 OS_CPU.H
 OS_CPU_C.C
 OS_CPU_A.ASM
 OS_DBG.C

Test code and configuration files are found in their appropriate directories and are described later.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 13

3.02 OS_CPU.H

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and

typedefs.

3.02.01 OS_CPU.H, macros for ‘externals’

OS_CPU_GLOBALS and OS_CPU_EXT allows us to declare global variables that are specific to this port

(described later).

Listing 3-1, OS_CPU.H, Globals and Externs

#ifdef OS_CPU_GLOBALS
#define OS_CPU_EXT
#else
#define OS_CPU_EXT extern
#endif

3.02.02 OS_CPU.H, Data Types

Listing 3-2, OS_CPU.H, Data Types

typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned short INT16U; // (1)
typedef signed short INT16S;
typedef unsigned int INT32U;
typedef signed int INT32S;
typedef float FP32; // (2)
typedef double FP64;

typedef unsigned int OS_STK; // (3)
typedef unsigned int OS_CPU_SR; // (4)

L3-2(1) If you were to consult the IAR compiler documentation, you would find that an short is

16 bits and an int is 32 bits. Most ARM compilers should have the same definitions.

L3-2(2) Floating-point data types are included even though µC/OS-II doesn’t make use of

floating-point numbers.

L3-2(3) A stack entry for the ARM processor is always 32 bits wide; thus, OS_STK is declared

accordingly. All task stacks must be declared using OS_STK as its data type.

L3-2(4) The status register (the CPSR and SPSR) on the ARM processor is 32 bits wide. The

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described

below). In fact, this port only supports OS_CRITICAL_METHOD #3 because it’s the

preferred method for µC/OS-II ports.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 14

3.02.03 OS_CPU.H, Critical Sections

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical sections of

code and re-enable interrupts when done. µC/OS-II defines two macros to disable and enable

interrupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively. µC/OS-II defines three

ways to disable interrupts but, you only need to use one of the three methods for disabling and enabling
interrupts. The book (MicroC/OS-II, The Real-Time Kernel) describes the three different methods. The
one to choose depends on the processor and compiler. In most cases, the prefered method is

OS_CRITICAL_METHOD #3.

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will save the

status register of the CPU in a variable. OS_EXIT_CRITICAL() invokes another function to restore the

status register from the variable. In the book, Mr. Labrosse recommends that you call the functions

expected in OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(): OS_CPU_SR_Save() and

OS_CPU_SR_Restore(), respectively. The code for these two functions is declared in OS_CPU_A.S

(described later).

Listing 3-3, OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()

#define OS_CRITICAL_METHOD 3

#if OS_CRITICAL_METHOD == 3

#if OS_CPU_INT_DIS_MEAS_EN > 0

#define OS_ENTER_CRITICAL() {cpu_sr = OS_CPU_SR_Save(); \
 OS_CPU_IntDisMeasStart();}
#define OS_EXIT_CRITICAL() {OS_CPU_IntDisMeasStop(); \
 OS_CPU_SR_Restore(cpu_sr);}

#else

#define OS_ENTER_CRITICAL() {cpu_sr = OS_CPU_SR_Save();}
#define OS_EXIT_CRITICAL() {OS_CPU_SR_Restore(cpu_sr);}

#endif

#endif

3.02.04 OS_CPU.H, Stack growth

The stack on the ARM grows from high memory to low memory and thus, OS_STK_GROWTH is set to 1 to

indicate this to µC/OS-II.

Listing 3-4, OS_CPU.H, Stack Growth

#define OS_STK_GROWTH 1

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 15

3.02.05 OS_CPU.H, Task Level Context Switch

Task level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW(). Because

context switching is processor specific, OS_TASK_SW() needs to execute an assembly language

function. In this case, OSCtxSw() which is declared in OS_CPU_A.ASM (described later).

Listing 3-5, OS_CPU.H, Task Level Context Switch

#define OS_TASK_SW() OSCtxSw()

3.02.06 OS_CPU.H, Function Prototypes

The prototypes in Listing 3-6 are for the functions used to disable and re-enable interrupts using

OS_CRITICAL_METHOD #3 and are described later. You should note that these prototypes are prefixed

with the special keyword __arm. This is an IAR keyword that indicates that these functions will run in

ARM mode and thus, when called, the compiler will generate the appropriate instructions.

Listing 3-6, OS_CPU.H, Function Prototypes

#if OS_CRITICAL_METHOD == 3
__arm OS_CPU_SR OS_CPU_SR_Save(void);
__arm void OS_CPU_SR_Restore(OS_CPU_SR cpu_sr);
#endif

The prototypes in Listing 3-7 are the exception handling related functions. OS_CPU_InitExceptVect()

must be called from the BSP to initialize the CPU exception vectors to the eight exception handlers.

These eight exception handlers are the OS_CPU_ARM_XYZ assembly functions. These handlers save the

CPU state and branch immediately to a common exception handler, OS_CPU_ARM_ExceptHndlr().

The common exception handler will do µC/OS-II internal task management (save state, etc) and will

eventually call a board and application dependant exception handler, OS_CPU_ExceptHndlr(), located

in BSP. Specifically, the __arm keyword indicates that these function will execute in ARM mode whether

called from Thumb or ARM mode code.

Listing 3-7, OS_CPU.H, Function Prototypes

 void OS_CPU_InitExceptVect(void);

__arm void OS_CPU_ARM_ExceptResetHndlr(void);
__arm void OS_CPU_ARM_ExceptUndefInstrHndlr(void);
__arm void OS_CPU_ARM_ExceptSwiHndlr(void);
__arm void OS_CPU_ARM_ExceptPrefetchAbortHndlr(void);
__arm void OS_CPU_ARM_ExceptDataAbortHndlr(void);
__arm void OS_CPU_ARM_ExceptAddrAbortHndlr(void);
__arm void OS_CPU_ARM_ExceptIrqHndlr(void);
__arm void OS_CPU_ARM_ExceptFiqHndlr(void);

 void OS_CPU_ExceptHndlr(INT32U except_type);

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 16

As of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy() need to be

placed in OS_CPU.H. In fact, it makes sense to do this since these are all port specific files. The reason

we made the change is to allow for declarations as shown in Figure 3-8. Specifically, the __arm keyword

indicates that these functions will execute in ARM mode whether called from Thumb or ARM mode code.

Listing 3-8, OS_CPU.H, Function Prototypes

__arm void OSCtxSw(void);
__arm void OSIntCtxSw(void);
__arm void OSStartHighRdy(void);

The prototypes in Listing 3-9 are for functions used to measure the interrupt disable time. Basically, we
read the value of a timer just after disabling interrupts and read it again before enabling interrupts. The
difference in timer counts indicates the amount of time interrupts were disabled.

OS_CPU_IntDisMeasStop() actually keeps track of the highest value of this delta counts and thus, the

maximum interrupt disable time. We’ll describe this in greater details later.

Listing 3-9, OS_CPU.H, Function Prototypes

#if OS_CRITICAL_METHOD == 3
void OS_CPU_IntDisMeasInit(void);
void OS_CPU_IntDisMeasStart(void);
void OS_CPU_IntDisMeasStop(void);
INT16U OS_CPU_IntDisMeasTmrRd(void);
#endif

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 17

3.03 OS_CPU_C.C

A µC/OS-II port requires that you write ten fairly simple C functions:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskStkInit()
OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

Typically, µC/OS-II only requires OSTaskStkInit(). The other functions allow you to extend the

functionality of the OS with your own functions. The functions that are highlighted will be discussed in this
section. The following functions have been added in order to measure interrupt disable time and will be
described later:

OS_CPU_IntDisMeasInit()
OS_CPU_IntDisMeasStart()
OS_CPU_IntDisMeasStop()

Note that you will also need to set the #define constant OS_CPU_HOOKS_EN to 1 in OS_CFG.H in order

for the compiler to use the functions declared in this file.

3.03.01 OS_CPU_C.C, OSInitHookBegin()

This function is called by µC/OS-II’s OSInit() at the very beginning of OSInit(). It gives the

opportunity to add additional initialization code specific to the port. In this case, we initialize the global

variable (global to OS_CPU_C.C) OSTmrCtr (which is used by the OS_TMR.C module (if OS_TMR_EN is

set to 1).

Listing 3-10, OS_CPU_C.C, OSInitHookEnd()

void OSInitHookBegin (void)
{
#if OS_TMR_EN > 0
 OSTmrCtr = 0;
#endif
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 18

3.03.02 OS_CPU_C.C, OSInitHookEnd()

This function is called by µC/OS-II’s OSInit() at the very end of OSInit(). It gives the opportunity to

add additional initialization code specific to the port. In this case, we initialize global variables which are

used by the interrupt disable measurement code (if OS_CPU_INT_DIS_MEAS_EN is set to 1).

Listing 3-10, OS_CPU_C.C, OSInitHookEnd()

void OSInitHookEnd (void)
{
#if OS_CPU_INT_DIS_MEAS_EN > 0
 OS_CPU_IntDisMeasInit();
#endif
}

3.03.03 OS_CPU_C.C, OSTaskCreateHook()

This function is called by µC/OS-II’s OSTaskCreate() or OSTaskCreateExt() when a task is

created. OSTaskCreateHook() gives the opportunity to add code specific to the port when a task is

created. In our case, we call the initialization function of µC/OS-View (an optional module available for

µC/OS-II which performs task profiling at run-time, See HTUwww.micrium.com UTH for details).

Note that for OSView_TaskCreateHook() to be called, the target resident code for µC/OS-View must

be included as part of your build. In this case, you need to add a #define OS_VIEW_MODULE 1 in

OS_CFG.H of your application.

Note that if OS_VIEW_MODULE is 0, we simply tell the compiler that ptcb is not actually used (i.e.

(void)ptcb)) and thus avoid a compiler warning.

Listing 3-11, OS_CPU_C.C, OSInitHookEnd()

void OSTaskCreateHook (OS_TCB *ptcb)
{
#if OS_VIEW_MODULE > 0
 OSView_TaskCreateHook(ptcb);
#else
 (void)ptcb;
#endif
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 19

3.03.04 OS_CPU_C.C, OSTaskStkInit()

µC/OS-II assumes that tasks run in SVC mode (the CPSR of the task is initialized to ARM_SVC_MODE

(0x13 if in ARM mode or 0x33 if in Thumb mode).

It is typical for ARM compilers to pass the first argument of a function into the R0 register. Recall that a

task is declared as shown in listing 3-12.

Listing 3-12, µC/OS-II Task

void MyTask (void *p_arg)
{
 /* Do something with ‘p_arg’, optional */
 while (1) {
 /* Task body */
 }
}

The code in Listing 3-13 initializes the stack frame for the task being created. The task received an

optional argument ‘p_arg’. That’s why ‘p_arg’ is passed in R0 when the task is created. The initial

value of most of the CPU registers is not important so, we decided to initialize them to values
corresponding to their register number. This makes it convenient when debugging and examining stacks
in RAM. The initial values are thus useful when the task is first created but, of course, the register values
will most likely change as the task code is executed.

Listing 3-13, OS_CPU_C.C, OSTaskStkInit()

OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt)
{
 OS_STK *stk;
 INT32U task_addr;

 opt = opt; /* 'opt' is not used, prevent warning */
 stk = ptos; /* Load stack pointer */
 task_addr = (INT32U)task & ~1;
 (stk) = (INT32U)task_addr; / Entry Point */
 (--stk) = (INT32U)0x14141414L; / R14 (LR) */
 (--stk) = (INT32U)0x12121212L; / R12 */
 (--stk) = (INT32U)0x11111111L; / R11 */
 (--stk) = (INT32U)0x10101010L; / R10 */
 (--stk) = (INT32U)0x09090909L; / R9 */
 (--stk) = (INT32U)0x08080808L; / R8 */
 (--stk) = (INT32U)0x07070707L; / R7 */
 (--stk) = (INT32U)0x06060606L; / R6 */
 (--stk) = (INT32U)0x05050505L; / R5 */
 (--stk) = (INT32U)0x04040404L; / R4 */
 (--stk) = (INT32U)0x03030303L; / R3 */
 (--stk) = (INT32U)0x02020202L; / R2 */
 (--stk) = (INT32U)0x01010101L; / R1 */
 (--stk) = (INT32U)p_arg; / R0 : argument */
 if ((INT32U)task & 0x01) { /* See if task runs in Thumb or ARM mode */
 (--stk) = (INT32U)ARM_SVC_MODE_THUMB; / CPSR THUMB-mode) */
 } else {
 (--stk) = (INT32U)ARM_SVC_MODE_ARM; / CPSR ARM-mode) */
 }

 return (stk);
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 20

Figure 3-2 shows how the stack frame is initialized for each task when it’s created.

Figure 3-3, The Stack Frame for each Task for ARM port.

When the task is created, the final value of stk is placed in the OS_TCB of that task by the µC/OS-II

function that calls OSTaskStkInit() (i.e. OSTaskCreate() or OSTaskCreateExt()).

PC = task

LR = 0x14141414

R12 = 0x12121212

R11 = 0x11111111

R10 = 0x10101010

R9 = 0x09090909

R8 = 0x08080808

R7 = 0x07070707

R6 = 0x06060606

R5 = 0x05050505

R4 = 0x04040404

R3 = 0x03030303

R2 = 0x02020202

R1 = 0x01010101

R0 = p_arg

CPSR = ARM_SVC_MODE_??? stk

ptos

Low Memory

High Memory

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 21

3.03.05 OS_CPU_C.C, OSTaskSwHook()

OSTaskSwHook() is called when a context switch occurs. This function allows the port code to be

extended and do things such as measuring the execution time of a task, output a pulse on a port pin

when a contact switch occurs, etc. In this case, we call the µC/OS-View task switch hook called

OSView_TaskSwHook(). This assumes that you have µC/OS-View as part of your build and that you

set OS_VIEW_MODULE to 1 in OS_CFG.H.

Listing 3-14, OS_CPU_C.C, OSTaskSwHook()

void OSTaskSwHook (void)
{
#if OS_VIEW_MODULE > 0
 OSView_TaskSwHook();
#endif
}

3.03.06 OS_CPU_C.C, OSTimeTickHook()

OSTimeTickHook() is called at the very beginning of OSTimeTick(). This function allows the port

code to be extended and, in our case, we call the µC/OS-View function OSView_TickHook(). Again,

this assumes that you have µC/OS-View as part of your build and that you set OS_VIEW_MODULE to 1

in OS_CFG.H.

OSTimeTickHook() also determines whether it’s time to update the µC/OS-II timers. This is done by

signaling the timer task.

Listing 3-15, OS_CPU_C.C, OSTimeTickHook()

void OSTimeTickHook (void)
{
#if OS_VIEW_MODULE > 0
 OSView_TickHook();
#endif

#if OS_TMR_EN > 0
 OSTmrCtr++;
 if (OSTmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) {
 OSTmrCtr = 0;
 OSTmrSignal();
 }
#endif
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 22

3.03.07 OS_CPU_C.C, OS_CPU_IntDisMeasInit()

OS_CPU_IntDisMeasInit() is called by OSInitHookEnd() (see section 3.03.01) to initialize the

interrupt disable time measurement variables as shown below.

Basically, we added functions to the port to allow us to measure the amount of time that interrupts are
disabled. This is not something that is needed by the port but it can provide valuable information about
the responsiveness of your system to interrupts.

The way interrupt disable time measurement works is simple. Just after disabling interrupts, we read the
contents of a free running 16-bit (or 32-bit) timer. Just before re-enabling interrupts, we read the free
running counter again and compute the difference between the two readings. Maximum interrupt disable
time is obtained by tracking the highest value of the difference. The value of the difference represents
timer counts and thus, to convert to actual time, you need to know how fast the counter is being
incremented (or decremented).

The function in listing 3-16 initializes the measurement and can actually be called at any time to ‘reset’ the
maximum count.

Listing 3-16, OS_CPU_C.C, OS_CPU_IntDisMeasInit()

#if OS_CPU_INT_DIS_MEAS_EN > 0
void OS_CPU_IntDisMeasInit (void)
{
 OS_CPU_IntDisMeasNestingCtr = 0; /* Clear variables used by these functions */
 OS_CPU_IntDisMeasCntsEnter = 0;
 OS_CPU_IntDisMeasCntsExit = 0;
 OS_CPU_IntDisMeasCntsMax = 0;
 OS_CPU_IntDisMeasCntsDelta = 0;
 OS_CPU_IntDisMeasCntsOvrhd = 0;
 OS_CPU_IntDisMeasStart(); /* Measure the overhead of the functions */
 OS_CPU_IntDisMeasStop();
 OS_CPU_IntDisMeasCntsOvrhd = OS_CPU_IntDisMeasCntsDelta;
}
#endif

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 23

3.03.08 OS_CPU_C.C, OS_CPU_IntDisMeasStart()

OS_CPU_IntDisMeasStart() is called when interrupts are disabled by OS_ENTER_CRITICAL().

Listing 3-17, OS_CPU_C.C, OS_CPU_IntDisMeasStart()

#if OS_CPU_INT_DIS_MEAS_EN > 0
void OS_CPU_IntDisMeasStart (void)
{
 OS_CPU_IntDisMeasNestingCtr++; (1)
 if (OS_CPU_IntDisMeasNestingCtr == 1) { (2)
 OS_CPU_IntDisMeasCntsEnter = OS_CPU_IntDisMeasTmrRd();
 }
}
#endif

L3-17(1) A nesting counter is maintained in case you nest OS_ENTER_CRITICAL() calls.

L3-17(2) If this is the first level of nesting for OS_ENTER_CRITICAL() then, we call a function that

you would define in your application called OS_CPU_IntDisMeasTmrRd() to read the

value of a 16-bit free-running timer. Note that you could also use a 32-bit timer. In this
case, you would simply redeclare the variables and prototypes accordingly. The value of

the timer is saved in OS_CPU_IntDisMeasCntsEnter.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 24

3.03.09 OS_CPU_C.C, OS_CPU_IntDisMeasStop()

OS_CPU_IntDisMeasStop() is called when interrupts are re-enabled by OS_EXIT_CRITICAL().

Listing 3-18, OS_CPU_C.C, OS_CPU_IntDisMeasStop()

#if OS_CPU_INT_DIS_MEAS_EN > 0
void OS_CPU_IntDisMeasStop (void)
{
 OS_CPU_IntDisMeasNestingCtr--; (1)
 if (OS_CPU_IntDisMeasNestingCtr == 0) {
 OS_CPU_IntDisMeasCntsExit = OS_CPU_IntDisMeasTmrRd();
 OS_CPU_IntDisMeasCntsDelta = OS_CPU_IntDisMeasCntsExit (2)
 - OS_CPU_IntDisMeasCntsEnter;
 if (OS_CPU_IntDisMeasCntsDelta > OS_CPU_IntDisMeasCntsOvrhd) { (3)
 OS_CPU_IntDisMeasCntsDelta -= OS_CPU_IntDisMeasCntsOvrhd;
 } else {
 OS_CPU_IntDisMeasCntsDelta = OS_CPU_IntDisMeasCntsOvrhd;
 }
 if (OS_CPU_IntDisMeasCntsDelta > OS_CPU_IntDisMeasCntsMax) { (4)
 OS_CPU_IntDisMeasCntsMax = OS_CPU_IntDisMeasCntsDelta;
 }

 }

}
#endif

L3-18(1) The nesting counter is decremented so that we only take a time measurement at the last

nested OS_EXIT_CRITICAL() calls.

L3-18(2) We measure the difference in timer value since interrupts were disabled.

L3-18(3) We make sure that the counts are higher than the measured overhead so we don’t

subtract a number that is larger than the delta. This would cause a ‘large’ count for the
measured interrupt disable time.

L3-18(4) We record the highest value in OS_CPU_IntDisMeasCntsMax.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 25

3.04 OS_CPU_A.ASM

A µC/OS-II port requires that you write five fairly simple assembly language functions. The ARM port

actually contains fourteen functions because portions of the exception handling code are written in
assembly language as discussed in this section. These functions are needed because you normally
cannot save/restore registers from C functions. The fourteen functions are:

OS_CPU_SR_Save()
OS_CPU_SR_Restore()
OSStartHighRdy()
OSCtxSw()
OSIntCtxSw()

OS_CPU_InitExceptVect()
OS_CPU_ARM_ExceptResetHndlr()
OS_CPU_ARM_ExceptUndefInstrHndlr()
OS_CPU_ARM_ExceptSwiHndlr()
OS_CPU_ARM_ExceptPrefetchAbortHndlr()
OS_CPU_ARM_ExceptDataAbortHndlr()
OS_CPU_ARM_ExceptAddrAbortHndlr()
OS_CPU_ARM_ExceptIrqHndlr()
OS_CPU_ARM_ExceptFiqHndlr()

3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save()

The code in listing 3-19 implements the saving of the CPSR register and then disabling interrupts for

OS_CRITICAL_METHOD #3. The code follows the application note published by Atmel (“Disabling

Interrupts at Processor Level”) for properly disabling interrupts on the ARM. In this implementation, both
the FIQ and IRQ interrupts are disabled.

You should note that we use the BX LR instruction to return to the appropriate mode. Specifically, if

OS_CPU_SR_Save() was called from ARM mode code, CPSR bit 5 would stay at 0. If we return to

Thumb mode code then CPSR bit 5 will be set to 1 by the BX instruction.

When this function returns, R0 contains the state of the CPSR register prior to disabling interrupts.

Listing 3-19, OS_CPU_SR_Save()

OS_CPU_SR_Save
 MRS R0, CPSR
 ; Set IRQ and FIQ bits in CPSR to disable all interrupts.
 ORR R1, R0, #OS_CPU_ARM_CONTROL_INT_DIS
 MSR CPSR_c, R1
 BX LR ; Disabled, return the original CPSR contents in R0.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 26

3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore()

The code in the listing below implements the function to restore the CPSR register for

OS_CRITICAL_METHOD #3. When called, it’s assumed that R0 contains the desired state of the CPSR

register. You should note that we only update the ‘control’ field of the CPSR (i.e. lower 8 bits of the CPSR).

Again, the BX LR instruction returns to the appropriate mode (ARM or Thumb).

Listing 3-20, OS_CPU_SR_Restore()

OS_CPU_SR_Restore
 MSR CPSR_c, R0
 BX LR

3.04.03 OS_CPU_A.ASM, OSStartHighRdy()

OSStartHighRdy() is called by OSStart() to start running the highest priority task that was created

before calling OSStart(). OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest

priority task.

Listing 3-21, OSStartHighRdy()

OSStartHighRdy

 ; (1) Change to SVC mode.
 MSR CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC)

 LDR R0, ?OS_TaskSwHook ; (2) OSTaskSwHook();
 MOV LR, PC
 BX R0

 LDR R0, ?OS_Running ; (3) OSRunning = TRUE;
 MOV R1, #1
 STRB R1, [R0]

 ; SWITCH TO HIGHEST PRIORITY TASK.
 LDR R0, ?OS_TCBHighRdy ; (4) Get highest priority task TCB address.
 LDR R0, [R0] ; get stack pointer.
 LDR SP, [R0] ; switch to the new stack.

 LDR R0, [SP], #4 ; (5) Prepare to return to proper mode …
 MSR SPSR_cxsf, R0 … (ARM or Thumb)

 LDMFD SP!, {R0-R12, LR, PC}^; (6) pop new task's context.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 27

L3-21(1) The IAR compiler startup code sets the mode to SYS mode prior to calling main(). We

decided to use SVC mode for the µC/OS-II because it allows us to use the SPSR

register to return to the proper mode (ARM or Thumb) as described in L3-21(7).
Interrupts should not be enabled at this point but, just to make sure, we disable them.

L3-21(2) Before starting the highest priority task, we call OSTaskSwHook() in case a hook call

has been declared. Note that we use a BX instruction because OSTaskSwHook() could

be compiled in either ARM or Thumb mode. All ARM instructions are all 32 bits and thus,
the ARM is not able to specify a 32-bit address as part of the instruction. Because of

that, the address of OSTaskSwHook() is actually declared at the end of the file and the

ARM obtains this address via a PC-relative address. Specifically:

 ?OS_TaskSwHook:

 DC32 OSTaskSwHook

DC32 is an assembler directive that declares storage for a 32 bit constant that resides in

code. ?OS_Running is thus just a local label.

L3-21(3) The µC/OS-II flag OSRunning is set to TRUE indicating that µC/OS-II will be running

once the first task is started. All ARM instructions are all 32 bits and thus, the ARM is not
able to specify a 32-bit address as part of the instruction. Because of that, the address of

OSRunning is actually declared at the end of the file and the ARM obtains this address

via a PC-relative address. Specifically:

 ?OS_Running:

 DC32 OSRunning

L3-21(4) We then get the pointer to the task’s top-of-stack (was stored by OSTaskCreate() or

OSTaskCreateExt()). See figure 3-1 (stk is stored in the OS_TCB of the created

task).

L3-21(5) We then pop the CPSR from the task’s stack but we place it in the SPSR register. Recall

that when the task was created, the CPSR register on the stack frame was initialized with

ARM_SVC_MODE_??? (0x00000013 for ARM mode or 0x00000033 for Thumb mode).

The next instruction will restore the CPSR register from the SPSR register and place the

task in the proper mode (ARM or Thumb) according to the value retrieved for the SPSR.

L3-21(6) We then pop the remaining registers of the task’s context from the stack. Because the

PC is the last element popped off the stack, the CPU immediately jumps to that address

when it’s loaded. In other words, we will run the beginning of the task code as soon as

the PC is loaded. Note that the ‘^’ indicates to also copy the SPSR to the CPSR register

which places the task in the proper mode (ARM or Thumb).

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 28

3.04.04 OS_CPU_A.ASM, OSCtxSw()

The code to perform a ‘task level’ context switch is shown below in pseudo-code. OSCtxSw() is called

when a higher priority task is made ready to run by another task or, when the current task can no longer

execute (e.g. it calls OSTimeDly(), OSSemPend() and the semaphore is not available, etc.).

Recall that all tasks run in SVC mode. A task level context switch simply consists of saving the SVC
registers on the task to suspend and restore the SVC registers of the new task (see also Figure 3-2). The
pseudo code for this is shown below:
 Save the CPU registers onto the old task’s stack; /* (1) */
 OSPrioCur = OSPrioHighRdy; /* (2) */
 OSTCBCur->OSTCBStkPtr = SP; /* (3) */
 OSTaskSwHook(); /* (4) */
 SP = OSTCBHighRdy->OSTCBStkPtr; /* (5) */
 OSTCBCur = OSTCBHighRdy; /* (6) */
 Restore the CPU registers from the new task’s stack; /* (7) */

You will notice that we don’t actually save and restore the SPSR register as part of a context switch. The

reason is that the SPSR is only used to return to the appropriate task and is always used with interrupts

disabled.

Figure 3-4, Task Level Context Switch.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

PC

SP

LR

SP SP

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

LR

PC

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

LR

PC

CPSR

Before

After Before

After

(5
)

(1
)

(3)

(7
)

SSSSVCVCVCVC

ModeModeModeMode
OSTCBCur OSTCBHighRdy

OS_TCB OS_TCB

CPSR

SPSR

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 29

The actual code for the task level context switch is shown in Listing 3-22.

Listing 3-22, OSCtxSw()

OSCtxSw
 ; SAVE CURRENT TASK'S CONTEXT
 STMFD SP!, {LR} ; Push return address
 STMFD SP!, {LR}
 STMFD SP!, {R0-R12} ; Push registers
 MRS R0, CPSR ; Push current CPSR
 TST LR, #1 ; See if called from Thumb mode
 ORRNE R0, R0, #OS_CPU_ARM_CONTROL_THUMB ; If yes, Set the T-bit
 STMFD SP!, {R0}

 LDR R0, ?OS_TCBCur ; OSTCBCur->OSTCBStkPtr = SP;
 LDR R1, [R0]
 STR SP, [R1]

 LDR R0, ?OS_TaskSwHook ; OSTaskSwHook();
 MOV LR, PC
 BX R0

 LDR R0, ?OS_PrioCur ; OSPrioCur = OSPrioHighRdy;
 LDR R1, ?OS_PrioHighRdy
 LDRB R2, [R1]
 STRB R2, [R0]

 LDR R0, ?OS_TCBCur ; OSTCBCur = OSTCBHighRdy;
 LDR R1, ?OS_TCBHighRdy
 LDR R2, [R1]
 STR R2, [R0]

 LDR SP, [R2] ; SP = OSTCBHighRdy->OSTCBStkPtr;

 ; RESTORE NEW TASK'S CONTEXT
 LDMFD SP!, {R0} ; Pop new task's CPSR
 MSR SPSR_cxsf, R0

 LDMFD SP!, {R0-R12, LR, PC}^ ; Pop new task's context

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 30

3.04.05 OS_CPU_A.ASM, OSIntCtxSw()

When an exception handler completes, OSIntExit() is called to determine whether a more important

task than the interrupted task needs to execute. If that’s the case, OSIntExit() determines which task

to run next and calls OSIntCtxSw() to perform the actual context switch to that task. You will notice that

OSIntCtxSw() is identical to the second half of OSCtxSw(). The reason we have these as two

separate functions is to simplify debugging. Specifically, if you wanted to set a breakpoint in

OSIntCtxSw(), you would hit the breakpoint during a task level context switch (if OSIntCtxSw() was

just a label in OSCtxSw()). Of course this would make debugging a bit difficult.

Listing 3-23, OSIntCtxSw()

OSIntCtxSw
 LDR R0, ?OS_TaskSwHook ; OSTaskSwHook();
 MOV LR, PC
 BX R0

 LDR R0, ?OS_PrioCur ; OSPrioCur = OSPrioHighRdy;
 LDR R1, ?OS_PrioHighRdy
 LDRB R2, [R1]
 STRB R2, [R0]

 LDR R0, ?OS_TCBCur ; OSTCBCur = OSTCBHighRdy;
 LDR R1, ?OS_TCBHighRdy
 LDR R2, [R1]
 STR R2, [R0]

 LDR SP, [R2] ; SP = OSTCBHighRdy->OSTCBStkPtr;

 ; RESTORE NEW TASK'S CONTEXT.
 LDMFD SP!, {R0} ; Pop new task's CPSR.
 MSR SPSR_cxsf, R0

 LDMFD SP!, {R0-R12, LR, PC}^ ; Pop new task's context.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 31

3.04.06 OS_CPU_A.ASM, Exception Handlers

The eight ARM exception handlers are part of the µC/OS-II port to reduce the amount of work needed by

the programmer that’s integrating µC/OS-II in his or her product.

In fact, the eight exception handlers are written in a generic way and can actually be used by ANY ARM
processor whether it has a built-in interrupt controller or not.

The CPU exception vectors are initialized by the OS_CPU_ARM_InitExceptVect() function. This

function maps the eight exception vectors to eight handlers, OS_CPU_ARM_Except_XYZ_Hndlr().

Listing 3-24 presents one of those handlers, OS_CPU_ARM_ExceptIrqHnldr().

The eight handlers all need to save registers R0 to R12, the LR (offseted to compensate for the pipeline),

and branch to a global handler called OS_CPU_ARM_ExceptHndlr(), presented in listing 3-25. This

handler determines if the exception broke a task or another lower priority exception. This leads to a

branch, respectively to OS_CPU_ARM_ExceptHndlr_BreakTask() (listing 3-26) or

OS_CPU_ARM_ExceptHndlr_BreakExcept(), listing 3-27.

Both these branches eventually call a board & CPU dependent exception handler,

OS_CPU_ExceptHndlr(), located in the BSP (Board Support Package).

All those handlers (except OS_CPU_ExceptHndlr()) are written in assembly language because we

simply can’t manipulate CPU registers directly from C.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 32

Listing 3-24, OS_CPU_ARM_ExceptIrqHndlr()

;**
; INTERRUPT REQUEST EXCEPTION HANDLER
;
; Register Usage: R0 Exception Type
; R1
; R2
; R3 Return PC
;**

OS_CPU_ARM_ExceptIrqHndlr
 SUB LR, LR, #4 ; LR offset to return from this exception: -4.
 STMFD SP!, {R0-R12, LR} ; Push working registers.
 MOV R3, LR ; Save link register.
 ; Set exception ID to OS_CPU_ARM_EXCEPT_IRQ.
 MOV R0, #OS_CPU_ARM_EXCEPT_IRQ
 ; Branch to global exception handler.
 B OS_CPU_ARM_ExceptHndlr

Listing 3-25, OS_CPU_ARM_ExceptHndlr()

;**
; GLOBAL EXCEPTION HANDLER
;
; Register Usage: R0 Exception Type
; R1 Exception's SPSR
; R2 Old CPU mode
; R3 Return PC
;**

OS_CPU_ARM_ExceptHndlr
 MRS R1, SPSR ; Save CPSR (i.e. exception's SPSR).

 ; DETERMINE IF WE INTERRUPTED A TASK
 ; OR ANOTHER LOWER PRIORITY EXCEPTION.
 ; SPSR.Mode = FIQ, IRQ, ABT, UND : Other exception
 ; SPSR.Mode = SVC : Task
 ; SPSR.Mode = USR : *unsupported state*
 AND R2, R1, #OS_CPU_ARM_MODE_MASK
 CMP R2, #OS_CPU_ARM_MODE_SVC
 BNE OS_CPU_ARM_ExceptHndlr_BreakExcept

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 33

Listing 3-26, OS_CPU_ARM_ExceptHndlr_BreakTask()

;**
; EXCEPTION HANDLER: TASK INTERRUPTED
;
; Register Usage: R0 Exception Type
; R1 Exception's SPSR
; R2 Exception's CPSR
; R3 Return PC
; R4 Exception's SP
;**

OS_CPU_ARM_ExceptHndlr_BreakTask
 MRS R2, CPSR ; Save exception's CPSR.
 MOV R4, SP ; Save exception's stack pointer.

 ; Change to SVC mode & disable interruptions.
 MSR CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC)

 ; SAVE TASK'S CONTEXT ONTO TASK'S STACK.
 STMFD SP!, {R3} ; Push task's PC.
 STMFD SP!, {LR} ; Push task's LR.
 STMFD SP!, {R5-R12} ; Push task's R12-R5.
 LDMFD R4!, {R5-R9} ; Move task's R4-R0 from exception stack to task stack.
 STMFD SP!, {R5-R9}
 STMFD SP!, {R1} ; Push task's CPSR (i.e. exception SPSR).

 LDR R1, ?OS_Running ; if (OSRunning == 1)
 LDRB R1, [R1]
 CMP R1, #1
 BNE OS_CPU_ARM_ExceptHndlr_BreakTask_1

 ; HANDLE NESTING COUNTER.
 LDR R3, ?OS_IntNesting ; OSIntNesting++;
 LDRB R4, [R3]
 ADD R4, R4, #1
 STRB R4, [R3]

 LDR R3, ?OS_TCBCur ; OSTCBCur->OSTCBStkPtr = SP;
 LDR R4, [R3]
 STR SP, [R4]

OS_CPU_ARM_ExceptHndlr_BreakTask_1
 MSR CPSR_cxsf, R2 ; RESTORE INTERRUPTED MODE.

 ; EXECUTE EXCEPTION HANDLER:
 ; OS_CPU_ExceptHndlr();
 LDR R1, ?OS_CPU_ExceptHndlr
 MOV LR, PC
 BX R1

 ; Adjust exception stack pointer. This is needed because
 ; exception stack is not used when restoring task context.
 ADD SP, SP, #(14*4)

 ; Change to SVC mode & disable interruptions.
 MSR CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC)

 ; Call OSIntExit(). This call MAY never return
 ; if a ready task with higher priority than
 ; the interrupted one is found.
 LDR R0, ?OS_IntExit
 MOV LR, PC
 BX R0

 ; RESTORE NEW TASK'S CONTEXT.
 LDMFD SP!, {R0} ; Pop new task's CPSR.
 MSR SPSR_cxsf, R0

 LDMFD SP!, {R0-R12, LR, PC}^; Pop new task's context.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 34

Listing 3-27, OS_CPU_ARM_ExceptHndlr_BreakExcept()

;***
; EXCEPTION HANDLER: EXCEPTION INTERRUPTED
;
; Register Usage: R0 Exception Type
; R1
; R2
; R3
;***

OS_CPU_ARM_ExceptHndlr_BreakExcept
 MRS R2, CPSR ; Save exception's CPSR.

 ; Change to SVC mode & disable interruptions.
 MSR CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC)

 ; HANDLE NESTING COUNTER.
 LDR R3, ?OS_IntNesting ; OSIntNesting++;
 LDRB R4, [R3]
 ADD R4, R4, #1
 STRB R4, [R3]

 MSR CPSR_cxsf, R2 ; RESTORE INTERRUPTED MODE.

 ; EXECUTE EXCEPTION HANDLER:
 ; OS_CPU_ExceptHndlr();
 LDR R3, ?OS_CPU_ExceptHndlr
 MOV LR, PC
 BX R3

 ; Change to SVC mode & disable interruptions.
 MSR CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC)

 ; HANDLE NESTING COUNTER.
 LDR R3, ?OS_IntNesting ; OSIntNesting--;
 LDRB R4, [R3]
 SUB R4, R4, #1
 STRB R4, [R3]

 MSR CPSR_cxsf, R2 ; RESTORE INTERRUPTED MODE.

 ; RESTORE OLD CONTEXT:
 LDMFD SP!, {R0-R12, PC}^ ; Pull working registers and return from exception.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 35

You should note that MOST of the work done by the exception handler is actually handled in

OS_CPU_ExceptHndlr() (located in the BSP) which is written in C. The pseudo-code for

OS_CPU_ExceptHndlr() is shown in listing 3-28. The handler is responsible for discriminate

exceptions and interruptions, determining the source of the interruptions and for executing the appropriate
code to handle the interrupting device.

Listing 3-28, OS_CPU_ExceptHndlr()

void OS_CPU_ExceptHndlr (INT32U except_type)
{
 /* Determine behavior according to exception type (except_type) */

 /* If an IRQ or FIQ */
 while (there are interrupting devices) {
 /* Clear interrupting device */
 /* Handle interrupt */
 }
}

OS_CPU_ExceptHndlr() is actually part of YOUR application and not part of the µC/OS-II port. The

reason is that the handler will most likely change depending on the presence of an interrupt controller or
not and, if there is an interrupt controller, the actual type of controller.

It’s important to note that the handler should ‘look’ to see whether there are more than one interrupting

devices and process each one before returning to OS_CPU_ARM_ExceptHndlr(). This avoids going

through the overhead of saving the CPU registers upon entry of the exception handlers and restoring
them upon exit if multiple interruptions occur either at the same time or, during processing of an
interruption.

Note that this port now supports nested interruptions.

Finally, as a general rule, you should always make your exception handlers as shorts as possible. Take
care of the device, buffer data (if necessary) and signal a task to do most of the work of servicing the
data. For example, if you have an Ethernet controller, simply notify a task that an Ethernet packet has
arrived and let the task extract the packet from the Ethernet controller.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 36

3.05 OS_DBG.C

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information

about µC/OS-II and its configuration. Specifically, OS_DBG.C contains a number of constants that are

placed in ROM (code space) which the debugger can read and display. Because you may not be using a
debugger that needs that file, you may omit it in your build.

For the IAR compiler as well as Nohau’s emulators, Micriµm has introduced a Windows-based ‘Plug-In’
module that makes use of this file and thus needs to be included if you use IAR’s C-Spy or Nohau’s
Seehau.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 37

4.00 Exception Vector Table

The ARM contains an exception vector table (also called the interrupt vector table) starting at address

0x00000000. There are only eight (8) entries in the vector table. Each entry has enough room to hold a

single 32-bit instruction. The instruction placed in this table is generally a branch instruction with a signed
26-bit destination address. In other words, the ARM can branch to an address that is roughly +/-

0x0200000 from the vector location. The code that you branch to has to determine the interrupt source

because there is only one address for all devices that can interrupt the ARM.

The exception vector table for the ARM is shown in table 4-1:

Exception Mode Vector Address
Reset SVC 0x00000000

Undefined Instruction UND 0x00000004

Software Interrupt (SWI) SVC 0x00000008

Prefetch abort Abort 0x0000000C

Data abort Abort 0x00000010

Address abort Abort 0x00000014

IRQ (Normal Interrupt) IRQ 0x00000018

FIQ (Fast Interrupt) FIQ 0x0000001C

Table 4-1, ARM’s Exception Vector Table

When the CPU recognizes an IRQ from an interrupting device (i.e. IRQ interrupts are enabled), the CPU

vectors to address 0x00000018 where it expects to find an instruction that jumps to

OS_CPU_ARM_ExceptIrqHndlr(). However, it’s possible that the code for

OS_CPU_ARM_ExceptIrqHndlr() is located outside the reach of a normal ‘branch’ instruction (i.e.

beyond the reach of a 26-bit address) and thus we do not want to place a ‘B

OS_CPU_ARM_ExceptIrqHndlr’ at address 0x00000018. Instead, we place the following instruction:

‘LDR PC,[PC,#0x18]’. This instruction simply specifies to load the PC with the contents of location

0x00000038. At location 0x00000038, we simply place the full 32-bit address of

OS_CPU_ARM_ExceptIrqHndlr(). This allows the exception handler to be placed anywhere within the

32-bit addressing range of the ARM. The same reasoning applies to the FIQ. To summarize, we need to
place the following values for the interrupt vectors:

Exception Mode Vector Address Contents
IRQ (Normal
Interrupt)

IRQ 0x00000018 LDR PC,[PC,#0x18]
or

0xE59FF018

FIQ (Fast Interrupt) FIQ 0x0000001C LDR PC,[PC,#0x18]
or

0xE59FF018

… … … …

 0x00000038 Address of
OS_CPU_ARM_ExceptIrqHndlr()

 0x0000003C Address of
OS_CPU_ARM_ExceptFiqHndlr()

Table 4-2, Interrupt Vectors

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 38

If you are debugging your code in RAM, ensure that the BSP calls the

OS_CPU_ARM_InitExceptVect(). This will initialize exception vector table to exception handlers.

Listing 4-1, Installing the interrupt vectors in RAM

[…]

(*(INT32U *)OS_CPU_ARM_EXCEPT_IRQ_VECT_ADDR) =
 OS_CPU_ARM_INSTR_JUMP_TO_HANDLER;
(*(INT32U *)OS_CPU_ARM_EXCEPT_IRQ_HANDLER_ADDR) =
 (INT32U)OS_CPU_ARM_ExceptIrqHndlr;

[…]

This assumes that you have RAM at address 0x00000000. Most ARM processors allow you to re-map

RAM to location 0x00000000. This is done in the example BSP before calling

OS_CPU_ARM_InitExceptVect().

If you have Flash (or ROM) at location 0x00000000, ensure your startup file correctly initialize the

exception vector table at compile time.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 39

4.01 Exception Handling Sequence

Below is the sequence of events that take place when an IRQ occurs

 (assuming the I-bit in the CPSR is 0):

 The CPU switches mode to IRQ mode (MODE = 0x12);

 The CPSR is saved into the SPSR_irq register;

 The return address PC is saved into R14_irq (i.e. the Link Register of the IRQ mode);

 The I-bit of the CPSR is set to 1 disabling further IRQs;

 The PC is forced to address 0x00000018;

 The PC is loaded with the address of OS_CPU_ARM_ExceptIrqHndlr() because of the

LDR PC,[PC,#0x18] instruction that we placed at address 0x00000018.

 The CPU executes the code in OS_CPU_ARM_ExceptIrqHndlr(), then

OS_CPU_ARM_ExceptHndlr() (found in OS_CPU_A.S).

 OS_CPU_ARM_ExceptHndlr() calls OS_CPU_ExceptHndlr() (found in BSP.C) to

determine the source of the interrupt and handle it accordingly.

 When OS_CPU_ARM_ExceptHndlr() returns from OS_CPU_ExceptHndlr(), it calls

OSIntExit() (in case of task interrupted) which determines whether there has been a

more important task that has been made ready to run by the exception handler or,
whether we simply need to return to the interrupted task.

 If the interrupted task is still the highest priority task, OSIntExit() returns to

OS_CPU_ARM_ExceptHndlr() which simply returns to this task.

 If there is a more important task, OSIntExit() calls OSIntCtxSw() (see OS_CPU_A.S) which

takes care of switching to the more important task.

A similar sequence occurs for FIQ interrupts.

4.02 Interrupt Controllers

Some ARM implementations contain a ‘smart’ interrupt controller that supplies a vector (i.e. an address)
for each interrupt source. This allows the proper interrupt handler to be called quickly instead of having
the interrupt handler ‘poll’ each possible interrupting device to determine if it needs servicing.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 40

4.02.01 Interrupt Controllers, Atmel’s AIC

The Atmel AT91 and SAM7 families of processors have an Advanced Interrupt Controller (AIC). Once
initialized, the AIC provides the 32-bit address of the ISR for the highest priority interrupting device at

location 0xFFFFF100. In other words, the interrupting device’s ISR address can be read from location

0xFFFFF100. When there are no more interrupting devices, location 0xFFFFF100 contains

0x00000000. Refer to the AIC documentation for additional details.

Similarly, the address of the ISR for the FIQ interrupting device is found at address 0xFFFFF104.

OS_CPU_ExceptHndlr() can thus be written as shown in listing 4-3.

Listing 4-3, OS_CPU_ExceptHndlr() for Atmel’s AIC.

#define AIC_IVR (*(INT32U *)0xFFFFF100)
#define AIC_FVR (*(INT32U *)0xFFFFF104)

typedef void (*BSP_FNCT_PTR)(void);

void OS_CPU_ExceptHndlr (CPU_DATA except_type)
{
 BSP_FNCT_PTR pfnct;
 CPU_INT32U *sp;

 if (except_type == OS_CPU_ARM_EXCEPT_FIQ) {
 pfnct = (BSP_FNCT_PTR)*AT91C_AIC_FVR; /* Read the FIQ handler from the AIC. */
 while (pfnct != (BSP_FNCT_PTR)0) { /* Make sure we don't have a NULL pointer.*/
 (*pfnct)(); /* Execute the handler. */
 AT91C_AIC_EOICR = ~0; / End of handler. */
 pfnct = (BSP_FNCT_PTR)*AT91C_AIC_FVR;/* Read the FIQ handler from the AIC. */
 }
 AT91C_AIC_EOICR = ~0; / End of handler. */
 } else if (except_type == OS_CPU_ARM_EXCEPT_IRQ) {
 pfnct = (BSP_FNCT_PTR)*AT91C_AIC_IVR; /* Read the IRQ handler from the AIC. */
 while (pfnct != (BSP_FNCT_PTR)0) { /* Make sure we don't have a NULL pointer.*/
 (*pfnct)(); /* Execute the handler. */
 AT91C_AIC_EOICR = ~0; / End of handler. */
 pfnct = (BSP_FNCT_PTR)*AT91C_AIC_IVR;/* Read the IRQ handler from the AIC. */
 }
 AT91C_AIC_EOICR = ~0; / End of handler. */
 } else {
 /* Other exception handling */
 }
 }
}

It’s IMPORTANT to note that you MUST place the address of the ISR handler in the proper AIC register

in order for OS_CPU_ExceptHndlr() to work properly. You DO NOT want to place the address of

OS_CPU_ExceptHndlr() as the ISR address for the AIC.

Your ISR handlers should be written as follows:

void MyISR_Hndlr (void)
{
 /* Service the interrupting device */
 /* Buffer the data (if any) and signal a task to process the data */
 /* Clear the interrupting device (i.e. acknowledge the device) */
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 41

4.02.02 Interrupt Controllers, Philips and Sharp’s VIC

The Philips LPC2000 series (ARM7), Sharp ARM7 and ARM9 families of processors have a Vectored
Interrupt Controller (VIC). Once initialized, the VIC provides the 32-bit address of the ISR for the highest

priority interrupting device at location 0xFFFFF030. In other words, the interrupting device’s ISR can be

read from location 0xFFFFF030. When there are no more interrupting devices, location 0xFFFFF030

contains 0x00000000.

Similarly, the address of the ISR for the FIQ interrupting device is found at address 0xFFFFF034.

OS_CPU_ExceptHndlr() can thus be written as shown in listing 4-4.

Listing 4-4, OS_CPU_ExceptHndlr() for Philips and Sharp’s VIC.

#define VIC_IRQ (*(INT32U *)0xFFFFF030)
#define VIC_FIQ (*(INT32U *)0xFFFFF034)

typedef void (*BSP_FNCT_PTR)(void);

void OS_CPU_ExceptHndlr (CPU_DATA except_type)
{
 BSP_FNCT_PTR pfnct;
 CPU_INT32U *sp;

 if (except_type == OS_CPU_ARM_EXCEPT_FIQ) {
 pfnct = (BSP_FNCT_PTR)*VIC_FIQ; /* Read the FIQ handler from the VIC. */
 while (pfnct != (BSP_FNCT_PTR)0) { /* Make sure we don't have a NULL pointer.*/
 (*pfnct)(); /* Execute the handler. */
 AT91C_AIC_EOICR = ~0; / End of handler. */
 pfnct = (BSP_FNCT_PTR)*VIC_FIQ; /* Read the FIQ handler from the VIC. */
 }
 AT91C_AIC_EOICR = ~0; / End of handler. */
 } else if (except_type == OS_CPU_ARM_EXCEPT_IRQ) {
 pfnct = (BSP_FNCT_PTR)*VIC_IRQ; /* Read the IRQ handler from the VIC. */
 while (pfnct != (BSP_FNCT_PTR)0) { /* Make sure we don't have a NULL pointer.*/
 (*pfnct)(); /* Execute the handler. */
 AT91C_AIC_EOICR = ~0; / End of handler. */
 pfnct = (BSP_FNCT_PTR)*VIC_IRQ; /* Read the IRQ handler from the VIC. */
 }
 AT91C_AIC_EOICR = ~0; / End of handler. */
 } else {
 /* Other exception handling */
 }
 }
}

It’s IMPORTANT to note that you MUST place the address of the ISR handler in the proper VIC register

in order for OS_CPU_ExceptHndlr() to work properly. You DO NOT want to place the address of

OS_CPU_ExceptHndlr() as the ISR address for the VIC.

Your ISR handlers should be written as follows:

void MyISR_Hndlr (void)
{
 /* Service the interrupting device */
 /* Buffer the data (if any) and signal a task to process the data */
 /* Clear the interrupting device (i.e. acknowledge the device) */
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 42

4.02.03 Interrupt Controllers, Freescale i.MX

The Freescale i.MX series have an Interrupt Controller called the AITC. Once initialized, the AITC
provides the ‘index’ (a number between 0 and 63, incl.) of the highest priority interrupting device. The
index can then be used as an index into a table of interrupt vectors. The index for the highest priority

interrupting device is found at location 0x00223040 (for the i.MX1). This is called the Normal Interrupt

Vector and Status Register (NIVECSR).

Similarly, the index of the interrupting device for the FIQ interrupting device is found at address

0x00223044. The is called the Fast Interrupt Vector and Status Register (FIVECSR).

There are a number of things we need to setup to use the AITC as shown in the following listings. This
code would normally be placed in the BSP of the target board.

Listing 4-5, #defines

#define BSP_NIVECSR (*(INT32U *)0x00223040L)
#define BSP_FIVECSR (*(INT32U *)0x00223044L)

These are the addresses of the NIVECSR and FIVECSR registers, respectively.

Listing 4-6, Data Types

typedef void (*BSP_FNCT_PTR)(void);

This declares a new data type for a pointer to a function.

Listing 4-7, Exception handler address table

BSP_FNCT_PTR BSP_ExceptHndlrVectTbl[64];

This declares an array of pointers to functions. Each interrupting device is identified by an index from 0 to

63 which is contained in the BSP_NIVECSR for an IRQ and the BSP_FIVECSR for an FIQ. We would

use this index to extract the address of the exception handler from this table (see

OS_CPU_ExceptHndlr() for details).

Listing 4-8, Unused exception handler

static void BSP_ExceptDummyHndlr(void)
{
}

Here we declare a ‘dummy’ function in order to populate the exception vector table (i.e.

BSP_ExceptHndlrVectTbl[]) with a pointer to this function. This is used in case there is no handler

associated with an interrupting device.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 43

Listing 4-9, Initialization of the exception vector table

static void BSP_Init(void)
{
[…]
 INT16U i;

[…]
 for (i = 0; i < 64; i++) {
 BSP_ExceptHndlrVectTbl[i] = BSP_ExceptDummyHndlr;
 }
}

We initialize the table containing the addresses of the exception handler for each interrupting device.
When you want the CPU to service a specific device, you would simply ‘install’ the exception handler by

calling BSP_ExceptHndlrSet() as described in Listing 4-10.

Listing 4-10, Specifying the address of an exception handler

void BSP_ExceptHndlrSet (INT32U except_type, BSP_FNCT_PTR pHndlr) (1)
{
 if (except_type < 64) { (2)
 BSP_ExceptHndlrVectTbl[except_type] = pHndlr; (3)
 }
}

L4-10(1) When you want the CPU to service a specific device, you would simply ‘install’ the

exception handler by calling BSP_ExceptHndlrSet() and specify the ‘except_type’ as

well as the address for the exception handler. You MUST declare your handlers as
follows:

 void MyExceptHndlr(void)
 {
 Handle the device that generated the exception.
 Possibly buffer and signal a task to handle the data;
 Don’t forget to ‘CLEAR’ the interrupting device.
 }

L4-10(2) You MUST specify an exception id between 0 and 63, inclusively.

L4-10(3) The address of the exception handler is saved in the table.

Listing 4-11, OS_CPU_ExceptHndlr() for the Freescale’s AITC

void OS_CPU_ExceptHndlr (void)
{
 INT16U except_type;
 BSP_FNCT_PTR pfnct;

 except_type = (BSP_NIVECSR >> 16) & 0x00FF; (1)
 while (except_type < 64) { (2)
 pfnct = BSP_ExceptHndlrVectTbl[except_type]; (3)
 if (pfnct != (BSP_FNCT_PTR)0) { (4)
 pfnct(); (5)
 }
 except_type = (BSP_NIVECSR >> 16) & 0x00FF; (6)
 }
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 44

L4-11(1) We get the ‘except_type’ of the highest priority exception to service which is found in the

upper 16 bits of the BSP_NIVECSR register.

L4-11(2) We want to service ALL interrupting devices. In other words, there is no point of

returning from an exception if there are ‘more’ devices interrupting the CPU. This
reduces the overhead associated with servicing multiple consecutive exceptions. Note

the BSP_NIVECSR will contain an index higher than 63 when there are no more devices

interrupting the CPU.

L4-11(3) If we have a valid index, we obtain the address of the exception handler associated with

the interrupting device.

L4-11(4) Just in case, we make sure a ‘distracted’ programmer didn’t decide to place a NULL

pointer as an exception handler.

L4-11(5) We execute the exception handler for the interrupting device.

L4-11(6) Finally, we check to see whether there are other interrupts to service.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 45

5.00 Debugging in RAM

A large number of ARM chips allow you to re-map RAM at location 0x00000000 which allows you to

change exception and interrupt vectors at run-time (especially useful during debug).

The remapping of RAM at location 0x00000000 allows you to install the IRQ and FIQ interrupt vectors as

discussed in the previous section.

Some ARM cores contain an MMU. In order to ‘remap’ RAM at address 0x00000000, the MMU needs to

be initialized and the remapping is actually done by the MMU. MMU initialization is assumed to be part of

the application code. As far as µC/OS-II is concerned, you need to locate some RAM from address

0x00000000 to 0x0000003F during debugging in order to setup the interrupt vectors.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 46

 6.00 Application Code

Your application code can make use of the port presented in this application note as described in this

section. Figure 6-1 shows a block diagram of the relationship between your application, µC/OS-II, the

µC/OS-II port, the BSP (Board Support Package), the ARM CPU and the target hardware.

Figure 6-1, Relationship between modules.

µC/OS-II
OS_CORE.C
OS_FLAG.C
OS_MBOX.C
OS_MEM.C

OS_MUTEX.C
OS_Q.C

OS_SEM.C
OS_TASK.C
OS_TIME.C
uCOS_II.H

µC/OS-II

ARM Port
OS_CPU_C.C

OS_CPU_A.ASM
OS_CPU.H
OS_DBG.C

Your Application
APP.C

APP_CFG.H
INCLUDES.H
OS_CFG.H

BSP
BSP.C
BSP.H

ARM / Target Board

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 47

6.01 APP.C, APP.H and APP_CFG.H

For sake of discussion, your application is placed in files called APP.C and APP_CFG.H. Of course, your

application (i.e. product) can contain many more files.

APP.C would be where you would place main() but, of course, you can place main() anywhere you

want.

APP_CFG.H contains #define constants to configure the application. We placed task stack sizes task

priorities and other #defines in this file. This allows you to locate task priorities and sizes in one place.

APP.C is a standard test file for µC/OS-II examples. The two important functions are main() (listing 6-

1) and AppStartTask() (listing 6-2).

Listing 6-1, main()

int main (void)
{
#if (OS_TASK_NAME_SIZE >= 16)
 CPU_INT08U os_err;
#endif

 (void)&App_Clk_UTC_Offset;

 os_err = 0; /* Warning: With some debuggers the first call is */
 /* ignored. */

 BSP_Init(); /* Initialize BSP. */
 CPU_Init(); /* Initialize CPU. */

 APP_TRACE_DEBUG(("\n\n\n"));
 APP_TRACE_DEBUG(("Initialize OS...\n"));
 OSInit(); /* Initialize OS. (1) */

 /* Create start task. (2) */
 OSTaskCreateExt(App_TaskStart,
 (void *)0,
 (OS_STK *)&App_StartTaskStk[APP_START_OS_CFG_TASK_STK_SIZE - 1],
 APP_START_OS_CFG_TASK_PRIO,
 APP_START_OS_CFG_TASK_PRIO,
 (OS_STK *)&App_StartTaskStk[0],
 APP_START_OS_CFG_TASK_STK_SIZE,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

 /* Give a name to tasks. */
#if (OS_TASK_NAME_SIZE >= 16)
 OSTaskNameSet(OS_TASK_IDLE_PRIO, "Idle", &os_err); (3)
#if (OS_TASK_STAT_EN > 0)
 OSTaskNameSet(OS_TASK_STAT_PRIO, "Stat", &os_err);
#endif
 OSTaskNameSet(APP_START_OS_CFG_TASK_PRIO, "Start", &os_err); (4)
#endif

 APP_TRACE_DEBUG(("Start OS...\n"));
 OSStart(); /* Start OS. (5) */
}

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 48

L6-1(1) As with all µC/OS-II based applications, you need to initialize µC/OS-II by calling

OSInit().

L6-1(2) You need to create at least one task. In this case, we created the task using the extended

task create call. This allows µC/OS-II to have more information about your task.

Specifically, with the IAR toolchain, the extra information allows the C-Spy debugger to

display stack usage information when you use the µC/OS-II Kernel Awareness Plug-In.

L6-1(3) µC/OS-II doesn’t name the idle task nor the statistic task by default and thus, we can do this

at this point. In fact, we could have name these task immediately after calling OSInit().

L6-1(4) We can now give names to tasks and those can be displayed by Kernel Aware debuggers

such as IAR’s C-Spy.

L6-1(5) In order to start multitasking, you need to call OSStart(). Note that OSStart() will not

return from this call.

Listing 6-2, AppStartTask()

static void App_TaskStart (void *p_arg)
{
#if (CPU_CFG_NAME_EN == DEF_ENABLED)
 CPU_ERR err;
#endif

 (void)&p_arg; /* Prevent compiler warning. */

 APP_TRACE_DEBUG(("Initialize OS timer...\n"));
 Tmr_Init(); /* Initialize OS timer. */

#if (OS_TASK_STAT_EN > 0)
 APP_TRACE_DEBUG(("Initialize OS statistic task...\n"));
 OSStatInit(); /* Initialize OS statistic task. (1) */
#endif

 APP_TRACE_DEBUG(("Create application task...\n"));
 App_TaskCreate(); /* Create application task. (2) */

[…]
 (3)
 LED_Off(1); (4)
 LED_Off(2);
 LED_Off(3);

 while (DEF_YES) { /* Task body, always written as an infinite loop. */
 OSTimeDlyHMSM(0, 0, 0, 500);

[…]
 }
}

L6-2(2) If you enabled the statistic task by setting OS_TASK_STAT_EN in OS_CFG.H to 1) then, you

need to call it here. Please note that you need to make sure that you initialized and enabled

the µC/OS-II clock tick because OSStatInit() assumes the presence of clock ticks. In

other words, if the tick interruption handler is not active when you call OSStatInit(), your

application will end up in µC/OS-II’s idle task and not be able to run any other tasks.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 49

L6-2(3) At this point, you can create additional tasks. We decided to place all our task initialization in

one function called AppTaskCreate() but, you are certainly welcome to use a different

technique.

L6-2(4) You can now perform whatever additional function you want for this task.

L6-2(5) We decided to toggle an LED at a rate of 10 Hz (LED will blink at 2 Hz) when this task is

running (see section 7.00, Board Support Package).

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 50

6.02 INCLUDES.H

INCLUDES.H is a master include file and is found at the top of all .C files. INCLUDES.H allows every .C

file in your project to be written without concern about which header file is actually needed. The only

drawbacks to having a master include file are that INCLUDES.H may include header files that are not

pertinent to the actual .C file being compiled and the compilation process may take longer. These

inconveniences are offset by code portability. You can edit INCLUDES.H to add your own header files,

but your header files should be added at the end of the list. Listing 6-3 shows the typical contents of

INCLUDES.H. Of course, you can add your own header files as needed.

Listing 6-3, INCLUDES.H

#include <ctype.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <app_cfg.h>

#include <ucos_ii.h>
#include <bsp.h>

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 51

7.00 BSP (Board Support Package)

It is often convenient to create a Board Support Package (BSP) for your target hardware. A BSP could
allow you to encapsulate the following functionality:

 Timer initialization
 Exception handlers
 LED control functions
 Reading switches
 Setting up the interrupt controller
 Setting up communication channels
 Etc.

A BSP consist of 2 files: BSP.C and BSP.H.

For example, because a number of evaluation boards are equipped with LEDs, we decided to create LED
control functions as follows:

 void LED_Init(void);
 void LED_On(INT8U led_id);
 void LED_Off(INT8U led_id);
 void LED_Toggle(INT8U led_id);

In this case, LEDs are referenced ‘logically’ instead of physically. When you write the BSP, you
determine which LED is LED #1, which is LED #2, etc. When you want to turn on LED #1, you simply call

LED_On(1). If you want to toggle LED #2, you simply call LED_Toggle(2). In fact, you can (and

should) associate names to your LEDs using #defines. You could thus specify LED_Off(LED_PM).

Each BSP should contain a BSP initialization function. We called ours BSP_Init() and should be

called by your application code.

We decided to encapsulate the µC/OS-II clock tick handler in the BSP because exception handlers really

belong into your application code and not µC/OS-II. Doing this makes it easier to adapt the µC/OS-II

port to different target hardware since you could simply change the BSP to select whichever timer or

interrupt source for the clock tick. The clock tick interruption handler is found in BSP.C and is called

Tmr_TickHndlr().

It’s assumed that the generic exception handler (OS_CPU_ExceptHndlr()) is declared in BSP.C (see

section 4 for details).

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 52

8.00 Conclusion

This application note presented a ‘generic’ port for ARM processors (ARM7 or ARM9). The port should
be easily adapted to different compilers (the code itself should be identical). Of course, if you use

µC/OS-II and use the port on actual hardware, you will need to initialize and properly handle hardware

interrupts.

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 53

Acknowledgements

I would like to thank Mr. Harry Barnett (R.I.P.) and Mr. Michael Anburaj for their contribution of the original
ARM port.

Licensing

If you intend to use µC/OS-II in a commercial product, remember that you need to contact Micrium to

properly license its use in your product.

References

MicroC/OS-II, The Real-Time Kernel, 2P

nd
P Edition

Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-5782-0103-9

Contacts

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA
+1 785 841 1631
+1 785 841 2624 (FAX)
WEB: HTUhttp://www.rdbooks.com UTH

e-mail: HTUrdorders@rdbooks.com UTH

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
+1 954 217 2036
+1 954 217 2037 (FAX)
e-mail: HTULicensing@Micrium.com UTH

WEB: HTUwww.Micrium.com UTH

IAR Systems, Inc.
Century Plaza
1065 E. Hillsdale Blvd
Foster City, CA 94404
USA
+1 650 287 4250
+1 650 287 4253 (FAX)
WEB: HTUhttp://www.IAR.com UTH

e-mail: HTUinfo@IAR.com UTH

Nohau Corporation
51 E. Campbell Ave
Campbell, CA 95008
USA
+1 408 866 1820
+1 408 378 7869 (FAX)
WEB: HTUhttp://www.Nohau.com UTH

e-mail: HTUsupport@Nohau.com UTH

Macraigor Systems LLC
PO Box 471008
Brookline Village, MA 02445
+1 206 855 9269
+1 206 855 9297 (FAX)
WEB: HTUhttp://www.Macraigor.com UTH

 µC/OS-II Port for ARM Processors

 (ARM7 or ARM9)
 (ARM or Thumb Mode)

 54

Notes

