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1.00 Introduction 
 

µC/OS-II has been running on ARM based processors since 1995 (in fact µC/OS V1.x has).  There has 

been a number of ARM ports posted on the Micriµm web site.  The differences have mostly to do with 
differences in compilers and what target board they run on.  
 

This application note describes the ‘official’ Micrium port for µC/OS-II.  Figure 1-1 shows a block diagram 

showing the relationship between your application, µC/OS-II, the port code and the BSP (Board Support 

Package).  Relevant sections of this application note are referenced on the figure. 
 
Note that the port described in this application note applies to both ARM7 and ARM9 processors and you 
can use this port for both ARM and Thumb-based applications.  Previous ports either worked in ARM-
mode or in Thumb-mode.  This port handles both. 
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Figure 1-1, Relationship between modules. 
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2.00 The ARM programmer’s model 
 
Some of the most popular variant of the ARM processors are the ARM7TDMI and ARM92xT.  The four 
letters stand for: 
 
 T (Thumb) 

The T stands for Thumb instruction set which addresses the issue of code density.  Specifically, 
Thumb mode allows instructions to be 16-bits instead of 32-bits thus reducing code density.  A 
processor having the T suffix can thus run Thumb code. 
 
D (Debug) 
The D stands for debug support.  This means that the specific ARM7 you are using offers on-chip 
debug support, generally through a J-Tag interface. 
 
M (Multiply) 
The M means that the CPU contains a hardware multiply instruction. 
 
I (EmbeddedICE macrocell) 
Is the debug hardware built into the processor that allows breakpoints and watchpoints to be set. 

 

 
The visible registers in an ARM processor are shown in Figure 2-1.  The ARM has a total of 37 registers.  
Each register is 32 bits wide.  At any time, only 18 of those registers are directly ‘visible’ by the processor: 

R0 through R15, CPSR and SPSR (SPSR is not visible in SYS mode). 

 

R0-R12 R0 through R12 are general purpose registers that can be used to hold data as well as 

pointers. 
 

R13 Is generally designated as the stack pointer (also called the SP) but could be the recipient 

of arithmetic operations. 
 

R14 Is called the Link Register (LR) and is used to store the contents of the PC when a Branch 

and Link (BL) instruction is executed.  The LR allows you to return to the caller.  The LR is 

also used during exception processing to store the contents of the PC prior to the 

exception. 
 

R15 Is dedicated to be used as the Program Counter (PC) and points to the current instruction 

being executed.  As instructions are executed, the PC is incremented by either 2 (Thumb 

mode) or 4 (ARM mode). 
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Figure 2-1, ARM Register Model. 

 

CPSR The CPSR (Current Processor Status Register) is used to store the condition code bits. 

These bits are used, for example, to record the result of a comparison operation and to 
control whether or not a conditional branch is taken.  Figure 2-2 shows the contents of 

the CPSR.   

 
 

Figure 2-2, The CPSR Register. 
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MODE 
 
The bottom 5 bits of the register control the processor mode (described later).     
 
T 
Bit 5 determines whether the processor is executing Thumb (T == 1) or ARM code 
(T == 0).   
 
F 
Bit 6 is the FIQ (Fast Interrupt Request) interrupt enable flag.  Interrupts are recognized 
on the FIQ input of the processor when this bit is 0.  Interrupts are disabled when it’s a 1.   
 
I 
Bit 7 is the IRQ (Interrupt Request) interrupt enable flag.  Interrupts are recognized when 
the bit is 0 and ignored when it’s a 1. 
 
N 
Bit 31 is the ‘negative’ bit and is set when the last ALU operation produced a negative 
result (i.e. the top bit of a 32-bit result was a one). 
 
 Z 
Bit 30 is the ‘zero’ bit and is set when the last ALU operation produced a zero result 
(every bit of the 32-bit result was zero). 
 
C 
Bit 29 is the ‘carry’ bit and is set when the last ALU operation generated a carry-out, 
either as a result of an arithmetic operation in the ALU or from the shifter. 
 
V 
Bit 28 is the ‘overflow’ bit and is set when the last arithmetic ALU operation generated an 
overflow into the sign bit. 

 
 

The CPU can be in any of 7 modes: USER, SYS, SVC, IRQ, FIQ, ABORT and UNDEF (see Figure 2-1).   
 
USER  The USER mode is the least ‘privileged’ mode and in fact, certain instructions cannot be 

executed when in this mode.  For this reason, µC/OS-II applications will never be in this 

mode.  Only registers R0-R15 and CPSR are ‘visible’ by the processor in this mode. 

 
SYS  The SYS mode uses the same registers as in USER mode except that code running in 

SYS mode has all the privileges of the other modes.  Only registers R0-R15 and CPSR 

are ‘visible’ by the processor in this mode.   
 
SVC  The SVC (Supervisor) mode is the default mode at power up.  The processor can 

execute any instruction in this mode.  In this mode, register R13 and R14 are not visible.  

Instead, alternate registers replace R13 and R14 and these are called R13_svc and 

R14_svc.  In other words, only the registers in the SVC column of Figure 2-1 are visible.  

We decided to run the µC/OS-II port in SVC mode.  The reason for choosing this will 
become apparent as we describe the port. 
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IRQ  When the I-bit of the CPSR is 0, the CPU will recognize interrupt requests from the IRQ 

input of the processor.  When an interrupt occurs, the CPU does the following: 
 

   Switches mode to IRQ mode (MODE = 0x12) 

   Saves the CPSR into the SPSR_irq register 

   Saves the PC into R14_irq (i.e. the Link Register of the IRQ mode) 

   The I-bit of the CPSR is set to 1 disabling further IRQs 

   The PC is forced to address 0x00000018 

    

Note that registers R0-R12 are the same as SYS mode except that the IRQ mode has its 

own set of R13_irq (the SP), R14_irq (the LR) and SPSR_irq registers.  In fact, when 

an interrupts occurs, the CPSR of the SVC mode is saved in the SPSR_irq. 

 

FIQ  When the F-bit of the CPSR is 0, the CPU will recognize interrupt requests from the FIQ 

input of the processor.  When an interrupt occurs, the CPU does the following: 
 

   Switches mode to FIQ mode (MODE = 0x11) 

   Saves the CPSR into the SPSR_fiq register 

   Saves the PC into R14_fiq (i.e. the Link Register of the FIQ mode) 

 The F-bit and the I-bit of the CPSR are both set to 1 disabling further FIQs and 

IRQs 

   The PC is forced to address 0x0000001C 

    

Note that registers R0-R7 are the same as SYS mode except that the FIQ mode has its 

own set of R8_fiq to R12_fiq and R13_fiq (the SP), R14_fiq (the LR) and 

SPSR_fiq registers.  In fact, when an interrupts occurs, the CPSR of the current mode is 

saved in the SPSR_fiq. 

    
ABORT  A memory abort is signaled by the memory system.  Activating an abort in response to an 

instruction fetch marks the fetched instruction as invalid.  An abort will take place if the 
processor attempts to execute the invalid instruction. 

 

   Switches mode to ABORT mode (MODE = 0x17) 

   Saves the CPSR into the SPSR_abt register 

   Saves the PC into R14_abt (i.e. the Link Register of the ABORT mode) 

   The I-bit of the CPSR is set to disable IRQs 

   The PC is forced to address 0x0000000C 

    
  Activating an abort in response to a data access (Load or Store) marks the data as 

invalid.  A data abort will result in the following actions: 
 

   Switches mode to ABORT mode (MODE = 0x17) 

   Saves the CPSR into the SPSR_abt register 

   Saves the PC into R14_abt (i.e. the Link Register of the ABORT mode) 

   The I-bit of the CPSR is set to disable IRQs 

   The PC is forced to address 0x00000010 
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UNDEF  If ARM executes a coprocessor instruction, it waits for any external coprocessor to 

acknowledge that it can execute the instruction.  If no coprocessor responds, an 
undefined instruction exception occurs. 

 

   Switches mode to UNDEF mode (MODE = 0x1B) 

   Saves the CPSR into the SPSR_und register 

   Saves the PC into R14_und (i.e. the Link Register of the UNDEF mode) 

   The I-bit of the CPSR is set to disable IRQs 

   The PC is forced to address 0x00000004 



  µC/OS-II Port for ARM Processors 

  (ARM7 or ARM9) 
  (ARM or Thumb Mode) 

 11 

3.00 µC/µC/µC/µC/OSOSOSOS----IIIIIIII Port for ARM processors 

 
We used the IAR EWARM V4.40A (Embedded Workbench for the ARM) to test the port.  The EWARM 
contains an editor, a C/EC++ compiler, an assembler, a linker/locator and the C-Spy debugger.   The 
C-Spy debugger actually contains an ARM simulator which allows you to test code prior to run it on actual 
hardware.  We tested the ARM port on a number of different ARM7 and ARM9 target processors. 
 
You can adapt the port provided in this application note to other ARM based compilers.   The instructions 
(i.e. the code) should be identical and all you have to do is adapt the port to your compiler specifics.  We 
will describe some of these when we cover the contents of the different files. 
 

IMPORTANT 
 
The IAR compiler version that we used assumed that application code was running in SYS mode.  In fact, 

the compiler calls main() in SYS mode.  However, when we start µC/OS-II, we switch the mode to SVC 

mode and run all tasks in SVC mode.  

 
Below are a few assumptions about the port: 

- You have µC/OS-II V2.77 or higher 

- µC/OS-II runs in either ARM mode or Thumb mode 

- Tasks are created in the same mode as the one selected for running µC/OS-II 

o Tasks can call either ARM or Thumb mode functions 
- Tasks will run in SVC mode 

 
You can build the example code using either ARM (see figure 3-1) or Thumb (see figure 3-2) mode.  Note 
that you need to enable ‘Generate interwork code’.  The screen shots are for the IAR’s EWARM 
toolchain. 
 

 
 

Figure 3-1, Building the example using ARM mode in IAR’s EWARM. 
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Figure 3-2, Building the example using Thumb mode in IAR’s EWARM. 
 
 

3.01 Directories and Files 
 
The software that accompanies this application note is assumed to be placed in the following directory: 
 
 \Micrium\Software\uCOS-II\ARM\Generic\IAR  

 

Like all µC/OS-II ports, the source code for the port is found in the following files:  

 
 OS_CPU.H 
 OS_CPU_C.C 
 OS_CPU_A.ASM 
 OS_DBG.C 

 
Test code and configuration files are found in their appropriate directories and are described later.  
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3.02 OS_CPU.H 
 

OS_CPU.H contains processor- and implementation-specific #defines constants, macros, and 

typedefs.  

 
 

3.02.01 OS_CPU.H, macros for ‘externals’ 
 

OS_CPU_GLOBALS and OS_CPU_EXT allows us to declare global variables that are specific to this port 

(described later). 
 

Listing 3-1, OS_CPU.H, Globals and Externs 
 

#ifdef  OS_CPU_GLOBALS 
#define OS_CPU_EXT 
#else 
#define OS_CPU_EXT  extern 
#endif 
 

3.02.02 OS_CPU.H, Data Types 
 

Listing 3-2, OS_CPU.H, Data Types 
 

typedef unsigned char  BOOLEAN; 
typedef unsigned char  INT8U;  
typedef signed   char  INT8S;  
typedef unsigned short INT16U;            // (1) 
typedef signed   short INT16S;  
typedef unsigned int   INT32U; 
typedef signed   int   INT32S;  
typedef float          FP32;              // (2) 
typedef double         FP64;  
 
typedef unsigned int   OS_STK;            // (3) 
typedef unsigned int   OS_CPU_SR;         // (4) 

 

L3-2(1)  If you were to consult the IAR compiler documentation, you would find that an short is 

16 bits and an int is 32 bits.  Most ARM compilers should have the same definitions. 

 

L3-2(2)  Floating-point data types are included even though µC/OS-II doesn’t make use of 

floating-point numbers. 
 

L3-2(3)  A stack entry for the ARM processor is always 32 bits wide; thus, OS_STK is declared 

accordingly.  All task stacks must be declared using OS_STK as its data type. 

 

L3-2(4)  The status register (the CPSR and SPSR) on the ARM processor is 32 bits wide.  The 

OS_CPU_SR data type is used when OS_CRITICAL_METHOD #3 is used (described 

below).  In fact, this port only supports OS_CRITICAL_METHOD #3 because it’s the 

preferred method for µC/OS-II ports. 
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3.02.03 OS_CPU.H, Critical Sections 
 

µC/OS-II, as with all real-time kernels, needs to disable interrupts in order to access critical sections of 

code and re-enable interrupts when done.  µC/OS-II defines two macros to disable and enable 

interrupts: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(), respectively.  µC/OS-II defines three 

ways to disable interrupts but, you only need to use one of the three methods for disabling and enabling 
interrupts.  The book (MicroC/OS-II, The Real-Time Kernel) describes the three different methods.  The 
one to choose depends on the processor and compiler.  In most cases, the prefered method is 

OS_CRITICAL_METHOD #3. 

 

OS_CRITICAL_METHOD #3 implements OS_ENTER_CRITICAL() by writing a function that will save the 

status register of the CPU in a variable.  OS_EXIT_CRITICAL() invokes another function to restore the 

status register from the variable.  In the book, Mr. Labrosse recommends that you call the functions 

expected in OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL(): OS_CPU_SR_Save() and 

OS_CPU_SR_Restore(), respectively.  The code for these two functions is declared in OS_CPU_A.S 

(described later). 
 

Listing 3-3, OS_CPU.H, OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL() 
 

#define  OS_CRITICAL_METHOD    3   
 
 
#if      OS_CRITICAL_METHOD == 3 
 
#if      OS_CPU_INT_DIS_MEAS_EN > 0 
 
#define  OS_ENTER_CRITICAL()  {cpu_sr = OS_CPU_SR_Save();  \ 
                               OS_CPU_IntDisMeasStart();} 
#define  OS_EXIT_CRITICAL()   {OS_CPU_IntDisMeasStop();   \ 
                               OS_CPU_SR_Restore(cpu_sr);} 
 
#else 
 
#define  OS_ENTER_CRITICAL()  {cpu_sr = OS_CPU_SR_Save();} 
#define  OS_EXIT_CRITICAL()   {OS_CPU_SR_Restore(cpu_sr);} 
 
#endif 
 
#endif 

 

3.02.04 OS_CPU.H, Stack growth 
 

The stack on the ARM grows from high memory to low memory and thus, OS_STK_GROWTH is set to 1 to 

indicate this to µC/OS-II. 

 

Listing 3-4, OS_CPU.H, Stack Growth 
 

#define  OS_STK_GROWTH        1 
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3.02.05 OS_CPU.H, Task Level Context Switch 
 

Task level context switches are performed when µC/OS-II invokes the macro OS_TASK_SW().  Because 

context switching is processor specific, OS_TASK_SW() needs to execute an assembly language 

function.  In this case, OSCtxSw() which is declared in OS_CPU_A.ASM (described later). 

 

Listing 3-5, OS_CPU.H, Task Level Context Switch 
 

#define  OS_TASK_SW()         OSCtxSw() 
 

3.02.06 OS_CPU.H, Function Prototypes 
 

The prototypes in Listing 3-6 are for the functions used to disable and re-enable interrupts using 

OS_CRITICAL_METHOD #3 and are described later.  You should note that these prototypes are prefixed 

with the special keyword __arm.  This is an IAR keyword that indicates that these functions will run in 

ARM mode and thus, when called, the compiler will generate the appropriate instructions. 
 

Listing 3-6, OS_CPU.H, Function Prototypes 
 

#if OS_CRITICAL_METHOD == 3 
__arm  OS_CPU_SR  OS_CPU_SR_Save(void); 
__arm  void       OS_CPU_SR_Restore(OS_CPU_SR cpu_sr); 
#endif 
 

 

The prototypes in Listing 3-7 are the exception handling related functions.  OS_CPU_InitExceptVect() 

must be called from the BSP to initialize the CPU exception vectors to the eight exception handlers.  

These eight exception handlers are the OS_CPU_ARM_XYZ assembly functions.  These handlers save the 

CPU state and branch immediately to a common exception handler, OS_CPU_ARM_ExceptHndlr(). 

The common exception handler will do µC/OS-II internal task management (save state, etc) and will 

eventually call a board and application dependant exception handler, OS_CPU_ExceptHndlr(), located 

in BSP. Specifically, the __arm keyword indicates that these function will execute in ARM mode whether 

called from Thumb or ARM mode code. 
 

Listing 3-7, OS_CPU.H, Function Prototypes 
 

       void       OS_CPU_InitExceptVect(void); 
 
__arm  void       OS_CPU_ARM_ExceptResetHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptUndefInstrHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptSwiHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptPrefetchAbortHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptDataAbortHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptAddrAbortHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptIrqHndlr(void); 
__arm  void       OS_CPU_ARM_ExceptFiqHndlr(void); 
 
       void       OS_CPU_ExceptHndlr(INT32U  except_type); 
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As of V2.77, the prototypes for OSCtxSw(), OSIntCtxSw() and OSStartHighRdy() need to be 

placed in OS_CPU.H.  In fact, it makes sense to do this since these are all port specific files.  The reason 

we made the change is to allow for declarations as shown in Figure 3-8.  Specifically, the __arm keyword 

indicates that these functions will execute in ARM mode whether called from Thumb or ARM mode code. 
 

Listing 3-8, OS_CPU.H, Function Prototypes 
 

__arm  void       OSCtxSw(void); 
__arm  void       OSIntCtxSw(void); 
__arm  void       OSStartHighRdy(void); 
 

 
The prototypes in Listing 3-9 are for functions used to measure the interrupt disable time.  Basically, we 
read the value of a timer just after disabling interrupts and read it again before enabling interrupts.  The 
difference in timer counts indicates the amount of time interrupts were disabled.  

OS_CPU_IntDisMeasStop() actually keeps track of the highest value of this delta counts and thus, the 

maximum interrupt disable time.  We’ll describe this in greater details later. 
 

Listing 3-9, OS_CPU.H, Function Prototypes 
 

#if OS_CRITICAL_METHOD == 3 
void       OS_CPU_IntDisMeasInit(void); 
void       OS_CPU_IntDisMeasStart(void); 
void       OS_CPU_IntDisMeasStop(void); 
INT16U     OS_CPU_IntDisMeasTmrRd(void); 
#endif 
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3.03 OS_CPU_C.C 
 

A µC/OS-II port requires that you write ten fairly simple C functions: 

 
OSInitHookBegin() 
OSInitHookEnd() 
OSTaskCreateHook() 
OSTaskDelHook() 
OSTaskIdleHook() 
OSTaskStatHook() 
OSTaskStkInit() 
OSTaskSwHook() 
OSTCBInitHook() 
OSTimeTickHook() 

 

Typically, µC/OS-II only requires OSTaskStkInit().  The other functions allow you to extend the 

functionality of the OS with your own functions.  The functions that are highlighted will be discussed in this 
section.  The following functions have been added in order to measure interrupt disable time and will be 
described later: 
 

OS_CPU_IntDisMeasInit() 
OS_CPU_IntDisMeasStart() 
OS_CPU_IntDisMeasStop() 

 

Note that you will also need to set the #define constant OS_CPU_HOOKS_EN  to 1 in OS_CFG.H in order 

for the compiler to use the functions declared in this file. 
 

3.03.01 OS_CPU_C.C, OSInitHookBegin() 

 
This function is called by µC/OS-II’s OSInit() at the very beginning of OSInit().  It gives the 

opportunity to add additional initialization code specific to the port.  In this case, we initialize the global 

variable (global to OS_CPU_C.C) OSTmrCtr (which is used by the OS_TMR.C module (if OS_TMR_EN is 

set to 1). 

 
Listing 3-10, OS_CPU_C.C, OSInitHookEnd() 
 
void OSInitHookBegin (void) 
{ 
#if OS_TMR_EN > 0 
    OSTmrCtr = 0; 
#endif 
} 
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3.03.02 OS_CPU_C.C, OSInitHookEnd() 

 
This function is called by µC/OS-II’s OSInit() at the very end of OSInit().  It gives the opportunity to 

add additional initialization code specific to the port.  In this case, we initialize global variables which are 

used by the interrupt disable measurement code (if OS_CPU_INT_DIS_MEAS_EN is set to 1). 

 
Listing 3-10, OS_CPU_C.C, OSInitHookEnd() 
 
void OSInitHookEnd (void) 
{ 
#if OS_CPU_INT_DIS_MEAS_EN > 0 
    OS_CPU_IntDisMeasInit(); 
#endif 
} 

 

3.03.03 OS_CPU_C.C, OSTaskCreateHook() 

 
This function is called by µC/OS-II’s OSTaskCreate() or OSTaskCreateExt() when a task is 

created.  OSTaskCreateHook() gives the opportunity to add code specific to the port when a task is 

created.  In our case, we call the initialization function of µC/OS-View (an optional module available for 

µC/OS-II which performs task profiling at run-time, See HTUwww.micrium.com UTH for details).   

 

Note that for OSView_TaskCreateHook() to be called, the target resident code for µC/OS-View must 

be included as part of your build.  In this case, you need to add a #define OS_VIEW_MODULE 1 in 

OS_CFG.H of your application.  

 

Note that if OS_VIEW_MODULE is 0, we simply tell the compiler that ptcb is not actually used (i.e. 

(void)ptcb)) and thus avoid a compiler warning. 

 
Listing 3-11, OS_CPU_C.C, OSInitHookEnd() 
 
void OSTaskCreateHook (OS_TCB *ptcb) 
{ 
#if OS_VIEW_MODULE > 0 
    OSView_TaskCreateHook(ptcb); 
#else 
    (void)ptcb; 
#endif 
} 
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3.03.04 OS_CPU_C.C, OSTaskStkInit() 

 
µC/OS-II assumes that tasks run in SVC mode (the CPSR of the task is initialized to ARM_SVC_MODE 

(0x13 if in ARM mode or 0x33 if in Thumb mode).     

 

It is typical for ARM compilers to pass the first argument of a function into the R0 register.  Recall that a 

task is declared as shown in listing 3-12.   
 

Listing 3-12, µC/OS-II Task 
 
void  MyTask (void *p_arg)  
{ 
    /* Do something with ‘p_arg’, optional */ 
    while (1) { 
        /* Task body */ 
    } 
} 

 
The code in Listing 3-13 initializes the stack frame for the task being created.  The task received an 

optional argument ‘p_arg’.  That’s why ‘p_arg’ is passed in R0 when the task is created.  The initial 

value of most of the CPU registers is not important so, we decided to initialize them to values 
corresponding to their register number.  This makes it convenient when debugging and examining stacks 
in RAM.  The initial values are thus useful when the task is first created but, of course, the register values 
will most likely change as the task code is executed. 
 

Listing 3-13, OS_CPU_C.C, OSTaskStkInit() 
 
OS_STK *OSTaskStkInit (void (*task)(void *pd), void *p_arg, OS_STK *ptos, INT16U opt) 
{ 
    OS_STK *stk; 
    INT32U  task_addr; 
 
    opt       = opt;                         /* 'opt' is not used, prevent warning      */ 
    stk       = ptos;                        /* Load stack pointer                      */ 
    task_addr = (INT32U)task & ~1; 
    *(stk)    = (INT32U)task_addr;           /* Entry Point                             */ 
    *(--stk)  = (INT32U)0x14141414L;         /* R14 (LR)                                */ 
    *(--stk)  = (INT32U)0x12121212L;         /* R12                                     */ 
    *(--stk)  = (INT32U)0x11111111L;         /* R11                                     */ 
    *(--stk)  = (INT32U)0x10101010L;         /* R10                                     */ 
    *(--stk)  = (INT32U)0x09090909L;         /* R9                                      */ 
    *(--stk)  = (INT32U)0x08080808L;         /* R8                                      */ 
    *(--stk)  = (INT32U)0x07070707L;         /* R7                                      */ 
    *(--stk)  = (INT32U)0x06060606L;         /* R6                                      */ 
    *(--stk)  = (INT32U)0x05050505L;         /* R5                                      */ 
    *(--stk)  = (INT32U)0x04040404L;         /* R4                                      */ 
    *(--stk)  = (INT32U)0x03030303L;         /* R3                                      */ 
    *(--stk)  = (INT32U)0x02020202L;         /* R2                                      */ 
    *(--stk)  = (INT32U)0x01010101L;         /* R1                                      */ 
    *(--stk)  = (INT32U)p_arg;               /* R0 : argument                           */ 
    if ((INT32U)task & 0x01) {               /* See if task runs in Thumb or ARM mode   */ 
        *(--stk) = (INT32U)ARM_SVC_MODE_THUMB;  /* CPSR  THUMB-mode)                    */ 
    } else { 
        *(--stk) = (INT32U)ARM_SVC_MODE_ARM;    /* CPSR  ARM-mode)                      */ 
    } 
 
    return (stk); 
} 
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Figure 3-2 shows how the stack frame is initialized for each task when it’s created. 

 
Figure 3-3, The Stack Frame for each Task for ARM port. 

 
 

When the task is created, the final value of stk is placed in the OS_TCB of that task by the µC/OS-II 
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3.03.05 OS_CPU_C.C, OSTaskSwHook() 
 

OSTaskSwHook() is called when a context switch occurs.  This function allows the port code to be 

extended and do things such as measuring the execution time of a task, output a pulse on a port pin 

when a contact switch occurs, etc.  In this case, we call the µC/OS-View task switch hook called 

OSView_TaskSwHook().  This assumes that you have µC/OS-View as part of your build and that you 

set OS_VIEW_MODULE to 1 in OS_CFG.H. 

 

Listing 3-14, OS_CPU_C.C, OSTaskSwHook() 
 
void  OSTaskSwHook (void) 
{ 
#if OS_VIEW_MODULE > 0 
    OSView_TaskSwHook(); 
#endif 
} 

 

3.03.06 OS_CPU_C.C, OSTimeTickHook() 
 

OSTimeTickHook() is called at the very beginning of OSTimeTick().  This function allows the port 

code to be extended and, in our case, we call the µC/OS-View function OSView_TickHook().  Again, 

this assumes that you have µC/OS-View as part of your build and that you set OS_VIEW_MODULE to 1 

in OS_CFG.H. 

 

OSTimeTickHook() also determines whether it’s time to update the µC/OS-II timers.  This is done by 

signaling the timer task. 
 

Listing 3-15, OS_CPU_C.C, OSTimeTickHook() 
 
void  OSTimeTickHook (void) 
{ 
#if OS_VIEW_MODULE > 0 
    OSView_TickHook(); 
#endif 
 
#if OS_TMR_EN > 0 
    OSTmrCtr++; 
    if (OSTmrCtr >= (OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC)) { 
        OSTmrCtr = 0; 
        OSTmrSignal(); 
    } 
#endif 
} 
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3.03.07 OS_CPU_C.C, OS_CPU_IntDisMeasInit() 
 

OS_CPU_IntDisMeasInit() is called by OSInitHookEnd() (see section 3.03.01) to initialize the 

interrupt disable time measurement variables as shown below.   
 
Basically, we added functions to the port to allow us to measure the amount of time that interrupts are 
disabled.  This is not something that is needed by the port but it can provide valuable information about 
the responsiveness of your system to interrupts. 
 
The way interrupt disable time measurement works is simple.  Just after disabling interrupts, we read the 
contents of a free running 16-bit (or 32-bit) timer.  Just before re-enabling interrupts, we read the free 
running counter again and compute the difference between the two readings.  Maximum interrupt disable 
time is obtained by tracking the highest value of the difference.  The value of the difference represents 
timer counts and thus, to convert to actual time, you need to know how fast the counter is being 
incremented (or decremented). 
 
The function in listing 3-16 initializes the measurement and can actually be called at any time to ‘reset’ the 
maximum count. 
 

Listing 3-16, OS_CPU_C.C, OS_CPU_IntDisMeasInit() 
 
#if OS_CPU_INT_DIS_MEAS_EN > 0 
void  OS_CPU_IntDisMeasInit (void) 
{ 
    OS_CPU_IntDisMeasNestingCtr = 0;      /* Clear variables used by these functions */ 
    OS_CPU_IntDisMeasCntsEnter  = 0; 
    OS_CPU_IntDisMeasCntsExit   = 0; 
    OS_CPU_IntDisMeasCntsMax    = 0; 
    OS_CPU_IntDisMeasCntsDelta  = 0; 
    OS_CPU_IntDisMeasCntsOvrhd  = 0; 
    OS_CPU_IntDisMeasStart();             /* Measure the overhead of the functions   */ 
    OS_CPU_IntDisMeasStop(); 
    OS_CPU_IntDisMeasCntsOvrhd  = OS_CPU_IntDisMeasCntsDelta; 
} 
#endif 
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3.03.08 OS_CPU_C.C, OS_CPU_IntDisMeasStart() 
 

OS_CPU_IntDisMeasStart() is called when interrupts are disabled by OS_ENTER_CRITICAL().   

 

Listing 3-17, OS_CPU_C.C, OS_CPU_IntDisMeasStart() 
 
#if OS_CPU_INT_DIS_MEAS_EN > 0 
void  OS_CPU_IntDisMeasStart (void) 
{ 
    OS_CPU_IntDisMeasNestingCtr++;                               (1) 
    if (OS_CPU_IntDisMeasNestingCtr == 1) {                      (2) 
        OS_CPU_IntDisMeasCntsEnter = OS_CPU_IntDisMeasTmrRd(); 
    } 
} 
#endif 

 

L3-17(1) A nesting counter is maintained in case you nest OS_ENTER_CRITICAL() calls. 

 

L3-17(2) If this is the first level of nesting for OS_ENTER_CRITICAL() then, we call a function that 

you would define in your application called OS_CPU_IntDisMeasTmrRd() to read the 

value of a 16-bit free-running timer.  Note that you could also use a 32-bit timer.  In this 
case, you would simply redeclare the variables and prototypes accordingly.  The value of 

the timer is saved in OS_CPU_IntDisMeasCntsEnter. 
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3.03.09 OS_CPU_C.C, OS_CPU_IntDisMeasStop() 
 

OS_CPU_IntDisMeasStop() is called when interrupts are re-enabled by OS_EXIT_CRITICAL().  

 
 

Listing 3-18, OS_CPU_C.C, OS_CPU_IntDisMeasStop() 
 
#if OS_CPU_INT_DIS_MEAS_EN > 0 
void  OS_CPU_IntDisMeasStop (void) 
{ 
    OS_CPU_IntDisMeasNestingCtr--;                                       (1)  
    if (OS_CPU_IntDisMeasNestingCtr == 0) { 
        OS_CPU_IntDisMeasCntsExit  = OS_CPU_IntDisMeasTmrRd();            
        OS_CPU_IntDisMeasCntsDelta = OS_CPU_IntDisMeasCntsExit           (2) 
                                   - OS_CPU_IntDisMeasCntsEnter; 
        if (OS_CPU_IntDisMeasCntsDelta > OS_CPU_IntDisMeasCntsOvrhd) {   (3) 
            OS_CPU_IntDisMeasCntsDelta -= OS_CPU_IntDisMeasCntsOvrhd; 
        } else { 
            OS_CPU_IntDisMeasCntsDelta  = OS_CPU_IntDisMeasCntsOvrhd; 
        } 
        if (OS_CPU_IntDisMeasCntsDelta > OS_CPU_IntDisMeasCntsMax) {     (4) 
            OS_CPU_IntDisMeasCntsMax = OS_CPU_IntDisMeasCntsDelta; 
        } 

    } 
 
} 
#endif 

 

L3-18(1) The nesting counter is decremented so that we only take a time measurement at the last 

nested OS_EXIT_CRITICAL() calls. 

 
L3-18(2) We measure the difference in timer value since interrupts were disabled. 
 
L3-18(3) We make sure that the counts are higher than the measured overhead so we don’t 

subtract a number that is larger than the delta.  This would cause a ‘large’ count for the 
measured interrupt disable time. 

 

L3-18(4) We record the highest value in OS_CPU_IntDisMeasCntsMax. 
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3.04 OS_CPU_A.ASM 
 

A µC/OS-II port requires that you write five fairly simple assembly language functions.  The ARM port 

actually contains fourteen functions because portions of the exception handling code are written in 
assembly language as discussed in this section.  These functions are needed because you normally 
cannot save/restore registers from C functions.  The fourteen functions are: 
 

OS_CPU_SR_Save() 
OS_CPU_SR_Restore() 
OSStartHighRdy() 
OSCtxSw() 
OSIntCtxSw() 
 
OS_CPU_InitExceptVect() 
OS_CPU_ARM_ExceptResetHndlr() 
OS_CPU_ARM_ExceptUndefInstrHndlr() 
OS_CPU_ARM_ExceptSwiHndlr() 
OS_CPU_ARM_ExceptPrefetchAbortHndlr() 
OS_CPU_ARM_ExceptDataAbortHndlr() 
OS_CPU_ARM_ExceptAddrAbortHndlr() 
OS_CPU_ARM_ExceptIrqHndlr() 
OS_CPU_ARM_ExceptFiqHndlr() 
 

3.04.01 OS_CPU_A.ASM, OS_CPU_SR_Save() 
 

The code in listing 3-19 implements the saving of the CPSR register and then disabling interrupts for 

OS_CRITICAL_METHOD #3.  The code follows the application note published by Atmel (“Disabling 

Interrupts at Processor Level”) for properly disabling interrupts on the ARM.  In this implementation, both 
the FIQ and IRQ interrupts are disabled.   
 

You should note that we use the BX LR instruction to return to the appropriate mode.  Specifically, if 

OS_CPU_SR_Save() was called from ARM mode code, CPSR bit 5 would stay at 0.  If we return to 

Thumb mode code then CPSR bit 5 will be set to 1 by the BX instruction. 

 

When this function returns, R0 contains the state of the CPSR register prior to disabling interrupts. 

 

Listing 3-19, OS_CPU_SR_Save() 
 
OS_CPU_SR_Save 
    MRS     R0, CPSR 
                             ; Set IRQ and FIQ bits in CPSR to disable all interrupts. 
    ORR     R1, R0, #OS_CPU_ARM_CONTROL_INT_DIS 
    MSR     CPSR_c, R1 
    BX      LR               ; Disabled, return the original CPSR contents in R0. 
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3.04.02 OS_CPU_A.ASM, OS_CPU_SR_Restore() 
 

The code in the listing below implements the function to restore the CPSR register for 

OS_CRITICAL_METHOD #3.  When called, it’s assumed that R0 contains the desired state of the CPSR 

register.  You should note that we only update the ‘control’ field of the CPSR (i.e. lower 8 bits of the CPSR). 

 

Again, the BX LR instruction returns to the appropriate mode (ARM or Thumb). 

 

Listing 3-20, OS_CPU_SR_Restore() 
 
OS_CPU_SR_Restore 
    MSR     CPSR_c, R0 
    BX      LR 

 

3.04.03 OS_CPU_A.ASM, OSStartHighRdy() 
 

OSStartHighRdy() is called by OSStart() to start running the highest priority task that was created 

before calling OSStart().  OSStart() sets OSTCBHighRdy to point to the OS_TCB of the highest 

priority task. 
 

Listing 3-21, OSStartHighRdy() 
 
OSStartHighRdy 
 
                                  ; (1) Change to SVC mode. 
    MSR     CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC) 
 
    LDR     R0, ?OS_TaskSwHook    ; (2) OSTaskSwHook(); 
    MOV     LR, PC 
    BX      R0 
 
    LDR     R0, ?OS_Running       ; (3) OSRunning = TRUE; 
    MOV     R1, #1 
    STRB    R1, [R0] 
 
                                  ; SWITCH TO HIGHEST PRIORITY TASK. 
    LDR     R0, ?OS_TCBHighRdy    ;    (4) Get highest priority task TCB address. 
    LDR     R0, [R0]              ;    get stack pointer. 
    LDR     SP, [R0]              ;    switch to the new stack. 
 
    LDR     R0, [SP], #4          ;    (5) Prepare to return to proper mode … 
    MSR     SPSR_cxsf, R0                  … (ARM or Thumb) 
 
    LDMFD   SP!, {R0-R12, LR, PC}^;    (6) pop new task's context. 
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L3-21(1) The IAR compiler startup code sets the mode to SYS mode prior to calling main().  We 

decided to use SVC mode for the µC/OS-II because it allows us to use the SPSR 

register to return to the proper mode (ARM or Thumb) as described in L3-21(7).  
Interrupts should not be enabled at this point but, just to make sure, we disable them. 

 

L3-21(2) Before starting the highest priority task, we call OSTaskSwHook() in case a hook call 

has been declared.  Note that we use a BX instruction because OSTaskSwHook() could 

be compiled in either ARM or Thumb mode.  All ARM instructions are all 32 bits and thus, 
the ARM is not able to specify a 32-bit address as part of the instruction.  Because of 

that, the address of OSTaskSwHook() is actually declared at the end of the file and the 

ARM obtains this address via a PC-relative address.  Specifically: 
  
          ?OS_TaskSwHook: 

          DC32   OSTaskSwHook 
 

DC32 is an assembler directive that declares storage for a 32 bit constant that resides in 

code.  ?OS_Running is thus just a local label. 

 

L3-21(3) The µC/OS-II flag OSRunning is set to TRUE indicating that µC/OS-II will be running 

once the first task is started.  All ARM instructions are all 32 bits and thus, the ARM is not 
able to specify a 32-bit address as part of the instruction.  Because of that, the address of 

OSRunning is actually declared at the end of the file and the ARM obtains this address 

via a PC-relative address.  Specifically: 
  
          ?OS_Running: 

          DC32   OSRunning 
 

L3-21(4) We then get the pointer to the task’s top-of-stack (was stored by OSTaskCreate() or 

OSTaskCreateExt()).  See figure 3-1 (stk is stored in the OS_TCB of the created 

task). 
 

L3-21(5) We then pop the CPSR from the task’s stack but we place it in the SPSR register.  Recall 

that when the task was created, the CPSR register on the stack frame was initialized with 

ARM_SVC_MODE_??? (0x00000013 for ARM mode or 0x00000033 for Thumb mode).  

The next instruction will restore the CPSR register from the SPSR register and place the 

task in the proper mode (ARM or Thumb) according to the value retrieved for the SPSR. 

 
L3-21(6) We then pop the remaining registers of the task’s context from the stack.  Because the 

PC is the last element popped off the stack, the CPU immediately jumps to that address 

when it’s loaded.  In other words, we will run the beginning of the task code as soon as 

the PC is loaded.  Note that the ‘^’ indicates to also copy the SPSR to the CPSR register 

which places the task in the proper mode (ARM or Thumb). 
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3.04.04 OS_CPU_A.ASM, OSCtxSw() 
 

The code to perform a ‘task level’ context switch is shown below in pseudo-code.  OSCtxSw() is called 

when a higher priority task is made ready to run by another task or, when the current task can no longer 

execute (e.g. it calls OSTimeDly(), OSSemPend() and the semaphore is not available, etc.). 

 
Recall that all tasks run in SVC mode.  A task level context switch simply consists of saving the SVC 
registers on the task to suspend and restore the SVC registers of the new task (see also Figure 3-2).  The 
pseudo code for this is shown below: 
        Save the CPU registers onto the old task’s stack;       /* (1) */ 
        OSPrioCur             = OSPrioHighRdy;                  /* (2) */ 
        OSTCBCur->OSTCBStkPtr = SP;                             /* (3) */ 
        OSTaskSwHook();                                         /* (4) */ 
        SP                    = OSTCBHighRdy->OSTCBStkPtr;      /* (5) */ 
        OSTCBCur              = OSTCBHighRdy;                   /* (6) */ 
        Restore the CPU registers from the new task’s stack;    /* (7) */ 

 

You will notice that we don’t actually save and restore the SPSR register as part of a context switch.  The 

reason is that the SPSR is only used to return to the appropriate task and is always used with interrupts 

disabled. 
 

 
Figure 3-4, Task Level Context Switch. 
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The actual code for the task level context switch is shown in Listing 3-22.  
 

Listing 3-22, OSCtxSw() 
 
OSCtxSw 
                                              ; SAVE CURRENT TASK'S CONTEXT 
    STMFD   SP!, {LR}                         ;     Push return address 
    STMFD   SP!, {LR} 
    STMFD   SP!, {R0-R12}                     ;     Push registers 
    MRS     R0, CPSR                          ;     Push current CPSR 
    TST     LR, #1                            ;     See if called from Thumb mode 
    ORRNE   R0, R0, #OS_CPU_ARM_CONTROL_THUMB ;     If yes, Set the T-bit 
    STMFD   SP!, {R0} 
 
    LDR     R0, ?OS_TCBCur                    ; OSTCBCur->OSTCBStkPtr = SP; 
    LDR     R1, [R0] 
    STR     SP, [R1] 
 
    LDR     R0, ?OS_TaskSwHook                ; OSTaskSwHook(); 
    MOV     LR, PC 
    BX      R0 
 
    LDR     R0, ?OS_PrioCur                   ; OSPrioCur = OSPrioHighRdy; 
    LDR     R1, ?OS_PrioHighRdy 
    LDRB    R2, [R1] 
    STRB    R2, [R0] 
 
    LDR     R0, ?OS_TCBCur                    ; OSTCBCur  = OSTCBHighRdy; 
    LDR     R1, ?OS_TCBHighRdy 
    LDR     R2, [R1] 
    STR     R2, [R0] 
 
    LDR     SP, [R2]                          ; SP = OSTCBHighRdy->OSTCBStkPtr; 
 
                                              ; RESTORE NEW TASK'S CONTEXT 
    LDMFD   SP!, {R0}                         ;    Pop new task's CPSR 
    MSR     SPSR_cxsf, R0 
 
    LDMFD   SP!, {R0-R12, LR, PC}^            ;    Pop new task's context 
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3.04.05 OS_CPU_A.ASM, OSIntCtxSw() 
 

When an exception handler completes, OSIntExit() is called to determine whether a more important 

task than the interrupted task needs to execute.  If that’s the case, OSIntExit() determines which task 

to run next and calls OSIntCtxSw() to perform the actual context switch to that task.  You will notice that 

OSIntCtxSw() is identical to the second half of OSCtxSw().  The reason we have these as two 

separate functions is to simplify debugging.  Specifically, if you wanted to set a breakpoint in 

OSIntCtxSw(), you would hit the breakpoint during a task level context switch (if OSIntCtxSw() was 

just a label in OSCtxSw()).  Of course this would make debugging a bit difficult. 

 

Listing 3-23, OSIntCtxSw() 
 
OSIntCtxSw 
    LDR     R0, ?OS_TaskSwHook              ; OSTaskSwHook(); 
    MOV     LR, PC 
    BX      R0 
 
    LDR     R0, ?OS_PrioCur                 ; OSPrioCur = OSPrioHighRdy; 
    LDR     R1, ?OS_PrioHighRdy 
    LDRB    R2, [R1] 
    STRB    R2, [R0] 
 
    LDR     R0, ?OS_TCBCur                  ; OSTCBCur  = OSTCBHighRdy; 
    LDR     R1, ?OS_TCBHighRdy 
    LDR     R2, [R1] 
    STR     R2, [R0] 
 
    LDR     SP, [R2]                        ; SP = OSTCBHighRdy->OSTCBStkPtr; 
 
                                            ; RESTORE NEW TASK'S CONTEXT. 
    LDMFD   SP!, {R0}                       ;    Pop new task's CPSR. 
    MSR     SPSR_cxsf, R0 
 
    LDMFD   SP!, {R0-R12, LR, PC}^          ;    Pop new task's context. 
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3.04.06 OS_CPU_A.ASM, Exception Handlers 
 

The eight ARM exception handlers are part of the µC/OS-II port to reduce the amount of work needed by 

the programmer that’s integrating µC/OS-II in his or her product. 

 
In fact, the eight exception handlers are written in a generic way and can actually be used by ANY ARM 
processor whether it has a built-in interrupt controller or not. 
 

The CPU exception vectors are initialized by the OS_CPU_ARM_InitExceptVect() function.  This 

function maps the eight exception vectors to eight handlers, OS_CPU_ARM_Except_XYZ_Hndlr().  

Listing 3-24 presents one of those handlers, OS_CPU_ARM_ExceptIrqHnldr(). 

 
The eight handlers all need to save registers R0 to R12, the LR (offseted to compensate for the pipeline), 

and branch to a global handler called OS_CPU_ARM_ExceptHndlr(), presented in listing 3-25.  This 

handler determines if the exception broke a task or another lower priority exception.  This leads to a 

branch, respectively to OS_CPU_ARM_ExceptHndlr_BreakTask() (listing 3-26) or 

OS_CPU_ARM_ExceptHndlr_BreakExcept(), listing 3-27. 

 
Both these branches eventually call a board & CPU dependent exception handler, 

OS_CPU_ExceptHndlr(), located in the BSP (Board Support Package). 

 

All those handlers (except OS_CPU_ExceptHndlr()) are written in assembly language because we 

simply can’t manipulate CPU registers directly from C. 
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Listing 3-24, OS_CPU_ARM_ExceptIrqHndlr() 
 
;************************************************************************** 
;                   INTERRUPT REQUEST EXCEPTION HANDLER 
; 
; Register Usage:  R0     Exception Type 
;                  R1 
;                  R2 
;                  R3     Return PC 
;************************************************************************** 
 
OS_CPU_ARM_ExceptIrqHndlr 
    SUB     LR, LR, #4            ; LR offset to return from this exception: -4. 
    STMFD   SP!, {R0-R12, LR}     ; Push working registers. 
    MOV     R3, LR                ; Save link register. 
                                  ; Set exception ID to OS_CPU_ARM_EXCEPT_IRQ. 
    MOV     R0, #OS_CPU_ARM_EXCEPT_IRQ 
                                  ; Branch to global exception handler. 
    B       OS_CPU_ARM_ExceptHndlr 

 
 
Listing 3-25, OS_CPU_ARM_ExceptHndlr() 
 
;************************************************************************** 
;                        GLOBAL EXCEPTION HANDLER 
; 
; Register Usage:  R0     Exception Type 
;                  R1     Exception's SPSR 
;                  R2     Old CPU mode 
;                  R3     Return PC 
;************************************************************************** 
 
OS_CPU_ARM_ExceptHndlr 
    MRS     R1, SPSR              ; Save CPSR (i.e. exception's SPSR). 
 
                                  ; DETERMINE IF WE INTERRUPTED A TASK 
                                  ; OR ANOTHER LOWER PRIORITY EXCEPTION. 
                                  ;   SPSR.Mode = FIQ, IRQ, ABT, UND : Other exception 
                                  ;   SPSR.Mode = SVC                : Task 
                                  ;   SPSR.Mode = USR                : *unsupported state* 
    AND     R2, R1, #OS_CPU_ARM_MODE_MASK 
    CMP     R2,     #OS_CPU_ARM_MODE_SVC 
    BNE     OS_CPU_ARM_ExceptHndlr_BreakExcept 
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Listing 3-26, OS_CPU_ARM_ExceptHndlr_BreakTask() 
 
;************************************************************************** 
;                     EXCEPTION HANDLER: TASK INTERRUPTED 
; 
; Register Usage:  R0     Exception Type 
;                  R1     Exception's SPSR 
;                  R2     Exception's CPSR 
;                  R3     Return PC 
;                  R4     Exception's SP 
;************************************************************************** 
 
OS_CPU_ARM_ExceptHndlr_BreakTask 
    MRS     R2, CPSR              ; Save exception's CPSR. 
    MOV     R4, SP                ; Save exception's stack pointer. 
 
                                  ; Change to SVC mode & disable interruptions. 
    MSR     CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC) 
 
                                  ; SAVE TASK'S CONTEXT ONTO TASK'S STACK. 
    STMFD   SP!, {R3}             ;   Push task's PC. 
    STMFD   SP!, {LR}             ;   Push task's LR. 
    STMFD   SP!, {R5-R12}         ;   Push task's R12-R5. 
    LDMFD   R4!, {R5-R9}          ;   Move task's R4-R0 from exception stack to task stack. 
    STMFD   SP!, {R5-R9} 
    STMFD   SP!, {R1}             ;   Push task's CPSR (i.e. exception SPSR). 
 
    LDR     R1, ?OS_Running       ; if (OSRunning == 1) 
    LDRB    R1, [R1] 
    CMP     R1, #1 
    BNE     OS_CPU_ARM_ExceptHndlr_BreakTask_1 
 
                                  ; HANDLE NESTING COUNTER. 
    LDR     R3, ?OS_IntNesting    ;   OSIntNesting++; 
    LDRB    R4, [R3] 
    ADD     R4, R4, #1 
    STRB    R4, [R3] 
 
    LDR     R3, ?OS_TCBCur        ;   OSTCBCur->OSTCBStkPtr = SP; 
    LDR     R4, [R3] 
    STR     SP, [R4] 
 
OS_CPU_ARM_ExceptHndlr_BreakTask_1 
    MSR     CPSR_cxsf, R2         ; RESTORE INTERRUPTED MODE. 
 
                                  ; EXECUTE EXCEPTION HANDLER: 
                                  ; OS_CPU_ExceptHndlr(); 
    LDR     R1, ?OS_CPU_ExceptHndlr 
    MOV     LR, PC 
    BX      R1 
 
                                  ; Adjust exception stack pointer. This is needed because 
                                  ; exception stack is not used when restoring task context. 
    ADD     SP, SP, #(14*4) 
 
                                  ; Change to SVC mode & disable interruptions. 
    MSR     CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC) 
 
                                  ; Call OSIntExit(). This call MAY never return 
                                  ;  if a ready task with higher priority than 
                                  ;  the interrupted one is found. 
    LDR     R0, ?OS_IntExit 
    MOV     LR, PC 
    BX      R0 
 
                                  ; RESTORE NEW TASK'S CONTEXT. 
    LDMFD   SP!, {R0}             ;    Pop new task's CPSR. 
    MSR     SPSR_cxsf, R0 
 
    LDMFD   SP!, {R0-R12, LR, PC}^;    Pop new task's context. 
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Listing 3-27, OS_CPU_ARM_ExceptHndlr_BreakExcept() 
 
;************************************************************************* 
;                  EXCEPTION HANDLER: EXCEPTION INTERRUPTED 
; 
; Register Usage:  R0     Exception Type 
;                  R1 
;                  R2 
;                  R3 
;************************************************************************* 
 
OS_CPU_ARM_ExceptHndlr_BreakExcept 
    MRS     R2, CPSR              ; Save exception's CPSR. 
 
                                  ; Change to SVC mode & disable interruptions. 
    MSR     CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC) 
 
                                  ; HANDLE NESTING COUNTER. 
    LDR     R3, ?OS_IntNesting    ;   OSIntNesting++; 
    LDRB    R4, [R3] 
    ADD     R4, R4, #1 
    STRB    R4, [R3] 
 
    MSR     CPSR_cxsf, R2         ; RESTORE INTERRUPTED MODE. 
 
                                  ; EXECUTE EXCEPTION HANDLER: 
                                  ; OS_CPU_ExceptHndlr(); 
    LDR     R3, ?OS_CPU_ExceptHndlr 
    MOV     LR, PC 
    BX      R3 
 
                                  ; Change to SVC mode & disable interruptions. 
    MSR     CPSR_c, #(OS_CPU_ARM_CONTROL_INT_DIS | OS_CPU_ARM_MODE_SVC) 
 
                                  ; HANDLE NESTING COUNTER. 
    LDR     R3, ?OS_IntNesting    ;   OSIntNesting--; 
    LDRB    R4, [R3] 
    SUB     R4, R4, #1 
    STRB    R4, [R3] 
 
    MSR     CPSR_cxsf, R2         ; RESTORE INTERRUPTED MODE. 
 
                                  ; RESTORE OLD CONTEXT: 
    LDMFD   SP!, {R0-R12, PC}^    ; Pull working registers and return from exception. 
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You should note that MOST of the work done by the exception handler is actually handled in 

OS_CPU_ExceptHndlr() (located in the BSP) which is written in C.  The pseudo-code for 

OS_CPU_ExceptHndlr() is shown in listing 3-28.  The handler is responsible for discriminate 

exceptions and interruptions, determining the source of the interruptions and for executing the appropriate 
code to handle the interrupting device. 
 

Listing 3-28, OS_CPU_ExceptHndlr() 
 
void  OS_CPU_ExceptHndlr (INT32U  except_type) 
{ 
    /* Determine behavior according to exception type (except_type) */ 
 
    /* If an IRQ or FIQ */ 
    while (there are interrupting devices) { 
        /* Clear interrupting device */ 
        /* Handle interrupt          */ 
    } 
} 
 
 

OS_CPU_ExceptHndlr() is actually part of YOUR application and not part of the µC/OS-II port.  The 

reason is that the handler will most likely change depending on the presence of an interrupt controller or 
not and, if there is an interrupt controller, the actual type of controller. 
 
It’s important to note that the handler should ‘look’ to see whether there are more than one interrupting 

devices and process each one before returning to OS_CPU_ARM_ExceptHndlr().  This avoids going 

through the overhead of saving the CPU registers upon entry of the exception handlers and restoring 
them upon exit if multiple interruptions occur either at the same time or, during processing of an 
interruption. 
 
Note that this port now supports nested interruptions. 
 
Finally, as a general rule, you should always make your exception handlers as shorts as possible.  Take 
care of the device, buffer data (if necessary) and signal a task to do most of the work of servicing the 
data.  For example, if you have an Ethernet controller, simply notify a task that an Ethernet packet has 
arrived and let the task extract the packet from the Ethernet controller. 
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3.05 OS_DBG.C 
 

OS_DBG.C is a file that has been added in V2.62 to provide Kernel Aware debugger to extract information 

about µC/OS-II and its configuration.  Specifically, OS_DBG.C contains a number of constants that are 

placed in ROM (code space) which the debugger can read and display.  Because you may not be using a 
debugger that needs that file, you may omit it in your build.   
 
For the IAR compiler as well as Nohau’s emulators, Micriµm has introduced a Windows-based ‘Plug-In’ 
module that makes use of this file and thus needs to be included if you use IAR’s C-Spy or Nohau’s 
Seehau. 
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4.00 Exception Vector Table 
 
The ARM contains an exception vector table (also called the interrupt vector table) starting at address 

0x00000000.  There are only eight (8) entries in the vector table.  Each entry has enough room to hold a 

single 32-bit instruction.  The instruction placed in this table is generally a branch instruction with a signed 
26-bit destination address.  In other words, the ARM can branch to an address that is roughly +/- 

0x0200000 from the vector location.  The code that you branch to has to determine the interrupt source 

because there is only one address for all devices that can interrupt the ARM. 
 
The exception vector table for the ARM is shown in table 4-1: 
 

Exception Mode Vector Address 
Reset SVC 0x00000000 

Undefined Instruction UND 0x00000004 

Software Interrupt (SWI) SVC 0x00000008 

Prefetch abort Abort 0x0000000C 

Data abort Abort 0x00000010 

Address abort Abort 0x00000014 

IRQ (Normal Interrupt) IRQ 0x00000018 

FIQ (Fast Interrupt) FIQ 0x0000001C 

 
Table 4-1, ARM’s Exception Vector Table 

 
 
When the CPU recognizes an IRQ from an interrupting device (i.e. IRQ interrupts are enabled), the CPU 

vectors to address 0x00000018 where it expects to find an instruction that jumps to 

OS_CPU_ARM_ExceptIrqHndlr().  However, it’s possible that the code for 

OS_CPU_ARM_ExceptIrqHndlr() is located outside the reach of a normal ‘branch’ instruction (i.e. 

beyond the reach of a 26-bit address) and thus we do not want to place a ‘B 

OS_CPU_ARM_ExceptIrqHndlr’ at address 0x00000018.  Instead, we place the following instruction: 

‘LDR PC,[PC,#0x18]’.  This instruction simply specifies to load the PC with the contents of location 

0x00000038.  At location 0x00000038, we simply place the full 32-bit address of 

OS_CPU_ARM_ExceptIrqHndlr().  This allows the exception handler to be placed anywhere within the 

32-bit addressing range of the ARM.  The same reasoning applies to the FIQ.  To summarize, we need to 
place the following values for the interrupt vectors: 
 

Exception Mode Vector Address Contents 
IRQ (Normal 
Interrupt) 

IRQ 0x00000018 LDR PC,[PC,#0x18] 
or 

0xE59FF018 

FIQ (Fast Interrupt) FIQ 0x0000001C LDR PC,[PC,#0x18] 
or 

0xE59FF018 

… … … … 

  0x00000038 Address of 
OS_CPU_ARM_ExceptIrqHndlr() 

  0x0000003C Address of 
OS_CPU_ARM_ExceptFiqHndlr() 

 
Table 4-2, Interrupt Vectors 
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If you are debugging your code in RAM, ensure that the BSP calls the 

OS_CPU_ARM_InitExceptVect().  This will initialize exception vector table to exception handlers. 

 

Listing 4-1, Installing the interrupt vectors in RAM 
         
[…] 
 
(*(INT32U *)OS_CPU_ARM_EXCEPT_IRQ_VECT_ADDR)               = 
            OS_CPU_ARM_INSTR_JUMP_TO_HANDLER; 
(*(INT32U *)OS_CPU_ARM_EXCEPT_IRQ_HANDLER_ADDR)            = 
    (INT32U)OS_CPU_ARM_ExceptIrqHndlr; 
 
[…] 

 

This assumes that you have RAM at address 0x00000000.  Most ARM processors allow you to re-map 

RAM to location 0x00000000.  This is done in the example BSP before calling 

OS_CPU_ARM_InitExceptVect(). 

 

If you have Flash (or ROM) at location 0x00000000, ensure your startup file correctly initialize the 

exception vector table at compile time. 
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4.01 Exception Handling Sequence 
 
Below is the sequence of events that take place when an IRQ occurs 

    (assuming the I-bit in the CPSR is 0): 

 

 The CPU switches mode to IRQ mode (MODE = 0x12); 

 The CPSR is saved into the SPSR_irq register; 

 The return address PC is saved into R14_irq (i.e. the Link Register of the IRQ mode); 

 The I-bit of the CPSR is set to 1 disabling further IRQs; 

 The PC is forced to address 0x00000018; 

 The PC is loaded with the address of OS_CPU_ARM_ExceptIrqHndlr() because of the 

LDR PC,[PC,#0x18] instruction that we placed at address 0x00000018. 

 The CPU executes the code in OS_CPU_ARM_ExceptIrqHndlr(), then 

OS_CPU_ARM_ExceptHndlr() (found in OS_CPU_A.S). 

 OS_CPU_ARM_ExceptHndlr() calls OS_CPU_ExceptHndlr() (found in BSP.C) to 

determine the source of the interrupt and handle it accordingly. 

 When OS_CPU_ARM_ExceptHndlr() returns from OS_CPU_ExceptHndlr(), it calls 

OSIntExit() (in case of task interrupted) which determines whether there has been a 

more important task that has been made ready to run by the exception handler or, 
whether we simply need to return to the interrupted task. 

 If the interrupted task is still the highest priority task, OSIntExit() returns to 

OS_CPU_ARM_ExceptHndlr() which simply returns to this task. 

 If there is a more important task, OSIntExit() calls OSIntCtxSw() (see OS_CPU_A.S) which 

takes care of switching to the more important task. 
 
A similar sequence occurs for FIQ interrupts. 
 

4.02 Interrupt Controllers 
 
Some ARM implementations contain a ‘smart’ interrupt controller that supplies a vector (i.e. an address) 
for each interrupt source.  This allows the proper interrupt handler to be called quickly instead of having 
the interrupt handler ‘poll’ each possible interrupting device to determine if it needs servicing.   
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4.02.01 Interrupt Controllers, Atmel’s AIC 
 
The Atmel AT91 and SAM7 families of processors have an Advanced Interrupt Controller (AIC).  Once 
initialized, the AIC provides the 32-bit address of the ISR for the highest priority interrupting device at 

location 0xFFFFF100.  In other words, the interrupting device’s ISR address can be read from location 

0xFFFFF100.  When there are no more interrupting devices, location 0xFFFFF100 contains 

0x00000000.  Refer to the AIC documentation for additional details. 

 

Similarly, the address of the ISR for the FIQ interrupting device is found at address 0xFFFFF104.  

OS_CPU_ExceptHndlr() can thus be written as shown in listing 4-3. 

 

Listing 4-3, OS_CPU_ExceptHndlr() for Atmel’s AIC. 
 
#define  AIC_IVR  (*(INT32U *)0xFFFFF100) 
#define  AIC_FVR  (*(INT32U *)0xFFFFF104) 
 
typedef  void  (*BSP_FNCT_PTR)(void); 
 
 
void  OS_CPU_ExceptHndlr (CPU_DATA  except_type) 
{ 
    BSP_FNCT_PTR   pfnct; 
    CPU_INT32U    *sp; 
 
    if (except_type ==  OS_CPU_ARM_EXCEPT_FIQ) { 
        pfnct = (BSP_FNCT_PTR)*AT91C_AIC_FVR;  /* Read the FIQ handler from the AIC.     */ 
        while (pfnct != (BSP_FNCT_PTR)0) {     /* Make sure we don't have a NULL pointer.*/ 
            (*pfnct)();                        /* Execute the handler.                   */ 
            *AT91C_AIC_EOICR = ~0;             /* End of handler.                        */ 
            pfnct = (BSP_FNCT_PTR)*AT91C_AIC_FVR;/* Read the FIQ handler from the AIC.   */ 
        } 
        *AT91C_AIC_EOICR = ~0;                 /* End of handler.                        */ 
    } else if (except_type == OS_CPU_ARM_EXCEPT_IRQ) { 
        pfnct = (BSP_FNCT_PTR)*AT91C_AIC_IVR;  /* Read the IRQ handler from the AIC.     */ 
        while (pfnct != (BSP_FNCT_PTR)0) {     /* Make sure we don't have a NULL pointer.*/ 
            (*pfnct)();                        /* Execute the handler.                   */ 
            *AT91C_AIC_EOICR = ~0;             /* End of handler.                        */ 
            pfnct = (BSP_FNCT_PTR)*AT91C_AIC_IVR;/* Read the IRQ handler from the AIC.   */ 
        } 
        *AT91C_AIC_EOICR = ~0;                 /* End of handler.                        */ 
    } else { 
        /* Other exception handling */ 
        } 
    } 
}  
 

 
It’s IMPORTANT to note that you MUST place the address of the ISR handler in the proper AIC register 

in order for OS_CPU_ExceptHndlr() to work properly.  You DO NOT want to place the address of 

OS_CPU_ExceptHndlr() as the ISR address for the AIC. 

 
Your ISR handlers should be written as follows: 
 
void  MyISR_Hndlr (void) 
{ 
    /* Service the interrupting device                                */ 
    /* Buffer the data (if any) and signal a task to process the data */ 
    /* Clear the interrupting device (i.e. acknowledge the device)    */ 
} 
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4.02.02 Interrupt Controllers, Philips and Sharp’s VIC 
 
The Philips LPC2000 series (ARM7), Sharp ARM7 and ARM9 families of processors have a Vectored 
Interrupt Controller (VIC).  Once initialized, the VIC provides the 32-bit address of the ISR for the highest 

priority interrupting device at location 0xFFFFF030.  In other words, the interrupting device’s ISR can be 

read from location 0xFFFFF030.  When there are no more interrupting devices, location 0xFFFFF030 

contains 0x00000000. 

 

Similarly, the address of the ISR for the FIQ interrupting device is found at address 0xFFFFF034. 

 

OS_CPU_ExceptHndlr() can thus be written as shown in listing 4-4. 

 

Listing 4-4, OS_CPU_ExceptHndlr() for Philips and Sharp’s VIC. 
 
#define  VIC_IRQ  (*(INT32U *)0xFFFFF030) 
#define  VIC_FIQ  (*(INT32U *)0xFFFFF034) 
 
typedef  void  (*BSP_FNCT_PTR)(void); 
 
void  OS_CPU_ExceptHndlr (CPU_DATA  except_type) 
{ 
    BSP_FNCT_PTR   pfnct; 
    CPU_INT32U    *sp; 
 
    if (except_type ==  OS_CPU_ARM_EXCEPT_FIQ) { 
        pfnct = (BSP_FNCT_PTR)*VIC_FIQ;        /* Read the FIQ handler from the VIC.     */ 
        while (pfnct != (BSP_FNCT_PTR)0) {     /* Make sure we don't have a NULL pointer.*/ 
            (*pfnct)();                        /* Execute the handler.                   */ 
            *AT91C_AIC_EOICR = ~0;             /* End of handler.                        */ 
            pfnct = (BSP_FNCT_PTR)*VIC_FIQ;    /* Read the FIQ handler from the VIC.   */ 
        } 
        *AT91C_AIC_EOICR = ~0;                 /* End of handler.                        */ 
    } else if (except_type == OS_CPU_ARM_EXCEPT_IRQ) { 
        pfnct = (BSP_FNCT_PTR)*VIC_IRQ;        /* Read the IRQ handler from the VIC.     */ 
        while (pfnct != (BSP_FNCT_PTR)0) {     /* Make sure we don't have a NULL pointer.*/ 
            (*pfnct)();                        /* Execute the handler.                   */ 
            *AT91C_AIC_EOICR = ~0;             /* End of handler.                        */ 
            pfnct = (BSP_FNCT_PTR)*VIC_IRQ;    /* Read the IRQ handler from the VIC.   */ 
        } 
        *AT91C_AIC_EOICR = ~0;                 /* End of handler.                        */ 
    } else { 
        /* Other exception handling */ 
        } 
    } 
}  
 

It’s IMPORTANT to note that you MUST place the address of the ISR handler in the proper VIC register 

in order for OS_CPU_ExceptHndlr() to work properly.  You DO NOT want to place the address of 

OS_CPU_ExceptHndlr() as the ISR address for the VIC. 

 
Your ISR handlers should be written as follows: 
 
void  MyISR_Hndlr (void) 
{ 
    /* Service the interrupting device                                */ 
    /* Buffer the data (if any) and signal a task to process the data */ 
    /* Clear the interrupting device (i.e. acknowledge the device)    */ 
} 
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4.02.03 Interrupt Controllers, Freescale i.MX 
 
The Freescale i.MX series have an Interrupt Controller called the AITC.  Once initialized, the AITC 
provides the ‘index’ (a number between 0 and 63, incl.) of the highest priority interrupting device.  The 
index can then be used as an index into a table of interrupt vectors.  The index for the highest priority 

interrupting device is found at location 0x00223040 (for the i.MX1).  This is called the Normal Interrupt 

Vector and Status Register (NIVECSR).    

 
Similarly, the index of the interrupting device for the FIQ interrupting device is found at address 

0x00223044.  The is called the Fast Interrupt Vector and Status Register (FIVECSR). 

 
There are a number of things we need to setup to use the AITC as shown in the following listings.  This 
code would normally be placed in the BSP of the target board. 
 
 

Listing 4-5, #defines 
 
#define  BSP_NIVECSR  (*(INT32U *)0x00223040L) 
#define  BSP_FIVECSR  (*(INT32U *)0x00223044L) 
 

These are the addresses of the NIVECSR and FIVECSR registers, respectively. 

 
 

Listing 4-6, Data Types 
 
typedef  void (*BSP_FNCT_PTR)(void); 
 

This declares a new data type for a pointer to a function. 
 
 

Listing 4-7, Exception handler address table 
 
BSP_FNCT_PTR  BSP_ExceptHndlrVectTbl[64]; 
 

This declares an array of pointers to functions.  Each interrupting device is identified by an index from 0 to 

63 which is contained in the BSP_NIVECSR for an IRQ and the BSP_FIVECSR for an FIQ.  We would 

use this index to extract the address of the exception handler from this table (see 

OS_CPU_ExceptHndlr() for details). 

 
 

Listing 4-8, Unused exception handler 
 
static  void  BSP_ExceptDummyHndlr(void) 
{ 
} 
 

Here we declare a ‘dummy’ function in order to populate the exception vector table (i.e. 

BSP_ExceptHndlrVectTbl[]) with a pointer to this function.  This is used in case there is no handler 

associated with an interrupting device. 
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Listing 4-9, Initialization of the exception vector table 
 
static  void  BSP_Init(void) 
{ 
[…] 
    INT16U  i; 
 
[…] 
    for (i = 0; i < 64; i++) { 
        BSP_ExceptHndlrVectTbl[i] = BSP_ExceptDummyHndlr; 
    } 
} 
 

We initialize the table containing the addresses of the exception handler for each interrupting device.  
When you want the CPU to service a specific device, you would simply ‘install’ the exception handler by 

calling BSP_ExceptHndlrSet() as described in Listing 4-10. 

 
 

Listing 4-10, Specifying the address of an exception handler 
 
void  BSP_ExceptHndlrSet (INT32U except_type, BSP_FNCT_PTR  pHndlr)       (1) 
{ 
    if (except_type < 64) {                                               (2) 
        BSP_ExceptHndlrVectTbl[except_type] = pHndlr;                     (3) 
    } 
} 
 

L4-10(1) When you want the CPU to service a specific device, you would simply ‘install’ the 

exception handler by calling BSP_ExceptHndlrSet() and specify the ‘except_type’ as 

well as the address for the exception handler.  You MUST declare your handlers as 
follows: 

 
 void MyExceptHndlr(void) 
  { 
      Handle the device that generated the exception. 
      Possibly buffer and signal a task to handle the data; 
                Don’t forget to ‘CLEAR’ the interrupting device. 
  } 
 

L4-10(2) You MUST specify an exception id between 0 and 63, inclusively. 
 
L4-10(3) The address of the exception handler is saved in the table. 
 
 

Listing 4-11, OS_CPU_ExceptHndlr() for the Freescale’s AITC 
 
void  OS_CPU_ExceptHndlr (void) 
{ 
    INT16U        except_type; 
    BSP_FNCT_PTR  pfnct; 
 
    except_type = (BSP_NIVECSR >> 16) & 0x00FF;          (1)   
    while (except_type < 64) {                           (2) 
        pfnct = BSP_ExceptHndlrVectTbl[except_type];     (3) 
        if (pfnct != (BSP_FNCT_PTR)0) {                  (4) 
            pfnct();                                     (5) 
        } 
        except_type = (BSP_NIVECSR >> 16) & 0x00FF;      (6) 
    } 
} 
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L4-11(1) We get the ‘except_type’ of the highest priority exception to service which is found in the 

upper 16 bits of the BSP_NIVECSR register. 

 
L4-11(2) We want to service ALL interrupting devices.  In other words, there is no point of 

returning from an exception if there are ‘more’ devices interrupting the CPU.  This 
reduces the overhead associated with servicing multiple consecutive exceptions.  Note 

the BSP_NIVECSR will contain an index higher than 63 when there are no more devices 

interrupting the CPU.  
 
L4-11(3) If we have a valid index, we obtain the address of the exception handler associated with 

the interrupting device. 
 

L4-11(4) Just in case, we make sure a ‘distracted’ programmer didn’t decide to place a NULL 

pointer as an exception handler. 
 
L4-11(5) We execute the exception handler for the interrupting device. 
 
L4-11(6) Finally, we check to see whether there are other interrupts to service. 
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5.00 Debugging in RAM 
 

A large number of ARM chips allow you to re-map RAM at location 0x00000000 which allows you to 

change exception and interrupt vectors at run-time (especially useful during debug).   
 

The remapping of RAM at location 0x00000000 allows you to install the IRQ and FIQ interrupt vectors as 

discussed in the previous section. 
 

Some ARM cores contain an MMU.  In order to ‘remap’ RAM at address 0x00000000, the MMU needs to 

be initialized and the remapping is actually done by the MMU.  MMU initialization is assumed to be part of 

the application code.  As far as µC/OS-II is concerned, you need to locate some RAM from address 

0x00000000 to 0x0000003F during debugging in order to setup the interrupt vectors. 
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 6.00 Application Code 
 

Your application code can make use of the port presented in this application note as described in this 

section.  Figure 6-1 shows a block diagram of the relationship between your application, µC/OS-II, the 

µC/OS-II port, the BSP (Board Support Package), the ARM CPU and the target hardware. 

 

 
 

Figure 6-1, Relationship between modules. 
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6.01 APP.C, APP.H and APP_CFG.H 
 

For sake of discussion, your application is placed in files called APP.C and APP_CFG.H.  Of course, your 

application (i.e. product) can contain many more files. 
 

APP.C would be where you would place main() but, of course, you can place main() anywhere you 

want. 
 

APP_CFG.H contains #define constants to configure the application.  We placed task stack sizes task 

priorities and other #defines in this file.  This allows you to locate task priorities and sizes in one place. 
 

APP.C is a standard test file for µC/OS-II examples.  The two important functions are main() (listing 6-

1) and AppStartTask() (listing 6-2). 

 

Listing 6-1, main() 
 
int  main (void) 
{ 
#if (OS_TASK_NAME_SIZE >= 16) 
    CPU_INT08U  os_err; 
#endif 
 
 
   (void)&App_Clk_UTC_Offset; 
 
    os_err = 0;                   /* Warning: With some debuggers the first call is       */ 
                                  /* ignored.                                             */ 
 
    BSP_Init();                   /* Initialize BSP.                                      */ 
    CPU_Init();                   /* Initialize CPU.                                      */ 
 
    APP_TRACE_DEBUG(("\n\n\n")); 
    APP_TRACE_DEBUG(("Initialize OS...\n")); 
    OSInit();                     /* Initialize OS.                                   (1) */ 
 
                                  /* Create start task.                               (2) */ 
    OSTaskCreateExt( App_TaskStart, 
                    (void *)0, 
                    (OS_STK *)&App_StartTaskStk[APP_START_OS_CFG_TASK_STK_SIZE - 1], 
                     APP_START_OS_CFG_TASK_PRIO, 
                     APP_START_OS_CFG_TASK_PRIO, 
                    (OS_STK *)&App_StartTaskStk[0], 
                     APP_START_OS_CFG_TASK_STK_SIZE, 
                    (void *)0, 
                     OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR); 
 
                                  /* Give a name to tasks.                                */ 
#if (OS_TASK_NAME_SIZE >= 16) 
    OSTaskNameSet(OS_TASK_IDLE_PRIO,          "Idle",  &os_err);                      (3) 
#if (OS_TASK_STAT_EN > 0) 
    OSTaskNameSet(OS_TASK_STAT_PRIO,          "Stat",  &os_err); 
#endif 
    OSTaskNameSet(APP_START_OS_CFG_TASK_PRIO, "Start", &os_err);                      (4) 
#endif 
 
    APP_TRACE_DEBUG(("Start OS...\n")); 
    OSStart();                    /* Start OS.                                        (5) */ 
}  
 
 



  µC/OS-II Port for ARM Processors 

  (ARM7 or ARM9) 
  (ARM or Thumb Mode) 

 48 

 

L6-1(1)  As with all µC/OS-II based applications, you need to initialize µC/OS-II by calling 

OSInit(). 

 
L6-1(2)  You need to create at least one task.  In this case, we created the task using the extended 

task create call.  This allows µC/OS-II to have more information about your task.  

Specifically, with the IAR toolchain, the extra information allows the C-Spy debugger to 

display stack usage information when you use the µC/OS-II Kernel Awareness Plug-In. 

 

L6-1(3)  µC/OS-II doesn’t name the idle task nor the statistic task by default and thus, we can do this 

at this point.  In fact, we could have name these task immediately after calling OSInit(). 

 
L6-1(4)  We can now give names to tasks and those can be displayed by Kernel Aware debuggers 

such as IAR’s C-Spy. 
 

L6-1(5)  In order to start multitasking, you need to call OSStart().  Note that OSStart() will not 

return from this call. 
 
 

Listing 6-2, AppStartTask() 
 
static  void  App_TaskStart (void  *p_arg) 
{ 
#if (CPU_CFG_NAME_EN == DEF_ENABLED) 
    CPU_ERR  err; 
#endif 
 
 
    (void)&p_arg;                 /* Prevent compiler warning.                            */ 
 
    APP_TRACE_DEBUG(("Initialize OS timer...\n")); 
    Tmr_Init();                   /* Initialize OS timer.                                 */ 
 
#if (OS_TASK_STAT_EN > 0) 
    APP_TRACE_DEBUG(("Initialize OS statistic task...\n")); 
    OSStatInit();                 /* Initialize OS statistic task.                    (1) */ 
#endif   
 
    APP_TRACE_DEBUG(("Create application task...\n")); 
    App_TaskCreate();             /* Create application task.                         (2) */ 
 
[…] 
            (3) 
    LED_Off(1);          (4) 
    LED_Off(2); 
    LED_Off(3); 
 
    while (DEF_YES) {             /* Task body, always written as an infinite loop.       */ 
        OSTimeDlyHMSM(0, 0, 0, 500); 
 
[…] 
    } 
} 

 
 
 

L6-2(2)  If you enabled the statistic task by setting OS_TASK_STAT_EN in OS_CFG.H to 1) then, you 

need to call it here.  Please note that you need to make sure that you initialized and enabled 

the µC/OS-II clock tick because OSStatInit() assumes the presence of clock ticks.  In 

other words, if the tick interruption handler is not active when you call OSStatInit(), your 

application will end up in µC/OS-II’s idle task and not be able to run any other tasks. 
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L6-2(3)  At this point, you can create additional tasks.  We decided to place all our task initialization in 

one function called AppTaskCreate() but, you are certainly welcome to use a different 

technique. 
 
L6-2(4)  You can now perform whatever additional function you want for this task. 
 
L6-2(5)  We decided to toggle an LED at a rate of 10 Hz (LED will blink at 2 Hz) when this task is 

running (see section 7.00, Board Support Package). 
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6.02 INCLUDES.H 
 

INCLUDES.H is a master include file and is found at the top of all .C files.  INCLUDES.H allows every .C 

file in your project to be written without concern about which header file is actually needed. The only 

drawbacks to having a master include file are that INCLUDES.H may include header files that are not 

pertinent to the actual .C file being compiled and the compilation process may take longer. These 

inconveniences are offset by code portability.  You can edit INCLUDES.H to add your own header files, 

but your header files should be added at the end of the list.  Listing 6-3 shows the typical contents of 

INCLUDES.H.  Of course, you can add your own header files as needed. 

 

Listing 6-3, INCLUDES.H 
 

#include  <ctype.h> 
#include  <stdarg.h> 
#include  <stdio.h> 
#include  <stdlib.h> 
#include  <string.h> 
 
#include  <app_cfg.h> 
 
#include  <ucos_ii.h> 
#include  <bsp.h> 
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7.00 BSP (Board Support Package) 
 

It is often convenient to create a Board Support Package (BSP) for your target hardware.  A BSP could 
allow you to encapsulate the following functionality: 
 
 Timer initialization 
 Exception handlers 
 LED control functions 
 Reading switches 
 Setting up the interrupt controller 
 Setting up communication channels 
 Etc. 
 

A BSP consist of 2 files: BSP.C and BSP.H. 

 
For example, because a number of evaluation boards are equipped with LEDs, we decided to create LED 
control functions as follows: 
 
 void  LED_Init(void); 
 void  LED_On(INT8U  led_id); 
 void  LED_Off(INT8U led_id); 
 void  LED_Toggle(INT8U led_id); 

 
In this case, LEDs are referenced ‘logically’ instead of physically.  When you write the BSP, you 
determine which LED is LED #1, which is LED #2, etc.  When you want to turn on LED #1, you simply call 

LED_On(1).  If you want to toggle LED #2, you simply call LED_Toggle(2).  In fact, you can (and 

should) associate names to your LEDs using #defines.  You could thus specify LED_Off(LED_PM). 

 

Each BSP should contain a BSP initialization function.  We called ours BSP_Init() and should be 

called by your application code. 
 

We decided to encapsulate the µC/OS-II clock tick handler in the BSP because exception handlers really 

belong into your application code and not µC/OS-II.  Doing this makes it easier to adapt the µC/OS-II 

port to different target hardware since you could simply change the BSP to select whichever timer or 

interrupt source for the clock tick.  The clock tick interruption handler is found in BSP.C and is called 

Tmr_TickHndlr().   

 

It’s assumed that the generic exception handler (OS_CPU_ExceptHndlr()) is declared in BSP.C (see 

section 4 for details). 
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8.00 Conclusion 
 
This application note presented a ‘generic’ port for ARM processors (ARM7 or ARM9).  The port should 
be easily adapted to different compilers (the code itself should be identical).  Of course, if you use 

µC/OS-II and use the port on actual hardware, you will need to initialize and properly handle hardware 

interrupts. 
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