Micripm

Empowering Embedded Systems

nC/0S-ll
uC/TCP-IP

and
The NXP LPC2378 CPU

(Using the Keil MCB2300 EVB)

Application Note

AN-9078

www.Micrium.com

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Table Of Contents

5.00
5.01

6.00
Licensing

References
Contacts

Introduction 3
Directories and Files 4
IAR Embedded Workbench 6
Example Code 9
Example Code, app.c 9
Example Code, os_cfg.h 12
Board Support Package (BSP) 13
IAR-Specific BSP Files 13
BSP, bsp.c and bsp.h 13
BSP, bsp exception.c 19
pC/0S-View 21
Board Support Package, net_bsp.c 22
Board Support Package, net_bsp.h 23
EMAC Notes 25

26

26

26

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

1.00 Introduction

This document shows example code for using pC/OS-1l and uC/TCP-IP on a NXP LPC2378
(ARM7) processor, demonstrated on an Keil MCB2300 EVB as shown in Figure 1-1. The
example is based off of Micrium AN-1014, the pC/OS-Il port for ARM processors, and can be run
in either ARM or Thumb mode.

We ported pC/0S-View to this board (see Section 1.01). If you purchased pC/OS-View from
Micrium, you can enable it by adding the pC/OS-View files to the build and setting the
OS_VIEW MODULE variable defined in os_cfg.hto 1.

We used the IAR’'s Embedded Workbench (EWARM) to demonstrate the examples, but other tool
chains can be used.

USB / Power 10/100 Ethernet 20 pin J-Tag 20 pin J-Tag

E AN AN

LPC2378
(512K Flash, 32K RAM)

[LELEEALES

UART1 (RS-232C)
to uC/0S-View

Figure 1-1, Keil MPC2300 EVB

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

1.01 Directories and Files

The code and documentation of the port are placed in a directory structure according to
“AN-2002, uC/OS-Il Directory Structure”. Specifically, the files are placed in the following
directories:

pC/OS-II:

\Micrium\Software\uCOS-II\Source

This directory contains the processor independent code for uC/OS-Il. The version used
was 2.83.

\Micrium\Software\uCOS-II\Ports\ARM\Generic\IAR

This directory contains the standard processor-specific files for the generic uC/OS-Il
ARM port assuming the IAR tool chain. These files could easily be modified to work with
other tool chains (i.e. compiler/assembler/linker/locator/debugger); however, you would
place the modified files in a different directory. Specifically, this directory contains the
following files:

e os_cpu.h

® os_cpu a.asm
e os_cpu c.c

e os_dcc.c

e os_dbg.c

os_dbg.c is included to provide additional information to Kernel Aware debuggers like
IAR’s C-Spy.

With this port, you can use pC/OS-Il in either ARM or Thumb mode. Thumb mode,
which drastically reduces the size of the code, was used in this example, but compiler
settings may be switched to generate ARM-mode code without needing to change either
the port or the application code. The ARM/Thumb port is fully described in application
note AN-1014 which is available from the Micrium web site.

pC/0S-View:

\Micrium\Software\uCOSView\Source

This directory contains the processor independent code for uC/OS-View. The version
used was 1.33. This directory contains the following files:

e os_view.c

e o0s view.h

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

\Micrium\Software\uCOSView\Ports\ARM7\LPC2378\IAR
This directory contains the LPC2378 specific port for pC/0OS-View:

e os_viewc.c

e os_viewc.h

Application Code:

\Micrium\Software\EvalBoards\NXP\MCB2300\IAR\OS-View-LCD-TCPIP
This directory contains the source code for the example application, composed of the
following files:

e app.c contains the test code for the example application including the functions calls
that start pC/OS-Il, register tasks with the operating system, and toggle the onboard
LEDs. pC/OS-View and puC/TCP-IP are also initialized from within this file.
app_cfg.his a configuration file specifying stack sizes and priorities for all tasks and
#defines for important global application constants.

e includes.h is a master include file used by the application.

e os_cfg.his the uC/OS-Il configuration file.

e net_conf.h contains pC/TCP-IP configuration parameters.

e 0S-View-LCD-TCPIP. * are the IAR Embedded Workbench project files.

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

\Micrium\Software\EvalBoards\NXP\LPC2378\IAR\BSP
This directory contains the Board Support Package for the Keil MCB2300 EVB:

e bsp.c contains the board support package which initializes critical processor
functions (e.g., the PLLs) and provides support for peripherals such as the LED on
the board. bsp.h contains prototypes for functions that may be called by the user.

e net bsp.c and net bsp.h contain low level hardware access routines which
make up part of the LPC2378 EMAC network driver.

e LPC2378_Flash.xcl and LPC2378_Ram.xcl are IAR linker files which contain
information about the placement of data and code segments in the processor’s
memory map. The data, code, and execution stacks are all mapped to Flash and
RAM, respectively.

e LPC2378_Ram.mac contains instructions that are executed prior to loading code onto

the processor. In this case, the lower 64 bytes of RAM are remapped onto the
interrupt vector table at 0x00000000.

e cstartup.s79

\Micrium\Software\uC-CPU\ARM\IAR
This directory contains processor-specific code intended to be used with the IAR compiler
for ARM processors.

e cpu_def.h, which is located directly in \Micrium\Software\uC-CPU, declares
#define constants for CPU alignment, endianness, and other generic declarations.

e cpu.h defines the Micrium portable data types for 8, 16, and 32-bit signed and
unsigned numbers (such as CPU_INT16U, which is a 16-bit unsigned type). These
allow code to be independent of processor and compiler word size definitions.

e cpu_a.s contains generic assembly code for ARM7 or ARM9 processors which is
used to enable and disable interrupts within the operating system. This code is called
from C with OS_ENTER CRITICAL() and OS EXIT CRITICAL().

\Micrium\Software\EvalBoards\NXP\LPC2378\Doc
This directory is the directory that contains the documentation for the Keil MCB2300
evaluation board test code.

1.03 IAR Embedded Workbench

We used the IAR Embedded Workbench (EW) V4.40a to test the example. Of course,
pC/OS-Il can be used with other tools. Figure 1-3 shows the project configuration tree.

S 2 £
FLASH hie FLASH -

Files R

ENR 0S-View-TCPIP- | v [|

2 B3 uGTCRHP =

(15 Miew- TCPIP

e Tm]
S-View-TCPIP- FLASH v
= ication

—1 (3 Application
B oppc E
— [app_clgh uC/UB
— [includesh & 3 uC/os-I
— B net_cfg.h & L uC/03View
= FECIuCTCPP
os_ctgh =
Lam E]SP = e
& Ether
B bsp.c ¥ | Fnetitc
F— B bsph | “—Binetith
m bsp_exception.c [B net_if_pkt.c
[cstartup 579 = ::l%gELILPN-h
B OCCe =
(3 Ether
— [flagh.mac L& Bineinice
] flash.xcl — Binet_nich
— [iolpc23ech L— Binet_nic_deth
B net_bspc Ha@os
— B net_beph e @ucmos-
B i Finet_osc
e BITLTo0 L Bnet_osh
L— [ramxcl laCapHy
FaEucicry Bnelphyc
2 3 AR — % net_phyh
— Bl cpuh \ net_phy_deth
@ cpu_as ﬂLE]E;:;M
L— [cpu_deth Lamian
R uCLIB B net_util_a.asm
-2 Ports o (3 5ource
@ Ca ARM % nete
— B lib_deth s — B neth
m lih_mem.c % neLampc
— [net_arp.h
— @ lib_memh [net_asciic
B lib_str.c — Binetescih
L— @ lib_strh [net_bsdle
= 3 uC/os-| :%na:_lésfdh
e net_butc
—D_JP@DH h F— B net_buth
[@las enu F— [net_cfy_neth
B os_cpu_s.asm [net_conn.c
B os_cpu_cc — [net_connh
[# o0s_dbg.c = B net_circ
Bl os_dece —Bnet ctrh
L= (3 Source -8 st dba.c
— t dhbgh
[# os_carec — % ::fdalgh
B o flag.c Brnetsrc
B os_mbox.c — @ net erch
Bl os_mem.c [net_icmp o
B os_mutax.c [— B nsticmp.h
LaBos qc Fa Bretipe
-G F— B netiph
Bos_semc [B net_sackc
@l os_taskc F— B net_sockh
B os_time.c [B net_statc
Bl as_tmrc — B netstath
L B ucos_iih Bnet top.c
= = F— B nettcph
—E'_JlinOS-V\E!W Bnettmre
8 CaFor — B net tmrh
| A0S VIEWeC — [net type h
| L—Ros_ viEwcH Bretudpe
L@ £ Source — BEinet udph
B OS_VIEWC % wetils
St - — [& net_uti
L Bos VIEWH Lagoum

05 View-TEFIF

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Figure 1-3, IAR EW Project Configuration

The test code works either in ARM or Thumb mode. In fact, if you switch between ARM and
Thumb Processor Mode in the settings dialog box (see Figure 1-4) and rebuild the project, your
code should run just as well. By selecting ‘Thumb’ and choosing to generate ‘Interwork’ code, you
can mix ARM and Thumb code in your application.

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Options for node *0S-Yiew-TCPIP™ b X

Category:
General Options : .
CAC++ Compiler Target i Dutputi Library Configuration’ Libramy options | MISEA CI
Lissarbler -Frocessor variant
Custarn Build
Build Actions £ Come IAH METERES "l
Linker)
Debugger @ Device |Phils LPL2373
Simulator
Angel . FEll
1&R ROM-mionitar
JLinkd)-Trace I Mk VI
Macraigor
RO ¥ Generats jntenwork code
Third-Party Driver -Proceszor mode Endian mode- —Stack align
O Am o Litle 0 4 bytes
£ Thumb Big £ 8 butes

Cancel

Figure 1-4, IAR EWARM Options

The IAR Embedded Workbench works with Micrium’s pC/0S8-1l1 Kernel Awareness Plug-In which

allows you to examine pC/OS-11 kernel objects in tabular format when running the IAR C-Spy
debugger.

Figure 1-5 shows all the tasks created in the example. For each task, you can see where the
current stack pointer is pointing, how much stack space is being used, and other properties. The
task names (which you may assign) are also listed.

The Kernel Awareness Plug-In provides a number of other useful information about pC/OS-Il
(semaphore list, mailbox list, queue list, etc.).

=l
i Hane | Refi Pr:u:vl State-l D1 | Waiting On I Msgi Ctax Swi Stl Ptrl Mas%i CurX-l Maxi Curl Size-' Starts @I Ends @
Start Task 3 1 Dlw 1 16015 400006C0 16% 8% 192 104 1200 40000728 40000278
uCs05-II Tmr 2 & Sem 0 05-TmrSig 1944 40007102 25% 21x 132 108 512 40007244 40007044
Het IF Rx Task] 8 Sem 0 Het IF Rx Quesus 5062 40003F84 523 11x% 540 120 1024 40003FFC 40003EFC
Het Timer Task 4 10 Dly 7 1923 40003B9C 13% 8% 156 96 1200 40003BFC 4000374C
uC-05-IT Stat 1 62 Dlw 5 1962 400060C8 28% 18% 148 96 512 40006128 40005F28

» uCs05-II Idle 1] 63 Readw 1] 21192 4000e2F0 19% 13% 100 &8 512 40006334 40006134

Figure 1-5, uC/OS-Il Kernel Awareness in C-Spy, Task List

Micripm

OS-Il and TCP-IP for the NXP LPC2378

2.00 Example Code

The application code is downloaded into Flash using a J-Link J-Tag emulator (though other
emulators can be used). When the application is started, the eight onboard LEDs scroll from side
to side and blink rapidly. If an Ethernet cable is plugged in, and your network is configured for the
192.168.0.x IP address range, then you may ping the LPLC2378 EVB by typing “ping
192.168.0.60” from the command prompt without the quotation marks. You may change the target
IP address by adapting the function AppInit TCPIP () within app.c accordingly. Micrium

offers DHCPc as an add-on module if required. Figure 2-1 demonstrates the use of ‘ping’ on
a Microsoft Windows based computer.

S AWINDDWS system32 cmd.exe

C:“\Documents and Settings“eric?ping 192.168.8.68
Pinging 192.168.8.68 with 32 bytes of data:

Reply from 192 _168_8.68: hytes=32 timedims TTL=128
Reply from 192.168.0.68: bytes=32 time{ims TTL=128
Reply from 122_168.0.68: bhytes=32 time<ims TTL=128
Reply from 192 _.168.8.68: hytes=32 time{ims TTL=128

Ping statistics for 192.168.8.68:
Packets: Sent = 4. Received = 4, Lost = B (Bx loss).

Approximate round trip times in milli-seconds:
Minimum = Bms. Maximum = Bms,. Average = Bms

C:“\Documents and Settings\eric?>

Figure 2-1, Pinging the Target Device

2.01 Example Code, app.c

A limited set of the LPC2138 capabilities are exhibited by the application code in app.c. For
example, only one user task is created which is used for blinking the onboard LEDs and initializing

TCP-IP. However a statistics task, idle task, timer task, and network task are created by the
operating system and TCP-IP stack module.

As with most C programs, we assume that the compiler startup code brings the CPU to execute
main (). That being said, if you design an embedded application running out of Flash, we expect
that you will properly initialize the CPU (clocks, power management, memory management, chip
selects, etc.) and have your code call main ().

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Listing 2-1, main()

void main

{

(void) (1)

CPU_INTO8U err;

BSP_ IntDisAll(); (2)

0SInit(); (3)

OSTaskCreateExt (AppTask_Start, (4)
(void *)0,

(OS_STK *)&AppTask StartStk[APP TASK START STK SIZE - 1],
APP TASK START PRIO,

APP TASK START PRIO,

(OS_STK *) &AppTask Startstk[O0],

APP TASK START STK SIZE,

(void *)O0,

OS_TASK_OPT STK CHK | OS_TASK OPT STK CLR);

#if OS TASK NAME SIZE > 13 (5)
OSTaskNameSet (APP_TASK START PRIO, "Start Task", &err);

#endif N N N
OSStart () ; (6)

}

L2-1(1) As with most C applications, the code starts in main ().

L2-1(2) All interrupts are disabled to make sure we will not get interrupted until the application
is fully initialized.

L2-1(3) As with all pC/OS-Il applications, you need to call 0SInit () before creating any
task or any other kernel objects.

L2-1(4) We then create at least one task (in this case we use OSTaskCreateExt () to
obtain additional information about your task). pC/OS-Il creates either one or two
internal tasks in OSInit(). pC/OS-Il always creates an idle task,
OS TaskIdle(), and will create a statistics task, 0S TaskStat (), if you set
OS_TASK STAT ENto1linOS CFG.

L2-1(5) As of V2.6x, you can now name pC/OS-Il tasks (and other kernel objects) and
display task names at run-time or with a debugger. In this case, we name our first
task as well as the two internal pC/OS-1l tasks. Because C-Spy can work with the
Kernel Awareness Plug-In available from Micrium, task names can be displayed
during debugging.

L2-1(6) Finally, pC/OS-ll is started by calling 0sstart (). pC/OS-1l1 will then begin

executing AppStartTask () since that is the highest priority task created (both
OS TaskStat () and 0S_TaskIdle () have lower priorities).

10

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Listing 2-2, AppTaskStart ()

static

{

void AppStartTask (void *p arg)

(void)p_arg;

BSP Init(); (1)

#if OS TASK STAT EN > 0

0SStatInit(); (2)

#endif

#if OS VIEW MODULE > 0

OSView Init (38400); (3)
OSView TerminalRxSetCallback (AppTerminalRx) ; (4)
OSView RxIntEn(); (5)
#endif B
#ifdef uC TCPIP MODULE
AppInit TCPIP(); (6)
#endif
LED _Off (0); (7)
AppTaskCreate () ; (8)
while (DEF TRUE) ({
0STimeDl1yHMSM (0, 0, 0, 100); (9)
}

}

L2-2(1) BSP Init () is called to initialize the Board Support Package—the 1/Os, the tick
interrupt, etc. (See section 3.0 for details.)

L2-2(2) 0SStatInit () is used to initialize pC/OS-II's statistics task. This only occurs if you
enable the statistics task by setting 0S TASK STAT EN to 1 in 0S_CFG.H. The
statistics task measures overall CPU usage (expressed as a percentage) and also,
performs stack checking for all the tasks that have been created with
OSTaskCreateExt () with the stack checking option set.

L2-2(3) OSView Init () is called to initialize the pC/OS-View module. Here we need to
specify the baud rate of the RS-232C port connecting the uC/0S-View ‘viewer'. If
you did not purchase pC/OS-View and ‘enable’ it (as covered in Section 1.01), this
function will not be called.

L2-2(4) OSView TerminalRxSetCallback () allows you to specify the name of a function
that will be called by pC/OS-View when characters are typed on the ‘Terminal
Window’ of the pC/OS-View viewer.

L2-2(5) OSView RxIntEn () simply enables receive interrupts from the UART used for
pC/OS-View.

L2-2(6) If uC/TCP-IP is present, then a call to AppInit TCPIP() is made in order to
initialize the TCP-IP stack. The constant uC_TCPIP MODULE is defined at the top of
bsp.h and can be toggled between DEF ENABLED and DEF DISABLED for
debugging purposes.

L2-2(7) This BSP function turns off all the LEDs. The MCB2300 has a total of 8 onboard

LEDs which are enabled and disabled in sequence during runtime.

11

L2-2(8)

L2-2(9)

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

We then create additional application tasks by calling AppTaskCreate() .
However, in this example, no additional tasks are necessary. You can of course
create and delete tasks from anywhere in your code, however, for organization and
convenience we have included an application hook to do so.

Any task managed by pC/OS-Il must either enter an infinite loop ‘waiting’ for some
event to occur or terminate itself. We decided to use the startup task to drive the
onboard LEDs. This task calls the 0STimeD1yHMSM () function in order to satisfy the
above requirement.

Listing 2-3, Applnit_TCPIP()

static void

{

AppInit TCPIP (void)

#1if EMAC_CFG MAC ADDR SEL == EMAC CFG_MAC ADDR SEL CFG (1)
NetIF MAC Addr [0] = 0x00;
NetTF MAC Addr [1] = 0x50;
NetIF MAC Addr [2] = 0xC2;
NetTF MAC Addr [3] = 0x25;
NetIF MAC Addr [4] = 0x60;
NetTF MAC Addr [5] = 0x01;
#endif
err = Net Init(); (2)
ip = NetASCII Str to IP("192.168.0.60", serr) ; (3)
msk = NetASCII Str to IP("255.255.255.0", &err);
gateway = NetASCII Str to IP("192.168.0.1", serr) ;
err = NetIP CfgAddrThisHost (ip, msk);
err = NetIP CfgAddrDfltGateway(gateway);

}

L2-3(1) If EMAC_CFG MAC ADDR SEL is defined as EMAC CFG_MAC ADDR_SEL CFG, that
is to say, the MAC address is user defined in software, then this is where the user
specifies the device MAC address. If an EEPROM is to be used for setting the MAC
address, then software must read the MAC address from the EEPROM and fill the
contents of the NetIF MAC Addr([] array before calling Net Init ().

L2-3(2) Net Init ()is called to initialize pC/TCP-IP stack.

L2-3(3) The user should specify an IP, Netmask, and Gateway address for uC/TCP-IP.
After converting the dotted decimal notation to 32 bit values, a call to both
NetIP CfgAddrThisHost () and NetIP CfgAddrDfltGateway () is made in
order to configure uC/TCP-IP to use the specified addresses.

Example Code, os_cfg.h

This file is used to configure pC/0S-1l. Among the approximately 60 #defines in this file are
included variables defining the maximum number of tasks that your application can have, which
services will be enabled (semaphores, mailboxes, queues, etc.), and the size of the idle and
statistic task. Each entry is commented and additional information about the purpose of each
#define can be found in uC/OS-ll, the Real-Time Kernel by Jean Labrosse. os cfg.h

assumes you have uC/0S-11 V2.83 or higher.

12

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

3.00 Board Support Package (BSP)

The Board Support Package (BSP) provides functions to encapsulate common /O access
functions and make porting your application code easier. Essentially, these files are the interface
between the application and the Keil MCB2300 EVB. Though one file, bsp.c, contains some
functions which are intended to be called directly by the user (all of which are prototyped in
bsp.h), the other files serve the compiler (as with cstartup.s79).

The BSP includes functions to

e Set and determine the LPC2378 CPU clock frequency (set to 48MHz).

e Configure the I/Os for the LPC2378 Evaluation Board.

e Provide hardware access functions for pC/LCD.

e Read the status of the onboard INTO push button.

¢ Handle IRQ and FIQ ISRs.

e Sets up uC/0S-View timer functions (if uyC/0S-View is enabled).

e Hande pC/OS-II's tick timer.

e Sets up the VIC (Vectored Interrupt Controller).

e Configure the external PHY address, and LPC2378 EMAC descriptor list.

3.01 IAR-Specific BSP Files

The BSP includes two files intended specifically for use with IAR tools: flash.xcl, and
cstartup.s79. These serve to define the memory map, ARM exception stack sizes, and
initialize the processor prior to loading or executing code. If the example application is to be used
with other tool chains, the services provided by these files must be replicated as appropriate.

Before the processor memories can be programmed, the compiler must know where code and
data should be placed. To accomplish this, IAR requires a linker command file, such as
flash.xcl, that provides directives to accomplish this. In the former, all code, data, and stack
and heap segments are placed in the 32kB internal RAM between 0x40000040 and
0x40007FFF. The first 64 bytes of RAM are reserved for the exception vector table.

In cstartup.s79 is code which will be executed prior to calling main (). One important
inclusion is the specification of the exception vector table (as required for ARM cores) and the
setup of various exception stacks. After executing, this function branches to the IAR-specific
?main function, in which the processor is further readied for entering application code.

3.02 BSP, bsp.c and bsp.h

We will not be discussing every aspect of the BSP but only cover topics that require special
attention.

Please take special care to notice the macro named BSP DEBUG at the top of bsp.c. During

normal operation this macro should be defined to 0, when debugging via the JTAG interface, it
should be set to 1. Setting the macro to 0 will cause the OS Tick timer to free run and thus provide

13

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

accurate statistics measurements for pC/0OS-View. However, debugging your application with
the macro set to 0 is not possible since the LPC2378 does not disable the internal timers while in
debug mode. This causes pC/OS-Il to miss the next tick interrupt. In order to recover from the
missed interrupt, the timer must wrap all the way around to the previous match value. This can
take up to several minutes depending on your operating frequency. It is therefore best to define
Bsp pEBUG t0 1 when debugging, and 0 when releasing final code. A side effect to setting this
macro to 1 is that the task CPU usage counters in puC/OS-View will report the wrong values
since the timer resets to 0 after each match interrupt.

Your application code must call BSP_Init () to initialize the BSP. BSP Init () in turn calls
other functions as needed.

Listing 3-1, BSP_Init()

void BSP_Init (void)
{

BSP_PLL Init(); (1)
BSP MAM Init(); (2)
BSP_I0 Init(); (3)
VIC Init(); (4)
LED Init(); (3)

(6)

Tmr TickInit();
}

L3-1(1) The PLL is setup. See Listing 3-2 for details.

L3-1(2) The MAM (Memory Acceleration Module) is setup. The MAM uses a bank of Flash
memory to accelerate the performance when the processor is running code from
Flash.

L3-1(3) The board I/O is initialized.

L3-1(4) VIC Init() places ‘dummy’ vectors in the interrupt controller, allowing easier
capture of uninitialized interrupt vectors.

L3-1(5) The LED services are initialized. After this function call, your application can call

LED On (), LED Off (), or LED Toggle () to turn on, turn off, or toggle, the
onboard LEDs.

L3-1(6) Timer #0, which will generate interrupts for the pC/OS-Il clock tick, is initialized by
Tmr TickInit (). See Listing 3-3 for details.

14

Micripm
pC/0S-11 and pC/TCP-IP for the NXP LPC2378
Listing 3-2, BSP_PLL Init()

static void BSP PLL Init (void)
{

#if OS_CRITICAL METHOD == 3
0S_CPU_SR cpu_sr = 0;
#endif
CPU_INT32U m;
CPU_INT32U nj;
CPU_INT32U cClkDiv;
CPU_INT32U wusbClkDiv;
m = 11; (1)
n = 0;
cClkDiv = 5;
usbClkDiv = 5;
if ((PLLSTAT & (1 << 25)) > 0) { (2)
CPU_CRITICAL ENTER();
PLLCON &= ~(1 << 1);
PLLFEED = OxAA;
PLLFEED = 0x55;
CPU_CRITICAL EXIT();
}
CPU_CRITICAL ENTER(); (3)
PLLCON &= ~(1 << 0);
PLLFEED = OxAA;
PLLFEED = 0x55;
CPU_CRITICAL EXIT();
SCs &= ~(1 << 4); (4)
SCs [= (1 << 5); (5)
while ((SCS & (1 << 6)) == 0) { (6)
}
CLKSRCSEL = (1 << 0); (7)
CPU_CRITICAL ENTER(); (8)
PLLCFG = (m << 0) | (n << 16);
PLLFEED = OxAA;
PLLFEED = 0x55;
CPU_CRITICAL EXIT();
CPU_CRITICAL ENTER(); (9)
PLLCON = (1 << 0);
PLLFEED = OxAA;
PLLFEED = 0x55;
CPU_CRITICAL EXIT();
CCLKCFG = cClkDiv; (10)
USBCLKCFG = usbClkDiv; (11)
while ((PLLSTAT & (1 << 26)) == 0) { (12)
}
CPU_CRITICAL ENTER(); (13)
PLLCON [= (1 << 1);
PLLFEED = 0xAA;
PLLFEED = 0x55;
CPU_CRITICAL EXIT();

while ((PLLSTAT & (1 << 25)) == 0) { (14)

’

}

15

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

L3-2(1) The PLL is setup with a multiplier (M) = 12 and divider (N) = 1, while the CPU clock
and USB clock dividers = 6 respectively. The PLL input frequency (Fin) is defined in
bsp.h as 12MHz. The PLL output frequency, (Fcco), is calculated as Fcco =2 * Fin *
M/N=(2*12*12/1) = 288MHz. This value is then divided by the CPU clock divider
to form the CPU clock frequency. Therefore, the CPU clock frequency = 288MHz / 6
= 48MHz. The same holds true for the USB clock frequency which is created by
dividing Fcco by the USB clock divider which = 288MHz / 6 = 48MHz.
Note: For engineering samples, the value of Fcco must never exceed 288MHz.

L3-2(2) If the PLL is already connected, disconnect the PLL before changing settings.

L3-2(3) Ensure that the PLL is disabled before changing settings.

L3-2(4) Inform the processor that the Main oscillator is between 1 and 20 MHz.

L3-2(5) Enable the Main oscillator.

L3-2(6) Wait for the Main oscillator to become ready for use.

L3-2(7) Switch to the Main oscillator. PLL Fin = 12MHz.

L3-2(8) Update the PLL block with the desired values for M and N, followed by a PLL feed
sequence.

L3-2(9) Enable the PLL, followed by a PLL feed sequence.
L3-2(10) Configure the CPU clock divider.

L3-2(11) Configure the USB clock divider.

L3-2(12) Wait for the PLL to lock.

L3-2(13) Connect the PLL, followed by a PLL feed sequence.

L3-2(14) Wait for the PLL to become connected.

Listing 3-3, Tmr_TickInit()

void Tmr TickInit (void)
{
CPU_INT32U cClkFrq;
CPU_INT32U pClkFrqg;

VICIntSelect &= ~(1 << VIC_TIMERO); (1)
VICVectAddr4 = (CPU_INT32U) Tmr_TickISR Handler;
VICIntEnable = (1 << VIC TIMERO);

cClkFrg = BSP_CPU_ClkFreq(); (2)
PCLKSELO &= ~(3 << 2); (3)
pClkFrg = cClkFrqg / 4; (4)
Tmr_ ReloadCnts = pClkFrg / OS_TICKS_PER SEC; (5)
TOTCR = (1 << 1); (6)
TOTCR &= ~(1 << 1); (7)

16

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

#if BSP DEBUG == 0 (8)
TOMRO = TOTC + Tmr ReloadCnts;
TOMCR = 1 B
#else (9)
TOMRO = Tmr ReloadCnts;
TOMCR = 3;
#endif
TOCCR = 0 (10)
TOEMR = 0; (11)
TOTCR = 1 (12)
}
L3-3(1) This code sets up the interrupt controller to vector to Tmr TickISR Handler ()
(see BsP.C) when Timer #0 issues an interrupt. Timer #0 is designed to use VIC
vector #4.
L3-3(2) We determine the peripheral clock frequency by calling BSP CPU ClkFreqg(). The
value returned is in Hertz.
L3-3(3) The timer peripheral clock divider is configured to 4. This means that the timer
operates at a frequency of CPU Clock / 4;
L3-3(4) Calculate the peripheral clock frequency for timer 4, knowing the divider was
previously set to 4.
L3-3(5) Determine the number of timer increments necessary in order to sustain
OS_TICKS PER SEC.
L3-3(6) Reset and clear the timer counter register.
L3-3(7) Release the reset bit.
L3-3(8) When not in BSP debug mode, configure the timer to free-run
L3-3(9) When in BSP debug mode, configure the timer to reset to 0 after a successful match.

L3-3(10) Capture is disabled.

L3-3(11) No external match enabled.

L3-3(12) Enable the timer.

We can

1.

setup the timer in one of two ways, see L3-3(8) and L3-3(9):

As shown in Figure 3-1, TC free runs from 0x00000000 to OxFFFFFFEFF. An interrupt is
generated upon compare of Timer #0's TC register and the match register MRO, and the
match register is reloaded for the next TCc match. If we needed to use a timer for both
pC/0OS-View and pC/OS-II's tick interrupt, we could use this method. However, this
setup has one major drawback: if the processor were stopped for debugging purposes,
timer interrupts would not occur until the TC once again matches the value of the match
register. In other words, under worst case conditions, it could take several minutes for
tick interrupts to resume.

In Figure 3-2, the TC is reset upon compare with the match register. The tick interrupt is
generated by a timer configured in this manner.

17

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

TC Interrupt on ‘Match Compare’
OxFFFFFFFF

0x00000000

»
>

Tmr_ReloadCnt 72.82 seconds at 58 MHz

Figure 3-1, TC Free runs; Reload Match Register upon Compare

TC Interrupt on ‘Match Compare’
&
Reset TC

Tmr ReloadCnts

0200000000~ / ///////// “:_

»

Tmr ReloadCnt

Figure 3-2, TC Free runs; Reload Match Register upon Compare

18

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

When Timer #0 issues an interrupt, the processor vectors to ARM CPU ExceptIRQHndlr ()
which then calls 0S_ CPU ExceptHndlr () (see bsp exception.c).

OS CPU ExceptHndlr () reads the VIC to obtain the address of the interrupting device and
then calls this function. In our case, this is Tmr TickISR_Handler () as shown in Listing 3-4.

Listing 3-4, Tmr_TickISR_Handler()

void Tmr_TickISR Handler (void)
{

TOIR = OxFF; (1)
#if BSP_DEBUG == 0

TOMRO += Tmr_ReloadCnts; (2)
#endif

OSTimeTick () ; (3)

}
L3-4(1) This code clears the interrupt source (the Timer #0 interrupt).
L3-4(2) If BSP_ DEBUG == 0, then update the match register to the next match value while

the timer continues to count toward this value. Otherwise, if BSP_ DEBUG == 1, the
timer will reset to 0 and the existing match value will remain.

L3-4(3) 0STimeTick () is called to handle the pC/OS-Il clock tick.

3.03 BSP, Interrupts

Application ISRs should be initialized as follows:

1) Write VICIntSelect and configure the local interrupt source for either IRQ or FIQ mode

2) Write corresponding vector address register with the address of the ISR handler function,
ex: VICVectAddr4 = (CPU_INT32U)(MylSRHandler), where MylSRHandler is the name of
the ISR handler function. In this case, vector 4, the timer interrupt vector is patched.
Vector numbers run from 0 to 31. Consult the documentation for a list of vector numbers
and their associated interrupt sources.

3) Write the VICIntEnable register to enable VIC interrupts for the desired interrupt source

4) Enable the local interrupt source

5) When an interrupt occurs, clear the local interrupt source within the ISR handler. The BSP
code will handle clearing the VIC interrupt by means of writing 0x00 to the VICAddress
register when the ISR handler returns.

You should note that ALL of your ISRs should be written as ‘void MyISR (void)’ functions as
shown. Refer to AN-1014 for details.

19

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Listing 3-5 VIC_Init()

void VIC_ Init (void)
{

VICIntEnClear = OxFFFFFFFF; (1)
VICAddress = 0; (2)
VICProtection = 0; (3)
VICVectAddr0 = (CPU INT32U)VIC DummyWDT; (4)
VICVectAddrl = (CPU_INT32U)VIC_DummySW;

VICVectAddr3l = (CPU_INT32U)VIC_DummyIZS ;

}

L3-5(1) Clear any pending interrupts at the VIC level.

L3-5(2) Acknowledge any pending interrupts to reset the VIC priority hardware.

L3-5(3) Disable VIC protection. Allow access in all ARM processor modes.

L3-5(4) Initialize all VIC vectors to a dummy ISR handler until modified by user software.
Uninitialized spurious interrupts will be trapped in VIC Dummy ()with variable
VIC SpuriousInt containing the interrupt vector number of the source interrupt.

Listing 3-6 OS_CPU_ExceptHndlr ()

void O0S_CPU ExceptHndlr (CPU_DATA ID) (void)
{
PENCT pfnct;

(1)

if ((ID == OS_CPU ARM EXCEPT IRQ) || (ID == OS CPU ARM EXCEPT FIQ))
pfnct = (PENCT)VICAddress; (2)

if (pfnct != (PFNCT)0) { (3)
(*pfnct) () ; (4)
VICAddress = 0; (5)

L3-6(1) Check if the interrupt is due to an IRQ or FIQ exception.
L3-6(2) Read the active interrupt source vector number from the VIC.
L3-6(3) Ensure that the function pointer is not NULL.

L3-6(4) Call the user ISR handler function.

L3-6(5) Acknowledge the VIC interrupt and update the VIC priority hardware.

20

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

4.00 pC/0S-View

The application code described in this application note allows you to connect a Windows-based
PC to your target and display run-time information about your target in a Window as shown in

Figure 4-1. This is done via an add-on module called pC/0OS-View.

= PC/0S-Yiew ¥3.12 o]
Setup Trace ‘Window 7

st 1 _ =10l
Prig I d I Name | Status I Data Timeout i Stacki CPULoad ' ContextSwitches
1 4000854 Start Task DELAY 1 192 [1200 @ 40000728 0.23% 11359
G 40006474 uCfOS-11 Trr Sern 40005374 132 | 512 @ 40007244 0.04%, 1385
& 400065FC Met IF Rux Task. Sem 40005425 540 f 1024 @ 40003FFC 0.00% 5061
10 40006544 Iet Timer Task. DELAY z 156 f 1200 @ 400036FC 0.01% 1364
62 4000649 uCfOS-I1 Stat DELAY & 143 | 512 @ 40006125 0.50% 1404
63 40005444 uCfO5-11 Idle Ready 100 512 @ 40006334 99.19% 16421

sl =10 =[] §
lame Walue |
05 VERSTON 2.83
CPU MKP LPCZ375 {45 MHz)
#Ticks 13839
#Tasks [
Current O5_TCE 40006444
Ink Stack nfa

= Terminal

Ready Bytest 74378 f 336944 Packets) 6199 [6197 138400 baud on COM 1 ;
| 4

Figure 4-1, pC/OS-View Windows’ ‘Viewer’

If you purchased pC/0OS-View from Micrium, you can ‘enable’ it by adding the pC/OS-View
files to the build and setting the os_view mopuLre variable defined in os_cfg.hto 1.

pC/OS-View is a combination of a Microsoft Windows application program and code that
resides in your target system (in this case, the LPC2378 Evaluation Board). The Windows
application connects with your system via an RS-232C serial port (we used UART1 of the
LPC2378). The Windows application allows you to 'View' the status of your tasks which are

managed by pC/OS-Il.
pC/0S-View allows you to view the following information from a pC/0S-1l based product:

e The address of the TCB of each task (up to 253 tasks);

e The name of each task (up to 253 tasks);

e The status (e.g., ready, delayed, waiting on event) of each task;

e The number of ticks remaining for a timeout or if a task is delayed;

21

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

e The amount of stack space used and left for each task;

¢ The percentage of CPU time each task relative to all the tasks;
e The number of times each task has been 'switched-in'; and

e The execution profile of each task.

pC/0OS-View also allows you to send commands to your target and allow your target to reply
back and display information in a 'terminal window'.

pC/OS-View is licensed on a per-developer basis. In other words, you are allowed to install pC/OS-
View on multiple PCs as long as the PC is used by the same developer. If multiple developers are

using pC/OS-View then each needs to obtain their own copy. Contact Micrium for pricing
information.

5.00 Board Support Package, net_bsp.c

The source code located within net bsp.c is mainly responsible for configuring the hardware
pins connecting the LPC2378 and the on board National DP83848 PHY. However, as you will see,
other small utility functions are provided as well.

Listing 5-1, NetBSP_Phy_HW._Init()
void NetBSP Phy HW Init (void)
{

#if EMAC CFG RMII (1)
PINSEL2 = 0x50151105;
PINSEL3 = 0x00000005;
felse
PINSEL2 = 0x55555555;
PINSEL3 = 0x00000005;
#endif
}
L5-1(1) If EMAC CFG RMII in net bsp h is defined greater than 1, then the PHY will
operate in RMIl mode, otherwise if defined to 0, additional I/O pins will be configured
for MIl mode.

Note: The LPC2378 only supports RMII mode. However, this configuration option has
been included in order to provide support for future LPC23xx derivatives that support
MIl. Users should configure EMAC CFG RMII to 1 at all times while using the
LPC2378.

22

Micripm
pC/0S-11 and pC/TCP-IP for the NXP LPC2378
Listing 5-2, NetBSP_DIyMs()

void NetBSP NIC PhyRdWrDly (CPU INT32U ms)
{

OSTimeDlyHMSM (0, 0, 0, ms); (1)
}
NetBSP DlyMs () is called by NetNIC PhyRegRd(), NetNIC PhyRegWr (),
EMAC Init(), NetNIC PhyInit(),and NetNIC PhyAutoNeg () every time a PHY

register needs to be read or written. This function creates a delay of ms such that there is enough
time for the register reads and writes to complete. The calling function uses this as way of
determining whether a read or write failed due to a timeout. This is a user specified function which
must be implemented. In this case, we use the built in 0STimeD1yHMSM () function of pC/OS-II,
however, a delay created by any means is acceptable.

Listing 5-3, Time Stamp Functions

NET TS NetUtil TS Get (void);
void NetTCP_InitTxSegNbr (void) ;
NET TCP_TX RTT TS MS NetTCP_TxRTT GetTS (void);
NET TCP_TX RTT TS _MS NetTCP_TxConnRTT GetTS ms (void);

The above functions are used for initializing pC/TCP-IP sequence numbers and time stamps.

They are also used for getting time stamp values that are used within various pC/TCP-IP
services. These functions are user defined and must be implemented in net bsp.c. For a full
explanation of the above functions, please see the pC/TCP-IP manual.

5.01 Board Support Package, net_bsp.h

The purpose of net bsp.h is to provide hardware API function prototypes for use with uC/TCP-
IP and the associated network interface drivers. In addition to function prototypes, it is not
uncommon for net bsp.h to contain configuration parameters necessary for proper setup of
the integrated EMAC and the attached PHY. For the LPC2378, configuration options for the MAC
address, PHY operating mode (RMII versus MIl), PHY address, and EMAC descriptor setup are
accessible from within this file. Listing 5-1 describes one correct configuration of these constants,
however, many application specific variations exist.

Listing 5-4, Net_BSP Configuration Constants

#define EMAC CFG MAC ADDR SEL EMAC CFG MAC ADDR SEL CFG (1)
#define EMAC_CFG_RMII 1 (2)
#define PHY ADDR 0x01 (3)
#define EMAC RX BUF SIZE 256 (4)
#define EMAC NUM RX DESC 36 (5)
#define EMAC NUM TX DESC 4 (6)

L5-4(1) Since the LPC2378 EMAC does not support the automatic loading of the Ethernet
MAC address from an external EEPROM, the constant EMAC_CFG_MAC_ADDR_SEL
must always be configured to EMAC_CFG_MAC_ADDR_SEL CFG. If an EEPROM is
to be used for setting the MAC address, then software must read the MAC address
from the EEPROM and fill the contents of the NetIF MAC Addr([] array before
calling Net Init () within app.c.

23

L5-4(2)

L5-4(3)

L5-4(4)

L5-4(5)

L5-4(6)

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

The constant EMAC CFG RMII is used to configure the MIl operating mode for the
attached PHY. Note: The LPC2378 does not support MIl and this constant must be
configured to 1.

The constant PHY ADDR is used to set the PHY bus address. Consult your PHY
documentation and hardware schematics for the correct setting. Since the MCB2300
EVB grounds all but bit 0 of the PHY address pins, the address latched by the
National DP83848 PHY after reset is 0x01.

The constant EMAC RX BUF SIZE is used to determine the size of the receive
buffers used by the EMAC DMA for the reception of Ethernet frames. This constant
may take on any value between 64 and 1536 bytes. Too small or too large of a buffer
size may negatively impact performance. Therefore the recommended buffer size is
256 bytes since the constant NET BUF CFG_DATA SIZE SMALL located within
net cfg.h has been configured to 256 bytes. Please see the description for

EMAC NUM RX DESC and the pC/TCP-IP manuals explanation of buffer sizes
before deciding on a final value for this constant.

The constant EMAC NUM RX DESC is used to determine the number of receive
descriptors used by the EMAC while receiving Ethernet frames. Ideally, the greater
number of descriptors, the better. However, each descriptor has a corresponding
receive buffer of size EMAC RX BUF SIZE associated with it. The LPC2378
dedicates 16KB of internal RAM for use with the integrated EMAC DMA functionality.
Therefore, all declared receive buffers AND descriptors must fit within the dedicated
memory space. Each descriptor, associated status words, and buffers take the
following amount of space:

(EMAC_NUM RX DESC * EMAC RX BUF SIZE) +
(EMAC NUM RX DESC * 8 bytes per descriptor) +
(EMAC NUM RX DESC * 8 bytes per status)

Please keep in mind that there must be space for the transmit descriptors, transmit
status words, and transmit buffers within the dedicated EMAC RAM as well.

The constant EMAC NUM TX DESC is used to determine the number of transmit
descriptors used by the EMAC and device firmware while transmitting Ethernet
frames. More transmit descriptors do not necessarily mean better performance since
the EMAC reads frames from memory much faster than the device firmware can
produce them. Therefore, a value of 4 is recommended. The amount of RAM
consumed by the transmit descriptors, status words and buffers is calculated as
follows:

(EMAC_NUM TX DESC * 1536 bytes per frame) +
(EMAC_NUM TX DESC * 8 bytes per descriptor) +
(EMAC NUM TX DESC * 4 bytes per status)

All transmit descriptors have an associated 1536 byte (non configurable) buffer size.
The reason for this is because pC/TCP-IP allocates its own internal buffers for
storing frame data before the driver is called upon to transmit the frame. Therefore,
the driver must be prepared to accept a 1536 byte buffer to be transmitted.

Please keep in mind that there must be space for the receive descriptors, receive
status words, and receive buffers within the dedicated EMAC RAM as well.

24

Micripm
pC/0S-11 and pC/TCP-IP for the NXP LPC2378
In order to facilitate the configuration of the above constants, configuration checking

within net nic.h prevents improper configuration of the above constants should
the allocated resources overflow their dedicated memory space.

6.00 EMAC Notes

1) Since the LPC2378 can only DMA Ethernet frames to and from the dedicated 16KB
EMAC RAM, uC/TCP-IP is unable to utilize DMA functionality for transmission and
receive DMA transfers are not currently supported. Therefore all EMAC transactions and
receptions on the LPC2378 require a full frame copy to and from the EMAC dedicated
memory space into the pC/TCP-IP buffers.

2) Limited support for the National DP83848 PHY has been provided with this example.
Future functionality may support the use of PHY interrupts in order to detect Ethernet link
state changes during run-time. Currently, the EMAC driver, net nic.c assumes that
the cable is plugged in. However, if the user application needs to learn of the current link
state, a call to NetNIC ConnStatusGet () may be performed. This function returns 0
when the link is down, otherwise 10, or 100 depending on the current link speed.

25

Micripm

pC/0S-11 and uC/TCP-IP for the NXP LPC2378

Licensing

pC/OS-Il is provided in source form for FREE evaluation, for educational use or for peaceful
research. If you plan on using pC/OS-Il in a commercial product you need to contact Micrium to
properly license its use in your product. We provide ALL the source code with this application
note for your convenience and to help you experience pC/OS-Il. The fact that the source is
provided does NOT mean that you can use it without paying a licensing fee. Please help us
continue to provide the Embedded community with the finest software available. Your honesty is
greatly appreciated.

References

HC/0OS-Il, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse

R&D Technical Books, 2002

ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse

R&D Technical Books, 2000

ISBN 0-87930-604-1

Contacts
IAR Systems CMP Books, Inc.
Century Plaza 1601 W. 23rd St., Suite 200

1065 E. Hillsdale Blvd
Foster City, CA 94404
USA

+1 650 287 4250
+1 650 287 4253 (FAX)

e-mail: Info@IAR.com
WEB : www.IAR.com

Lawrence, KS 66046-9950
USA

+1 785 841 1631
+1 785 841 2624 (FAX)

e-mail: rushorders@cmpbooks.com
WEB: http://www.cmpbooks.com

Micripm

949 Crestview Circle
Weston, FL 33327
USA

+1 954 217 2036
+1 954 217 2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com

WEB: www.Micrium.com

NXP

1110 Ringwood Court
San Jose, CA 95131
USA

+1 408 474 8142
WEB: www.nxp.com

