Micripm

Empowering Embedded Systems

uC/0S-Il
uC/Probe
uC/LCD

and the
NXP LPC2378 Processor
(Using the Keil MCB2300 Evaluation Board)

Application Note
AN-1078

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

About Micripm

Micrium provides high-quality embedded software components in the industry by way of engineer-friendly
source code, unsurpassed documentation, and customer support. The company’s world-renowned real-
time operating system, the Micrium pC/OS-I1l, features the highest-quality source code available for
today's embedded market. Micrium delivers to the embedded marketplace a full portfolio of embedded
software components that complement pC/0S-1l. A TCP/IP stack, USB stack, CAN stack, File System
(FS), Graphical User Interface (GUI), as well as many other high quality embedded components.
Micrium’s products consistently shorten time-to-market throughout all product development cycles. For
additional information on Micrium, please visit www.micrium.com.

About uC/0S-Il

pC/OS-Il is a preemptive, real-time, multitasking kernel. puC/OS-Il has been ported to over 45 different
CPU architectures.

pC/OS-Il is small yet provides all the services you'd expect from an RTOS: task management, time and
timer management, semaphore and mutex, message mailboxes and queues, event flags an much more.

You will find that pC/OS-Il delivers on all your expectations and you will be pleased by its ease of use.

Licensing

pC/OS-1l is provided in source form for FREE evaluation, for educational use or for peaceful research. If
you plan on using pC/OS-Il in a commercial product you need to contact Micrium to properly license its
use in your product. We provide ALL the source code with this application note for your convenience and
to help you experience pC/OS-Il. The fact that the source is provided DOES NOT mean that you can

use it without paying a licensing fee. Please help us continue to provide the Embedded community with
the finest software available. Your honesty is greatly appreciated.

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

About uC/Probe

pC/Probe is a Windows application that allows a user to display the value (at run-time) of virtually any

variable or memory location on a connected embedded target. The user simply populates pC/Probe’s
graphical environment with gauges, tables, graphs, and other components, and associates each of these
with a variable or memory location. Once the application is loaded onto the target, the user can begin

pC/Probe’s data collection, which will update the screen with variable values fetched from the target.
pC/Probe retrieves the values of global variables from a connected embedded target and displays the
values in a engineer-friendly format. The supported data-types are: booleans, integers, floats and ASCII
strings.

pC/Probe can have any number of ‘data screens’ where these variables are displayed. This allows to
logically group different ‘views’ into a product.

A 30-day trial version of uC/Probe is available on the Micrium website:

http://www.micrium.com/products/probe/probe.html

Micripm
OS-lI, Probe and LCD for the
NXP LPC2378 CPU

Manual Version

If you find any errors in this document, please inform us and we will make the appropriate corrections for
future releases.

Version Date By Description
V.1.00 2007/07/02 BAN | Initial version.

Software Versions

This document may or may not have been downloaded as part of an executable file, Micrium-NXP-uCOS-
II-LCD-LPC2378.exe, containing the code and projects described here. If so, then the versions of the
Micrium software modules in the table below would be included. In either case, the software port
described in this document uses the module versions in the table below

Module Version Comment
oS-I V2.85
Probe V1.30
LCD V3.00

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

Document Conventions

Numbers and Number Bases
e Hexadecimal numbers are preceded by the “Ox” prefix and displayed in a monospaced font.
Example: 0xFF886633.

e Binary numbers are followed by the suffix “b”; for longer numbers, groups of four digits are
separated with a space. These are also displayed in a monospaced font. Example: 0101 1010
0011 1100b.

e Other numbers in the document are decimal. These are displayed in the proportional font
prevailing where the number is used.

Typographical Conventions

¢ Hexadecimal and binary numbers are displayed in a monospaced font.

e Code excerpts, variable names, and function names are displayed in a monospaced font.
Functions names are always followed by empty parentheses (e.g., 0S_Start ()). Array names
are always followed by empty square brackets (e.g., BSP_Vector Arrayl[]).

e File and directory names are always displayed in an italicized serif font. Example:
/Micrium/Sofware/uCOS-I1l/Source/.

e A bold style may be layered on any of the preceding conventions—or in ordinary text—to more
strongly emphasize a particular detail.

e Any other text is displayed in a sans-serif font.

Table of Contents

1. Introduction

2. Getting Started

2.01 Setting up the Hardware

2.02 Directory Tree

2.03 Using the IAR Projects

2.03.01 Project Options

2.03.02 pC/OS-Il Kernel Awareness
2.04 Using the Keil yVision3 Project
2.04.01 Project Options

2.05 Example Applications

2.05.01 Application Information

2.05.02 Additional Application Information
3. Directories and Files

4. Application Code

4.01 app.c

4.02 os_cfg.h

5. Board Support Package (BSP)

5.01 IAR EWARM v4.4x-Specific BSP Files
5.02 IAR EWARM v5.1x-Specific BSP Files
5.03 RVMDK-Specific BSP Files

5.03 BSP, bsp.c and bsp.h

5.04 Processor Initialization Functions

6. puC/Probe

7. pC/LCD

Licensing

References

Contacts

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

10
11
11
13
15
16
18
18
19

21
25
25
28
29
29
29
29
30
31
33
36
37
37

37

Micripm
uC/OS-l, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

1. Introduction

This document, AN-1078, explains example code for using uC/OS-Il. pC/Probe and pC/LCD with the
NXP LPC2378 (ARM7TDMI-S) processor on the Keil MCB2300 evaluation board, shown in Figure 1. The
LPC2378 includes a 512-kB flash and 32-kB SRAM and operates at clock speeds as high as 72-MHz.
Peripherals for several communications busses are provided on-chip, including UARTS, I°C, I°S, SPI,
SSP, CAN, USB and Ethernet. A SD/MMC card interface, a 10-bit A/D converter, a 10-bit D/A converter,
four 32-bit general-purpose timers and up to 104 GPIOs round out the features on the chip.

The MCB2300 has two RS-232 ports, two CAN ports, one USB port (also used for power), an Ethernet
port and a 20-pin JTAG for debugging and loading the processor. The interface components include one
user push button, 8 user LEDs, a 2- x 16-character LCD, a potentiometer and a speaker.

Ethernet 2-x16-LCD SD/MMC 20-Pin JTAG
Card Holder

E LU ER LY)

USB / Power

RS-232

CAN (for uC/Probe)

[LELEEALES

User LEDs NXP LPC2378 User PB Potentiometer

Figure 1-1. Keil MCB2300 Evaluation Board

If this appnote was downloaded in a packaged executable zip file, then it should have been found in the
directory /Micrium/Appnotes/AN1xxx-RTOS/AN1078-uCOS-II-NXP-LPC2378 and the code files referred to
herein are located in the directory structure displayed in Section 2.02; these files are described in Section
3.

The executable zip also includes example workspaces for uC/Probe. puC/Probe is a Windows program
which retrieves the value of variables form a connected embedded target and displays the values in an

7

engineer-friendly format.
instructions for downloading a trial version of the program, please refer to Section 6.

Micripm

uC/OS-Il, uC/Probe and uC/LCD for the

NXP LPC2378 CPU

It interfaces with the LPC2378 via RS-232C. For more information, including

| Micripm pC/Probe - MCB2300-05-Probe-LCD-Workspace.wsp

Figure 1-3. pC/Probe (with Target Output Window)

! Fle Toalz Help
= 0%: TaskInfo [LPC2378 | RS-232 Commurication | 0 Timers | b
= ~
o -
- Task Stack Information
%é_” 2 Stack Stack Usage Stack
o Pointer [Maximum| Current | Starts @ Ends @
uC/0S-11 Idle O0x400018B0 | 104/512 68/512 Ox400018F4 | Ox400016F4
UC/OS-IT Stat Ox4000168C | 148/512 96/512 0x400016EC | Ox400014EC
@. uwC/OS-IT Tmr Ox40002588 | 140/512 10B8/512 | O0x40002624 0x40002424
i Start Task Ox40000308 || 168/1024 || 104/1024 | 0x40000440 Qx40000040
5 UC/Probe QS Ox40002A80 | 144/1024 | 112/1024 | 0x400024F0 | Ox400026F0
g_ Probe RS-232 Ox40002FB4 | 1847512 | 108/512 | Ox40003020 | Ox40002E20
éﬁ User I/F 0x400008CC | 176/1296 | 132/1296 | 0x40000950 | Ox40000440
z Keyboard Ox40000CEC | 132/1024 | 100/1024 | Ox40000D50 | Ox40000950
“ Probe Str 040001228 | 1441296 | 100/1296 | Ox4000128C | Ow40000D7C
[El Target Output
3tring Tx #00038
3tring Tx #00039
3tring Tx #00040
dtring Tx #OOO41
3tring Tx HOO0042
General Task Information S el
3tring Tx HO0044
= TasklString Tx #00045
Nama 10 |Prenty | oiate | Delay [|5tring Tx #00046
S IME_TT Tdla EEERE 21 e e = 3tring Tx #00047
Runring psAString Tx #00043
3tring Tx #00049
3tring Tx #00050
3tring Tx 00051
3tring Tx HOO005Z2
3tring Tx HOO00S53
3tring Tx HO0054

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

2. Getting Started

The following sections step through the prerequisites for using the demonstration application described in
this document, AN-1078. First, the setup of the hardware will be outlined. Second, the use and setup of
the IAR Embedded Workbench and Keil yVision3 (RVMDK) projects will be described. Thirdly, the steps
to build the projects and load the application onto the board through a JTAG will be described. Lastly,
instructions will be provided for using the example application.

2.01 Setting up the Hardware

The evaluation board is powered through the USB port, marked “USB / Power” in Figure 1-1.

As shown in Figure 2-1, the jumpers on the board should be configured for the use of the application. The
processor on the evaluation board can be programmed and debugged through the 20-pin JTAG port using
a JTAG emulator, such as a J-Link (which we used for the IAR projects) or a ULINK or ULINK2 (which we
used for the Keil yVision3 projects).

Place jumper “LED”
to enable the LEDs.

FRATEESLS
LLES LR LT

Place jumper “ADO0.0”
to enable the
potentiometer input.

Place jumper “INT0”
to enable the PB.

Figure 2-1. Evaluation Board Configuration

To use pC/Probe with the LPC2378, download and install the trial version of the program from the
Micrium website as discussed in Section 6. After programming your target with one of the included
example projects, connect a RS-232 cable between your PC and the evaluation board, configure the RS-
232 options (also covered in Section 6), and start running the program. The open data screens should
update, as shown in Figure 1-2. The LPC2378 example application is configured to use UARTO, the RS-
232C connector labeled “RS-232 for uC/Probe” in Figure 1-1.

Micripm
uC/OS-l, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

2.02 Directory Tree

If this file were downloaded as part of an executable zip file (which should have been named Micrium-
Atmel-uCOS-II-LCD-LPC2378.exe), then the code files referred to herein are located in the directory
structure shown in Figure 2-2. .

I3 Micrium

= 5 Apphotes

Licensing agreements = 3 ANLxxx-RTOS

(If pC/OS-Il is used
commercially)

) AN1014-uCOS-TT-ARM

:! AN-1014

£ AN1075-UCOS-TI-NEP-LPC2374

:! AN-1078

CMQnt.act I3 Licensing
wwv:(.)r |c:_|:_r:.com = 5 Software
pricing = [C5) EvalBoards
= 5 MR
= |2 MCB2300
=) 18R
[El[f—;‘l - IAR Example Project
) 05-probe-Lcp ————— _(With uC/Probe)
I5) 0S-view-LCD
= EEM;SKP Keil Example Project
I o5-Probe-LCD — 1 (with nC/Probe)
12 05-View-LCD
=) uC-CPU
uC/LCD = D ARM
LCD Driver D 18R
I2) Realview
= 35 uC-LCD
HC/LIB =305 uc/os-Ii
Run-Time Libraries 3 ucos-In The Real Time Kernel
) Source

I uc-LIE

pC/OS-II

I Dac —_— documentation

=) Parts o
= IS ARM — ARM7 /| ARM9
= |3 Generic pC/OS-11 port

I3) 18R

- W HC/OS-1l processor
Source

= L3 uCosyiew
= [5) Ports
=) ARM7
=[5 LPC237s
I 18R
I3 Source

Figure 2-2. Directory Structure

10

independent source
code

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

=[5 uC-Probe pC/Probe
=) Target Real-Time Monitor

= [Communication

= [0 Generic \' Target

=B0os Communication
) wCos-I1
o ||
. ?Ef; S RS-232
Communication
[uCos-II
= () Parts
= () MxP pC/Probe
3 Lpczars ———— LPC2378 Port
I5) Source
[Source
= [Plugins
|5 uCos-II

Figure 2-2. Directory Structure (continued)

2.03 Using the IAR Projects

Two IAR projects are located in the directory (marked “IAR Example Project (with uC/Probe)” in Figure 2-
3):

/Micrium/Software/EvalBoards/NXP/MCB2300/IAR/OS-Probe

The first example project, MCB2300-0S-Probe-LCD.ewp, is intended for EWARM v4.4x. To view this
example, start an instance of IAR EWARM v4.4x, and open the workspace file MCB2300-OS-Probe-
LCD.eww. To do this, select the “Open” menu command under the “File” menu, select the “Workspace...”
submenu command and select the workspace file after navigating to the project directory. The project
tree shown in Figure 2-4 should appear. (In addition, the workspace should be openable by double-
clicking on the file itself in a Windows Explorer window.)

The second example project, MCB2300-0S-Probe-LCD-v5.ewp, is intended for EWARM v5.1x. To view
this example, start an instance of IAR EWARM v5.1x, and open the workspace file MCB2300-OS-Probe-
LCD-v5.eww. To do this, select the “Open” menu command under the “File” menu, select the
“Workspace...” submenu command and select the workspace file after navigating to the project directory.
The project tree for this project will be essentially identical to the project tree for the EWARM v4.4x
project.

IAR EWARM Versions

Be certain to open the proper project for your version of EWARM. |IAR EWARM v4.4x will
NOT open a v5.1x project. And though IAR EWARM v5.1x will open a v4.4x project,
many errors will be generated upon compilation.

2.03.01 Project Options

The IAR projects are setup to compile in ARM mode. However, both could be re-configured to generate
16-bit Thumb instructions wherever possible, thereby reducing code size. This setting may be changed by

11

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

opening the project settings dialog box. To display this dialog box, choose the “Options” menu item from
the “Project” menu. The location of the configuration option within this dialog is different for EWARM
v4.4x and EWARM v5.1x; Figures 2-3 highlight this location for both toolchain versions.

|FLASH

Files e
=
=1 03 APF
— @ app.c
— [app_cfa.h
— @ includes.h
— [# o= _cfog.h
S @ proke_com cfg.h
=1 g BSP
— @ hep.o
— @ hsp.h
— [cstartup.s79
— @ iclpez3ve.h
— [LPC2378_Flash.mac
L B LPCz378_Flash.xcl
B (3 uc/ CRU
— B cpu. b
— B cpu_a.s
L — B cpu def.n
= Cauc/ LCD
- Cyos

Lafuc/os-11

L |E| led os.ce

= [0 Source

I— @ led.o

L@ icd.n
A CauC/LIE

— [# 1ib_def.
— @ lilh mem.
— @ lilh_mem.
— [@ 1ib_str.
L @ 1ib_str.

o v < S v =

MCE2300-05-FProbe-LCD

|FL&SH

Files o

B 3 uc/0s-11
l—EIDPDrt
| — @ o2 _cpu.h
| —[Bo=_cpu a.asm
| —[Bos_cpuc.c
| — @ os_dbg.c
| — m o= _dec.o
Lamsouree
— [o=_core.c
— @ os_flag.c
— m 05_tmbox.c
— [o=_mewm.c
— [o=_mutex.c
— [o= _g.c
— B o=_sem.c
— [o=_task.c
— @ oS _time.c
— [o=_tnr.c
— m ucos_ii.h
= 3 uc/ Proke
L33 Target
B L] Comranication
e o
Lafaucos-11
- @ proke com o0s.cC
- 53 Rrs-z32
=308
Lo Caucos-11
L @ probe rsiiz ...
= [Fore
— B probe rsz3ze.c
- @ prokbe rsZiic.h
- (1 Source
I— @ probe_rsz3Z.c

L [probe rs232.h
L (0] Source
— @ probe com. o
— E] probe com.h
" Pluyins
L ucos-11
— m o2 _probe.c
L Blos proke.h

X x ¥ x

¥ x X kK & X X k & ¥

MCE2300-05-Probe-LCD J

Figure 2-3. IAR EWARM Project Tree for MCB2300-0OS-Probe-LCD.ewp.

Once the connections described in Section 2.01 are made between your PC and the MCB2300 Evaluation
Board, the code can be built and loaded onto the board. To build the code, choose the “Rebuild All” menu
item from the “Project” menu. To load the code through the J-TAG debugger onto the connected
evaluation board, select the “Debug” menu item from the “Project” menu. The project is setup to use a J-

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

Link debugger; if you wish to use a different debugger, please select the appropriate DLL in the project
options dialog box (select “Debugger” in the list box).

Options for node "MCB2300-05-Probe-LCD™ | Options for node "MCB2300-05-Probe-LCD-v5" g|
Categorny: Categony: st Seliigs
General Options General Options

CJC++ Compiler Target l Dutput] Library Eonfiguration] Library options | MISRA C Lahguage Code Dptimizations] Dutput] List] F‘reprocessor] DA
Assembler Processor variant Assembler
Custom Build Cukput Converter .
Build Actions ™ Care Custam Build IV Generate interwork code
Linker Euild Actions Processor mode
Debugger ® Devics |N<PLPC2378 B Linker s

Simulator Debugoer o hme

Angel Simulator ™ Thumb

TAR. ROM-ronitor Aangel

J-LinkfJ-Trace GDE Server

LMI FTDI . IAR ROM-monitar

Macraigar v Generate interwork code ILink{)-Tracs

RDI Processor mode Endian mode Stack align LMI FTDIL

Third-Party Driver i , m = Little 5 4 hytes Macraigor

. RDI
" Thumb B 8 byt
dlitkird ae Bl Third-Party Driver
oK | Cancel | Ok | Cancel

Figure 2-4. Project Options: ARM/Thumb Selection.
EWARM v4.4x (left); EWARM v5.1x (right)

2.03.02 pC/0OS-1l Kernel Awareness

When running the IAR C-Spy debugger, the pC/OS-1l1 Kernel Awareness Plug-In can be used to provide

useful information about the status of uC/OS-1l objects and tasks. If the pC/OS-Il Kernel Awareness
Plug-In is currently enabled, then a “uC/OS-II” menu should be displayed while debugging. Otherwise, the
plug-in can be enabled. Stop the debugger (if it is currently active) and select the “Options” menu item
from the “Project” menu. Select the “Debugger” entry in the list box and then select the “Plugins” tab
pane. Find the pC/OS-Il entry in the list and select the check box beside the entry, as shown in Figure 2-
4,

When the code is reloaded onto the evaluation board, the “uC/OS-II” menu should appear. Options are
included to display lists of kernel objects such as semaphores, queues, and mailboxes, including for each
entry the state of the object. Additionally, a list of the current tasks may be displayed, including for each
task pertinent information such as used stack space, task status, and task priority, in addition to showing
the actively executing task. An example task list for this project is shown in Figure 2-5.

13

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

Options for node “MCB2300-05-Probe-LCD™

Categony: Factary Settings

General Options
CIC++ Compiler Setup] Download | Extra Options Fluging
Assembler
Zuskarm Build
Build Actions
Linker

Simulakar

Angel

TAR ROM-rnonitor

J-Link{1-Trace

Select pluging to load:

LMI FTDI D escription: PCADSH Kernel Awareness
Macraigor
RD_I) Lacatian: C:\Program Files\AR SystemshEmbedded Workbench 4.0%
Third-Party Driver
Originatar: bdicripm
Yersion; 21.0.0

ak. | Cancel |

Figure 2-5. Enabling the pC/OS-11 Kernel Awareness Plug-In (v4.4x)

Task List [

| Name | Ref | Prio | State | Dly | Waiting On | Hsg| Ctx Sw| Stk Prr | Max% | Curk | Max | Cur | Gize | dtarts [| Ends @ |
Fevboard 7 4 Dly 4 43092 40000CEC 12% 9% 124 100 1024 40000050 40000550
Start Task 3 5 Dly 10 losyz24 40000308 1% 10% 1658 104 1024 40000440 40000040
] uc/Probe 03 4 7 Dly 4 49092 40002430 13% 10% 136 112 1024 40002AF0 4000z26F0
Ozer I/F & g Mbox 5oz 1251068 400003E0 1l2% 8% 165 112z 1296 40000950 40000440
Probe Str g 9 Dly 4 24453 40001214 11% 9% 144 120 1296 400012ZsC 40000D7C
Probe R5-232 5 10 Sem 0 Probe R5-232 1 4000=FB4 25% 21% 132 108 51: 40003020 40002EZ0
y uC/05-IT Tmr 2 29 Sem 0 05-Tmr3ig 24547 4000z25B8 25% 21% 132 10§ 51z 40002624 40002424
uc/05-IT 5tat 1 30 Dly 2 24545 4000163C 23% 18% 120 95 512 400016EC 400014EC
> uC/03-I1 Idle 0 31 Ready a 1349672 400018B0 20% 13% 104 o8 512 400013F4 4000l6F4

Figure 2-6. uC/OS-Il Task List for MCB2300-0OS-Probe-LCD.ewp

14

Micripm
OS-lI, Probe and LCD for the
NXP LPC2378 CPU

2.04 Using the Keil pVision3 Project

A Keil pVision3 (RV-MDK) project file named MCB2300-0S-Probe-LCD.uV?2 is located in the directory
(marked “Keil Example Project (with pC/Probe)” in Figure 2-2)

/Micrium/Software/EvalBoards/NXP/MCB2300/IAR/OS-Probe-LCD

To view this example project, start an instance of Keil yVision3, and open the project file MCB2300-0S-
Probe-LCD.uV2. To do this, select the “Open Project..” menu command under the “Project” menu and
select the project file after navigating to the project directory. The project tree shown in Figure 2-7 should
appear. (In addition, the project should be openable by double-clicking on the file itself in a Windows
explorer window.)

Project Warkspace x Project Workspace =
=224 Flash - -9 uC-LIE -
-5 APP =T lib_def b
+- [%] app.c + - [&] ib_mem.c
2] app_cFa.h =T lib_mem.h
] includes.h +- (5] lib_str.c
s 0s_cFg.h =T lib_str.h
—-2§ BSP -5 uC-Probe/Communication
ﬁ bsp.h +-- [§T probe_com_os.c
+- [#] bsp.c +- [37 probe_rs232_ns.c
37 inits +- [T probe_rsz3zc.c

probe_rsZ3zc.h
YT probe_rs23z.c
probe_rs232.h

+| wectars.s
o inlpe237E R m
25 wC-CPU

o] cpu_def b +- [T probe_com.c
=T cpuh T probe_com.h
+] cpu_a.s —-£5 uC-ProbefPlugin
—-E5 uC-03-IfSource + %DSJrDbE.E
+- 57 05_Core.C] 05_probe.h
+- [5] os_flag.c -4 Scatter
+ os_mbim,c] LPC2378_Flash.scat
+ . os_mem.c | LPC2378_RAM.ini
+ Ds:mutex.c | LPCZ2378_RAM.scat 3
+ .) =
+ Ez_ze:n.c = - 'I-Il .{} foz @T
+- | 4] os_task.c
+- | 3] os_time.c
+- | %] os_tmr.c
—-E5 uC-0s-IfPort
= 05_cpuh
+] 05_cpu_a.asm
3T os_cpu_c.c
+] os_dbg.c
uiZ-LCD

1
++[I|]++

&) led_os.c
+] Ied.c
| led.h -

N=MERDIELETELE S

Figure 2-7. Keil yVision3 Project Tree for MCB2300-OS-Probe-LCD.uV2.

15

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

2.04.01 Project Options

Once the connections described in Section 2.01 are made between your PC and the MCB2300 evaluation
board, the code can be built and loaded onto the board. To build the code, select the “Rebuild all target
files” menu item from the “Project” menu. To load the code through a ULINK onto the connected
evaluation board, select the “Download” menu item from the “Flash” menu. Finally, the LPC2378 can
either be debugged (by choosing the “Start/Stop Debug Session” from the “Debug” menu) or allowed to
run (by resetting the board).

If you receive the error (or one similar) shown in Figure 2-8, then it is likely that the debug options have

become corrupted (or have been completely reset). Restore the settings by doing as follows (assuming
you are using a ULINK or ULINK2):

ULINK - ARM Error X

Could not stop ARM devicel
Flease check the JTAG cable,

Figure 2-8. pVision3 Error: Incorrect Debug Settings

1. Right-click on the target name, “Flash” in the Project Workspace and choose “Options for the
target ‘Flash™. Choose the “Debug” tab in the dialog box that appears, as shown in Figure 2-9.
Choose the proper debugger (probably “ULINK ARM Debugger”).

Options for Target “Flash’ E|
Device] Target] Dutput] Li$ting| User] C£C++] Asm] Linker Debug] Utilities]
" Use Simulatar Settings o e |ULINK.-’-‘«F|M Debugger = Settings
[Limit Speed o Real-Time
v Load Application at Startup [v Run to mainl) v Load Application at Startup [~ Run ta main()
Initislization File: Initialization File:
Restore Debug Seszion Settings Restore Debug Seszion Settings
[v Breakpaints [Toolbox v Breakpaint: [v Toolbos
[v watchpoints & PA v wiatchpoints
[v tdemary Dizplay v Memary Dizplay
CPU DLL: Pararneter: Driver DLL: Paramneter:
|SAF|M.DLL |-cLPC21DD |SAF|M.DLL |
Dialog DLL: Parameter: Dialog DLL: Farameter:
DaRMP.DLL -pLPCZ3rs |T.-’-‘«F|MF'.DLL |-pLPC23?8
Qk | Cancel | Defaults | Help

Figure 2-9. yVision3 Debug Options

16

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

2. Press the “Settings” button on this tab pane. A new dialog, as shown in Figure 2-12, should
appear. Match the settings as appears in Figure 2-10. It is possible that a JTAG clock speed of
100kHz may be too fast for either your target or your ULINK; consequently, if you have problems
at 100 kHz, please decrease this and try again.

3. Press OK in the settings dialog and switch to the “Utilities” tab. Select the “Use Target Driver for
Flash Programming” radio button and select “ULINK ARM Debugger” in the drop-down menu.
Press the “Settings” button. A dialog should appear, as shown in Figure 2-11. Add the
appropriate flash loader (as has already been done in Figure 2-11) by selecting the “Add” button
and choosing “LPC2000 IAP2 512kB Flash” in the list. This flash loader will then appear in the list
box in the “Flash Download Setup” dialog.

ARM Target Driver Setup E|
LILINK USE - JTAG Adapter JTAG Device Chain
Serial Mo [U007EREE - IDCODE Device Mame IR len

TDO | 0x4F1FOFOF ARM7PTDMIS Core 4

ULINK Yersion: [w210 j

oI
Device Family: |4RM
ol . . ,7
Fimnware Wersior: [w2.02 Automatic Detection

" Manual Configuration |

MaxJTAG Clock: [100kHz = | | |
Debug
Cache Options Download Ophions Mizc Dptions
¥ Cache Code [~ Werify Code Download

W Use Reset at Startuy
v Cache Memany [Download ta Flash - £

Cancel | Help

Figure 2-10. pVision3 ULINK Debugger Settings

Flash Download Setup g|

Diownload Function Rk For Algorith

Lo & hii ¥ Pragram

Fg © CmeSectos ¥ Veiy Start: [(%40000000 Size: |0x0800

" DonotErase | Reset and Fun

Programming Algorithm

Dezcription | Device Type Device Size Addrezz Range

LPC2000 [AP2 512kE Flash On-chip Flazh SO0k, 00000000H - 00OFCFFFH

Start; | Size: |
[aad || | [ok || canca || Heo |

Figure 2-11. pVision3 Flash Download Settings

17

Micripm
uC/OS-l, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

2.05 Example Applications

The example applications contain application tasks which respond to the push button and toggle the
LEDs. In addition, either can be used with the Micrium’s real-time monitor, pC/Probe, as covered in
Section 6.

2.05.01 Application Information

When the example application is started, a summary of the current uC/OS-Il state is displayed on the
LCD screen (as shown in Figure 2-12). Successive presses of INTO will progress the LCD through a
series of screens, shown in Figures 2-13 through 2-14. If the push button is pressed after Screen 4,
shown in Figure 2-15 is reached, Screen 1 will again be shown.

Screen 2 displays the version of pC/OS-Il currently running on the target and its tick timer frequency.
Screen three shows the percent CPU usage and CPU clock speed. Two cumulative measures are shown
in Screen 4: the number of ticks and the number of context switches that have occurred since uC/0S-Il
began running.

In addition, the LEDs will blink at a rate controlled by the potentiometer.

I [— —

S

Figure 2-13, Screen 2:
pC/OS-1l Version Number and Tick Rate

Figure 2-14, Screen 3: Figure 2-15, Screen 4:
CPU Usage and CPU Speed Cumulative Ticks and Context Switches

Stack Out of Range Notification

While debugging this project (or any other uC/0S-1l project), IAR may log a SVC stack
pointer out-of-range notification in the “Debug Log” window. This is actually normal
behavior and does NOT indicate an error. IAR EWARM does not understand that the
SVC stack pointer points to the stack for the current task stack.

18

Micripm
OS-lI, Probe and LCD for the
NXP LPC2378 CPU

2.05.02 Additional Application Information

The project is configured so that code is loaded into Flash and the stacks and data are loaded into RAM,
as shown in Table 2-1. The tasks that run in the example application are listed in Table 2-2.

Memory Range Size Segment(s)
0x00000000-0x0007CFFF 500 kB Code (in Flash)
0x40000000-0x40007FFF 32 kB Stacks and data (in RAM)

Table 2-1. Memory Setup

Task Name Priority | Function

AppTaskKbd () 4 Reads status of push button, passing new input to
“Keyboard” AppTaskUserIF ().

AppTaskStart

“S%I;rta'l'sask” art) 5 Initializes Probe; reads potentiometer input.
AppTaskUserIF ()

“User I/F” 7 Updates LCD.

“uC/Probe OS” 8 Updates CPU usage for Probe.
AppTaskProbeSt

ulfrl;b:SStr,,ro estr () 9 Outputs strings to the Windows Probe program.
“Probe RS-232" 10 Parses packets from Probe.

“uC/OS-Il Tmr” 29 Manages timers.

“uC/OS-Il Stat” 30 Collect stack usage statistics.

“uC/OS-Il Idle” 31 Executes when no other task is executing.

Table 2-2. Example Application Tasks

19

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

@ GPI02.10 =(A UoRT1
GPIOO.15-16A[uC/Probe }

GPI00.23 (AD0.0) - "
g LPC2378

Pot.

GPIO2.0-7
LEDs |«

22-¥Z°LOId9D
62°LOId9
LELOIdD
8Z°LOId9

<&
<
<&
<
<&
<t
<
<

>
o
>
:
-
(@)
O m
A
2

Figure 2-16. Example Application Hardware Use

20

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

3. Directories and Files

Application Notes

\Micrium\AppNotes\AN1xxx-RTOS\AN1014-uCOS-II-ARM
This directory contains AN-1014.pdf, the application note describing the ARM port for pC/OS-II,
and AN-1014-PPT.pdf, a supplement to AN-1014.pdf.

\Micrium\AppNotes\ANIxxx-RTOS\AN1078-uCOS-II-NXP-LPC2378
This directory contains this application note, AN-1078.pdf.

Licensing Information

\Micrium\Licensing
Licensing agreements are located in this directory. Any source code accompanying this appnote
is provided for evaluation purposes only. If you choose to use pC/OS-1l in a commercial product,
you must contact Micrium regarding the necessary licensing.

pC/OS-1l Files

\Micrium\Software\uCOS-II\Doc
This directory contains documentation for pC/OS-ILI.

\Micrium\Software\uCOS-II\Ports\ARM\Generic\IAR
\Micrium\Software\uCOS-I1\Ports\ARM\Generic\RealView
These directories contain the standard processor-specific files for the generic pC/0S-11 ARM port
assuming the IAR toolchain and the ARM/Keil “RealView Microprocessor Development Kit”
toolchains, respectively. These files could easily be modified to work with other toolchains (i.e.,
compiler/assembler/linker/locator/debugger); however, the modified files should be placed into a
different directory. The following files are in this directory:

os_cpu.h
0s_cpu_a.asm
0s_cpu_c.c
os_dcc.c
os_dbg.c

With this port, pC/OS-Il can be used in either ARM or Thumb mode. Thumb mode, which
drastically reduces the size of the code, was used in this example, but compiler settings may be
switched (as discussed in Section 2.30) to generate ARM-mode code without needing to change
either the port or the application code. The ARM/Thumb port is described in application note AN-
1014 which is available from the Micrium web site.

\Micrium\Software\uCOS-I1\Source
This directory contains the processor-independent source code for uC/OS-II.

pC/Probe Files

\Micrium\Software\uC-Probe\Communication\Generic\
This directory contains the pC/Probe generic communication module, the target-side code

responsible for responding to requests from the pC/Probe Windows application (including
requests over RS-232).

21

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

\Micrium\Software\uC-Probe\Communication\Generic\Source
This directory contains probe com.c and probe com.h, the source code for the generic
communication module.

\Micrium\Software\uC-Probe\Communication\Generic\OS\uCOS-II1
This directory contains probe_com_os.c, which is the pC/OS-Il port for the pC/Probe generic
communication module.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232
This directory contains the RS-232 specific code for pC/Probe generic communication module,
the target-side code responsible for responding to requests from the uC/Probe Windows
application over RS-232

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\Source
This directory contains probe rs232.c and probe_rs232.h, the source code for the generic
communication module RS-232 code.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\Ports\NXP\LPC2378
This directory contains probe_rs232c.c and probe_rs232c.h, the NXP LPC2378 port for the RS-232
communications.

\Micrium\Software\uC-Probe\Communication\Generic\Source\RS-232\0S\uCOS-11
This directory contains probe_rs232 os.c, which is the pC/OS-Il port for the pC/Probe RS-232
communication module.

pC/OS-View Files

\Micrium\Software\uCOSView\Source
This directory contains the processor-independent code for uC/0S-View:

e 0S5 view.c
e 05 view.h

\Micrium\Software\uCOSView\Ports\ARM7\LPC2378\IAR
This directory contains the LPC2378-specific port for uyC/0OS-View:

® 05 viewc.c
e o5 viewc.h

pC/LCD Files

\Micrium\Software\uC-LCD\Source
This directory contains the processor- and RTOS-independent source code for uC/LCD.

\Micrium\Software\uC-LCD\OS\uCOS-11
This directory contains the pC/OS-11 port for pC/LCD.

pC/CPU Files

\Micrium\Software\uC-CPU
This directory contains cpu_def.h, which declares #define constants for CPU alignment,
endianness, and other generic CPU properties.

22

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

\Micrium\Software\uC-CPUARM\IAR

\Micrium\Software\uC-CPU\ARM\RealView
These directories contain cpu.h and cpu_a.s. cpu.h defines the Micrium portable data types for 8-,
16-, and 32-bit signed and unsigned integers (such as CPU_ INT16U, a 16-bit unsigned integer).
These allow code to be independent of processor and compiler word size definitions. cpu_a.s
contains generic assembly code for ARM7 and ARM9 processors which is used to enable and

disable

interrupts within the operating system. This code is called from C with

OS_ENTER CRITICAL() and OS_EXIT CRITICAL().

pC/LIB Files

\Micrium\Software\uC-LIB
This directory contains lib_def.h, which provides #defines for useful constants (like DEF TRUE
and DEF_DISABLED) and macros.

\Micrium\Software\uC-LIB\Doc
This directory contains the documentation for pC/LIB.

Application Code

\Micrium\Software\EvalBoards\NXP\MCB2300\IAR\OS-Probe-LCD
This directory contains the source code for the pC/OS-Il, uC/Probe and pC/LCD example
application to be used with IAR EWARM:

app.c contains the test code for the example application including calls to the functions
that start multitasking within pC/OS-Il, register tasks with the kernel, and update the user
interface (the LCD and the LEDs). app cfg.h is a configuration file specifying stack sizes
and priorities for all user tasks and #defines for important global application constants.
includes.h is the master include file used by the application.

os_cfg.h is the pC/OS-Il configuration file.

MCB2300-0S-Probe-LCD-Workspace.wsp is an example pC/Probe workspace.
MCB2300-0S-Probe-LCD.* are the IAR EWARM v4.4x project files.
MCB2300-0S-Probe-LCD-v5.* are the IAR EWARM v5.1x project files.

\Micrium\Software\EvalBoards\NXP\MCB2300\IAR\BSP
This directory contains the Board Support Package for the MCB2300 evaluation board to be used
with IAR EWARM:

bsp.c contains the board support package functions which initialize critical processor
functions (e.g., the PLL) and provide support for peripherals such as the push button and
LCD. bsp.h contains prototypes for functions that may be called by the user.

cstartup.s79 is the IAR EWARM v4.4x startup file. This file performs critical processor
initialization (such as the initialization of task stacks), readying the platform to enter
main ().

cstartup.s is the IAR EWARM v5.1x startup file. This file performs critical processor
initialization (such as the initialization of task stacks), readying the platform to enter
main ().

LPC2378 Flash.xcl is a IAR EWARM v4.4x linker file which contains information about the
placement of data and code segments in the processor's memory map.

LPC2378 Flash.icf is a IAR EWARM v5.1x linker file which contains information about the
placement of data and code segments in the processor's memory map.

23

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

\Micrium\Software\EvalBoards\NXP\MCB2300\RVMDK\OS-Probe-LCD
This directory contains the source code for the pC/OS-Il, uC/Probe and pC/LCD example
application to be used with Keil yVision3:

app.c contains the test code for the example application including calls to the functions
that start multitasking within pC/OS-Il, register tasks with the kernel, and update the user
interface (the LCD and the LEDs). app cfg.h is a configuration file specifying stack sizes
and priorities for all user tasks and #defines for important global application constants.
includes.h is the master include file used by the application.

os_cfg.h is the pC/OS-Il configuration file.

MCB2300-0OS-LCD-Probe.uV2 is the Keil yVision3 project file.

\Micrium\Software\EvalBoards\NXP\MCB2300\RVMDK\BSP
This directory contains the Board Support Package for the MCB2300 evaluation board to be used
with Keil pVision3:

bsp.c contains the board support package functions which initialize critical processor
functions (e.g., the PLL) and provide support for peripherals such as the push button and
LCD. bsp.h contains prototypes for functions that may be called by the user.

init.s performs critical processor initialization (such as the initialization of task stacks),
readying the platform to enter main ().

vector.s defines the ARM exception vectors.

LPC2378 Flash.scat is a scatter-loading descriptor file which contains information about
the placement of data and code segments in the processor's memory map.

LPC2378 RAM.ini contains instructions that are executed prior to loading code onto the
processor.

24

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

4. Application Code

The example application described in this appnote, AN-1148, is a simple demonstration of pC/0S-1l1 and

pC/Probe for the NXP LPC2378 processor on the MCB2300 evaluation board. The basic procedure for
setting up and using each of these can be gleaned from an inspection of the application code contained in
app.c, which should serve as a beginning template for further use of these software modules. Being but a
basic demonstration of software and hardware functionality, this code will make evident the power and
convenience of pC/OS-Il “The Real-Time Kernel” used on the NXP LPC2378 processor without the
clutter or confusion of a more complex example.

4.01 app.c

Five functions of interest are located in app.c:
1. main () is the entry point for the application, as it is with most C programs. This function
initializes the operating system, creates the primary application task, AppTaskStart (), begins
multitasking, and exits.

2. BnppTaskStart (), after creating the user interface tasks, enters an infinite loop in which blinks
the LEDs at a rate determined by the potentiometer.

3. AppTaskKbd () monitors the current state of the push buttons. When the push button is
pressed, this task will post a message to AppTaskUserIF (), which will change the LCD
message.

4. AppTaskUserIF () updates the LCD.

5. AppTaskProbeStr () outputs strings to the pC/Probe Windows application via RS-232, which
will appear in the Serial Output window. For more information, see Section 6.

25

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

void main (void) /* Note 1 */
{
CPU INTO8U err;

BSP_IntDiSAll(); /* Note 2 */

0SInit(); /* Note 3 */

OSTaskCreateExt (AppTaskStart, /* Note 4 */
(void *)O0,

(0S_STK *) sAppTaskStartStk[APP TASK START STK SIZE - 1],
APP TASK START PRIO,

APP TASK START PRIO,

(OS_STK *) &AppTaskStartStk([0],

APP TASK START STK SIZE,

(void *)O0,

OS _TASK OPT STK CHK | OS TASK OPT STK CLR);

#if OS _TASK NAME SIZE > 13 /* Note 5 */
OSTaskNameSet (APP TASK START PRIO, "Start Task", &err);

#endif
Oosstart() ; /* Note 6 */

Listing 4-1, main ()

Listing 4-1, Note 1: As with most C applications, the code starts in main ().

Listing 4-1, Note 2: All interrupts are disabled to make sure the application does not get interrupted until it
is fully initialized.

Listing 4-1, Note 3: 0SInit () must be called before creating a task or any other kernel object, as must
be done with all pC/OS-Il applications.

Listing 4-1, Note 4: At least one task must be created (in this case, using 0OSTaskCreateExt () to
obtain additional information about the task). In addition, pC/OS-Il creates either one or two

internal tasks in 0SInit (). pC/OS-Il always creates an idle task, 0S_TaskIdle (), and will
create a statistic task, 0S_TaskStat () if you set 0S TASK STAT ENto 1inos_cfg.h.

Listing 4-1, Note 5: As of V2.6x, you can now name pC/OS-1l tasks (and other kernel objects) and
display task names at run-time or with a debugger. In this case, the AppTaskStart () is given
the name “Start Task”. Because C-Spy can work with the Kernel Awareness Plug-In available
from Micripm, task names can be displayed during debugging.

Listing 4-1, Note 6: Finally multitasking under uC/0S8-I1 is started by calling 0SSTart (). puC/OS-11 will

then begin executing AppTaskStart () since that is the highest-priority task created (both
OS_TaskStat () and OS_TaskIdle () having lower priorities).

26

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

static void AppTaskStart (void *p arg)
{

CPU_INTO8U i;

CPU INT16U dly;

(void)p arg;

BSP_Init(); /* Note 1 */
#if (OS_TASK STAT EN > 0)

OSStatInit(); /* Note 2 */
#endif
#if (uC_PROBE OS PLUGIN > 0)

OSProbe Init(); /* Note 3 */

OSProbe SetCallback (AppProbeCallback) ;
OSProbe SetDelay (50) ;
#endif

#if (uC PROBE COM MODULE > 0)

ProbeCom Init(); /* Note 4 */
ProbeRS232 Init (115200);
ProbeRS232 RxIntEn() ;
#endif
LED Off ()
AppUserIFMbox = OSMboxCreate ((void *)0) ; /* Note 5 */
AppTaskCreate () ;
dly = (ADC GetStatus(0) >> 6) + 10;
while (DEF_TRUE) { /* Note 6 */

/* Blink LEDs */

Listing 4-2, AppTaskStart ()

Listing 4-2, Note 1: BSP Init () initializes the Board Support Package—the 1/Os, tick interrupt, etc.
See Section 5 for details.

Listing 4-2, Note 2: OSStatInit () initializes pC/OS-II's statistic task. This only occurs if you enable
the statistic task by setting 0S TASK STAT ENto 1in os_cfg.h. The statistic task measures
overall CPU usage (expressed as a percentage) and performs stack checking for all the tasks
that have been created with 0STaskCreateExt () with the stack checking option set.

Listing 4-2, Note 3: OSProbe Init () initializes the puC/Probe plug-in for pC/OS-Il, which maintains
CPU usage statistics for each task.

Listing 4-2, Note 4: ProbeCom Init () initializes the pC/Probe generic communication module;
ProbeRS232 Init () initializes the RS-232 communication module. After these have been

initialized, the uC/Probe Windows program will be able to download data from the processor.
For more information, see Section 6.

Listing 4-2, Note 5: A mailbox provides the communication between the two application tasks,
AppTaskKbd () and AppTaskStart (). When a push button pressed, AppTaskKbd () will

27

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

send a message using AppKbdMbox to AppTaskStart () containing the ID of the push button.
AppTaskStart () will change the blinking pattern of the LEDs accordingly.

Listing 4-2, Note 6: Any task managed by pC/OS-Il must either enter an infinite loop ‘waiting’ for some
event to occur or terminate itself. This task enters an infinite loop in which the LEDs are toggled.

4.02 os cfg.h

The file os_cfg.h is used to configure pC/OS-Il and defines the maximum number of tasks that your
application can have, which services will be enabled (semaphores, mailboxes, queues, etc.), the size of
the idle and statistic task and more. In all, there are about 60 or so #define that you can set in this file.
Each entry is commented and additional information about the purpose of each #define can be found in
Jean Labrosse’s book, uC/OS-Ill, The Real-Time Kernel, 2nd Edition. os cfg.h assumes you have

pC/0OS-11 V2.83 or higher but also works with previous versions of pC/OS-Il.
e OS_APP_HOOKS_EN is set to 1 so that the cycle counters in the 0S_TCBs will be maintained.

e Task sizes for the Idle (0OS_TASK IDLE_ STK_SIZE), statistics OS_TASK_STAT_ STK SIZE) and
timer (OS_TASK_TMR STK_SIZE) task are set to 128 0S_STK elements (each is 4 bytes) and
thus each task stack is 512 bytes. If you add code to the examples make sure you account for
additional stack usage.

e O0S_DEBUG_EN is set to 1 to provide valuable information about pC/OS-Il objects to IAR’s C-Spy
through the Kernel Awareness plug-in. Setting 0S_ DEBUG EN to 0 should some code space
(though it will not save much).

e OS_LOWEST_PRIO is set to 31, allowing up to 32 total tasks.

e 0S_MAX TASKS determines the number of “application” tasks and is currently set to 16 allowing 9
more tasks to be added to the example code.

e OS_TICKS_PER SEC is setto 1000 Hz. This value can be changed as needed and the proper
tick rate will be adjusted in bsp.c if you change this value. You would typically set the tick rate
between 10 and 1000 Hz. The higher the tick rate, the more overhead pC/OS-11 will impose on
the application. However, you will have better tick granularity with a higher tick rate.

28

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

5. Board Support Package (BSP)

The Board Support Package (BSP) provides functions to encapsulate common 1/O access functions and
make porting your application code easier. Essentially, these files are the interface between the
application and the MCB2300 evaluation board. Though one file, bsp.c, contains some functions which are
intended to be called directly by the user (all of which are prototyped in bsp.%), the other files serve the
compiler (as with cstartup.s79).

5.01 IAR EWARM v4.4x-Specific BSP Files

The BSP includes two files intended specifically for use with IAR EWARM v4.4x: LPC2378 Flash.xcl and
cstartup.s79. These serve to define the memory map and initialize the processor prior to loading or
executing code. If the example application is to be used with other toolchains, the services provided by
these files must be replicated as appropriate.

Before the processor memories can be programmed, the compiler must know where code and data
should be placed. IAR requires a linker command file, such as LPC378 Flash, that provides directives to
accomplish this. With this file, the data and execution stacks are mapped to RAM while code is mapped
to flash.

In cstartup.s79 is code which will be executed prior to calling main. One important inclusion is the
specification of the exception vector table (as required for ARM cores) and the setup of various exception
stacks. After executing, this function branches to the IAR-specific 2main function, in which the processor
is further readied for entering application code.

5.02 |IAR EWARM v5.1x-Specific BSP Files

The BSP includes two files intended specifically for use with IAR EWARM v5.1x: LPC2378 Flash.icf and
cstartup.s. These files serve the same purpose as their IAR EWARM v4.4x counterparts. The linker
specification file (extension *icf for EWARM v5.1x) uses a completely different format than its
predecessor (extension *xcl/ for EWARM v4.4x), but the information is essentially identical. Except for
some minor changes to the EWARM v5.1x assembler, cstartup.s is basically identical to cstartup.s79.

5.03 RVMDK-Specific BSP Files

The BSP includes three files intended specifically for use with Keil pVision3 (RV-MDK) tools:
LPC2378 Flash.scat, init.s and vectors.s The first file serves to define the memory map of the processor,
equivalent to LPC2378 Flash.xcl for the IAR v4.4x project.

In init.s is code which will be executed prior to calling main. This does nothing more than setup the
various exception stacks. After executing, this function branches to the main function, in which the
processor is further readied for entering application code.

The ARM exception vectors are defined in vector.s.

29

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

5.03 BSP, bsp.c and bsp.h

The file bsp.c implements several global functions, each providing some important service, be that the
initialization of processor functions for pC/OS-1l to operate or the toggling of an LED. Several local
functions are defined as well to perform some atomic duty, initializing the I/O for the LED or initialize the
pC/OS-II tick timer. The discussion of the BSP will be limited to the discussion of the global functions
that might be called from user code (and may be called from the example application).

The global functions defined in bsp.c (and prototyped in bsp.h) may be roughly divided into two categories:
critical processor initialization and user interface services. Three functions constitute the former:

e BSP_Init() is called by the application code to initialize critical processor features (particularly
the pC/OS-II tick interrupt) after multitasking has started (i.e., 0S_Start () has been called).

This function should be called before any other BSP functions are used. See Listing 5-1 for more
details.

e BSP_IntDisAll() is called to disable all interrupts, thereby preventing any interrupts until the
processor is ready to handle them.

e BSP_CPU_ClkFreq() returns the clock frequency in Hz.

e BSP_CPU_PclkFreq() returns the clock frequency in Hz or a peripheral clock; an ID for the
peripheral clock (as defined in bsp.h) is accepted as the argument.

Five function provide access to user interface components:

e LED Toggle(), LED_On() and LED_Of£f () will toggle, turn on, and turn off (respectively) the
LED corresponding to the ID passed as the argument If an argument of O is provided, the
appropriate action will be performed on all LEDs. The valid IDs are 1 through 8

e PB GetStatus () takes as its argument the ID of a push button and returns DEF_TRUE if the
push button is being pressed and DEF_FALSE if the push button is not being pressed. The only
valid ID is 1.

e ADC GetStatus () takes as its argument the ID (on the IAR LPC2378-SK, 1) of a ADC and
returns the 10-bit number that, when divided by 0x3FF, is equal to the ratio of the input voltage
divided by the reference voltage.

30

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

5.04 Processor Initialization Functions

void BSP Init (void)
{

PLL Init(); /* Note 1 */
MAM Init(); /* Note 2 */
GPIO_ Init(); /* Note 3 */

)
ADC Init(); /* Note 4 */

LED Init() /* Note 5 */
VIC Init(); /* Note 6 */
Tmr TickInit(); /* Note 7 */

Listing 5-1, BSP_Init ()
Listing 5-1, Note 1: The PLL is setup to generate a 72 MHz CPU clock. All peripheral clocks are set to
half the CPU clock.
Listing 5-1, Note 2: The Memory Acceleration Module (MAM) is setup.
Listing 5-1, Note 3: The general purpose |/O ports are setup for the LED and PB.
Listing 5-1, Note 4: The ADC used for the potentiometer is initialized..
Listing 5-1, Note 5: The LED is initialized.

Listing 5-1, Note 6: The interrupt controller is initialized, including the disabling of all interrupts and the
assignment of a dummy ISR handler to each interrupt vector to catch spurious interrupts.

Listing 5-1, Note 7: The puC/OS-Il tick interrupt source is initialized.
Listings 5-2 and 5-3 give the pC/OS-Il timer tick initialization function, Tmr TickInit (), the tick ISR

handler, Tmr TickISR Handler (). These may serve as examples for initializing an interrupt and
servicing that interrupt.

31

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

static void Tmr TickInit (void)
{

CPU_INT32U pclk freq;

CPU INT32U rld cnts;

VICIntSelect &= ~(1 << VIC_ TIMERO); /* Note 1 */

VICVectAddr4 = (CPU_INT32U)Tmr_ TickISR Handler;

VICIntEnable = (1 << VIC TIMERO);

pclk freq = BSP_CPU_PclkFreq(); /* Note 2 */
rld cnts = pclk freg / OS_TICKS PER SEC;

TOTCR = (1<<1);

TOTCR = 0;

TOPC = 0;

TOMRO = rld cnts; /* Note 3 */
TOMCR = 3z

TOCCR = 07

TOEMR = 0;

TOTCR = 1z /* Note 4 */

Listing 5-2, Tmr _TickInit()

Listing 5-2, Note 1: The timer interrupt vector is set and the interrupt is enabled.

Listing 5-2, Note 2: The peripheral clock frequency is calculated, and this clock frequency and desired
tick rate—0S_TICKS PER_ SEC—are used to determine the number of clocks between interrupts.

Listing 5-2, Note 3: The timer is setup to generate a periodic interrupt and then reset to zero.

Listing 5-2, Note 4: The timer is started.

void Tmr_ TickISR Handler (void)
{
TOIR = OxFF; /* Note 1 */

OSTimeTick () ; /* Note 2 */

Listing 5-3, Tmr_TickISR Handler ()

Listing 5-3, Note 1: The interrupt is cleared.

Listing 5-3, Note 2: 0STimeTick () informs pC/OS-Il of the tick interrupt.

32

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

6. uC/Probe

pC/Probe is a Windows program which retrieves the values of global variables from a connected
embedded target and displays the values in a engineer-friendly format. To accomplish this, an ELF file,
created by the user’'s compiler and containing the names and addresses of all the global symbols on the
target, is monitored by uC/Probe. The user places components (such as gauges, labels, and charts) into

a Data Screen in a pC/Probe workspace and assigns each one of these a variable from the Symbol
Browser, which lists all symbols from the ELF file. The symbols associated with components placed on
an open Data Screen will be updated after the user presses the start button (assuming the user’'s PC is
connected to the target).

pC/Probe currently interfaces with a target processor with a RS-232. A small section of code resident on
the target receives commands from the Windows application and responds to those commands. The
commands ask for a certain number of bytes located at a certain address, for example, “Send 16 bytes

beginning at 0x0040102C".

appropriate component(s) on the screens with the new values.

57 Micripm pC/Probe - MCB2300-05-Probe-LCD-Workspace.wsp

The Windows application, upon receiving the response, updates the

i File Tools Help

ZH), B:OOH

EA/ b

mEECEEisllooml:ol
~ 81 us-B:eeec

About

il 05 General Info

[E 05: Tazk Info

il 05: Task CPU Usage
[l 0%5: Task Stack Usage
[l 05: Everts

Start Button. Ei 05: Timers

® /05 Taskinio | LPC2378 | RS-232 Communication | 0S: Timers debi
o) [-
Task Stack Information
Stack Stack Usage Stack
Name A _
Pointer | Maximum | Current Starts @ Ends @
b4

This button ymbol Browser
switches _j appic
between Design |1 bspc

and Run-Time | -] lde
Views. During] led_ose
Run-Time View | =] ®-co=¢

. | _j 0%_Cpu_C.C
(when data is Ej os_dbge
collected), this _j os_probe.c
will appear as a | -] probe_com.c
stop button (a _j probe_com_os.c

_j probe_re232.c
blue square). _j probe_rs232_os.c

=] probe_rs232cc

.Fl eady /

\

l?General Task Information

<

| O

R5-232 115200 COM1 &5 Disconnected

Data Screen.

Symbol Browser.
Contains all symbols from the
ELF files added to the
workspace.

Figure 6-1. uC/Probe Windows Program

33

Components are placed
onto the data screen and
assigned symbols during
Design View. During Run-
Time View, these
components are updated
with values of those
symbols from the target

Micripm
uC/OS-Il, uC/Probe and uC/LCD for the
NXP LPC2378 CPU

To use pC/Probe with the example project (or your application), do the following:

1. Download and Install pC/Probe. A ftrial version of uC/Probe can be downloaded from the
Micrium website at

http://www.micrium.com/products/probe/probe.html

2. Open uC/Probe. After downloading and installing this program, open the example uC/Probe

workspace for pC/OS-Il, named OS-Probe-Workspace.wsp, which should be located in your
installation directory at

/Program Files//Micrium/uC-Probe/Target/Plugins/uCOS-1I/Workspace

3. Connect Target to PC. Currently, uC/Probe can use RS-232 to retrieve information from the
target. You should connect a RS-232 cable between your target and computer.

4. Load Your ELF File. The example projects included with this application note are already
configured to output an ELF file. (If you are using your own project, please refer to Appendix A of

the pC/Probe user manual for directions for generating an ELF file with your compiler.) This file
should be in

/<Project Directory>/<Configuration Name>/exe/

where <Project Directory> is the directory in which the IAR EWARM project is located (extension
*.ewp) and <Configuration Name> is the name of the configuration in that project which was built
to generate the ELF file and which will be loaded onto the target. The ELF file will be named

<Project Name>.elf
in EWARM v4.4x and
<Project Name>.out

in EWARM v5.1x unless you specify otherwise. To load this ELF file, right-click on the symbol
browser and choose “Add Symbols”.

5. Configure the RS-232 Options. In pC/Probe, choose the “Options” menu item on the “Tools”
menu. A dialog box as shown in Figure 6-2 (left) should appear. Choose the “RS-232” radio
button. Next, select the “RS-232” item in the options tree, and choose the appropriate COM port
and baud rate. The baud rate for the projects accompanying this appnote is 115200.

6. Start Running. You should now be ready to run uC/Probe. Just press the run button (b) to
see the variables in the open data screens update. Figure 6-3 displays two screens in the uC/OS-
Il workspace which display detailed information about each task’s state.

34

Options

= Communication

Settings
; RS-232
O JLink J-Link
& R5-232
Slow Update Rate: 10 ZEC.
’ u]g] ’ Cancel]

Settings

COM Port:

Baud Rate:

COM12

|| cancel

 Micripm pC/Probe - 05-Probe-Workspace.wsp

Micripm pC/Prabe - 0S-Probe-Workspace.wsp,

i Fie Toos Help i Fle Tods Help
51 sbowt | 05:Tasks” 0S: CPU Usage = = About” DS: Tasks | 05 CPU Usage 4k x
£ A : 5
2 Task Names & Functions Task Name - Task Stack Information i
% o uC/OS-1II Idle %
m The tasks managed by pC/0S-11 1 uC/OS-11 Stat 1 Name it StAck Usnge Sk,
i : . : £) Pointer | Maxi Current | Starts @ Ends @
c are listed on the right. The first 2 uC/OS-11 Tmr o plelpl Il o 5
“ column contains the index at 3 Start Task q UC/OS-TI Tdle 0xC003A524 | 132/512 | 76/512 | 0xCOD3AS7O | OxCO03A370
which that task's TCB is stored a uC/Probe 0S Plug UC/OS-TI Stat OxCO03A2F4 | 184/512 | 128/512 | OxCO03A364 | OxCOO3A164
; : s Net Timer Task UC/OS-II Tmr: 0XCO03BSFO | 160/512 | 124/512 | OXCOO3B670 | 0xCOO3B470
B 2areslbiilFihe second = ‘Start Task 0xC0027D20° | 204/2048 | 144/2048 | 0xCOO27DIC | OxCO02758C
column contains the task name. 6 Net IF Rx Task
w = — w UC/Probe OS Plug | 0xCO03B8D4 176/512 | 100/512 | OXCOD3BYE4 | OXCOO3B764
7 5 T z Net Timer Task 0xC0037218 | 132/4096 | 124/4096 | 0xCO03727C | 0xC003627C
= 5 EINBemeTaik = Net IF Rx Task 0xCO03B200 | 504/4096 | 272/4096 | 0xCO03827C | 0xCO03727C
g T = L g TTCP 0xCOO3E9DE | 380/4096 | 124/4096 | OXCODIEAES | OxCOOIDAES
8 g = kS Touch Screen Tas | 0xCO028620 | 156/256 | 304/256 | OxCOD2869C | 0xCO02859C
i; GUI Demo Task | OxCOD2846C | 1688/2048| 0/2048 | OxCO02859C | DxCOD27D9C
i3
14
15
Task Information: CPU Usage
General Task Information
100
i Task Status Context Current
Nai 1D P
O e me "oty | state | pelay | waiting on Switches | CPU Usage
—— 0SProbe_TaskCPUUsage(0] uC/OS-11 Idie 65535 o Ready 120728 74.46%
80 el bt uC/OS-T1 Stat 65534 0 Delay — 1938 0.40%
UC/OS-T1 Tmr 65533 0 | semaphore | --—- 1994 0.02%
i ~— 0SProbe_TaskCPULUsage(2] Start Task 2] Delay 400 401 0.00%
05Probe,_ TaskCPULisagela] uC/Probe 0 Plug 4 0 Delay 25 3986 0.54%
B0 £ Net Timer Task 12 0 Delay 69 1993 0.01%
o D5Prabe_TaskCPLILsage{4] Met IF Rx Task 14 0 Semaphore | - 413 0.00%
0SProbe_TaskCPUUsage(5] FICP 0 o Delay Z 99628 0.68%:
i Touch Screen Tas 6 0 Delay 10 19929 9.60%
— 05Frobe_TaskCFULsagels] GUI Dema Task 18 o Delay 2 S 48053 12.97%
30 05Fiobe_TaskCFUUsagel7]
5 015Piobe_TaskCPULsagel8]
k — 05Probe_TaskCPULsagel3]
10
: U
02 30 40 50 60 70 80 80 100 Betiomistsorenn A
s o
Ready 213 spmbols/sec Fleady 186 symbols/sec

Figure 6-3. uC/Probe Run-Time: pC/OS-Il Task Information

Micripm
uC/OS-ll and pC/Probe for the
STMicroelectronics STM32 CPU

7. uC/LCD

PC/LCD is a software module that allows you to interface with character LCD (Liquid Crystal Display)
modules. This software package works with just about any character module based on the Hitachi
HD44780 Dot Matrix LCD Controller & Driver. The module allows you to:

Control LCD modules containing up to 80 characters;
Display ASCII characters;

Display ASCII strings;

Define up to eight symbols based on a 5x7 dot matrix; and
Display bar graphs.

36

Micripm
uC/OS-ll and pC/Probe for the
STMicroelectronics STM32 CPU

Licensing

pC/0OS-1l is provided in source form for FREE evaluation, for educational use or for peaceful research. If
you plan on using pC/OS-Il in a commercial product you need to contact Micrium to properly license its
use in your product. We provide ALL the source code with this application note for your convenience and
to help you experience pC/OS-Il. The fact that the source is provided does NOT mean that you can use it

without paying a licensing fee. Please help us continue to provide the Embedded community with the
finest software available. Your honesty is greatly appreciated.

References

MC/OS-Il, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse

R&D Technical Books, 2002

ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse

R&D Technical Books, 2000
ISBN 0-87930-604-1

Contacts

IAR Systems NXP

Century Plaza

1065 E. Hillsdale Blvd
Foster City, CA 94404
USA

+1 650 287 4250

+1 650 287 4253 (FAX)

e-mail: Info@IAR.com
WEB : http://www.IAR.com

Micripm

949 Crestview Circle
Weston, FL 33327
USA

+1 954 217 2036

+1 954 217 2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com
WEB : http://www.Micrium.com

1110 Ringwood Court
San Jose, CA 95131

+1 408 474 8142

WEB: www.nxp.com

37

