

MicriµmMicriµmMicriµmMicriµm
Empowering Embedded Systems

µC/OS-II

µC/TCP-IP

and
The NXP LPC2378 CPU

(Using the Keil MCB2300 EVB)

Application Note
AN-9078

www.Micrium.com

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 2

Table Of Contents

1.00 Introduction 3
1.01 Directories and Files 4
1.03 IAR Embedded Workbench 6

2.00 Example Code 9
2.01 Example Code, app.c 9

2.02 Example Code, os_cfg.h 12

3.00 Board Support Package (BSP) 13
3.01 IAR-Specific BSP Files 13
3.02 BSP, bsp.c and bsp.h 13

3.03 BSP, bsp_exception.c 19

4.00 µC/OS-View 21

5.00 Board Support Package, net_bsp.c 22
5.01 Board Support Package, net_bsp.h 23

6.00 EMAC Notes 25

Licensing 26
References 26
Contacts 26

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 3

1.00 Introduction

This document shows example code for using µC/OS-II and µC/TCP-IP on a NXP LPC2378

(ARM7) processor, demonstrated on an Keil MCB2300 EVB as shown in Figure 1-1. The

example is based off of Micrium AN-1014, the µC/OS-II port for ARM processors, and can be run

in either ARM or Thumb mode.

We ported µC/OS-View to this board (see Section 1.01). If you purchased µC/OS-View from

Micriµm, you can enable it by adding the µC/OS-View files to the build and setting the

OS_VIEW_MODULE variable defined in os_cfg.h to 1.

We used the IAR’s Embedded Workbench (EWARM) to demonstrate the examples, but other tool
chains can be used.

Figure 1-1, Keil MPC2300 EVB

UART1 (RS-232C)

to µC/OS-View

USB / Power

LPC2378

(512K Flash, 32K RAM)

(Running at 48 MHz)

20 pin J-Tag 10/100 Ethernet

Onboard LEDs

20 pin J-Tag

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 4

1.01 Directories and Files

The code and documentation of the port are placed in a directory structure according to

“AN-2002, µC/OS-II Directory Structure”. Specifically, the files are placed in the following

directories:

µC/OS-II:

\Micrium\Software\uCOS-II\Source

This directory contains the processor independent code for µC/OS-II. The version used

was 2.83.

\Micrium\Software\uCOS-II\Ports\ARM\Generic\IAR

This directory contains the standard processor-specific files for the generic µC/OS-II

ARM port assuming the IAR tool chain. These files could easily be modified to work with
other tool chains (i.e. compiler/assembler/linker/locator/debugger); however, you would
place the modified files in a different directory. Specifically, this directory contains the
following files:

• os_cpu.h

• os_cpu_a.asm

• os_cpu_c.c

• os_dcc.c

• os_dbg.c

os_dbg.c is included to provide additional information to Kernel Aware debuggers like

IAR’s C-Spy.

With this port, you can use µC/OS-II in either ARM or Thumb mode. Thumb mode,

which drastically reduces the size of the code, was used in this example, but compiler
settings may be switched to generate ARM-mode code without needing to change either
the port or the application code. The ARM/Thumb port is fully described in application

note AN-1014 which is available from the Micrium web site.

µC/OS-View:

\Micrium\Software\uCOSView\Source

This directory contains the processor independent code for µC/OS-View. The version

used was 1.33. This directory contains the following files:

• os_view.c

• os_view.h

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 5

\Micrium\Software\uCOSView\Ports\ARM7\LPC2378\IAR

This directory contains the LPC2378 specific port for µC/OS-View:

• os_viewc.c

• os_viewc.h

Application Code:

\Micrium\Software\EvalBoards\NXP\MCB2300\IAR\OS-View-LCD-TCPIP
This directory contains the source code for the example application, composed of the
following files:

• app.c contains the test code for the example application including the functions calls

that start µC/OS-II, register tasks with the operating system, and toggle the onboard

LEDs. µC/OS-View and µC/TCP-IP are also initialized from within this file.

app_cfg.h is a configuration file specifying stack sizes and priorities for all tasks and
#defines for important global application constants.

• includes.h is a master include file used by the application.

• os_cfg.h is the µC/OS-II configuration file.

• net_conf.h contains µC/TCP-IP configuration parameters.

• OS-View-LCD-TCPIP.* are the IAR Embedded Workbench project files.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 6

\Micrium\Software\EvalBoards\NXP\LPC2378\IAR\BSP
This directory contains the Board Support Package for the Keil MCB2300 EVB:

• bsp.c contains the board support package which initializes critical processor
functions (e.g., the PLLs) and provides support for peripherals such as the LED on
the board. bsp.h contains prototypes for functions that may be called by the user.

• net_bsp.c and net_bsp.h contain low level hardware access routines which
make up part of the LPC2378 EMAC network driver.

• LPC2378_Flash.xcl and LPC2378_Ram.xcl are IAR linker files which contain
information about the placement of data and code segments in the processor’s
memory map. The data, code, and execution stacks are all mapped to Flash and
RAM, respectively.

• LPC2378_Ram.mac contains instructions that are executed prior to loading code onto
the processor. In this case, the lower 64 bytes of RAM are remapped onto the
interrupt vector table at 0x00000000.

• cstartup.s79

\Micrium\Software\uC-CPU\ARM\IAR
This directory contains processor-specific code intended to be used with the IAR compiler
for ARM processors.

• cpu_def.h, which is located directly in \Micrium\Software\uC-CPU, declares

#define constants for CPU alignment, endianness, and other generic declarations.

• cpu.h defines the Micriµm portable data types for 8, 16, and 32-bit signed and
unsigned numbers (such as CPU_INT16U, which is a 16-bit unsigned type). These

allow code to be independent of processor and compiler word size definitions.

• cpu_a.s contains generic assembly code for ARM7 or ARM9 processors which is
used to enable and disable interrupts within the operating system. This code is called
from C with OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL().

\Micrium\Software\EvalBoards\NXP\LPC2378\Doc
This directory is the directory that contains the documentation for the Keil MCB2300
evaluation board test code.

1.03 IAR Embedded Workbench

We used the IAR Embedded Workbench (EW) V4.40a to test the example. Of course,

µC/OS-II can be used with other tools. Figure 1-3 shows the project configuration tree.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 7

Figure 1-3, IAR EW Project Configuration

The test code works either in ARM or Thumb mode. In fact, if you switch between ARM and
Thumb Processor Mode in the settings dialog box (see Figure 1-4) and rebuild the project, your
code should run just as well. By selecting ‘Thumb’ and choosing to generate ‘Interwork’ code, you
can mix ARM and Thumb code in your application.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 8

Figure 1-4, IAR EWARM Options

The IAR Embedded Workbench works with Micrium’s µC/OS-II Kernel Awareness Plug-In which

allows you to examine µC/OS-II kernel objects in tabular format when running the IAR C-Spy

debugger.

Figure 1-5 shows all the tasks created in the example. For each task, you can see where the
current stack pointer is pointing, how much stack space is being used, and other properties. The
task names (which you may assign) are also listed.

The Kernel Awareness Plug-In provides a number of other useful information about µC/OS-II

(semaphore list, mailbox list, queue list, etc.).

Figure 1-5, µC/OS-II Kernel Awareness in C-Spy, Task List

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 9

2.00 Example Code

The application code is downloaded into Flash using a J-Link J-Tag emulator (though other
emulators can be used). When the application is started, the eight onboard LEDs scroll from side
to side and blink rapidly. If an Ethernet cable is plugged in, and your network is configured for the
192.168.0.x IP address range, then you may ping the LPLC2378 EVB by typing “ping
192.168.0.60” from the command prompt without the quotation marks. You may change the target
IP address by adapting the function AppInit_TCPIP() within app.c accordingly. Micrium

offers µC/µC/µC/µC/DHCPc DHCPc DHCPc DHCPc as an add-on module if required. Figure 2-1 demonstrates the use of ‘ping’ on

a Microsoft Windows based computer.

Figure 2-1, Pinging the Target Device

2.01 Example Code, app.c

A limited set of the LPC2138 capabilities are exhibited by the application code in app.c. For

example, only one user task is created which is used for blinking the onboard LEDs and initializing

µC/TCP-IP. However a statistics task, idle task, timer task, and network task are created by the

operating system and TCP-IP stack module.

As with most C programs, we assume that the compiler startup code brings the CPU to execute
main(). That being said, if you design an embedded application running out of Flash, we expect

that you will properly initialize the CPU (clocks, power management, memory management, chip
selects, etc.) and have your code call main().

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 10

Listing 2-1, main()

void main (void) (1)
{
 CPU_INT08U err;

 BSP_IntDisAll(); (2)

 OSInit(); (3)

 OSTaskCreateExt(AppTask_Start, (4)
 (void *)0,
 (OS_STK *)&AppTask_StartStk[APP_TASK_START_STK_SIZE - 1],
 APP_TASK_START_PRIO,
 APP_TASK_START_PRIO,
 (OS_STK *)&AppTask_StartStk[0],
 APP_TASK_START_STK_SIZE,
 (void *)0,
 OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR);

#if OS_TASK_NAME_SIZE > 13 (5)
 OSTaskNameSet(APP_TASK_START_PRIO, "Start Task", &err);
#endif

 OSStart(); (6)
}

L2-1(1) As with most C applications, the code starts in main().

L2-1(2) All interrupts are disabled to make sure we will not get interrupted until the application
is fully initialized.

L2-1(3) As with all µC/OS-II applications, you need to call OSInit() before creating any

task or any other kernel objects.

L2-1(4) We then create at least one task (in this case we use OSTaskCreateExt() to

obtain additional information about your task). µC/OS-II creates either one or two

internal tasks in OSInit(). µC/OS-II always creates an idle task,

OS_TaskIdle(), and will create a statistics task, OS_TaskStat(), if you set

OS_TASK_STAT_EN to 1 in OS_CFG.

L2-1(5) As of V2.6x, you can now name µC/OS-II tasks (and other kernel objects) and

display task names at run-time or with a debugger. In this case, we name our first

task as well as the two internal µC/OS-II tasks. Because C-Spy can work with the

Kernel Awareness Plug-In available from Micrium, task names can be displayed
during debugging.

L2-1(6) Finally, µC/OS-II is started by calling OSStart(). µC/OS-II will then begin

executing AppStartTask() since that is the highest priority task created (both

OS_TaskStat() and OS_TaskIdle() have lower priorities).

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 11

Listing 2-2, AppTaskStart()

static void AppStartTask (void *p_arg)
{
 (void)p_arg;

 BSP_Init(); (1)

#if OS_TASK_STAT_EN > 0
 OSStatInit(); (2)
#endif

#if OS_VIEW_MODULE > 0
 OSView_Init(38400); (3)
 OSView_TerminalRxSetCallback(AppTerminalRx); (4)
 OSView_RxIntEn(); (5)
#endif

#ifdef uC_TCPIP_MODULE
 AppInit_TCPIP(); (6)
#endif

 LED_Off(0); (7)

 AppTaskCreate(); (8)

 while (DEF_TRUE) {
 OSTimeDlyHMSM(0, 0, 0, 100); (9)
 }
}

L2-2(1) BSP_Init() is called to initialize the Board Support Package—the I/Os, the tick

interrupt, etc. (See section 3.0 for details.)

L2-2(2) OSStatInit() is used to initialize µC/OS-II’s statistics task. This only occurs if you

enable the statistics task by setting OS_TASK_STAT_EN to 1 in OS_CFG.H. The

statistics task measures overall CPU usage (expressed as a percentage) and also,
performs stack checking for all the tasks that have been created with
OSTaskCreateExt() with the stack checking option set.

L2-2(3) OSView_Init() is called to initialize the µC/OS-View module. Here we need to

specify the baud rate of the RS-232C port connecting the µC/OS-View ‘viewer’. If

you did not purchase µC/OS-View and ‘enable’ it (as covered in Section 1.01), this

function will not be called.

L2-2(4) OSView_TerminalRxSetCallback() allows you to specify the name of a function

that will be called by µC/OS-View when characters are typed on the ‘Terminal

Window’ of the µC/OS-View viewer.

L2-2(5) OSView_RxIntEn() simply enables receive interrupts from the UART used for

µC/OS-View.

L2-2(6) If µC/TCP-IP is present, then a call to AppInit_TCPIP() is made in order to

initialize the TCP-IP stack. The constant uC_TCPIP_MODULE is defined at the top of

bsp.h and can be toggled between DEF_ENABLED and DEF_DISABLED for

debugging purposes.

L2-2(7) This BSP function turns off all the LEDs. The MCB2300 has a total of 8 onboard
LEDs which are enabled and disabled in sequence during runtime.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 12

L2-2(8) We then create additional application tasks by calling AppTaskCreate().

However, in this example, no additional tasks are necessary. You can of course
create and delete tasks from anywhere in your code, however, for organization and
convenience we have included an application hook to do so.

L2-2(9) Any task managed by µC/OS-II must either enter an infinite loop ‘waiting’ for some

event to occur or terminate itself. We decided to use the startup task to drive the
onboard LEDs. This task calls the OSTimeDlyHMSM() function in order to satisfy the

above requirement.

Listing 2-3, AppInit_TCPIP()

static void AppInit_TCPIP (void)
{

#if EMAC_CFG_MAC_ADDR_SEL == EMAC_CFG_MAC_ADDR_SEL_CFG (1)
 NetIF_MAC_Addr [0] = 0x00;
 NetIF_MAC_Addr [1] = 0x50;
 NetIF_MAC_Addr [2] = 0xC2;
 NetIF_MAC_Addr [3] = 0x25;
 NetIF_MAC_Addr [4] = 0x60;
 NetIF_MAC_Addr [5] = 0x01;
#endif

 err = Net_Init(); (2)

 ip = NetASCII_Str_to_IP("192.168.0.60", &err); (3)
 msk = NetASCII_Str_to_IP("255.255.255.0", &err);
 gateway = NetASCII_Str_to_IP("192.168.0.1", &err);

 err = NetIP_CfgAddrThisHost(ip, msk);
 err = NetIP_CfgAddrDfltGateway(gateway);
}

L2-3(1) If EMAC_CFG_MAC_ADDR_SEL is defined as EMAC_CFG_MAC_ADDR_SEL_CFG, that

is to say, the MAC address is user defined in software, then this is where the user
specifies the device MAC address. If an EEPROM is to be used for setting the MAC
address, then software must read the MAC address from the EEPROM and fill the
contents of the NetIF_MAC_Addr[] array before calling Net_Init().

L2-3(2) Net_Init()is called to initialize µC/TCP-IP stack.

L2-3(3) The user should specify an IP, Netmask, and Gateway address for µC/TCP-IP.

After converting the dotted decimal notation to 32 bit values, a call to both
NetIP_CfgAddrThisHost() and NetIP_CfgAddrDfltGateway() is made in

order to configure µC/TCP-IP to use the specified addresses.

2.02 Example Code, os_cfg.h

This file is used to configure µC/OS-II. Among the approximately 60 #defines in this file are

included variables defining the maximum number of tasks that your application can have, which
services will be enabled (semaphores, mailboxes, queues, etc.), and the size of the idle and
statistic task. Each entry is commented and additional information about the purpose of each
#define can be found in µC/OS-II, the Real-Time Kernel by Jean Labrosse. os_cfg.h

assumes you have µC/OS-II V2.83 or higher.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 13

3.00 Board Support Package (BSP)

The Board Support Package (BSP) provides functions to encapsulate common I/O access
functions and make porting your application code easier. Essentially, these files are the interface
between the application and the Keil MCB2300 EVB. Though one file, bsp.c, contains some

functions which are intended to be called directly by the user (all of which are prototyped in
bsp.h), the other files serve the compiler (as with cstartup.s79).

The BSP includes functions to

• Set and determine the LPC2378 CPU clock frequency (set to 48MHz).

• Configure the I/Os for the LPC2378 Evaluation Board.

• Provide hardware access functions for µC/LCD.

• Read the status of the onboard INT0 push button.

• Handle IRQ and FIQ ISRs.

• Sets up µC/OS-View timer functions (if µC/OS-View is enabled).

• Hande µC/OS-II’s tick timer.

• Sets up the VIC (Vectored Interrupt Controller).

• Configure the external PHY address, and LPC2378 EMAC descriptor list.

3.01 IAR-Specific BSP Files

The BSP includes two files intended specifically for use with IAR tools: flash.xcl, and

cstartup.s79. These serve to define the memory map, ARM exception stack sizes, and

initialize the processor prior to loading or executing code. If the example application is to be used
with other tool chains, the services provided by these files must be replicated as appropriate.

Before the processor memories can be programmed, the compiler must know where code and
data should be placed. To accomplish this, IAR requires a linker command file, such as
flash.xcl, that provides directives to accomplish this. In the former, all code, data, and stack

and heap segments are placed in the 32kB internal RAM between 0x40000040 and

0x40007FFF. The first 64 bytes of RAM are reserved for the exception vector table.

In cstartup.s79 is code which will be executed prior to calling main(). One important

inclusion is the specification of the exception vector table (as required for ARM cores) and the
setup of various exception stacks. After executing, this function branches to the IAR-specific
?main function, in which the processor is further readied for entering application code.

3.02 BSP, bsp.c and bsp.h

We will not be discussing every aspect of the BSP but only cover topics that require special
attention.

Please take special care to notice the macro named BSP_DEBUG at the top of bsp.c. During

normal operation this macro should be defined to 0, when debugging via the JTAG interface, it
should be set to 1. Setting the macro to 0 will cause the OS Tick timer to free run and thus provide

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 14

accurate statistics measurements for µC/OS-View. However, debugging your application with

the macro set to 0 is not possible since the LPC2378 does not disable the internal timers while in

debug mode. This causes µC/OS-II to miss the next tick interrupt. In order to recover from the

missed interrupt, the timer must wrap all the way around to the previous match value. This can
take up to several minutes depending on your operating frequency. It is therefore best to define
BSP_DEBUG to 1 when debugging, and 0 when releasing final code. A side effect to setting this

macro to 1 is that the task CPU usage counters in µC/OS-View will report the wrong values

since the timer resets to 0 after each match interrupt.

Your application code must call BSP_Init() to initialize the BSP. BSP_Init() in turn calls

other functions as needed.

Listing 3-1, BSP_Init()

void BSP_Init (void)
{
 BSP_PLL_Init(); (1)
 BSP_MAM_Init(); (2)
 BSP_IO_Init(); (3)
 VIC_Init(); (4)
 LED_Init(); (5)
 Tmr_TickInit(); (6)
}

L3-1(1) The PLL is setup. See Listing 3-2 for details.

L3-1(2) The MAM (Memory Acceleration Module) is setup. The MAM uses a bank of Flash
memory to accelerate the performance when the processor is running code from
Flash.

L3-1(3) The board I/O is initialized.

L3-1(4) VIC_Init() places ‘dummy’ vectors in the interrupt controller, allowing easier

capture of uninitialized interrupt vectors.

L3-1(5) The LED services are initialized. After this function call, your application can call
LED_On(), LED_Off(), or LED_Toggle() to turn on, turn off, or toggle, the

onboard LEDs.

L3-1(6) Timer #0, which will generate interrupts for the µC/OS-II clock tick, is initialized by

Tmr_TickInit(). See Listing 3-3 for details.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 15

Listing 3-2, BSP_PLL_Init()

static void BSP_PLL_Init (void)
{
#if OS_CRITICAL_METHOD == 3
 OS_CPU_SR cpu_sr = 0;
#endif
 CPU_INT32U m;
 CPU_INT32U n;
 CPU_INT32U cClkDiv;
 CPU_INT32U usbClkDiv;

 m = 11; (1)
 n = 0;
 cClkDiv = 5;
 usbClkDiv = 5;

 if ((PLLSTAT & (1 << 25)) > 0) { (2)
 CPU_CRITICAL_ENTER();
 PLLCON &= ~(1 << 1);
 PLLFEED = 0xAA;
 PLLFEED = 0x55;
 CPU_CRITICAL_EXIT();
 }

 CPU_CRITICAL_ENTER(); (3)
 PLLCON &= ~(1 << 0);
 PLLFEED = 0xAA;
 PLLFEED = 0x55;
 CPU_CRITICAL_EXIT();

 SCS &= ~(1 << 4); (4)
 SCS |= (1 << 5); (5)

 while ((SCS & (1 << 6)) == 0) { (6)
 ;
 }

 CLKSRCSEL = (1 << 0); (7)

 CPU_CRITICAL_ENTER(); (8)
 PLLCFG = (m << 0) | (n << 16);
 PLLFEED = 0xAA;
 PLLFEED = 0x55;
 CPU_CRITICAL_EXIT();

 CPU_CRITICAL_ENTER(); (9)
 PLLCON |= (1 << 0);
 PLLFEED = 0xAA;
 PLLFEED = 0x55;
 CPU_CRITICAL_EXIT();

 CCLKCFG = cClkDiv; (10)
 USBCLKCFG = usbClkDiv; (11)

 while ((PLLSTAT & (1 << 26)) == 0) { (12)
 ;
 }

 CPU_CRITICAL_ENTER(); (13)
 PLLCON |= (1 << 1);
 PLLFEED = 0xAA;
 PLLFEED = 0x55;
 CPU_CRITICAL_EXIT();

 while ((PLLSTAT & (1 << 25)) == 0) { (14)
 ;
 }
}

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 16

L3-2(1) The PLL is setup with a multiplier (M) = 12 and divider (N) = 1, while the CPU clock
and USB clock dividers = 6 respectively. The PLL input frequency (Fin) is defined in
bsp.h as 12MHz. The PLL output frequency, (Fcco), is calculated as Fcco = 2 * Fin *

M / N = (2 * 12 * 12 / 1) = 288MHz. This value is then divided by the CPU clock divider
to form the CPU clock frequency. Therefore, the CPU clock frequency = 288MHz / 6
= 48MHz. The same holds true for the USB clock frequency which is created by
dividing Fcco by the USB clock divider which = 288MHz / 6 = 48MHz.

 Note: For engineering samples, the value of Fcco must never exceed 288MHz.

L3-2(2) If the PLL is already connected, disconnect the PLL before changing settings.

L3-2(3) Ensure that the PLL is disabled before changing settings.

 L3-2(4) Inform the processor that the Main oscillator is between 1 and 20 MHz.

L3-2(5) Enable the Main oscillator.

L3-2(6) Wait for the Main oscillator to become ready for use.

L3-2(7) Switch to the Main oscillator. PLL Fin = 12MHz.

L3-2(8) Update the PLL block with the desired values for M and N, followed by a PLL feed
sequence.

L3-2(9) Enable the PLL, followed by a PLL feed sequence.

L3-2(10) Configure the CPU clock divider.

L3-2(11) Configure the USB clock divider.

L3-2(12) Wait for the PLL to lock.

L3-2(13) Connect the PLL, followed by a PLL feed sequence.

L3-2(14) Wait for the PLL to become connected.

Listing 3-3, Tmr_TickInit()

void Tmr_TickInit (void)
{
 CPU_INT32U cClkFrq;
 CPU_INT32U pClkFrq;

 VICIntSelect &= ~(1 << VIC_TIMER0); (1)
 VICVectAddr4 = (CPU_INT32U)Tmr_TickISR_Handler;
 VICIntEnable = (1 << VIC_TIMER0);

 cClkFrq = BSP_CPU_ClkFreq(); (2)
 PCLKSEL0 &= ~(3 << 2); (3)
 pClkFrq = cClkFrq / 4; (4)

 Tmr_ReloadCnts = pClkFrq / OS_TICKS_PER_SEC; (5)

 T0TCR = (1 << 1); (6)
 T0TCR &= ~(1 << 1); (7)

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 17

#if BSP_DEBUG == 0 (8)
 T0MR0 = T0TC + Tmr_ReloadCnts;
 T0MCR = 1;
#else (9)
 T0MR0 = Tmr_ReloadCnts;
 T0MCR = 3;
#endif
 T0CCR = 0; (10)
 T0EMR = 0; (11)
 T0TCR = 1; (12)
}

L3-3(1) This code sets up the interrupt controller to vector to Tmr_TickISR_Handler()

(see BSP.C) when Timer #0 issues an interrupt. Timer #0 is designed to use VIC

vector #4.

L3-3(2) We determine the peripheral clock frequency by calling BSP_CPU_ClkFreq(). The

value returned is in Hertz.

L3-3(3) The timer peripheral clock divider is configured to 4. This means that the timer
operates at a frequency of CPU Clock / 4;

L3-3(4) Calculate the peripheral clock frequency for timer 4, knowing the divider was
previously set to 4.

L3-3(5) Determine the number of timer increments necessary in order to sustain
OS_TICKS_PER_SEC.

L3-3(6) Reset and clear the timer counter register.

 L3-3(7) Release the reset bit.

L3-3(8) When not in BSP debug mode, configure the timer to free-run

L3-3(9) When in BSP debug mode, configure the timer to reset to 0 after a successful match.

L3-3(10) Capture is disabled.

L3-3(11) No external match enabled.

L3-3(12) Enable the timer.

We can setup the timer in one of two ways, see L3-3(8) and L3-3(9):

1. As shown in Figure 3-1, TC free runs from 0x00000000 to 0xFFFFFFFF. An interrupt is

generated upon compare of Timer #0’s TC register and the match register MR0, and the

match register is reloaded for the next TC match. If we needed to use a timer for both

µC/OS-View and µC/OS-II’s tick interrupt, we could use this method. However, this

setup has one major drawback: if the processor were stopped for debugging purposes,
timer interrupts would not occur until the TC once again matches the value of the match

register. In other words, under worst case conditions, it could take several minutes for
tick interrupts to resume.

2. In Figure 3-2, the TC is reset upon compare with the match register. The tick interrupt is

generated by a timer configured in this manner.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 18

Figure 3-1, TC Free runs; Reload Match Register upon Compare

Figure 3-2, TC Free runs; Reload Match Register upon Compare

Tmr_ReloadCnts

0x00000000

TC

Tmr_ReloadCnt

Interrupt on ‘Match Compare’

&

Reset TC

0xFFFFFFFF

0x00000000

TC

Tmr_ReloadCnt

s

Interrupt on ‘Match Compare’

72.82 seconds at 58 MHz

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 19

When Timer #0 issues an interrupt, the processor vectors to ARM_CPU_ExceptIRQHndlr()

which then calls OS_CPU_ExceptHndlr() (see bsp_exception.c).

OS_CPU_ExceptHndlr() reads the VIC to obtain the address of the interrupting device and

then calls this function. In our case, this is Tmr_TickISR_Handler() as shown in Listing 3-4.

Listing 3-4, Tmr_TickISR_Handler()

void Tmr_TickISR_Handler (void)
{
 T0IR = 0xFF; (1)

#if BSP_DEBUG == 0
 T0MR0 += Tmr_ReloadCnts; (2)
#endif

 OSTimeTick(); (3)
}

L3-4(1) This code clears the interrupt source (the Timer #0 interrupt).

L3-4(2) If BSP_DEBUG == 0, then update the match register to the next match value while

the timer continues to count toward this value. Otherwise, if BSP_DEBUG == 1, the

timer will reset to 0 and the existing match value will remain.

L3-4(3) OSTimeTick() is called to handle the µC/OS-II clock tick.

3.03 BSP, Interrupts

Application ISRs should be initialized as follows:

1) Write VICIntSelect and configure the local interrupt source for either IRQ or FIQ mode

2) Write corresponding vector address register with the address of the ISR handler function,
ex: VICVectAddr4 = (CPU_INT32U)(MyISRHandler), where MyISRHandler is the name of
the ISR handler function. In this case, vector 4, the timer interrupt vector is patched.
Vector numbers run from 0 to 31. Consult the documentation for a list of vector numbers
and their associated interrupt sources.

3) Write the VICIntEnable register to enable VIC interrupts for the desired interrupt source

4) Enable the local interrupt source

5) When an interrupt occurs, clear the local interrupt source within the ISR handler. The BSP
code will handle clearing the VIC interrupt by means of writing 0x00 to the VICAddress
register when the ISR handler returns.

You should note that ALL of your ISRs should be written as ‘void MyISR(void)’ functions as

shown. Refer to AN-1014 for details.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 20

Listing 3-5 VIC_Init()

void VIC_Init (void)
{
 VICIntEnClear = 0xFFFFFFFF; (1)
 VICAddress = 0; (2)
 VICProtection = 0; (3)

 VICVectAddr0 = (CPU_INT32U)VIC_DummyWDT; (4)
 VICVectAddr1 = (CPU_INT32U)VIC_DummySW;
 …
 VICVectAddr31 = (CPU_INT32U)VIC_DummyI2S ;
}

L3-5(1) Clear any pending interrupts at the VIC level.

L3-5(2) Acknowledge any pending interrupts to reset the VIC priority hardware.

L3-5(3) Disable VIC protection. Allow access in all ARM processor modes.

L3-5(4) Initialize all VIC vectors to a dummy ISR handler until modified by user software.
Uninitialized spurious interrupts will be trapped in VIC_Dummy()with variable

VIC_SpuriousInt containing the interrupt vector number of the source interrupt.

Listing 3-6 OS_CPU_ExceptHndlr()

void OS_CPU_ExceptHndlr (CPU_DATA ID) (void)
{
 PFNCT pfnct;

 (1)
 if ((ID == OS_CPU_ARM_EXCEPT_IRQ) || (ID == OS_CPU_ARM_EXCEPT_FIQ)) {
 pfnct = (PFNCT)VICAddress; (2)
 if (pfnct != (PFNCT)0) { (3)
 (*pfnct)(); (4)

 VICAddress = 0; (5)
 }
 }
}

L3-6(1) Check if the interrupt is due to an IRQ or FIQ exception.

L3-6(2) Read the active interrupt source vector number from the VIC.

L3-6(3) Ensure that the function pointer is not NULL.

L3-6(4) Call the user ISR handler function.

L3-6(5) Acknowledge the VIC interrupt and update the VIC priority hardware.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 21

4.00 µC/OS-View

The application code described in this application note allows you to connect a Windows-based
PC to your target and display run-time information about your target in a Window as shown in

Figure 4-1. This is done via an add-on module called µC/OS-View.

Figure 4-1, µC/OS-View Windows’ ‘Viewer’

If you purchased µC/OS-View from Micriµm, you can ‘enable’ it by adding the µC/OS-View

files to the build and setting the OS_VIEW_MODULE variable defined in os_cfg.h to 1.

µC/OS-View is a combination of a Microsoft Windows application program and code that

resides in your target system (in this case, the LPC2378 Evaluation Board). The Windows
application connects with your system via an RS-232C serial port (we used UART1 of the

LPC2378). The Windows application allows you to 'View' the status of your tasks which are

managed by µC/OS-II.

µC/OS-View allows you to view the following information from a µC/OS-II based product:

• The address of the TCB of each task (up to 253 tasks);

• The name of each task (up to 253 tasks);

• The status (e.g., ready, delayed, waiting on event) of each task;

• The number of ticks remaining for a timeout or if a task is delayed;

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 22

• The amount of stack space used and left for each task;

• The percentage of CPU time each task relative to all the tasks;

• The number of times each task has been 'switched-in'; and

• The execution profile of each task.

µC/OS-View also allows you to send commands to your target and allow your target to reply

back and display information in a 'terminal window'.

µC/OS-View is licensed on a per-developer basis. In other words, you are allowed to install µC/OS-

View on multiple PCs as long as the PC is used by the same developer. If multiple developers are

using µC/OS-View then each needs to obtain their own copy. Contact Micriµm for pricing

information.

5.00 Board Support Package, net_bsp.c

The source code located within net_bsp.c is mainly responsible for configuring the hardware

pins connecting the LPC2378 and the on board National DP83848 PHY. However, as you will see,
other small utility functions are provided as well.

Listing 5-1, NetBSP_Phy_HW_Init()
void NetBSP_Phy_HW_Init (void)
{
#if EMAC_CFG_RMII (1)
 PINSEL2 = 0x50151105;
 PINSEL3 = 0x00000005;
#else
 PINSEL2 = 0x55555555;
 PINSEL3 = 0x00000005;
#endif

}

L5-1(1) If EMAC_CFG_RMII in net_bsp_h is defined greater than 1, then the PHY will

operate in RMII mode, otherwise if defined to 0, additional I/O pins will be configured
for MII mode.

 Note: The LPC2378 only supports RMII mode. However, this configuration option has
been included in order to provide support for future LPC23xx derivatives that support
MII. Users should configure EMAC_CFG_RMII to 1 at all times while using the

LPC2378.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 23

Listing 5-2, NetBSP_DlyMs()
void NetBSP_NIC_PhyRdWrDly (CPU_INT32U ms)
{
 OSTimeDlyHMSM(0, 0, 0, ms); (1)
}

NetBSP_DlyMs() is called by NetNIC_PhyRegRd(), NetNIC_PhyRegWr(),

EMAC_Init(), NetNIC_PhyInit(),and NetNIC_PhyAutoNeg() every time a PHY

register needs to be read or written. This function creates a delay of ms such that there is enough

time for the register reads and writes to complete. The calling function uses this as way of
determining whether a read or write failed due to a timeout. This is a user specified function which

must be implemented. In this case, we use the built in OSTimeDlyHMSM() function of µC/OS-II,

however, a delay created by any means is acceptable.

Listing 5-3, Time Stamp Functions

NET_TS NetUtil_TS_Get (void);
void NetTCP_InitTxSeqNbr (void);
NET_TCP_TX_RTT_TS_MS NetTCP_TxRTT_GetTS (void);
NET_TCP_TX_RTT_TS_MS NetTCP_TxConnRTT_GetTS_ms (void);

The above functions are used for initializing µC/TCP-IP sequence numbers and time stamps.

They are also used for getting time stamp values that are used within various µC/TCP-IP

services. These functions are user defined and must be implemented in net_bsp.c. For a full

explanation of the above functions, please see the µC/TCP-IP manual.

5.01 Board Support Package, net_bsp.h

The purpose of net_bsp.h is to provide hardware API function prototypes for use with µC/TCP-

IP and the associated network interface drivers. In addition to function prototypes, it is not

uncommon for net_bsp.h to contain configuration parameters necessary for proper setup of

the integrated EMAC and the attached PHY. For the LPC2378, configuration options for the MAC
address, PHY operating mode (RMII versus MII), PHY address, and EMAC descriptor setup are
accessible from within this file. Listing 5-1 describes one correct configuration of these constants,
however, many application specific variations exist.

Listing 5-4, Net_BSP Configuration Constants

#define EMAC_CFG_MAC_ADDR_SEL EMAC_CFG_MAC_ADDR_SEL_CFG (1)
#define EMAC_CFG_RMII 1 (2)
#define PHY_ADDR 0x01 (3)

#define EMAC_RX_BUF_SIZE 256 (4)
#define EMAC_NUM_RX_DESC 36 (5)
#define EMAC_NUM_TX_DESC 4 (6)

L5-4(1) Since the LPC2378 EMAC does not support the automatic loading of the Ethernet
MAC address from an external EEPROM, the constant EMAC_CFG_MAC_ADDR_SEL

must always be configured to EMAC_CFG_MAC_ADDR_SEL_CFG. If an EEPROM is

to be used for setting the MAC address, then software must read the MAC address
from the EEPROM and fill the contents of the NetIF_MAC_Addr[] array before

calling Net_Init() within app.c.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 24

L5-4(2) The constant EMAC_CFG_RMII is used to configure the MII operating mode for the

attached PHY. Note: The LPC2378 does not support MII and this constant must be
configured to 1.

L5-4(3) The constant PHY_ADDR is used to set the PHY bus address. Consult your PHY

documentation and hardware schematics for the correct setting. Since the MCB2300
EVB grounds all but bit 0 of the PHY address pins, the address latched by the
National DP83848 PHY after reset is 0x01.

L5-4(4) The constant EMAC_RX_BUF_SIZE is used to determine the size of the receive

buffers used by the EMAC DMA for the reception of Ethernet frames. This constant
may take on any value between 64 and 1536 bytes. Too small or too large of a buffer
size may negatively impact performance. Therefore the recommended buffer size is
256 bytes since the constant NET_BUF_CFG_DATA_SIZE_SMALL located within

net_cfg.h has been configured to 256 bytes. Please see the description for

EMAC_NUM_RX_DESC and the µC/TCP-IP manuals explanation of buffer sizes

before deciding on a final value for this constant.

L5-4(5) The constant EMAC_NUM_RX_DESC is used to determine the number of receive

descriptors used by the EMAC while receiving Ethernet frames. Ideally, the greater
number of descriptors, the better. However, each descriptor has a corresponding
receive buffer of size EMAC_RX_BUF_SIZE associated with it. The LPC2378

dedicates 16KB of internal RAM for use with the integrated EMAC DMA functionality.
Therefore, all declared receive buffers AND descriptors must fit within the dedicated
memory space. Each descriptor, associated status words, and buffers take the
following amount of space:

 (EMAC_NUM_RX_DESC * EMAC_RX_BUF_SIZE) +
 (EMAC_NUM_RX_DESC * 8 bytes per descriptor) +
 (EMAC_NUM_RX_DESC * 8 bytes per status)

 Please keep in mind that there must be space for the transmit descriptors, transmit
status words, and transmit buffers within the dedicated EMAC RAM as well.

L5-4(6) The constant EMAC_NUM_TX_DESC is used to determine the number of transmit

descriptors used by the EMAC and device firmware while transmitting Ethernet
frames. More transmit descriptors do not necessarily mean better performance since
the EMAC reads frames from memory much faster than the device firmware can
produce them. Therefore, a value of 4 is recommended. The amount of RAM
consumed by the transmit descriptors, status words and buffers is calculated as
follows:

 (EMAC_NUM_TX_DESC * 1536 bytes per frame) +
 (EMAC_NUM_TX_DESC * 8 bytes per descriptor) +
 (EMAC_NUM_TX_DESC * 4 bytes per status)

 All transmit descriptors have an associated 1536 byte (non configurable) buffer size.

The reason for this is because µC/TCP-IP allocates its own internal buffers for

storing frame data before the driver is called upon to transmit the frame. Therefore,
the driver must be prepared to accept a 1536 byte buffer to be transmitted.

 Please keep in mind that there must be space for the receive descriptors, receive

status words, and receive buffers within the dedicated EMAC RAM as well.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 25

 In order to facilitate the configuration of the above constants, configuration checking
within net_nic.h prevents improper configuration of the above constants should

the allocated resources overflow their dedicated memory space.

6.00 EMAC Notes

1) Since the LPC2378 can only DMA Ethernet frames to and from the dedicated 16KB

EMAC RAM, µC/TCP-IP is unable to utilize DMA functionality for transmission and

receive DMA transfers are not currently supported. Therefore all EMAC transactions and
receptions on the LPC2378 require a full frame copy to and from the EMAC dedicated

memory space into the µC/TCP-IP buffers.

2) Limited support for the National DP83848 PHY has been provided with this example.

Future functionality may support the use of PHY interrupts in order to detect Ethernet link
state changes during run-time. Currently, the EMAC driver, net_nic.c assumes that

the cable is plugged in. However, if the user application needs to learn of the current link
state, a call to NetNIC_ConnStatusGet() may be performed. This function returns 0

when the link is down, otherwise 10, or 100 depending on the current link speed.

 Micriµm
 µC/OS-II and µC/TCP-IP for the NXP LPC2378

 26

Licensing

µC/OS-II is provided in source form for FREE evaluation, for educational use or for peaceful

research. If you plan on using µC/OS-II in a commercial product you need to contact Micriµm to

properly license its use in your product. We provide ALL the source code with this application

note for your convenience and to help you experience µC/OS-II. The fact that the source is

provided does NOT mean that you can use it without paying a licensing fee. Please help us
continue to provide the Embedded community with the finest software available. Your honesty is
greatly appreciated.

References

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Embedded Systems Building Blocks
Jean J. Labrosse
R&D Technical Books, 2000
ISBN 0-87930-604-1

Contacts

IAR Systems
Century Plaza
1065 E. Hillsdale Blvd
Foster City, CA 94404
USA

+1 650 287 4250
+1 650 287 4253 (FAX)

e-mail: Info@IAR.com
WEB : www.IAR.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA

+1 785 841 1631
+1 785 841 2624 (FAX)

e-mail: rushorders@cmpbooks.com
WEB: http://www.cmpbooks.com

Micriµm
949 Crestview Circle
Weston, FL 33327
USA

+1 954 217 2036
+1 954 217 2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

NXP
1110 Ringwood Court
San Jose, CA 95131
USA

+1 408 474 8142

WEB: www.nxp.com

