LC/OS-11 V2.89 Reference Manual

This chapter provides a reference to uC/OS-11 services. Each of the user-accessible kernel services is presented
in alphabetical order. The following information is provided for each of the services:

» A brief description

» The function prototype

* The filename of the source code

* The #define constant needed to enable the code for the service
» A description of the arguments passed to the function

» A description of the returned value(s)

» Specific notes and warnings on using the service

» One or two examples of how to use the function

405

0S_ENTER_CRITICALQ)
0S_EXIT_CRITICALO

Chapter File Called from Code enabled by
3 OS_CPU.H Task or ISR N/A

0S_ENTER CRITICAL() and 0s_EXIT CRITICAL () are macros used to disable and enable, respectively, the
processor’s interrupts.

Arguments
none

Returned Values
none

Notes/Warnings

1. These macros must be used in pairs.

2. Ifos_CRITICAL METHOD is set to 3, your code is assumed to have allocated local storage for a variable of
type 0s_CPU_SR, which is called cpu_sr, as follows

#if OS CRITICAL METHOD == /* Allocate storage for CPU status reg. */
O0S CPU SR cpu sr;
#endif

Example

void TaskX(void *p arg)
{
#i1if OS_CRITICAL METHOD ==
0S CPU SR cpu sr = 0;
#endif

for (;;) {

OS_ENTER _CRITICAL() ; /* Disable interrupts =)
/* Access critical code =y
OS_EXIT CRITICAL(); /* Enable interrupts *x/

406

OSEventNameGet()

INT8U OSEventNameGet (OS_EVENT *pevent,
INT8U **pname,
INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.60 0S_CORE.C Task 0S_EVENT NAME EN

OSEventNameGet () allows you to obtain the name that you assigned to a semaphore, a mutex, a mailbox or a
message queue. This function is typically used by a debugger to allow associating a name to a resource.

Arguments

pevent

pname

perr

is a pointer to the event control block. pevent can point either to a semaphore, a mutex, a
mailbox or a queue. Where this function is concerned, the actual type is irrelevant. This
pointer is returned to your application when the semaphore, mutex, mailbox or queue is created
@eeOSSemCreate(),OSMutexCreate(),OSMboxCreate()andOSQCreate())

is a pointer to a pointer to the name of the semaphore, mutex, mailbox or queue.

a pointer to an error code and can be any of the following:

0S_ERR_NONE

0S_ERR EVENT TYPE

0S_ERR_PEVENT NULL

0S_ERR NAME GET ISR

Returned Values
The size of the ASCII string pointed to by pname or 0 if an error is encountered.

If pname now points to the name of the semaphore, mutex,
mailbox or queue.

You are not pointing to either a semaphore, mutex, mailbox or
message queue.

You passed a NULL pointer for pevent.

You tried calling this function from an ISR.

407

Notes/\Warnings

1. The semaphore, mutex, mailbox or message queue must be created before you can use this function and
obtain the name of the resource.

Example

INT8U *PrinterSemName;
OS_EVENT *PrinterSem;

void Task (void *p arg)
{
INT8U err;

INT8U size;

(void)p_arg;
for (;;) {

size = OSEventNameGet (PrinterSem, &PrinterSemName, é&err);

408

OSEventNameSet()

void OSEventNameSet (OS EVENT *pevent,

INT8U *pnanme,
INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.60 0S_CORE.C Task 0S_EVENT NAME EN

OSEventNameSet () allows you to assign a name to a semaphore, a mutex, a mailbox or a message queue.
This function is typically used by a debugger to allow associating a name to a resource.

Arguments

pevent

pname

perr

is a pointer to the event control block that you want to name. pevent can point either to a
semaphore, a mutex, a mailbox or a queue. Where this function is concerned, the actual type is
irrelevant. This pointer is returned to your application when the semaphore, mutex, mailbox or
queue is created (see OSSemCreate(), OSMutexCreate(), OSMboxCreate() and
0SQCreate ()).

is a pointer to the name of the semaphore, mutex, mailbox or queue.
a pointer to an error code and can be any of the following:

0S_ERR_NONE If the call was successfull.

0S_ERR _EVENT TYPE You are not pointing to either a semaphore, mutex, mailbox or
message queue.

0S_ERR_PEVENT NULL You passed a NULL pointer for pevent.

0S_ERR NAME SET ISR You called this function from an ISR.

Returned Values

none

Notes/\Warnings

1. The semaphore, mutex, mailbox or message queue must be created before you can use this function and set
the name of the resource or the event.

409

Example

410

OSEventPendMulti ()

INT16U OSEventPendMulti (OS EVENT **pevents pend,

OS_EVENT **pevents rdy,

void **pmsgs_rdy,
INT16U timeout,
INT8U *perr) ;
Chapter File Called from Code enabled by
OS_CORE.C Task only OS_EVENT MULTI EN

OSEventPendMulti () is used when a task expects to wait on multiple events. If multiple events are ready
when osEventPendMulti () is called, then all available events and messages, if any, are returned as ready to
the caller. If no events are ready, 0SEventPendMulti () suspends the current task until either an event is
ready or a user-specified timeout expires. If an event becomes ready and multiple tasks are waiting for the
event, LC/OS-I1 resumes the highest priority task waiting to run.

A pended task that has been suspended with osTasksuspend () can still receive a message from a multi-
pended mailbox or message queue or obtain a multi-pended semaphore. However, the task remains suspended
until it is resumed by calling 0STaskResume ().

Arguments

pevents pend

pevents rdy

pmsgs_rdy

timeout

is a pointer to a null-terminated array of os EVENT pointers. These event pointers are
returned to your application when the mailboxes, message queues, and semaphores are
created [see OSMboxCreate (), 0SQCreate (), and 0SSemCreate ()].

is a pointer to an array to return the available os_EVENT pointers. The size of the array must
be greater than or equal to the size of the pevents pend array, including the terminating
NULL.

is a pointer to an array to return messages from any multi-pended mailbox or message queue
events. The size of the array must be greater than or equal to the size of the pevents pend
array, excluding the terminating NULL. Since NULL messages are valid messages, this array
cannot be NuLL-terminated. Instead, every available message is returned in the pmsgs rdy
array at the same index as the ready mailbox or message queue event is returned in the
pevents_rdy array. All other pmsgs_rdy array indices are filled with NULL messages.

allows the task to resume execution if no multi-pended event is ready within the specified
number of clock ticks. A timeout value of 0 indicates that the task wants to wait forever for
any of the multi-pended events. The maximum timeout is 65,535 clock ticks. The timeout
value is not synchronized with the clock tick. The timeout count begins decrementing on the
next clock tick, which could potentially occur immediately.

411

perr is a pointer to a variable that holds an error code. 0SEventPendMulti () Sets *perr to one

of the following:

0S_ERR_NONE

OS _ERR TIMEOUT

0S_ERR_PEND ABORT

0S_ERR_EVENT TYPE

0S_ERR_PEND LOCKED

0S_ERR_PEND_ ISR

0S_ERR_PEVENT NULL

Returned Value

if any of the multi-pended events are ready; check the
pevents_rdy array for which events are available.

if no multi-pended event is ready within the specified timeout.

indicates that a multi-pended event was aborted; check the
pevents_rdy array for which events were aborted.

if pevents pend is not pointing to an array of valid mailbox,
message queue, or semaphore events.

if you called this function when the scheduler is locked.

if you call this function from an ISR and pC/OS-I1 suspends it. In
general, you should not call 0SEventPendMulti () from an ISR,
but uC/OS-11 checks for this situation anyway.

if pevents pend, pevents rdy, Of pmsgs_rdy IS a NULL pointer.

OSEventPendMulti () returns the number of multi-pended events that are ready or have been aborted, and
*perr iS Sett0 0S_ERR NONE Of OS_ERR_PEND_ ABORT, respectively. If no multi-pended event is ready within
the specified timeout period or because of any error, then the pevents_rdy and pmsgs_rdy array are returned
as NULL pointers, and *perr is set to 0S_ERR_TIMEOUT Or to the respective error.

Notes/Warnings

1. Mailbox, message queue, or semaphore events must be created before they are used.

2. You should not call 0SEventPendMulti () froman ISR.

3. You cannot multi-pend on event flags and mutexes.

412

Example

OS _EVENT *events[4]

SomeMBoxEventPt

SomeQEventPtr

SomeSemEventPtr

(OS_EVENT *)O0

events array size =
(Number event pointers + 1)

* 51 f (0S EVENT *
sizeof (0S_) OSEventPendMulti(&events[0],

&events rredyto+—

&event msgs[0],

Return all available events
followed by a terminating
OS_EVENT pointer NULL

OS EVENT *events rdy[4]

SomeQEventPtr —
(OS_EVENT *)0

Return event message (s)
- at same index into
'pmsgs rdy' array as
corresponding event
returned event returned
in 'pevents rdy' array

void *event msgs[4]

SomeQMsg —

413

Example

void EventTask (void *p arg)

{
OS EVENT *events[4];
OS_EVENT *events rdy[4];

void *event msgs[4];
INT16U timeout;
INT8U err;

(void)p_arg;

for (;7) |
events[0] = (OS_EVENT *)SomeMBoxEventPtr;
events[1] = (OS EVENT *)SomeQEventPtr;
events[2] = (OS_EVENT *)SomeSemEventPtr;
events[3] = (OS EVENT *)O0;

events nbr rdy = OSEventsPendMulti (&events[0]
&events rdy[0],

&event msgs[0],

timeout,
serr) ;
if (err == OS _ERR NONE) {
/* Code for ready or aborted event (s) */
} else {

/* Code for events not ready within timeout */

414

OSFlagAccept()

OS_FLAGS OSFlagAccept (OS_FLAG GRP *pgrp,

O0S_FLAGS flags,
INT8U wait type,
INT8U *perr) ;
Chapter File Called from Code enabled by
9 0S_FLAG.C Task and ISR 0S_FLAG_EN && OS FLAG ACCEPT EN

OSFlagAccept () allows you to check the status of a combination of bits to be either set or cleared in an event
flag group. Your application can check for any bit to be set/cleared or all bits to be set/cleared. This function
behaves exactly as osrlagpend () does, except that the caller does NOT block if the desired event flags are
not present.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see 0SFlagCreate ()].

flags is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are

specified by setting the corresponding bits in f1ags.

wait type specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared. You
can specify the following arguments:

0S_FLAG WAIT CLR ALL You check all bits in £1ags to be clear (0)
0S_FLAG WAIT CLR_ANY You check any bit in £1ags to be clear (0)
OS_FLAG WAIT SET ALL You check all bits in £1ags to be set (1)
0S_FLAG_WAIT SET ANY You check any bit in £1ags to be set (1)

You can add 0os_FLaG coONsUME if you want the event flag(s) to be consumed
by the call. For example, to wait for any flag in a group and then clear the flags
that are present, set wait type to

0S_FLAG WAIT SET ANY + OS_FLAG CONSUME

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE No error
0S_ERR _EVENT TYPE You are not pointing to an event flag group
OS_ERR FLAG WAIT TYPE You didn’t specify a proper wait_type argument.

0S_ERR FLAG_INVALID PGRP You passed a NULL pointer instead of the event flag
handle.

0S_ERR_FLAG NOT RDY The desired flags for which you are waiting are not
available.

Returned Values
The flag(s) that cause the task to be ready or, 0 if either none of the flags are ready or an error occurred.

415

Notes/\Warnings

1. The event flag group must be created before it is used.

2. This function does not block if the desired flags are not present.

IMPORTANT

The return value of OSFlagAccept () is different as of V2.70. In previous versions, OSFlagAccept ()
returned the current state of the flags and now, it returns the flag(s) that are ready, if any.

Example

#define ENGINE OIL PRES OK 0x01
#define ENGINE OIL TEMP OK 0x02
#define ENGINE START 0x04

OS_FLAG GRP *EngineStatus;

void Task (void *p arg)
{

INT8U err;

OS FLAGS value;

(void)p_ arg;
for (;;) |
value = OSFlagAccept (EngineStatus,
ENGINE OIL PRES OK + ENGINE OIL TEMP OK,
0S_FLAG WAIT SET ALL,
serr) ;
switch (err) {
case OS ERR NONE:
/* Desired flags are available */

break;

case OS ERR FLAG NOT RDY:
/* The desired flags are NOT available */

break;

416

OSFlagCreate()

OS FLAG GRP *OSFlagCreate (OS_FLAGS flags,

INT8U *perr) ;
Chapter File Called from Code enabled by
9 OS_FLAG.C Task or startup code OS_FLAG_EN

OSFlagCreate () is used to create and initialize an event flag group.

Arguments
flags contains the initial value to store in the event flag group.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the event flag group has been
created.
0S_ERR_CREATE ISR if you attempt to create an event flag group from an ISR.

0S_ERR FLAG GRP_DEPLETED if no more event flag groups are available. You need to
increase the value of 0s_ MAX FLAGS in 0S_CFG.H.

Returned Values

A pointer to the event flag group if a free event flag group is available. If no event flag group is available,
OSFlagCreate () returns a NULL pointer.

Notes/\Warnings

1. Event flag groups must be created by this function before they can be used by the other services.

Example

OS FLAG GRP *EngineStatus;

void main (void)
{
INT8U err;

OSInit () ; /* Initialize pC/0S-II */

/* Create a fla roup containing the engine’s status */
g g p g g

EngineStatus = OSFlagCreate (0x00, &err);

OSStart () ; /* Start Multitasking */

417

OSFlagDel ()

OS _FLAG GRP *0OSFlagDel (OS_FLAG GRP *pgrp,

INT8U opt,
INT8U *perr) ;
Chapter File Called from Code enabled by
9 OS_FLAG. Task O0S_FLAG ENand OS FLAG DEL EN
C

OSFlagDel () is used to delete an event flag group. This function is dangerous to use because multiple tasks
could be relying on the presence of the event flag group. You should always use this function with great care.
Generally speaking, before you delete an event flag group, you must first delete all the tasks that access the
event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see 0SFlagCreate ()].

opt specifies whether you want to delete the event flag group only if there are no pending tasks
(os_DEL NO PEND) or whether you always want to delete the event flag group regardless of
whether tasks are pending or not (0s_DEL_aLwaYs). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:

0S_ERR_NONE if the call is successful and the event flag group has been
deleted.

0S_ERR DEL ISR if you attempt to delete an event flag group from an ISR.
0S_ERR FLAG INVALID PGRP if you passaNULL pointer in pgrp.
0S_ERR _EVENT TYPE if pgrp is not pointing to an event flag group.

0S_ERR_INVALID OPT if you do not specify one of the two options mentioned in
the opt argument.

0S_ERR_TASK WAITING if one or more task are waiting on the event flag group
and you specify 0s DEL_NO_PEND.

Returned Values

A nNuLL pointer if the event flag group is deleted or pgrp if the event flag group is not deleted. In the latter
case, you need to examine the error code to determine the reason for the error.

418

Notes/\Warnings
1. You should use this call with care because other tasks might expect the presence of the event flag group.

2. This call can potentially disable interrupts for a long time. The interrupt-disable time is directly
proportional to the number of tasks waiting on the event flag group.

Example

OS_FLAG GRP *EngineStatusFlags;

void Task (void *p arg)
{
INT8U err;
OS FLAG GRP *pgrp;

(void)p_ arg;

while (1) {

pgrp = OSFlagDel (EngineStatusFlags, OS DEL ALWAYS, &err);
if (pgrp == (OS_FLAG_GRP *)0) {
/* The event flag group was deleted */

419

OSFlagNameGet()

INT8U OSFlagNameGet (OS_FLAG GRP *pgrp,

INT8U **pname,
INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.60 0S_FLAG.C Task or ISR 0S_FLAG_NAME EN

OSFlagNameGet () allows you to obtain the nhame that you assigned to an event flag group. This function is
typically used by a debugger to allow associating a hame to a resource.

Arguments

pgrp is a pointer to the event flag group.

pname is a pointer to a pointer to the name of the event flag group.

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the call was successfull.
0S_ERR _EVENT TYPE You are not pointing to a flag group.
0S_ERR_PNAME NULL You passed a NULL pointer for pname.
0S_ERR_INVALID PGRP You passed a NULL pointer for pgrp.

Returned Values
The size of the ASCII string pointed to by pname or 0 if an error is encountered.

420

Notes/\Warnings

1. The event flag group must be created before you can use this function and obtain the name of the resource.

Example

INT8U *EngineStatusName;
OS_FLAG GRP *EngineStatusFlags;

void Task (void *p arg)
{
INT8U err;
INT8U size;

(void)p_arg;
for (;;) {
size = OSFlagNameGet (EngineStatusFlags,
&EngineStatusName,

s&err) ;

421

OSFlagNameSet()

void OSFlagNameSet (OS_FLAG GRP *pgrp,

char *pname,
INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.60 0S_FLAG.C Task 0S_FLAG_NAME EN

OSFlagNameSet () allows you to assigh a name to an event flag group. This function is typically used by a
debugger to allow associating a name to a resource.

Arguments
pgrp is a pointer to the event flag group that you want to name. This pointer is returned to your
application when the event flag group is created (see 0SFlagCreate ()).
pname is a pointer to an ASCII string that contains the name of the event flag group.
perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the call was successfull.
0S_ERR _EVENT TYPE You are not pointing to an event flag group.
0S_ERR_PNAME NULL You passed a NULL pointer for pname.
0S_ERR_INVALID PGRP You passed a NULL pointer for pgrp.
OS_ERR NAME SET ISR You called this function from an ISR.

Returned Values
none

Notes/\Warnings

1. The event flag group must be created before you can use this function to set the name of the resource.

422

Example

423

OSFlagPend()

OS_FLAGS OSFlagPend(OS_FLAG GRP *pgrp,

O0S_FLAGS flags,
INT8U wait type,
INT32U timeout,
INT8U *perr) ;
Chapter File Called from Code enabled by
9 0S _FLAG.C Taﬁ<oMy OS_FLAG_EN

OSFlagPend () is used to have a task wait for a combination of conditions (i.e., events or bits) to be set (or
cleared) in an event flag group. You application can wait for any condition to be set or cleared or for all
conditions to be set or cleared. If the events that the calling task desires are not available, then the calling task
is blocked until the desired conditions are satisfied or the specified timeout expires.

Arguments

pgrp
flags

wait type

timeout

perr

is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see 0SFlagCreate ()].

is a bit pattern indicating which bit(s) (i.e., flags) you wish to check. The bits you want are
specified by setting the corresponding bits in f1ags.

specifies whether you want all bits to be set/cleared or any of the bits to be set/cleared. You
can specify the following arguments:

0S_FLAG WAIT CLR ALL You check all bits in £1ags to be clear (0)

0S_FLAG WAIT CLR ANY You check any bit in £1ags to be clear (0)

0S_FLAG _WAIT SET ALL You check all bits in £1ags to be set (1)

0S_FLAG WAIT SET ANY You check any bit in £1ags to be set (1)

You can also specify whether the flags are consumed by adding 0os_FLAG CONSUME to the
wait type. For example, to wait for any flag in a group and then clear the flags that satisfy
the condition, set wait type to

0S_FLAG WAIT SET ANY + OS_FLAG CONSUME

allows the task to resume execution if the desired flag(s) is(are) not received from the event
flag group within the specified number of clock ticks. A timeout value of 0 indicates that the
task wants to wait forever for the flag(s). The timeout value is not synchronized with the clock
tick. The timeout count begins decrementing on the next clock tick, which could potentially
occur immediately.

is a pointer to an error code and can be:

0S_ERR_NONE No error.

You try to call osF1agPend from an ISR, which is not
allowed.

0S_ERR PEND ISR

0S_ERR FLAG INVALID PGRP YOU pass a NULL pointer instead of the event flag handle.

0S_ERR _EVENT TYPE You are not pointing to an event flag group.

The flags are not available within the specified amount of
time.

O0S ERR TIMEOUT

0S_ERR FLAG WAIT TYPE You don’t specify a proper wait type argument.

424

Returned Values
The flag(s) that cause the task to be ready or, 0 if either none of the flags are ready or an error occurred.

Notes/\Warnings

1. The event flag group must be created before it’s used.

IMPORTANT

The return value of 0SFlagPend () is different as of VV2.70. In previous versions, OSFlagPend () returned
the current state of the flags and now, it returns the flag(s) that are ready, if any.

425

Example

#define ENGINE OIL PRES OK 0x01
#define ENGINE OIL TEMP OK 0x02
#define ENGINE START 0x04

OS FLAG GRP *EngineStatus;

void Task (void *p arg)
{

INT8U err;

0S FLAGS value;

(void)p_arg;
for (;;) |
value = OSFlagPend(EngineStatus,
ENGINE OIL PRES OK + ENGINE OIL TEMP OK,
0S_FLAG WAIT SET ALL + OS_FLAG CONSUME,
10,
serr) ;
switch (err) {
case OS_ERR NONE:
/* Desired flags are available =

break;

case OS ERR TIMEOUT:

/* The desired flags were NOT available before .. */
/* .. 10 ticks occurred =
break;

426

OSFlagPendGetFlagsRdy()

0OS_FLAGS OSFlagPendGetFlagsRdy (void)

Chapter File Called from Code enabled by
Added in V2.60 OS_FLAG.C Task only OS_FLAG_EN

OSFlagPendGetFlagsRdy () is used to obtain the flags that caused the current task to become ready to run.
In other words, this function allows you to know "Who done It!"

Arguments

None

Returned Value

The value of the flags that caused the current task to become ready to run.

Notes/\Warnings

1. The event flag group must be created before it’s used.

427

Example

#define ENGINE OIL PRES OK 0x01
#define ENGINE OIL TEMP OK 0x02
#define ENGINE_ START 0x04

OS FLAG GRP *EngineStatus;

void Task (void *p arg)
{

INT8U err;

0S FLAGS value;

(void)p_arg;
for (;;) {
value = OSFlagPend(EngineStatus,
ENGINE OIL PRES OK + ENGINE OIL TEMP OK,
0S_FLAG WAIT SET ALL + OS_FLAG CONSUME,
10,
&err) ;
switch (err) {
case 0S_ERR NONE:
/* Find out who made task ready =
flags = OSFlagPendGetFlagsRdy () ;

break;

case OS_ERR TIMEOUT:

/* The desired flags were NOT available before .. */
/* .. 10 ticks occurred v
break;

428

OSFlagPost()

0S_FLAGS OSFlagPost (0S_FLAG GRP *pgrp,

0S FLAGS flags,
INT8U opt,
INT8U *perr) ;
Chapter File Called from Code enabled by
9 0OS _FLAG.C Task or ISR OS_FLAG_EN

You set or clear event flag bits by calling osF1agpPost (). The bits set or cleared are specified in a bit mask.
OSFlagPost () readies each task that has its desired bits satisfied by this call. You can set or clear bits that are
already set or cleared.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see 0SFlagCreate ()].

flags specifies which bits you want set or cleared. If opt is 0S_FLAG SET, each bit that is set in
flags sets the corresponding bit in the event flag group. For example to set bits 0, 4, and 5,
you set £lags to 0x31 (note, bit O is the least significant bit). If opt iS 0S_FLAG CLR, each
bit that is set in flags will clears the corresponding bit in the event flag group. For example to
clear bits 0, 4, and 5, you specify f1ags as 0x31 (note, bit 0 is the least significant bit).

opt indicates whether the flags are set (0s_FLaG_SET) or cleared (0S_FLAG CLR).

perr is a pointer to an error code and can be:

0S_ERR_NONE The call is successful.
0S_ERR _FLAG INVALID PGRP YOU passa NULL pointer.
0S_ERR_EVENT TYPE You are not pointing to an event flag group.

0S_ERR_FLAG INVALID OPT You specify an invalid option.

Returned Value
The new value of the event flags.
Notes/Warnings

1. Event flag groups must be created before they are used.

2. The execution time of this function depends on the number of tasks waiting on the event flag group.
However, the execution time is deterministic.

3. The amount of time interrupts are disabled also depends on the number of tasks waiting on the event flag
group.

429

Example

430

OSFlagQuery()

OS FLAGS OSFlagQuery (OS FLAG GRP *pgrp,

INT8U *perr) ;
Chapter File Called from Code enabled by
9 0S_FLAG.C Task or ISR 0S_FLAG _EN && OS _FLAG QUERY EN

OSFlagQuery () is used to obtain the current value of the event flags in a group. At this time, this function
does not return the list of tasks waiting for the event flag group.

Arguments

pgrp is a pointer to the event flag group. This pointer is returned to your application when the event
flag group is created [see 0SFlagCreate ()].

perr is a pointer to an error code and can be:

0S_ERR_NONE The call is successful.
0S_ERR FLAG INVALID PGRP YOU passa NULL pointer.
0S_ERR_EVENT TYPE You are not pointing to an event flag groups.
Returned Value
The state of the flags in the event flag group.

Notes/\Warnings

1. The event flag group to query must be created.

2. You can call this function from an ISR.

Example

OS_FLAG GRP *EngineStatusFlags;

void Task (void *p arg)
{
OS FLAGS flags;
INT8U err;

(void)p arg;
for (7:) {

flags = OSFlagQuery(EngineStatusFlags, &err);

431

oSInit()

void OSInit (void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

0SInit () initializes PC/OS-I1 and must be called prior to calling osstart (), which actually starts
multitasking.

Arguments
none

Returned Values
none

Notes/Warnings

1. osiInit () mustbe called before osstart ().

Example

void main (void)

{

OSInit () ; /* Initialize pC/0S-II */

OSStart () ; /* Start Multitasking */

432

OSIntEnter()

void OSIntEnter (void);

Chapter File Called from Code enabled by
3 OS_CORE.C ISR only N/A

OSIntEnter () hotifies uC/OS-II that an ISR is being processed, which allows pC/OS-1I to keep track of
interrupt nesting. osIntEnter () isused in conjunction with 0SIntExit ().

Arguments
none

Returned Values
none
Notes/\Warnings

1. This function must not be called by task-level code.

2. You can increment the interrupt-nesting counter (0SIntNesting) directly in your ISR to avoid the
overhead of the function call/return. It’s safe to increment 0sIntNesting in your ISR because interrupts
are assumed to be disabled when 0sIntNesting needs to be incremented.

3. You are allowed to nest interrupts up to 255 levels deep.

Example 1
(Intel 80x86, real mode, large model)

Use osIntEnter () for backward compatibility with uC/OS.

ISRx PROC FAR

PUSHA ; Save interrupted task's context
PUSH ES
PUSH DS
CALL FAR PTR OSIntEnter ; Notify pC/0S-II of start of ISR
POP DS ; Restore processor registers
POP ES
POPA
IRET ; Return from interrupt
ISRx ENDP

433

Example 2
(Intel 80x86, real mode, large model)

434

OSINtEXit()

void OSIntExit (void) ;

Chapter File Called from Code enabled by
3 OS_CORE.C ISR only N/A

0SIntExit () notifies uC/OS-II that an ISR is complete, which allows uC/OS-11 to keep track of interrupt
nesting. 0sIntExit () is used in conjunction with osIntEnter (). When the last nested interrupt completes,
0SIntExit () determines if a higher priority task is ready to run, in which case, the interrupt returns to the
higher priority task instead of the interrupted task.

Arguments
none

Returned Value
none

Notes/\Warnings

1. This function must not be called by task-level code. Also, if you decided to increment 0SIntNesting, you
still need to call 0SIntExit ().

Example
(Intel 80x86, real mode, large model)

ISRx PROC FAR
PUSHA ; Save processor registers
PUSH ES
PUSH DS
CALL FAR PTR OSIntExit ; Notify uC/0S-II of end of ISR
POP DS ; Restore processor registers
POP ES
POPA
IRET ; Return to interrupted task
ISRx ENDP

435

OSMboxAccept()

void *OSMboxAccept (OS_EVENT *pevent) ;

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX EN && OS MBOX ACCEPT EN

OSMboxAccept () allows you to see if a message is available from the desired mailbox. Unlike
OSMboxPend (), OSMboxAccept () does not suspend the calling task if a message is not available. In other
words, osMboxAccept () IS non-blocking. If a message is available, the message is returned to your
application, and the content of the mailbox is cleared. This call is typically used by ISRs because an ISR is not
allowed to wait for a message at a mailbox.

Arguments

pevent is a pointer to the mailbox from which the message is received. This pointer is returned to your
application when the mailbox is created [see 0SMboxCreate ()].

Returned Value
A pointer to the message if one is available; NuLL if the mailbox does not contain a message.

Notes/\Warnings

1. Mailboxes must be created before they are used.

Example

OS_EVENT *CommMbox;

void Task (void *p arg)
{

void *pmsg;

(void)p_arg;
for (;;) {
pmsg = OSMboxAccept (CommMbox); /* Check mailbox for a message */

if (pmsg != (void *)0) {
/* Message received, process w2/
} else {
/* Message not received, do .. */
/* .. something else &y

436

OSMboxCreate()

OS_EVENT *OSMboxCreate (void *pmsg);

Chapter File Called from Code enabled by
10 0S_MBOX.C Task or startup code 0S_MBOX EN

OSMboxCreate () creates and initializes a mailbox. A mailbox allows tasks or ISRs to send a pointer-sized
variable (message) to one or more tasks.

Arguments

pmsg is used to initialize the contents of the mailbox. The mailbox is empty when pmsg is a NULL
pointer. The mailbox initially contains a message when pmsg iS NON-NULL.

Returned Value

A pointer to the event control block allocated to the mailbox. If no event control block is available,
OSMboxCreate () returns a NULL pointer.

Notes/\Warnings

1. Mailboxes must be created before they are used.

Example

OS_EVENT *CommMbox;

void main (void)

{

OSInit () ; /* Initialize MC/OS-II */

CommMbox = OSMboxCreate ((void *)0); /* Create COMM mailbox */
OSStart () ; /* Start Multitasking */

437

0SMboxDel ()

OS_EVENT *OSMboxDel (OS_EVENT *pevent,

INT8U opt,
INT8U *perr) ;
Chapter File Called from Code enabled by
10 0S_MBOX.C Task 0S_MBOX EN and
0S_MBOX DEL_EN

OSMboxDel () is used to delete a message mailbox. This function is dangerous to use because multiple tasks
could attempt to access a deleted mailbox. You should always use this function with great care. Generally
speaking, before you delete a mailbox, you must first delete all the tasks that can access the mailbox.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is
created [see 0SMboxCreate ()].

opt specifies whether you want to delete the mailbox only if there are no pending tasks
(os_DEL NO PEND) or whether you always want to delete the mailbox regardless of whether
tasks are pending or not (0s_DEL_aLwAYs). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the mailbox has been deleted.
0S_ERR DEL ISR if you attempt to delete the mailbox from an ISR.
0S_ERR_INVALID OPT if you don’t specify one of the two options mentioned in the

opt argument.

0S_ERR_TASK WAITING One or more tasks is waiting on the mailbox.
0S_ERR _EVENT TYPE if pevent is not pointing to a mailbox.
0S_ERR_PEVENT NULL if pevent isa NULL pointer.

Returned Value

A NULL pointer if the mailbox is deleted or pevent if the mailbox is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/Warnings

1. You should use this call with care because other tasks might expect the presence of the mailbox.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the mailbox.

3. 0sMboxAccept () callers do not know that the mailbox has been deleted.

438

Example

439

OSMboxPend ()

void *OSMboxPend (OS_EVENT *pevent,

INT32U timeout,
INT8U *perr) ;
Chapter File Called from Code enabled by
10 0S MBOX.C Task onIy 0S MBOX EN

OSMboxPend () is used when a task expects to receive a message. The message is sent to the task either by an
ISR or by another task. The message received is a pointer-sized variable, and its use is application specific. If a
message is present in the mailbox when osMboxPend () is called, the message is retrieved, the mailbox is
emptied, and the retrieved message is returned to the caller. If no message is present in the mailbox,
OSMboxPend () suspends the current task until either a message is received or a user-specified timeout expires.
If a message is sent to the mailbox and multiple tasks are waiting for the message, pC/OS-Il resumes the
highest priority task waiting to run. A pended task that has been suspended with 0sTaskSuspend() can
receive a message. However, the task remains suspended until it is resumed by calling 0sTaskResume ().

Arguments

pevent is a pointer to the mailbox from which the message is received. This pointer is returned to your
application when the mailbox is created [see 0SMboxCreate ()].

timeout allows the task to resume execution if a message is not received from the mailbox within the
specified number of clock ticks. A timeout value of 0 indicates that the task wants to wait
forever for the message. The timeout value is not synchronized with the clock tick. The timeout
count begins decrementing on the next clock tick, which could potentially occur immediately.

perr is a pointer to a variable that holds an error code. 0sMboxPend () Sets *perr to one of the

following:

0S_ERR_NONE

0S_ERR_TIMEOUT

0S_ERR PEND ABORT

0S_ERR EVENT TYPE

0S_ERR_PEND LOCKED

0S_ERR PEND ISR

0S_ERR PEVENT NULL

Returned Value

if a message is received.

if a message is not received within the specified timeout
period.

indicates that the pend was aborted by another task or ISR by
calling osMboxPendabort ().

if pevent is not pointing to a mailbox.
if you called this function when the scheduler is locked.

if you call this function from an ISR and uC/OS-I1 suspends it.
In general, you should not call osMboxPend () from an ISR,
but uC/OS-11 checks for this situation anyway.

if pevent is a NULL pointer.

0OSMboxPend () returns the message sent by either a task or an ISR, and *perr is set to 0S_ERR NONE. If a
message is not received within the specified timeout period, the returned message is a NULL pointer, and *perr

issetto 0S_ERR TIMEOUT.

Notes/\Warnings

1. Mailboxes must be created before they are used.

2. You should not call osMboxPend () from an ISR.

440

Example

441

OSMboxPendAbort()

INT8U OSMboxPendAbort (OS EVENT *pevent,

INT8U opt,
INT8U *perr) ;
New Function File Called from Code enabled by
V2.84 0S_MBOX.C Task only 0S_MBOX_EN

&&
0S_MBOX PEND ABORT EN

OSMboxPendAbort () aborts & readies any tasks currently waiting on a mailbox. This function should be
used to fault-abort the wait on the mailbox, rather than to normally signal the mailbox via 0SMboxPost () Or
OSMboxPostOpt ().

Arguments
pevent is a pointer to the mailbox for which pend(s) need to be aborted. This pointer is returned to
your application when the mailbox is created [see 0OSMboxCreate ()].
opt determines what type of abort is performed.
0S_PEND OPT_NONE Aborts the pend of only the highest priority task waiting on the
mailbox.
0S_PEND OPT BROADCAST Aborts the pend of all the tasks waiting on the mailbox.
perr is a pointer to a variable that holds an error code. 0SMboxPendAbort () Sets *perr to one of
the following:
0S_ERR_NONE if no tasks were waiting on the mailbox. In this case, the return
value is also 0.
0S_ERR_PEND ABORT at least one task waiting on the mailbox was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the mailbox was aborted.
0S_ERR _EVENT TYPE if pevent is not pointing to a mailbox.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Returned Value

OSMboxPendAbort () returns the number of tasks made ready to run by this function. Zero indicates that no
tasks were pending on the mailbox and thus this function had no effect.

Notes/\Warnings

1. Mailboxes must be created before they are used.

442

Example

443

OSMboxPost()

INT8U OSMboxPost (0OS_EVENT *pevent,

void *pmsqg) ;
Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX EN &&
0S_MBOX_POST_EN

OSMboxPost () sends a message to a task through a mailbox. A message is a pointer-sized variable and, its use
is application specific. If a message is already in the mailbox, an error code is returned indicating that the
mailbox is full. osMboxPost () then immediately returns to its caller, and the message is not placed in the
mailbox. If any task is waiting for a message at the mailbox, the highest priority task waiting receives the
message. If the task waiting for the message has a higher priority than the task sending the message, the higher
priority task is resumed, and the task sending the message is suspended. In other words, a context switch
occurs.

Arguments

pevent is a pointer to the mailbox into which the message is deposited. This pointer is returned to your
application when the mailbox is created [see 0SMboxCreate ()].

pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application
specific. You must never post a NULL pointer because this pointer indicates that the mailbox is
empty.

Returned Value
OSMboxPost () returns one of these error codes:

0S_ERR_NONE if the message is deposited in the mailbox.

0S_ERR MBOX_ FULL if the mailbox already contains a message.

OS_ERR _EVENT TYPE if pevent is not pointing to a mailbox.

0S_ERR_PEVENT NULL if pevent is a NULL pointer.

0S_ERR_POST NULL PTR if you are attempting to post a NULL pointer. By convention a

NULL pointer is not supposed to point to anything.

Notes/Warnings

1. Mailboxes must be created before they are used.

2. You must never post a NULL pointer because this pointer indicates that the mailbox is empty.

444

Example

445

OSMboxPostOpt()

INT8U OSMboxPostOpt (OS_EVENT *pevent,

void *pmsg,
INT8U opt) ;
Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S_MBOX EN and
0S_MBOX_POST OPT EN

OSMboxPostOpt () works just like osMboxPost () except that it allows you to post a message to multiple
tasks. In other words, osMboxPostOpt () allows the message posted to be broadcast to all tasks waiting on the
mailbox. osMboxPostOpt () can actually replace osMboxPost () because it can emulate 0SMboxPost ().

OSMboxPostOpt () is used to send a message to a task through a mailbox. A message is a pointer-sized
variable, and its use is application specific. If a message is already in the mailbox, an error code is returned
indicating that the mailbox is full. osMboxPostoOpt () then immediately returns to its caller, and the message is
not placed in the mailbox. If any task is waiting for a message at the mailbox, osMboxPostopt () allows you
either to post the message to the highest priority task waiting at the mailbox (opt set to 0S_POST OPT NONE)
or to all tasks waiting at the mailbox (opt is set to 0s_POST OPT BROADCAST). In either case, scheduling
occurs and, if any of the tasks that receives the message have a higher priority than the task that is posting the
message, then the higher priority task is resumed, and the sending task is suspended. In other words, a context
switch occurs.

Arguments

pevent is a pointer to the mailbox. This pointer is returned to your application when the mailbox is
created [see 0SMboxCreate ()].

pmsg is the actual message sent to the task(s). pmsg is a pointer-sized variable and is application
specific. You must never post a NULL pointer because this pointer indicates that the mailbox is
empty.

opt specifies whether you want to send the message to the highest priority task waiting at the

mailbox (when opt is setto 0s PosST OPT NONE) or to all tasks waiting at the mailbox (when
opt IS Setto 0S POST OPT BROADCAST).

When set to os_posT _OpT NO_SCHED, the scheduler will not be called to see if a higher
priority task has been made ready to run.

Note that options are additive and thus, you can specify:
0S_POST OPT_ BROADCAST | OS_POST OPT NO SCHED

Returned Value
Returns one of the following error codes:
0S_ERR_NONE if the call is successful and the message has been sent.

0S_ERR MBOX_FULL if the mailbox already contains a message. You can only send
one message at a time to a mailbox, and thus the message must
be consumed before you are allowed to send another one.

0S_ERR _EVENT TYPE if pevent is not pointing to a mailbox.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.
0S_ERR _POST NULL PTR if you are attempting to post a NULL pointer. By convention, a

NULL pointer is not supposed to point to anything.

446

Notes/\Warnings
1. Mailboxes must be created before they are used.
2. You must never post a NULL pointer to a mailbox because this pointer indicates that the mailbox is empty.

3. If you need to use this function and want to reduce code space, you can disable code generation of
OSMboxPost () because 0sMboxPostOpt () can emulate 0SMboxPost () .

4. The execution time of osMboxPostoOpt () depends on the number of tasks waiting on the mailbox if you
set opt t0 OS_POST OPT BROADCAST.

Example

OS _EVENT *CommMbox;
INT8U CommRxBuf [100] ;

void CommRxTask (void *p arg)

{
INT8U err;

(void)p_arg;
for (;7) |

err = OSMboxPostOpt (CommMbox,
(void *) &CommRxBuf[0],
0S_POST_OPT_ BROADCAST) ;

447

OSMboxQuery ()

INT8U OSMboxQuery (OS EVENT *pevent,
0S MBOX DATA *p mbox data);
Chapter File Called from Code enabled by
10 0S_MBOX.C Task or ISR 0S MBOX EN && OS_MBOX QUERY EN

OSMboxQuery () obtains information about a message mailbox. Your application must allocate an
0s_MBOX_ DATA data structure, which is used to receive data from the event control block of the message
mailbox. osMboxQuery () allows you to determine whether any tasks are waiting for a message at the mailbox
and how many tasks are waiting (by counting the number of 1s in the .0sEventTb1[] field). You can also
examine the current contents of the mailbox. Note that the size of .0SEventTbl[] is established by the
#define constant 0S_EVENT TBL SIZE (See uCOS II.H).

Arguments

pevent

is a pointer to the mailbox. This pointer is returned to your application when the mailbox is
created [see 0SMboxCreate ()].

P mbox_data IS a pointer to a data structure of type os_MBOX DATA, which contains the following fields:

void

#1if 0OS_

INT8U
INT8U
#else
INT16U
INT16U
fendif

sSgy O O e message store in € mal OoX
QSMsg / Copy of th g t d in th i1lb w

LOWEST PRIO <= 63
OSEventTbl [0S _EVENT TBL SIZE]; /* Copy of the mailbox wait list */
OSEventGrp;

OSEventTbl [0S EVENT TBL SIZE]; /* Copy of the mailbox wait list */
OSEventGrp;

Returned Value
OSMboxQuery () returns one of these error codes:

0S_ERR_NONE if the call is successful.

0S_ERR_PEVENT NULL if pevent is a NULL pointer.

0S_ERR _EVENT TYPE if you don’t pass a pointer to a message mailbox.
0S_ERR_PNAME NULL You passed a NULL pointer for p mbox_data.

Notes/\Warnings

1.

Message mailboxes must be created before they are used.

448

Example

449

OSMemCreate()

0S _MEM *OSMemCreate (void *addr,

INT32U nblks,
INT32U Dblksize,
INT8U *perr);

Chapter File Called from Code enabled by

12

0S_MEM.C Task or startup code OS_MEM EN

OSMemCreate () creates and initializes a memory partition. A memory partition contains a user-specified
number of fixed-size memory blocks. Your application can obtain one of these memory blocks and, when done,
release the block back to the partition.

Arguments

addr

nblks

blksize

perr

is the address of the start of a memory area that is used to create fixed-size memory blocks.
Memory partitions can be created either using static arrays or malloc () during startup. Note
that the partition MUST align on a pointer boundary. Thus, if a pointer is 16 bits wide then the
partition must start on a memory location with an address that ends with 0, 2, 4, 6, 8, etc. Ifa
pointer is 32 bits wide then the partition must start on a memory location with and address that
ends with 0, 4, 8 of C.

contains the number of memory blocks available from the specified partition. You must specify
at least two memory blocks per partition.

specifies the size (in bytes) of each memory block within a partition. A memory block must be
large enough to hold at least a pointer. Also, the size of a memory block must be a multiple of
the size of a pointer. In other words, if a pointer is 32 bits wide then the block size must be 4,
8, 12, 16, 20, etc. bytes (i.e. a multiple of 4 bytes).

is a pointer to a variable that holds an error code. 0SMemCreate () Sets *perr to:

0S_ERR_NONE if the memory partition is created successfully

0S_ERR MEM INVALID ADDR if you are specifying an invalid address (i.e., addr is a NULL
pointer) or your partition is not properly aligned.

0S_ERR MEM INVALID PART if afree memory partition is not available
0S_ERR MEM INVALID BLKS if you don’t specify at least two memory blocks per partition

0S_ERR MEM INVALID SIzk if you don’t specify a block size that can contain at least a
pointer variable and if it’s not a multiple of a pointer size
variable.

Returned Value

OSMemCreate () returns a pointer to the created memory-partition control block if one is available. If no
memory-partition control block is available, 0sMemCreate () returns a NULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

450

Example

451

OSMemGet()

void *OSMemGet (OS_MEM *pmem,
INT8U *perr);

Chapter File Called from Code enabled by
12 0S_MEM.C Task or ISR OS_MEM EN

OSMemGet obtains a memory block from a memory partition. It is assumed that your application knows the size
of each memory block obtained. Also, your application must return the memory block [using osMemPut ()]
when it no longer needs it. You can call osMemGet () more than once until all memory blocks are allocated.

Arguments

pmem is a pointer to the memory-partition control block that is returned to your application from the
OSMemCreate () call.

perr is a pointer to a variable that holds an error code. osMemGet () Sets *perr to one of the
following:
0S_ERR_NONE if a memory block is available and returned to your application.

0S_ERR MEM NO FREE BLKS if the memory partition doesn’t contain any more memory
blocks to allocate.

0S_ERR MEM INVALID PMEM if pmem iSaNULL pointer.

Returned Value

OSMemGet () returns a pointer to the allocated memory block if one is available. If no memory block is
available from the memory partition, 0sMemGet () returns a NULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

452

Example

453

OSMemNameGet()

INT8U OSMemNameGet (OS_MEM *pmemn,
INT8U **pname,

INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.60 0S_MEM.C Task 0S_MEM NAME EN

OSMemNameGet () allows you to obtain the name that you assigned to a memory partition. This function is
typically used by a debugger to allow associating a hame to a resource.

Arguments
pmem is a pointer to the memory partition.
pname is a pointer to a pointer to an ASCII string that contains the name of the memory partition.
perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the call was successfull.
0S_ERR_INVALID PMEM You passed a NULL pointer for pmem.
0S_ERR_PNAME NULL You passed a NULL pointer for pname.
OS _ERR NAME GET ISR You called this function from an ISR.

Returned Values
The size of the ASCII string pointed to by pname or 0 if an error is encountered.

454

Notes/\Warnings

1. The memory partition must be created before you can use this function and obtain the name of the
resource.

Example

0S MEM *CommMem;

INT8U *CommMemName ;

void Task (void *pdata)
{
INT8U err;
INT8U size;

pdata = pdata;

for (;7) {

size = OSMemNameGet (CommMem, &CommMemName, &err);

455

OSMemNameSet()

void OSMemNameSet (OS MEM *pmem,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 0S_MEM.C Task 0S_MEM NAME EN

OSMemNameSet () allows you to assign a hame to a memory partition. This function is typically used by a
debugger to allow associating a name to a resource.

Arguments

pmem is a pointer to the memory partition that you want to name. This pointer is returned to your
application when the memory partition is created (see 0SMemCreate ()).

pname is a pointer to an ASCII string that contains the name for the memory partition.

perr a pointer to an error code and can be any of the following:

0S_ERR_NONE If the call was successfull.

0S_ERR MEM INVALID PMEM You passed a NULL pointer for pmem.
0S_ERR_PNAME NULL You passed a NULL pointer for pname.
0S_ERR MEM NAME TOO LONG If the name is not able to fit in the specified storage.
OS_ERR NAME SET ISR You called this function from an ISR.

Returned Values
none

Notes/\Warnings

1. The memory partition must be created before you can use this function to set the name of the resource.

456

Example

457

OSMemPut()

INT8U OSMemPut (OS_MEM *pmem,

void *pblk);

Chapter

File

Called from

Code enabled by

12 0S_MEM.C

Task or ISR

0S_MEM EN

OSMemPut () returns a memory block to a memory partition. It is assumed that you return the memory block to

the appropriate memory partition.

Arguments

pmem is a pointer to the memory-partition control block that is returned to your application from the
OSMemCreate () call.

pblk is a pointer to the memory block to be returned to the memory partition.

Returned Value

osMemPut () returns one of the following error codes:

0S_ERR_NONE

0S_ERR MEM FULL

0S_ERR MEM INVALID PMEM if pmem iSaNULL pointer.

0S_ERR_MEM INVALID PBLK if pblk isa NULL pointer.

Notes/\Warnings

if the memory block was returned to the memory partition.

if the memory partition can not accept more memory blocks.
This code is surely an indication that something is wrong
because you are returning more memory blocks than you
obtained using 0SMemGet ().

1. Memory partitions must be created before they are used.

2. You must return a memory block to the proper memory partition.

458

Example

459

OSMemQuery ()

INT8U OSMemQuery (OS_MEM *pmemn,
OS MEM DATA *p mem data);

Chapter File Called from Code enabled by
12 0S_MEM.C Task or ISR 0S MEM EN && OS_MEM QUERY EN

OSMemQuery () obtains information about a memory partition. Basically, this function returns the same
information found in the os MeM data structure but in a new data structure called os MEM DATA.
0s_MEM_DATA also contains an additional field that indicates the number of memory blocks in use.

Arguments

pmem is a pointer to the memory-partition control block that is returned to your application from the
OSMemCreate () call.

p_mem data IS a pointer to a data structure of type os MEM DaTa, which contains the following fields

void *OSAddr; /* Points to beginning address of the memory partition &/
void *OSFreelist; /* Points to beginning of the free list of memory blocks */
INT32U OSBlkSize; /* Size (in bytes) of each memory block */
INT32U OSNBlks; /* Total number of blocks in the partition Y
INT32U OSNFree; /* Number of memory blocks free %
INT32U OSNUsed; /* Number of memory blocks used Y

Returned Value
osMemQuery () returns one of the following error codes:
0S_ERR_NONE if *p_mem data was filled successfully.

0S_ERR MEM INVALID PMEM if pmem iS @ NULL pointer.

0S_ERR MEM INVALID PDATA if pdata iSaNULL pointer.

Notes/\Warnings

1. Memory partitions must be created before they are used.

460

Example

461

OSMutexAccept()

INT8U OSMutexAccept (OS_EVENT *pevent,

INT8U *perr) ;
Chapter File Called from Code enabled by
8 0S MUTEX.C Task 0S_MUTEX EN

OSMutexAccept () allows you to check to see if a resource is available. Unlike osMutexPend (),
OsMutexAccept () does not suspend the calling task if the resource is not available. In other words,
OSMutexAccept () is hon-blocking.

Arguments
pevent is a pointer to the mutex that guards the resource. This pointer is returned to your application
when the mutex is created [See OSMutexCreate ()].
perr is a pointer to a variable used to hold an error code. 0sMutexAccept () Sets *perr to one of
the following:
0S_ERR_NONE if the call is successful.
O0S_ERR_EVENT TYPE if pevent is not pointing to a mutex.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.
0S_ERR _PEND ISR if you call osMutexaccept () from an ISR.
0S_ERR_PIP LOWER If the priority of the task that owns the Mutex is HIGHER (i.e.

a lower number) than the PIP. This error indicates that you did
not set the PIP higher (lower number) than ALL the tasks that
compete for the Mutex. Unfortunately, this is something that
could not be detected when the Mutex is created because we
don't know what tasks will be using the Mutex.

Returned Value

If the mutex is available, osMutexaAccept () returns os_TRUE. If the mutex is owned by another task,
OSMutexAccept () returns oS FALSE.

Notes/\Warnings
1. Mutexes must be created before they are used.
2. This function must not be called by an ISR.

3. If you acquire the mutex through osMutexaccept (), You must call osMutexPost () to release the
mutex when you are done with the resource.

462

Example

463

OSMutexCreate()

OS_EVENT *OSMutexCreate (INT8U prio,

INT8U *perr);

Chapter

File

Called from

Code enabled by

8 0S MUTEX.C

Task or startup code

0S_MUTEX_EN

OSMutexCreate () IS used to create and initialize a mutex. A mutex is used to gain exclusive access to a

resource.

Arguments

prio is the priority inheritance priority (PIP) that is used when a high priority task attempts to
acquire the mutex that is owned by a low priority task. In this case, the priority of the low
priority task is raised to the PIP until the resource is released.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the

following:

0S_ERR_NONE

0S_ERR CREATE_ ISR

0S_ERR PRIO EXIST

0S_ERR PEVENT NULL

0S_ERR PRIO INVALID

Returned Value

A pointer to the event control block allocated to the mutex. If no event control block is available,

if the call is successful and the mutex has been created.

exists.

OSMutexCreate () returns a NULL pointer.

Notes/\Warnings

1. Mutexes must be created before they are used.

2. You must make sure that prio has a higher priority than any of the tasks that use the mutex to access the
resource. For example, if three tasks of priority 20, 25, and 30 are going to use the mutex, then prio must
be a number lower than 20. In addition, there must not already be a task created at the specified priority.

464

if you attempt to create a mutex from an ISR.

if a task at the specified priority inheritance priority already

if no more 0s_EVENT structures are available.

if you specify a priority with a higher number than
0S_LOWEST_PRIO.

Example

465

OSMutexDel ()

OS_EVENT *OSMutexDel (OS_EVENT *pevent,

INT8U opt,
INT8U *perr) ;
Chapter File Called from Code enabled by
8 0S_MUTEX.C Task 0S MUTEX EN and
0S_MUTEX DEL_EN

OSMutexDel () is used to delete a mutex. This function is dangerous to use because multiple tasks could
attempt to access a deleted mutex. You should always use this function with great care. Generally speaking,
before you delete a mutex, you must first delete all the tasks that can access the mutex.

Arguments
pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created
[see osMutexCreate ()].
opt specifies whether you want to delete the mutex only if there are no pending tasks
(os_DEL NO PEND) or whether you always want to delete the mutex regardless of whether
tasks are pending or not (0s_DEL_aLwAYs). In this case, all pending task are readied.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the mutex has been deleted.
0S_ERR DEL ISR if you attempt to delete a mutex from an ISR.
0S_ERR_INVALID OPT if you don’t specify one of the two options mentioned in the
opt argument.
0S_ERR_TASK WAITING if one or more task are waiting on the mutex and you specify
0S_DEL_NO_PEND.
0S_ERR _EVENT TYPE if pevent is not pointing to a mutex.
0S_ERR_PEVENT NULL if pevent isa NULL pointer.

Returned Value

A NULL pointer if the mutex is deleted or pevent if the mutex is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/\Warnings

1. You should use this call with care because other tasks might expect the presence of the mutex.

466

Example

467

OSMutexPend()

void OSMutexPend (OS_EVENT *pevent,

INT32U timeout,
INT8U *perr) ;
Chapter File Called from Code enabled by
8 0S MUTEX.C Taﬁ(omy 0S_MUTEX EN

OSMutexPend () is used when a task desires to get exclusive access to a resource. If a task calls
OSMutexPend () and the mutex is available, then osMutexPend () gives the mutex to the caller and returns to
its caller. Note that nothing is actually given to the caller except for the fact that if perr is set to
0S_ERR_NONE, the caller can assume that it owns the mutex. However, if the mutex is already owned by
another task, osMutexPend () places the calling task in the wait list for the mutex. The task thus waits until
the task that owns the mutex releases the mutex and thus the resource or until the specified timeout expires. If
the mutex is signaled before the timeout expires, HC/OS-11 resumes the highest priority task that is waiting for
the mutex. Note that if the mutex is owned by a lower priority task, then osMutexPend () raises the priority of
the task that owns the mutex to the PIP, as specified when you created the mutex [see osMutexCreate ()].

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created
BEEOSMuteXCreate()l

timeout is used to allow the task to resume execution if the mutex is not signaled (i.e., posted to) within
the specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait
forever for the mutex. The timeout value is not synchronized with the clock tick. The timeout
count starts being decremented on the next clock tick, which could potentially occur
immediately.

perr is a pointer to a variable that is used to hold an error code. 0sMutexPend () Sets *perr to one

of the following:

0S_ERR_NONE if the call is successful and the mutex is available.

0S_ERR_TIMEOUT
0S_ERR_EVENT TYPE
0S_ERR PEVENT NULL
0S_ERR PEND LOCKED
0S_ERR _PEND ABORT
0S_ERR PEND ISR

0S_ERR PIP LOWER

Returned Value

none

if the mutex is not available within the specified timeout.
if you don’t pass a pointer to a mutex to 0SMutexPend ().
if pevent is a NULL pointer.

if you called this function when the scheduler is locked

if osMutexPend () was aborted by another task

if you attempt to acquire the mutex from an ISR.

If the priority of the task that owns the Mutex is HIGHER (i.e.
a lower number) than the PIP. This error indicates that you
did not set the PIP higher (lower number) than ALL the tasks
that compete for the Mutex. Unfortunately, this is something
that could not be detected when the Mutex is created because
we don't know what tasks will be using the Mutex.

468

Notes/Warnings

1. Mutexes must be created before they are used.

2. You should not suspend the task that owns the mutex, have the mutex owner wait on any other uC/OS-I1I
objects (i.e., semaphore, mailbox, or queue), and delay the task that owns the mutex. In other words, your
code should hurry up and release the resource as quickly as possible.

Example

OS_EVENT *DispMutex;

void DispTask (void *p_ arg)
{

INT8U err;

(void)p_arg;

for (;;) |

OSMutexPend (DispMutex, 0, &err);
/* The only way this task continues is if _ */

/* _ the mutex is available or signaled! =/

469

OSMutexPost()

INT8U OSMutexPost (OS_EVENT *pevent);

Chapter File Called from Code enabled by
8 0S MUTEX.C Task 0S_MUTEX EN

A mutex is signaled (i.e., released) by calling osMmutexPost (). You call this function only if you acquire the
mutex by first calling either osMutexaccept () or osMutexPend (). If the priority of the task that owns the
mutex has been raised when a higher priority task attempts to acquire the mutex, the original task priority of the
task is restored. If one or more tasks are waiting for the mutex, the mutex is given to the highest priority task
waiting on the mutex. The scheduler is then called to determine if the awakened task is now the highest priority
task ready to run, and if so, a context switch is done to run the readied task. If no task is waiting for the mutex,
the mutex value is simply set to available (0xFF).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is created
[see OSMutexCreate ()]

Returned Value
OSMutexPost () returns one of these error codes:

0S_ERR_NONE if the call is successful and the mutex is released.
O0S_ERR_EVENT TYPE if you don’t pass a pointer to a mutex to 0sMutexPost ().
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

0S_ERR _POST_ ISR if you attempt to call osMutexpPost () from an ISR.

0S_ERR NOT MUTEX OWNER if the task posting (i.e., signaling the mutex) doesn’t actually
own the mutex.

OS_ERR_PIP LOWER If the priority of the new task that owns the Mutex is HIGHER
(i.e. a lower number) than the PIP. This error indicates that
you did not set the PIP higher (lower number) than ALL the
tasks that compete for the Mutex. Unfortunately, this is
something that could not be detected when the Mutex is
created because we don't know what tasks will be using the
Mutex.

Notes/\Warnings

1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

470

Example

OSMutexQuery()

INT8U OSMutexQuery (0S EVENT *pevent,
O0S MUTEX DATA *p mutex data);

Chapter File Called from Code enabled by
8 0S MUTEX.C Task 0S_MUTEX EN && OS MUTEX QUERY EN

OSMutexQuery () iS used to obtain run-time information about a mutex. Your application must allocate an
0S_MUTEX DATA data structure that is used to receive data from the event control block of the mutex.
osMutexQuery () allows you to determine whether any task is waiting on the mutex, how many tasks are
waiting (by counting the number of 1s) in the .0sEventTb1 [] field, obtain the PIP, and determine whether the
mutex is available (0os_TRUE) or not (0s_FaLsE). Note that the size of .0SEventTbl[] is established by the
#define constant 0S_EVENT TBL SIZE (See uCOS II.H).

Arguments

pevent is a pointer to the mutex. This pointer is returned to your application when the mutex is
created [see osMutexCreate ()].

p_mutex data IS apointer to a data structure of type os_MUTEX DATA, which contains the following fields

INT8U OSMutexPIP; /* The PIP of the mutex W/
INT8U OSOwnerPrio; /* The priority of the mutex owner ®/
BOOLEAN OSValue; /* The current mutex value */
/* 0S TRUE means available =/
/* 0S_FALSE means unavailable */

#if 0S LOWEST PRIO <= 63

INT8U OSEventGrp; /* Copy of the mutex wait list #y
INT8U OSEventTbl [OS EVENT TBL SIZE];

#else

INT16U OSEventGrp; /* Copy of the mutex wait list W/
INT16U OSEventTbl[0S EVENT TBL SIZE];

#endif

Returned Value
OSMutexQuery () returns one of these error codes:

0S_ERR_NONE if the call is successful.

OS_ERR_EVENT TYPE if you don’t pass a pointer to a mutex to osMutexQuery ().
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

0S_ERR_PDATA NULL if p mutex data iSaNULL pointer.

0S_ERR_QUERY ISR if you attempt to call osMutexQuery () froman ISR.

Notes/\Warnings
1. Mutexes must be created before they are used.

2. You cannot call this function from an ISR.

472

Example
In this example, we check the contents of the mutex to determine the highest priority task that is waiting for it.

OS_EVENT *DispMutex;

void Task (void *p arg)
{
0S_MUTEX DATA mutex data;

INT8U err;

INT8U highest; /* Highest priority task waiting on mutex
INT8U X7

INT8U v

(void)p_ arg;
for (;:) |

err = OSMutexQuery (DispMutex, &mutex data);
if (err == OS_ERR NONE) {

/* Examine Mutex data */

473

O0SQAccept()

void *OSQAccept (OS_EVENT *pevent,

INT8U *perr) ;
Chapter File Called from Code enabled by
11 0s_Q.C Task or ISR 0S_Q EN

0sQAaccept () checks to see if a message is available in the desired message queue. Unlike 0sgpend (),
0soaccept () does not suspend the calling task if a message is not available. In other words, 0SsQAccept () is
non-blocking. If a message is available, it is extracted from the queue and returned to your application. This
call is typically used by ISRs because an ISR is not allowed to wait for messages at a queue.

Arguments

pevent is a pointer to the message queue from which the message is received. This pointer is returned
to your application when the message queue is created [see 0SQCreate ()].

perr is a pointer to a variable that is used to hold an error code. 0SQAccept () Sets *perr to one of
the following:
0S_ERR_NONE if the call is successful and a message is available in the desired

message queue.

0S_ERR _EVENT TYPE if you don’t pass a pointer to a queue to 0SQAccept ().
0S_ERR_PEVENT NULL if pevent is a NULL pointer.
0S_ERR _Q EMPTY if the queue doesn't contain any messages.

Returned Value

A pointer to the message if one is available; NnuLL if the message queue does not contain a message or the
message received is a NULL pointer. If a message was available in the queue, it will be removed before
OSQAccept () returns.

Notes/\Warnings

1. Message queues must be created before they are used.

2. The API (Application Programming Interface) has changed for this function in V2.60 becausee you can
now post NULL pointers to queues. Specifically, the perr argument has been added to the call.

474

Example

475

0SQCreate()

OS_EVENT *0OSQCreate(void **start,
INT8U size);

Chapter File Called from Code enabled by
11 0S _Q.C Task or startup code 0S_Q EN

0SQCreate () Creates a message queue. A message queue allows tasks or ISRs to send pointer-sized variables
(messages) to one or more tasks. The meaning of the messages sent are application specific.

Arguments

start is the base address of the message storage area. A message storage area is declared as an array
of pointers to voids.

size is the size (in number of entries) of the message storage area.

Returned Value

0SQCreate () returns a pointer to the event control block allocated to the queue. If no event control block or
no queue control block is available, 0socreate () returns a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

Example

OS _EVENT *CommQ;
void *CommMsg [10] ;

void main (void)

{

0SInit () ; /* Initialize MC/0S-II
CommQ = OSQCreate (&CommMsg[0], 10); /* Create COMM Q
OSStart () ; /* Start Multitasking

476

0SQDel)

OS_EVENT *0SQDel (OS_EVENT *pevent,

INT8U opt,
INT8U *perr) ;
Chapter File Called from Code enabled by
11 0s Q.C Task 0S Q ENand0OS Q DEL EN

0sQDel () is used to delete a message queue. This function is dangerous to use because multiple tasks could
attempt to access a deleted queue. You should always use this function with great care. Generally speaking,
before you delete a queue, you must first delete all the tasks that can access the queue.

Arguments
pevent is a pointer to the queue. This pointer is returned to your application when the queue is created
[see osocreate ()].
opt specifies whether you want to delete the queue only if there are no pending tasks
(os_DEL NO PEND) or whether you always want to delete the queue regardless of whether
tasks are pending or not (0s_DEL_aLWAYS). In this case, all pending task are readied.
perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the queue has been deleted.
0S_ERR DEL ISR if you attempt to delete the queue from an ISR.
0S_ERR_INVALID OPT if you don’t specify one of the two options mentioned in the
opt argument.
0S_ERR_TASK WAITING if one or more tasks are waiting for messages at the message
queue.
0S_ERR _EVENT TYPE if pevent is not pointing to a queue.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Returned Value

A nuLL pointer if the queue is deleted or pevent if the queue is not deleted. In the latter case, you need to
examine the error code to determine the reason.

Notes/\Warnings
1. You should use this call with care because other tasks might expect the presence of the queue.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the queue.

477

Example

478

OSQFlush()

INT8U *OSQFlush (OS_EVENT *pevent);

Chapter File Called from Code enabled by
11 0S Q.C Task or ISR 0S Q EN && OS_Q FLUSH EN

0SQFlush () empties the contents of the message queue and eliminates all the messages sent to the queue. This
function takes the same amount of time to execute regardless of whether tasks are waiting on the queue (and
thus no messages are present) or the queue contains one or more messages.

Arguments

pevent is a pointer to the message queue. This pointer is returned to your application when the
message queue is created [see 0sQCreate ()].

Returned Value

0SQFlush () returns one of the following codes:

0S_ERR_NONE if the message queue is flushed.
0S_ERR _EVENT TYPE if you attempt to flush an object other than a message queue.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

2. You should use this function with great care because, when to flush the queue, you LOOSE the references
to what the queue entries are pointing to and thus, you could cause 'memory leaks'. In other words, the
data you are pointing to that's being referenced by the queue entries should, most likely, need to be de-
allocated (i.e. freed). To flush a queue that contains entries, you should instead repeateadly use
OSQAccept ().

Example

OS_EVENT *CommQ;

void main (void)
{
INT8U err;

OSInit () /* Initialize pC/0OS-II #)

err = OSQFlush (CommQ) ;

ar 8 ar ultitaskin
Osstart () /* Start Multitasking #)

479

0SQPend ()

void *OSQPend(OS EVENT *pevent,

INT32U timeout,
INT8U *perr) ;
Chapter File Called from Code enabled by
11 0s_Q.C Task only 0S_Q EN

0sQPend () is used when a task wants to receive messages from a queue. The messages are sent to the task
either by an ISR or by another task. The messages received are pointer-sized variables, and their use is
application specific. If at least one message is present at the queue when osgprend () is called, the message is
retrieved and returned to the caller. If no message is present at the queue, 0sQpend () suspends the current task
until either a message is received or a user-specified timeout expires. If a message is sent to the queue and
multiple tasks are waiting for such a message, then pC/OS-I1 resumes the highest priority task that is waiting. A
pended task that has been suspended with osTaskSuspend () can receive a message. However, the task
remains suspended until it is resumed by calling osTaskResume ().

Arguments
pevent is a pointer to the queue from which the messages are received. This pointer is returned to your
application when the queue is created [see 0sQCreate ()].
timeout allows the task to resume execution if a message is not received from the mailbox within the
specified number of clock ticks. A timeout value of 0 indicates that the task wants to wait
forever for the message. The timeout value is not synchronized with the clock tick. The timeout
count starts decrementing on the next clock tick, which could potentially occur immediately.
perr is a pointer to a variable used to hold an error code. 0sQpend () Sets *perr to one of the
following:
0S_ERR_NONE if a message is received.
0S_ERR_TIMEOUT if a message is not received within the specified timeout.
0S_ERR _EVENT TYPE if pevent is not pointing to a message queue.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.
0S_ERR_PEND ABORT if 0sgpend () was aborted by another task who called
O0SQPendAbort ().
0S_ERR_PEND ISR if you call this function from an ISR and pC/OS-Il has to
suspend it. In general, you should not call osgpend () from an
ISR. uC/OS-11 checks for this situation anyway.
0S_ERR_PEND_LOCKED if you called this function when the scheduler is locked.

Returned Value

0SQPend () returns a message sent by either a task or an ISR, and *perr is set to 0s_ERR_NONE. If a timeout
occurs, 0sQPend () returns a NULL pointer and sets *perr t0 0S_ERR_TIMEOUT.

Notes/\Warnings
1. Queues must be created before they are used.
2. You should not call osgpend () froman ISR.

3. 0s@pPend () was changed in VV2.60 to allow it to receive NULL pointer messages.

480

Example

481

0SQPendAbort()

INT8U OSQPendAbort (OS_EVENT *pevent,

INT8U opt,
INT8U *perr) ;
New Function File Called from Code enabled by
V2.84 0S _Q.C Task only 0S_Q EN

&&
0S_Q PEND ABORT EN

0SQPendabort () aborts & readies any tasks currently waiting on a queue. This function should be used to
fault-abort the wait on the queue, rather than to normally signal the queue via 0sQPost (), 0SQPostFront ()
Or 0SQPostOpt ().

Arguments
pevent is a pointer to the queue for which pend(s) need to be aborted. This pointer is returned to your
application when the queue is created [see 0sQCreate ()].
opt determines what type of abort is performed.
0S_PEND_OPT_NONE Aborts the pend of only the highest priority task waiting on the
queue.
0S_PEND_ OPT BROADCAST Aborts the pend of all the tasks waiting on the queue.
perr is a pointer to a variable that holds an error code. 0sQPendabort () sets *perr to one of the
following:
0S_ERR_NONE if no tasks were waiting on the queue. In this case, the return
value is also 0.
0S_ERR_PEND ABORT at least one task waiting on the queue was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the queue was aborted.
0S_ERR _EVENT TYPE if pevent is not pointing to a queue.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Returned Value

0SQPendabort () returns the number of tasks made ready to run by this function. Zero indicates that no tasks
were pending on the queue and thus this function had no effect.

Notes/\Warnings

1. Queues must be created before they are used.

482

Example

483

0SQPost()

INT8U OSQPost (OS_EVENT *pevent,

void *pmsg) ;
Chapter File Called from Code enabled by
11 0S_Q.C Task or ISR 0S_Q EN && OS_Q POST_EN

0SQPost () sends a message to a task through a queue. A message is a pointer-sized variable, and its use is
application specific. If the message queue is full, an error code is returned to the caller. In this case,
0sQPost () immediately returns to its caller, and the message is not placed in the queue. If any task is waiting
for a message at the queue, the highest priority task receives the message. If the task waiting for the message
has a higher priority than the task sending the message, the higher priority task resumes, and the task sending
the message is suspended; that is, a context switch occurs. Message queues are first-in first-out (FIFO), which
means that the first message sent is the first message received.

Arguments

pevent is a pointer to the queue into which the message is deposited. This pointer is returned to your
application when the queue is created [see 0sQCreate ()].

pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application

specific. As of VV2.60, you are allowed to post a NULL pointer.

Returned Value
0SQPost () returns one of these error codes:

0S_ERR_NONE if the message is deposited in the queue.
0S_ERR Q FULL if the queue is already full.

0S_ERR _EVENT TYPE if pevent is not pointing to a message queue.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

2. Asof V2.60, you are now allowed to post a NULL pointer. It is up to you’re application to check the perr
variable accordingly.

484

Example

485

OSQPostFront()

INT8U OSQPostFront (OS_EVENT *pevent,

void *pmsg) ;
Chapter File Called from Code enabled by
11 0S Q.C Task or ISR 0S_Q EN && OS_Q POST FRONT EN

0SQPostFront () sends a message to a task through a queue. 0sQpPostFront () behaves very much like
0SQPost (), except that the message is inserted at the front of the queue. This means that 0sQPostFront ()
makes the message queue behave like a last-in first-out (LIFO) queue instead of a first-in first-out (FIFO)
queue. The message is a pointer-sized variable, and its use is application specific. If the message queue is full,
an error code is returned to the caller. osopostFront () immediately returns to its caller, and the message is
not placed in the queue. If any tasks are waiting for a message at the queue, the highest priority task receives
the message. If the task waiting for the message has a higher priority than the task sending the message, the
higher priority task is resumed, and the task sending the message is suspended,; that is, a context switch occurs.

Arguments

pevent is a pointer to the queue into which the message is deposited. This pointer is returned to your
application when the queue is created [see 0sQCreate ()].

pmsg is the actual message sent to the task. pmsg is a pointer-sized variable and is application

specific. As of VV2.60, you are allowed to post a NULL pointer.

Returned Value
0SQPostFront () returns one of these error codes:

0S_ERR_NONE if the message is deposited in the queue.
0S_ERR Q FULL if the queue is already full.

0S_ERR _EVENT TYPE if pevent is not pointing to a message queue.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Notes/\Warnings

1. Queues must be created before they are used.

2. Asof V2.60, you are now allowed to post a NULL pointer. It is up to you’re application to check the perr
variable accordingly.

486

Example

487

OSQPostOpt()

INT8U OSQPostOpt (OS_EVENT *pevent,

void *pmsg,
INT8U opt) ;
Chapter File Called from Code enabled by
11 0S Q.C Task or ISR 0S Q EN && OS Q POST OPT EN

0SQPostOpt () is used to send a message to a task through a queue. A message is a pointer-sized variable, and
its use is application specific. If the message queue is full, an error code is returned indicating that the queue is
full. osgrpostopt () then immediately returns to its caller, and the message is not placed in the queue. If any
task is waiting for a message at the queue, 0sQrostopt () allows you to either post the message to the highest
priority task waiting at the queue (opt Set to 0s_PosT 0PT NONE) or to all tasks waiting at the queue (opt is
set to 0s_POST OPT BROADCAST). In either case, scheduling occurs, and, if any of the tasks that receive the
message have a higher priority than the task that is posting the message, then the higher priority task is
resumed, and the sending task is suspended. In other words, a context switch occurs.

0SQPostOpt () emulates both 0sQrost () and osQrPostFront () and also allows you to post a message to
multiple tasks. In other words, it allows the message posted to be broadcast to all tasks waiting on the queue.
0SQPostOpt () can actually replace osgpost () and 0sQpPostFront () because you specify the mode of
operation via an option argument, opt. Doing this allows you to reduce the amount of code space needed by
pC/OS-II.

Arguments

pevent is a pointer to the queue. This pointer is returned to your application when the queue is created
[see osocreate ()]

pmsg is the actual message sent to the task(s). pmsg is a pointer-sized variable, and what pmsg points
to is application specific. As of VV2.60, you are now allowed to post a NULL pointer.

opt determines the type of posT performed:

0S_POST_OPT_NONE POST to a single waiting task [identical to 0sQpost ()].
0S_POST_OPT_BROADCAST POST to all tasks waiting on the queue.
0S_POST_OPT_FRONT pOST as LIFO [simulates 0sQpostFront ()].
OS_POST_OPT NO SCHED Do not call the scheduler after the post.

Below is a list of some of the possible combination of these flags:

0OS_POST_ OPT_ NONE is identical to 0SQPost ()

0S_POST_OPT_ FRONT is identical to 0sQPostFront ()

0S_POST_OPT BROADCAST is identical to 0sQpPost () but broadcasts pmsg to all waiting
tasks

0S_POST OPT FRONT + OS POST OPT BROADCAST

is identical to osQPostFront () except that broadcasts pmsg
to all waiting tasks.

0S_POST OPT FRONT + OS_POST OPT BROADCAST + OS_POST OPT NO SCHED

is identical to osQPostFront () except that broadcasts pmsg
to all waiting tasks and the scheduler will not be called

488

Returned Value

0SQPostOpt returns one of the following error codes:

0S_ERR_NONE if the call is successful and the message has been sent.
0S_ERR Q FULL if the queue can no longer accept messages because it is full.
0S_ERR_EVENT TYPE if pevent is not pointing to a mailbox.

0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Notes/Warnings
1. Queues must be created before they are used.

2. If you need to use this function and want to reduce code space, you can disable code generation of
0SQPost () (set 0s o POST EN to 0 in 0S_CFG.H) and 0SQPostFront () (Set 0S Q POST FRONT EN
to 0 in 0s_CFG. H) because 0sQrostopt () can emulate these two functions.

3. The execution time of 0sorostopt () depends on the number of tasks waiting on the queue if you set opt
to 0S_POST OPT BROADCAST.

Example

OS EVENT *CommQ;
INT8U CommRxBuf [100] ;

void CommRxTask (void *p arg)

{
INT8U err;

(void)p_arg;
for (;;) {

err = OSQPostOpt (CommQ,
(void *) &CommRxBuf[0],
OS_POST OPT BROADCAST) ;

489

0SQQuery()

INT8U OSQQuery (OS EVENT

*pevent,

0S Q DATA *p g data);

Chapter

File

Called from Code enabled by

11

05 0.C

Task or ISR 0S_Q EN && OS_QUERY EN

0sQQuery () obtains information about a message queue. Your application must allocate an 0s_ @ DaTa data
structure used to receive data from the event control block of the message queue. 0sQouery () allows you to
determine whether any tasks are waiting for messages at the queue, how many tasks are waiting (by counting
the number of 1s in the .0osEventTbl [] field), how many messages are in the queue, and what the message
queue size is. 0sQQuery () also obtains the next message that is returned if the queue is not empty. Note that
the size of . 0SEventTbl[] is established by the #define constant 0S EVENT TBL SIZE (See uCOS_II.H).

Arguments

pevent is a pointer to the message queue. This pointer is returned to your application when the queue is

created [see 0sQCreate ()].

p_q data is a pointer to a data structure of type os_o DaTa, which contains the following fields
void *OSMsg; /* Next message if one available W/
INT16U OSNMsgs; /* Number of messages in the queue =y
INT16U OSQSize; /* Size of the message queue */
#if OS LOWEST PRIO <= 63
INT8U OSEventTbl [0S EVENT TBL SIZE]; /* Message queue wait list 7/
INT8U OSEventGrp;

#else
INT16U OSEventTbl [0S EVENT TBL SIZE]; /* Message queue wait list =/

INT16U OSEventGrp;

#endif

Returned Value

0SQQuery () returns one of these error codes:

0S_ERR_NONE

0S_ERR EVENT TYPE
0S_ERR PEVENT NULL

0S_ERR PDATA NULL

Notes/\Warnings

if the call is successful.
if you don’t pass a pointer to a message queue.
if pevent is a NULL pointer.

ifp g dataisaNULL pointer.

1. Message queues must be created before they are used.

490

Example

491

0SSchedLock()

void OSSchedLock (void) ;

Chapter File Called from Code enabled by
3 OS CORE.C Task or ISR OS_SCHED_LOCK EN

0SSchedLock () prevents task rescheduling until its counterpart, 0sschedunlock (), is called. The task that
calls osschedrLock () keeps control of the CPU even though other higher priority tasks are ready to run.
However, interrupts are still recognized and serviced (assuming interrupts are enabled). osschedLock () and
0SSchedUnlock () must be used in pairs. uC/OS-1l allows 0sschedLock () to be nested up to 255 levels
deep. Scheduling is enabled when an equal number of 0sschedunlock () calls have been made.

Arguments
none

Returned Value
none

Notes/\Warnings

1. After calling osschedLock (), your application must not make system calls that suspend execution of the
current task; that is, your application cannot call 0STimeDly (), OSTimeD1yHMSM (), OSFlagPend (),
0SSemPend (), OSMutexPend (), OSMboxPend (), OF 0SQPend (). Because the scheduler is locked out,
no other task is allowed to run, and your system will lock up.

Example
void TaskX (void *p arg)
{
(void)p_ arg;
for (;:) |
OSSchedLock () ; /* Prevent other tasks to run */

/* Code protected from context switch */

0SSchedUnlock () ; /* Enable other tasks to run */

492

0SSchedUnlock()

void 0OSSchedUnlock (void

);

Chapter

File

Called from

Code enabled by

3 OS_CORE.C Task or ISR

0S_SCHED LOCK_EN

0SSchedUnlock () re-enables task scheduling whenever it is paired with 0sschedLock ().

Arguments
none

Returned Value
none

Notes/\Warnings

1. After calling osschedLock (), your application must not make system calls that suspend execution of the
current task; that is, your application cannot call 0STimeDly (), OSTimeD1yHMSM (), OSFlagPend (),
0SSemPend (), OSMutexPend (), OSMboxPend (), OF 0SQPend (). Because the scheduler is locked out,
no other task is allowed to run, and your system will lock up.

Example

void TaskX (void *p arg)
{

(void)p_ arg;

for (;;) |

0SSchedLock () ;

0SSchedUnlock () ;

/* Prevent other tasks to run

*/

/* Code protected from context switch */

/* Enable other tasks to run

493

*/

0SSemAccept()

INT16U OSSemAccept (OS_EVENT *pevent) ;

Chapter File Called from Code enabled by

7 0S_SEM.C Task or ISR OS_SEM EN &&
0S_SEM ACCEPT EN

0ssemAccept () checks to see if a resource is available or an event has occurred. Unlike 0ssemPend (),
0SSemAccept () does not suspend the calling task if the resource is not available. In other words,
0SSemAccept () is non-blocking. Use ossemaccept () from an ISR to obtain the semaphore.

Arguments

pevent is a pointer to the semaphore that guards the resource. This pointer is returned to your
application when the semaphore is created [See 0SSemCreate ()].

Returned Value

When ossemaccept () is called and the semaphore value is greater than 0, the semaphore value is
decremented, and the value of the semaphore before the decrement is returned to your application. If the
semaphore value is 0 when ossemaccept () is called, the resource is not available, and 0 is returned to your
application.

Notes/Warnings

1. Semaphores must be created before they are used.

Example

OS_EVENT *DispSem;

void Task (void *p arg)
{
INT16U value;

(void)p_ arg;

for (;;) {
value = OSSemAccept (DispSem) ; /* Check resource availability */
if (value > 0) {

/* Resource available, process */

494

0SSemCreate()

OS_EVENT *OSSemCreate (INT16U value);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or startup code OS_SEM _EN

OSSemCreate () creates and initializes a semaphore. A semaphore
» allows a task to synchronize with either an ISR or a task (you initialize the semaphore to 0),

 gains exclusive access to a resource (you initialize the semaphore to a value greater than 0), and

 signals the occurrence of an event (you initialize the semaphore to 0).

Arguments

value is the initial value of the semaphore and can be between 0 and 65,535. A value of 0 indicates
that a resource is not available or an event has not occurred.

Returned Value

OSSsemCreate () returns a pointer to the event control block allocated to the semaphore. If no event control
block is available, 0ssemCreate () returns a NULL pointer.

Notes/\Warnings

1. Semaphores must be created before they are used.

Example

OS EVENT *DispSem;

void main (void)

{

OSInit () /* Initialize pC/0S-II */
DispSem = OSSemCreate (1) ; /* Create Display Semaphore w5/
OSStart () ; /* Start Multitasking */

495

0SSemDel ()

OS_EVENT *0OSSemDel (OS_EVENT *pevent,

INT8U opt,
INT8U *perr) ;
Chapter File Called from Code enabled by
7 0S_SEM.C Task OS_SEM ENand OS SEM DEL EN

ossemDel () is used to delete a semaphore. This function is dangerous to use because multiple tasks could
attempt to access a deleted semaphore. You should always use this function with great care. Generally
speaking, before you delete a semaphore, you must first delete all the tasks that can access the semaphore.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created [See 0SSemCreate ()].

opt specifies whether you want to delete the semaphore only if there are no pending tasks
(os_DEL NO PEND) or whether you always want to delete the semaphore regardless of whether
tasks are pending or not (0s_DEL_ALwAYSs). In this case, all pending task are readied.

perr is a pointer to a variable that is used to hold an error code. The error code can be one of the
following:
0S_ERR_NONE if the call is successful and the semaphore has been deleted.
0S_ERR DEL_ ISR if you attempt to delete the semaphore from an ISR.
0S_ERR_INVALID OPT if you don’t specify one of the two options mentioned in the

opt argument.

0S_ERR_TASK WAITING if one or more tasks are waiting on the semaphore.
0S_ERR _EVENT TYPE if pevent is not pointing to a semaphore.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Returned Value

A NULL pointer if the semaphore is deleted or pevent if the semaphore is not deleted. In the latter case, you
need to examine the error code to determine the reason.

Notes/\Warnings
1. You should use this call with care because other tasks might expect the presence of the semaphore.

2. Interrupts are disabled when pended tasks are readied, which means that interrupt latency depends on the
number of tasks that are waiting on the semaphore.

496

Example

497

0SSemPend()

void OSSemPend (OS_EVENT *pevent,

INT32U timeout,
INT8U *perr) ;
Chapter File Called from Code enabled by
7 O0S_SEM.C Taﬁ(omy OS_SEM EN

0sSemPend () is used when a task wants exclusive access to a resource, needs to synchronize its activities with
an ISR or a task, or is waiting until an event occurs. If a task calls ossempend () and the value of the
semaphore is greater than 0, ossemPend () decrements the semaphore and returns to its caller. However, if the
value of the semaphore is 0, 0ssemPend () places the calling task in the waiting list for the semaphore. The
task waits until a task or an ISR signals the semaphore or the specified timeout expires. If the semaphore is
signaled before the timeout expires, uC/OS-11 resumes the highest priority task waiting for the semaphore. A
pended task that has been suspended with osTaskSuspend () can obtain the semaphore. However, the task
remains suspended until it is resumed by calling osTaskResume ().

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created [See 0SSemCreate ()].

timeout allows the task to resume execution if a message is not received from the mailbox within the
specified number of clock ticks. A timeout value of 0 indicates that the task waits forever for
the message. The timeout value is not synchronized with the clock tick. The timeout count
begins decrementing on the next clock tick, which could potentially occur immediately.

perr is a pointer to a variable used to hold an error code. 0SSemPend () Sets *perr to one of the

following:

0S_ERR NONE
0S_ERR_TIMEOUT
0S_ERR EVENT TYPE

0S_ERR PEND ISR

OS _ERR PEND LOCKED
0S_ERR_PEVENT NULL
Returned Value
none

Notes/\Warnings

if the semaphore is available.
if the semaphore is not signaled within the specified timeout.
if pevent is not pointing to a semaphore.

if you called this function from an ISR and puC/OS-Il has to
suspend it. You should not call ossempend () from an ISR.
MC/OS-I1 checks for this situation.

if you called this function when the scheduler is locked.

if pevent is a NULL pointer.

1. Semaphores must be created before they are used.

498

Example

499

0SSemPendAbort()

void *OSSemPendAbort (OS_EVENT *pevent,

INT8U opt,
INT8U *perr) ;
New Function File Called from Code enabled by
V2.84 OS_SEM.C Task only 0S_SEM EN

&&
0S_SEM PEND ABORT EN

OSSsemPendAbort () aborts & readies any tasks currently waiting on a semaphore. This function should be
used to fault-abort the wait on the semaphore, rather than to normally signal the semaphore via 0SsemPost ().

Arguments
pevent is a pointer to the semaphore for which pend(s) need to be aborted. This pointer is returned to
your application when the semaphore is created [see 0SSemCreate ()].
opt determines what type of abort is performed.
0S_PEND OPT_ NONE Aborts the pend of only the highest priority task waiting on the
semaphore.

0S_PEND OPT BROADCAST Aborts the pend of all the tasks waiting on the semaphore.

perr is a pointer to a variable that holds an error code. 0SSemPendAbort () Sets *perr to one of
the following:
0S_ERR_NONE if no tasks were waiting on the semaphore. In this case, the

return value is also 0.

0S_ERR_PEND ABORT at least one task waiting on the semaphore was readied and
informed of the aborted wait. Check the return value for the
number of tasks whose wait on the semaphore was aborted.

0S_ERR _EVENT TYPE if pevent is not pointing to a semaphore.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.

Returned Value

0SSemPendAbort () returns the number of tasks made ready to run by this function. Zero indicates that no
tasks were pending on the semaphore and thus this function had no effect.

Notes/\Warnings

1. Semaphores must be created before they are used.

500

Example

501

0SSemPost()

INT8U OSSemPost (OS_EVENT *pevent) ;

Chapter

File

Called from Code enabled by

7 0S_SEM.C

Task or ISR OS_SEM EN

A semaphore is signaled by calling ossempPost (). If the semaphore value is 0 or more, it is incremented, and
0SSemPost () returns to its caller. If tasks are waiting for the semaphore to be signaled, ossempPost ()
removes the highest priority task pending for the semaphore from the waiting list and makes this task ready to
run. The scheduler is then called to determine if the awakened task is now the highest priority task ready to run.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore

is created [See 0SSemCreate ()].

Returned Value

0SSemPost () returns one of these error codes:

0S_ERR_NONE

0S_ERR_SEM OVF

0S_ERR EVENT TYPE

0S_ERR PEVENT NULL

Notes/\Warnings

if the semaphore is signaled successfully.
if the semaphore count overflows.
if pevent is not pointing to a semaphore.

if pevent is a NULL pointer.

1. Semaphores must be created before they are used.

502

Example

503

0SSemQuery()

INT8U OSSemQuery (0OS EVENT *pevent,
OS_SEM DATA *p sem data);

Chapter File Called from Code enabled by
7 0S_SEM.C Task or ISR OS_SEM EN && OS_SEM QUERY EN

0ssemQuery () obtains information about a semaphore. Your application must allocate an 0s_seM DaTa data
structure used to receive data from the event control block of the semaphore. 0ssemQuery () allows you to
determine whether any tasks are waiting on the semaphore and how many tasks are waiting (by counting the
number of 1s in the .osEventTbl[] field) and obtains the semaphore count. Note that the size of
.0SEventTbl [] is established by the #define constant 0S_EVENT TBL SIZE (See uCOS II.H).

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created [See 0SSemCreate ()].

P _sem data IS a pointer to a data structure of type os_semM DaTa, which contains the following fields

INT16U OSCnt; /* Current semaphore count */
#if O0S LOWEST PRIO <= 63

INT8U OSEventTbl [0S EVENT TBL SIZE]; /* Semaphore wait list)
INT8U OSEventGrp;

#else

INT16U OSEventTbl[OS EVENT TBL SIZE]; /* Semaphore wait list &Y
INT16U OSEventGrp;

fendif

Returned Value
0ssemQuery () returns one of these error codes:

0S_ERR_NONE if the call is successful.

0S_ERR _EVENT TYPE if you don’t pass a pointer to a semaphore.
0S_ERR_PEVENT NULL if pevent is is a NULL pointer.
0S_ERR_PDATA NULL ifp sem dataisisaNULL pointer.

Notes/\Warnings

1. Semaphores must be created before they are used.

504

Example

In this example, the contents of the semaphore is checked to determine the highest priority task waiting at the
time the function call was made.

OS_EVENT *DispSem;

void Task (void *p arg)
{
OS SEM DATA sem data;

INT8U err;

INT8U highest; /* Highest priority task waiting on sem. */
INT8U X7

INT8U v

(void)p_ arg;
for (;:) |

err = OSSemQuery (DispSem, &sem data);
if (err == 0OS_ERR NONE) {

/* Examine sem data */

505

0SSemSet()

void OSSemSet (OS_EVENT *pevent,

INT16U cnt,
INT8U *perr) ;
Chapter File Called from Code enabled by
7 0S_SEM.C Task or ISR OS SEM EN && OS SEM SET EN

ossemSet () is used to change the current value of the semaphore count. This function would normally be
used when a semaphore is used as a signaling mechanism. ossemset () can then be used to reset the count to
any value. If the semaphore count is already 0 then, the count is only changed if there are no tasks waiting on
the semaphore.

Arguments

pevent is a pointer to the semaphore that is used as a signaling mechanism. This pointer is returned to
your application when the semaphore is created [see 0SSemCreate ()].

cnt is the desired count that you want the semaphore set to.

perr is a pointer to a variable used to hold an error code. 0SsemSet () Sets *perr to one of the
following:
0S_ERR_NONE if the count was changed or, not changed because there was

one or more tasks waiting on the semaphore.

0S_ERR _EVENT TYPE if pevent is not pointing to a semaphore.
0S_ERR_PEVENT NULL if pevent is a NULL pointer.
0S_ERR_TASK WAITING if tasks are waiting on the semaphore.

Returned Value
None

Notes/\Warnings

1. Youshould NOT use this function if the semaphore is used to protect a shared resource.

506

Example

507

OSStart()

void OSStart (void);

Chapter File Called from Code enabled by
3 OS_CORE.C Startup code only N/A

osStart () starts multitasking under uC/OS-Il. This function is typically called from your startup code but
after you call os1nit ().

Arguments
none

Returned Value
none

Notes/\Warnings

1. osInit () must be called prior to calling osstart (). osstart () should only be called once by your
application code. If you do call osstart () more than once, it does not do anything on the second and
subsequent calls.

Example

void main (void)

{

/* User Code =Y
OSInit () /* Initialize PC/OS-ITI */
/* User Code 4
OSStart () ; /* Start Multitasking */

/* Any code here should NEVER be executed! */

508

osStatinit()

void OSStatInit (void);

Chapter File Called from Code enabled by

3 OS_CORE.C Startup code only OS_TASK STAT EN &&
OS_TASK _CREATE EXT EN

osstatInit () determines the maximum value that a 32-bit counter can reach when no other task is executing.
This function must be called when only one task is created in your application and when multitasking has
started; that is, this function must be called from the first and, only, task created.

Arguments
none

Returned Value
none

Notes/\Warnings
none

Example

void FirstAndOnlyTask (void *p arg)
{
0SStatInit () ; /* Compute CPU capacity with no task running */

OSTaskCreate () ; /* Create the other tasks */
OSTaskCreate()

for (;;) {

509

OSTaskChangePrio()

INT8U OSTaskChangePrio (INT8U oldprio,
INT8U newprio);

Chapter File Called from

Code enabled by

4 OS_TASK.C Task only

0S_TASK_CHANGE_PRIO EN

OSTaskChangePrio () changes the priority of a task.

Arguments
oldprio is the priority number of the task to change.
newprio is the new task’s priority.

Returned Value

OSTaskChangePrio () returns one of the following error codes:

0S_ERR_NONE

0S_ERR PRIO INVALID

0S_ERR PRIO EXIST

0S_ERR _PRIO

0S_ERR TASK NOT EXITS

Notes/\Warnings

if the task’s priority is changed.

if either the old priority or the new priority is equal to or
exceeds 0S_LOWEST PRIO.

if newprio already exists.

if no task with the specified old priority exists (i.e., the task
specified by oldprio does not exist).

if the task is assigned to a Mutex PIP.

1. The desired priority must not already have been assigned; otherwise, an error code is returned. Also,
OSTaskChangePrio () Vverifies that the task to change exists.

Example

void TaskX (void *p arg)
{
INT8U err;

for (;7) {

err = OSTaskChangePrio (10,

15) ¢

510

OSTaskCreate()

INT8U OSTaskCreate(void (*task) (void *pd),
void *pdata,
0S _STK *ptos,
INT8U prio);

Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code OS_TASK CREATE EN

OSTaskCreate () Creates a task so it can be managed by uC/OS-Il. Tasks can be created either prior to the
start of multitasking or by a running task. A task cannot be created by an ISR. A task must be written as an
infinite loop, as shown below, and must not return.

OSTaskCreate () is used for backward compatibility with uC/OS and when the added features of
OSTaskCreateExt () are not needed.

Depending on how the stack frame is built, your task has interrupts either enabled or disabled. You need to
check with the processor-specific code for details.

void Task (void *p arg)

{

/* Do something with 'pdata' w5/

for (;;) { /* Task body, always an infinite loop.)
/* Must call one of the following services: w5/
A OSMboxPend ())
e OSFlagPend () */
/% OSMutexPend () */
A 0SQPend () =y
A OSSemPend ())
e 0OSTimeDly () x/
/* OSTimeD1yHMSM () */
/* 0OSTaskSuspend () (Suspend self) */
/% OSTaskDel () (Delete self) */

o011

Arguments

task

pdata

ptos

prio

is a pointer to the task’s code.

is a pointer to an optional data area used to pass parameters to the task when it is created.
Where the task is concerned, it thinks it is invoked and passes the argument pdata. pdata can
be used to pass arguments to the task created. For example, you can create a generic task that
handles an asynchronous serial port. pdata can be used to pass this task information about the
serial port it has to manage: the port address, the baud rate, the number of bits, the parity, and
more.

is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt. The size of the stack is
determined by the task’s requirements and the anticipated interrupt nesting. Determining the
size of the stack involves knowing how many bytes are required for storage of local variables
for the task itself and all nested functions, as well as requirements for interrupts (accounting for
nesting). If the configuration constant 0s_STK GROWTH is set to 1, the stack is assumed to grow
downward (i.e., from high to low memory). ptos thus needs to point to the highest valid
memory location on the stack. If 0s_ STk GROWTH is set to 0, the stack is assumed to grow in
the opposite direction (i.e., from low to high memory).

is the task priority. A unique priority number must be assigned to each task, and the lower the
number, the higher the priority (i.e., the task importance).

Returned Value
OSTaskCreate () returns one of the following error codes:

0S_ERR_NONE if the function is successful.

0S_ERR_PRIO EXIST if the requested priority already exists.
0S_ERR_PRIO_INVALID if prio is higher than 0s LOWEST PRIO.
0S_ERR_NO MORE_TCB if uC/OS-11 doesn’t have any more 0s_TCBS to assign.

0S_ERR TASK CREATE ISR if you attempted to create the task from an ISR.

Notes/\Warnings

1. The stack for the task must be declared with the 0s_STK type.

2. Atask must always invoke one of the services provided by pC/OS-I1 to wait for time to expire, suspend the
task, or wait for an event to occur (wait on a mailbox, queue, or semaphore). This allows other tasks to
gain control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, 0S LOWEST PRIO-3, OS LOWEST PRIO-2,
0S_LOWEST_ PRIO-1,and 0s_LOWEST PRIO because they are reserved for use by uC/OS-II.

512

Example 1

This example shows that the argument that Task1 () receives is not used, so the pointer pdata is set to NULL.
Note that | assume the stack grows from high to low memory because | pass the address of the highest valid
memory location of the stack Taskistk[]. If the stack grows in the opposite direction for the processor you

are using, pass sTask1Stk[0] as the task’s top-of-stack.

Assigning pdata to itself is used to prevent compilers from issuing a warning about the fact that pdata is
not being used. In other words, if 1 had not added this line, some compilers would have complained about

‘WARNING - variable pdata not used.’

OS STK TasklStk[1024];

void main (void)

{

INT8U err;

OSInit () /* Initialize pC/0S-II

OSTaskCreate (Taskl,

(void *)O0,
&Taskl1lStk[1023],
25) ;
OSStart () ; /* Start Multitasking

void Taskl (void *p arg)
{

(void)p_ arg; /* Prevent compiler warning

for (;;) {

/* Task code

513

*/

*/

*/

*/

Example 2

You can create a generic task that can be instantiated more than once. For example, a task that handles a serial
port could be passed the address of a data structure that characterizes the specific port (i.e., port address and
baud rate). Note that each task has its own stack space and its own (different) priority. In this example, I
arbitrarily decided that COML1 is the most important port of the two.

0S_STK *CommlStk([1024];
COMM DATA CommlData; /* Data structure containing COMM port */
/* Specific data for channel 1 */
0S_STK *Comm2Stk[1024];
COMM DATA Comm2Data; /* Data structure containing COMM port */
/* Specific data for channel 2 R/
void main (void)
{
INT8U err;
OSInit () ; /* Initialize pC/0S-II */
/* Create task to manage COMI1 Y

OSTaskCreate (CommTask,
(void *)&CommlData,
&CommlStk[10237,

25);
/* Create task to manage COM2 &

OSTaskCreate (CommTask,
(void *)&Comm2Data,
&Comm2Stk([1023],
26);

OSStart () ; /* Start Multitasking */

void CommTask (void *p arg) /* Generic communication task */
{
for (;;) {
/* Task code w5/

514

OSTaskCreateExt()

INT8U OSTaskCreateExt (void (*task) (void *pd),

void *pdata,
0S _STK *ptos,
INT8U prio,

INT16U id,

0OS _STK *pbos,
INT32U stk size,
void *pext,
INT16U opt) ;

Chapter File Called from Code enabled by
4 OS_TASK.C Task or startup code OS_TASK_CREATE_EXT_EN

OSTaskCreateExt () creates a task to be managed by pC/OS-II. This function serves the same purpose as
OSTaskCreate (), except that it allows you to specify additional information about your task to puC/OS-II.
Tasks can be created either prior to the start of multitasking or by a running task. A task cannot be created by
an ISR. A task must be written as an infinite loop, as shown below, and must not return. Depending on how the
stack frame is built, your task has interrupts either enabled or disabled. You need to check with the processor-
specific code for details. Note that the first four arguments are exactly the same as the ones for
OSTaskCreate (). This was done to simplify the migration to this new and more powerful function. It is
highly recommended that you use osTaskCreateExt () instead of the older osTaskcCreate () function
because it’s much more flexible.

void Task (void *p arg)

{

/* Do something with 'pdata' =y

for (;;) { /* Task body, always an infinite loop. #)
/* Must call one of the following services: =
/% OSMboxPend () */
/* OSFlagPend () =y
/% OSMutexPend () */
/% OSQPend () Y
/* 0SSemPend () #)
/* OSTimeDly () */
/* OSTimeD1yHMSM () 7/
/* OSTaskSuspend () (Suspend self) */
/% 0STaskDel () (Delete self) */

515

Arguments

task

pdata

ptos

prio

id

pbos

stk size

pext

opt

is a pointer to the task’s code.

is a pointer to an optional data area, which is used to pass parameters to the task when it is
created. Where the task is concerned, it thinks it is invoked and passes the argument pdata.
pdata can be used to pass arguments to the task created. For example, you can create a
generic task that handles an asynchronous serial port. pdata can be used to pass this task
information about the serial port it has to manage: the port address, the baud rate, the number of
bits, the parity, and more.

is a pointer to the task’s top-of-stack. The stack is used to store local variables, function
parameters, return addresses, and CPU registers during an interrupt.

The size of this stack is determined by the task’s requirements and the anticipated interrupt
nesting. Determining the size of the stack involves knowing how many bytes are required for
storage of local variables for the task itself and all nested functions, as well as requirements for
interrupts (accounting for nesting).

If the configuration constant 0s_STK GROWTH is set to 1, the stack is assumed to grow
downward (i.e., from high to low memory). ptos thus needs to point to the highest valid
memory location on the stack. If 0S_STK GROWTH is set to 0, the stack is assumed to grow in
the opposite direction (i.e., from low to high memory).

is the task priority. A unique priority number must be assigned to each task: the lower the
number, the higher the priority (i.e., the importance) of the task.

is the task’s ID number. At this time, the ID is not currently used in any other function and has
simply been added in osTaskCreateExt () for future expansion. You should set id to the
same value as the task’s priority.

is a pointer to the task’s bottom-of-stack. If the configuration constant 0s_STK GROWTH is set
to 1, the stack is assumed to grow downward (i.e., from high to low memory); thus, pbos must
point to the lowest valid stack location. If os_sTK GROWTH is set to 0, the stack is assumed to
grow in the opposite direction (i.e., from low to high memory); thus, pbos must point to the
highest valid stack location. pbos is used by the stack-checking function 0sTaskStkChk ().

specifies the size of the task’s stack in number of elements. If 0s_sSTx is set to INT8U, then
stk_size corresponds to the number of bytes available on the stack. If os STk is set to
INT16U, then stk_size contains the number of 16-bit entries available on the stack. Finally, if
0S_STK is set to INT32uU, then stk_size contains the number of 32-bit entries available on the
stack.

is a pointer to a user-supplied memory location (typically a data structure) used as a TCB
extension. For example, this user memory can hold the contents of floating-point registers
during a context switch, the time each task takes to execute, the number of times the task is
switched in, and so on.

contains task-specific options. The lower 8 bits are reserved by uC/OS-11, but you can use the
upper 8 bits for application-specific options. Each option consists of one or more bits. The
option is selected when the bit(s) is set. The current version of pC/OS-I1 supports the following
options:

0S_TASK_OPT_ NONE specifies that there are no options.

0S_TASK _OPT STK CHK specifies whether stack checking is allowed for the task.
0S_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.

0S_TASK OPT SAVE FP specifies whether floating-point registers are saved. This option

is only valid if your processor has floating-point hardware and
the processor-specific code saves the floating-point registers.

Refer to ucos_11.4# for other options.

516

Returned Value
OSTaskCreateExt () returns one of the following error codes:

0S_ERR_NONE if the function is successful.

0S_ERR_PRIO EXIST if the requested priority already exists.
0S_ERR_PRIO_INVALID if prio is higher than 0s LOWEST PRIO.
0S_ERR_NO MORE_TCB if uC/OS-11 doesn’t have any more 0s_TCBS to assign.

0S_ERR TASK _CREATE ISR if you attempted to create the task from an ISR.

Notes/\Warnings

1. The stack must be declared with the 0s_sTk type.

2. Atask must always invoke one of the services provided by pC/OS-I1 to wait for time to expire, suspend the
task, or wait an event to occur (wait on a mailbox, queue, or semaphore). This allows other tasks to gain
control of the CPU.

3. You should not use task priorities 0, 1, 2, 3, 0S LOWEST PRIO-3, OS LOWEST PRIO-2,
0S_LOWEST_ PRIO-1,and 0s_LOWEST PRIO because they are reserved for use by uC/OS-II.

Example 1

E1(1) The task control block is extended using a user-defined data structure called 0S_TASK USER DATA,

which in this case contains the name of the task as well as other fields.

E1(2) The task name is initialized with the standard library function strcpy ().

E1(4) Note that stack checking has been enabled for this task, so you are allowed to call

OSTaskStkChk ().

E1(3) Also, assume here that the stack grows downward on the processor used (i.e., 0S_STK_GROWTH iS set

to 1; Tos stands for top-of-stack and Bos stands for bottom-of-stack).

o17

typedef struct { /%

char OSTaskName [20] ;
INT16U OSTaskCtr;

INT16U OSTaskExecTime;
INT32U OSTaskTotExecTime;

} OS_TASK USER DATA;

0S STK TaskStk[1024];

TASK USER_DATA TaskUserData;

void main (void)

{

INT8U err;

OSInit();

strcpy (TaskUserData.TaskName,

err = OSTaskCreateExt (Task,
(void *)O0,
&TaskStk[1023],
10,
10,
&TaskStk[0],
1024,
(void *)&TaskUserData,
0S_TASK OPT STK CHK);
OsStart();

void Task(void *p_ arg)
{
(void)p_arg;

for (;;) {

Example 2
E2(1)

"MyTaskName") ;

User defined data structure */

/* Initialize nuC/0S-II

/* Name of task

/* Stack grows down (TOS)

/* Stack grows down (BOS)

/* TCB Extension

/* Stack checking enabled

/* Start Multitasking

/* Avoid compiler warning

/* Task code

=

=

*/

=

=
*/

*/

=

=

We now create a task, but this time on a processor for which the stack grows upward. The Intel

MCS-51 is an example of such a processor. In this case, 0S_STK_GROWTH is set to 0.

518

E2(2)

(Tos stands for top-of-stack and Bos stands for bottom-of-stack).

O0S_STK *TaskStk[1024];

void main (void)
{

INT8U err;

OSInit () ;

err = OSTaskCreateExt (Task,
(void *)O0,
&TaskStk[0],
10,
10,
&TaskStk[1023],
1024,
(void *)O0,

0S_TASK OPT STK CHK);

OSStart () ;

void Task (void *p_arg)
{
(void)p_arg;

for (;7) |

/*

/*

/*

/*

/*

/*

/*

519

Initialize pC/0S-II

Stack grows up (TOS)

Stack grows up (BOS)

Stack checking enabled

Start Multitasking

Avoid compiler warning

Task code

*/

*/

*/

*/

*/

*/

*/

Note that stack checking has been enabled for this task so you are allowed to call 0sTaskStkChk ()

OSTaskDel ()

INT8U OSTaskDel (INT8U prio);

Chapter

File

Called from

Code enabled by

4 0S TASK.C

Task only

0S_TASK_DEL_EN

0OSTaskDel () deletes a task by specifying the priority number of the task to delete. The calling task can be
deleted by specifying its own priority number or os_pr10_SELF (if the task doesn’t know its own priority
number). The deleted task is returned to the dormant state. The deleted task can be re-created by calling either

OSTaskCreate () OF OSTaskCreateExt () to make the task active again.

Arguments

prio is the priority number of the task to delete. You can delete the calling task by passing
0S_PRIO_SELF, in which case the next highest priority task is executed.

Returned Value

0STaskDel () returns one of the following error codes:

0S_ERR_NONE

0S_ERR TASK IDL

0S_ERR TASK DEL

0S_ERR PRIO INVALID

0S_ERR TASK DEL ISR

0S_ERR TASK DEL

0S_ERR TASK NOT EXIST

Notes/\Warnings

E

if the task doesn’t delete itself.

if you try to delete the idle task, which is of course is not

allowed.

if the task to delete does not exist.

if you specify a task priority higher than

0S_LOWEST PRIO.

if you try to delete a task from an ISR.

if the task is assigned to a Mutex.

if the task is assigned to a Mutex PIP.

1. osTaskDel () verifies that you are not attempting to delete the pC/OS-I1 idle task.

2. You must be careful when you delete a task that owns resources. Instead, consider using

OSTaskDelReq () as a safer approach.

520

Example

521

OSTaskDelReg()

INT8U OSTaskDelReq(INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only OS_TASK_DEL_EN

OSTaskDelReq () requests that a task delete itself. Basically, use 0sTaskDelReq () when you need to delete a
task that can potentially own resources (e.g., the task might own a semaphore). In this case, you don’t want to
delete the task until the resource is released. The requesting task calls osTaskDelReq () to indicate that the
task needs to be deleted. Deletion of the task is, however, deferred to the task being deleted. In other words, the
task is actually deleted when it regains control of the CPU. For example, suppose Task 10 needs to be deleted.
The task wanting to delete this task (example Task 5) calls 0sTaskbelReq (10). When Task 10 executes, it
calls o0sTaskDelReq(0S PRIO SELF) and monitors the return value. If the return value is
0S_ERR TASK DEL REQ, then Task 10 is asked to delete itself. At this point, Task 10 calls
0STaskDel (0S_PRIO SELF). Task 5 knows whether Task 10 has been deleted by calling
0STaskDelReq (10) and checking the return code. If the return code is 0S_ERR TASK NOT EXIST, then Task
5 knows that Task 10 has been deleted. Task 5 might have to check periodically until
0S_ERR_TASK_NOT EXIST is returned.

Arguments
prio is the task’s priority number of the task to delete. If you specify 0s PRIO SELF, you are
asking whether another task wants the current task to be deleted.

Returned Value
OSTaskDelReq () returns one of the following error codes:
0S_ERR_NONE if the task deletion has been registered.

0S_ERR TASK NOT EXIST if the task does not exist. The requesting task can monitor this
return code to see if the task is actually deleted.

0S_ERR TASK_IDLE if you ask to delete the idle task (which is obviously not
allowed).

OS_ERR_PRIO INVALID if you specify a task priority higher than
0S_LOWEST_PRIO Or do not specify 0S PRIO SELF.

0S_ERR TASK DEL if the task is assigned to a Mutex.

0S_ERR _TASK_DEL REQ if a task (possibly another task) requests that the running task
be deleted.

Notes/\Warnings

1. osTaskDelReq () Verifies that you are not attempting to delete the uC/OS-I1 idle task.

522

Example

523

OSTaskNameGet()

INT8U OSTaskNameGet (INT8U prio,
INT8U **pname,
INT8U *perr) ;

Chapter

File

Called from Code enabled by

New in V2.60

0S_TASK.C

Task 0S_TASK_NAME EN

OSTaskNameGet () allows you to obtain the name that you assigned to a task. This function is typically used
by a debugger to allow associating a name to a task.

Arguments

prio

pname

perr

is the priority of the task from which you would like to obtain the name from. If you specify
0S_PRIO_SELF, you would obtain the name of the current task.

is a pointer to a pointer to an ASCII string that point to the name of the task.

a pointer to an error code and can be any of the following:

0S_ERR_NONE

If the call is successfull.

0S_ERR TASK _NOT EXIST The task you specified was not created or has been deleted.

0S_ERR_PRIO INVALID If you specified an invalid priority - a priority higher than the

idle task (os rLowesT PrIO) or you didn't specify
0S_PRIO SELF.

0S_ERR_PNAME NULL If you passed a NULL pointer for pname.

OS ERR NAME GET ISR You called this function from an ISR.

Returned Values
The size of the ASCII string pointed to by pname or 0 if an error is encountered.

Notes/\Warnings

1. The task must be created before you can use this function and obtain the name of the task.

524

Example

525

OSTaskNameSet()

void OSTaskNameSet (INT8U prio,
INT8U *pname,
INT8U *perr);

Chapter File Called from Code enabled by
New in V2.60 0S_TASK.C Task 0S_TASK_NAME EN

OSTaskNameSet () allows you to assigh a name to a task. This function is typically used by a debugger to
allow associating a name to a task.

Arguments
prio is the priority of the task that you want to name. If you specify os PrRIO_SELF, you would set
the name of the current task.
pname is a pointer to an ASCII string that contains the name of the task.
perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the call was successfull.
0S_ERR _TASK NOT EXIST The task you specified was not created or has been
deleted.
0S_ERR_PRIO INVALID If you specified an invalid priority - a priority higher than
the idle task (0s LOwWEST PRIO) or you didn't specify
0S_PRIO SELF.
0S_ERR_PNAME NULL If you passed a NULL pointer for pname.
OS_ERR NAME SET ISR You called this function from an ISR.

Returned Values
None.

Notes/\Warnings

1. The task must be created before you can use this function to set the name of the task.

526

Example

527

OSTaskResume()

INT8U OSTaskResume (INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_SUSPEND EN
OSTaskResume () resumes a task suspended through the osTaskSuspend() function.

OSTaskResume () is the only function that can unsuspend a suspended task.

Arguments

prio specifies the priority of the task to resume.

Returned Value
OSTaskResume () returns one of the these error codes:

0S_ERR_NONE

0S ERR TASK RESUME PRIO

0S_ERR_TASK NOT SUSPENDED

0S_ERR_PRIO

0S_ERR TASK NOT EXIST

Notes/\Warnings

none

Example

INVALID

void TaskX (void *p arg)

{
INT8U

for (;

err

if

err;
g) 1

= OSTaskRe
(err == 0S_

sume (10) ;

ERR NONE)

{

if the call is successful.

In fact,

if the task you are attempting to resume does not exist.

if the task to resume has not been suspended.

if prio is higher or equal t0 0S_LOWEST PRIO.

if the task is assigned to a Mutex PIP .

/* Resume task with priority 10 */

/* Task was resumed wy

528

0STaskStkChk()

INT8U 0OSTaskStkChk (INT8U prio,
OS _STK DATA *p stk data);

Chapter File Called from Code enabled by
4 0S_TASK.C Task code 0OS_TASK_CREATE EXT

0STaskStkChk () determines a task’s stack statistics. Specifically, it computes the amount of free stack space,
as well as the amount of stack space used by the specified task. This function requires that the task be created
with 0STaskCreateExt () and that you specify 0s_ TASK OPT STK_ CEHK in the opt argument.

Stack sizing is done by walking from the bottom of the stack and counting the number of O entries on the
stack until a nonzero value is found. Of course, this assumes that the stack is cleared when the task is created.
For that purpose, you need to set 0s TASK OPT STK CLR to 1 as an option when you create the task. You
could set 0s_Task_OpT STK_CLR to O if your startup code clears all RAM and you never delete your tasks.
This reduces the execution time of 0STaskCreateExt ().

Arguments

prio is the priority of the task about which you want to obtain stack information. You can check the
stack of the calling task by passing 0s_PRIO SELF.

P_stk data isa pointer to a variable of type 0s_sTk_ DaTa, which contains the following fields:

INT32U OSFree; /* Number of bytes free on the stack */
INT32U OSUsed; /* Number of bytes used on the stack Y

Returned Value
0STaskStkChk () returns one of the these error codes:
0S_ERR_NONE if you specify valid arguments and the call is successful.

0S_ERR_PRIO_INVALID if you specify a task priority higher than
0S_LOWEST_PRIO Or you don’t specify 0S_PRIO SELF.

0S_ERR TASK NOT EXIST if the specified task does not exist.

0S_ERR_TASK_OPT_ERR if you do not specify os TASK OpPT STK CHK when the task
was created by osTaskCreateExt () oOr if you create the task
by using 0STaskCreate ().

0S_ERR_PDATA NULL ifp_stk data isaNULL pointer.

Notes/\Warnings

1. Execution time of this function depends on the size of the task’s stack and is thus nondeterministic.

2. Your application can determine the total task stack space (in number of bytes) by adding the two fields
.0SFree and .0SUsed of the 0S_STK DATA data structure.

3. Technically, this function can be called by an ISR, but because of the possibly long execution time, it is not
advisable.

529

Example

530

OSTaskSuspend()

INT8U OSTaskSuspend (INT8U prio);

Chapter File Called from Code enabled by
4 0S_TASK.C Task only 0S_TASK_SUSPEND_EN

OSTaskSuspend () suspends (or blocks) execution of a task unconditionally. The calling task can be
suspended by specifying its own priority number or os_pr10 SELF if the task doesn’t know its own priority
number. In this case, another task needs to resume the suspended task. If the current task is suspended,
rescheduling occurs, and pC/OS-I1 runs the next highest priority task ready to run. The only way to resume a
suspended task is to call 0sTaskResume ().

Task suspension is additive, which means that if the task being suspended is delayed until n ticks expire, the
task is resumed only when both the time expires and the suspension is removed. Also, if the suspended task is
waiting for a semaphore and the semaphore is signaled, the task is removed from the semaphore-wait list (if it is
the highest priority task waiting for the semaphore), but execution is not resumed until the suspension is
removed.

Arguments

prio specifies the priority of the task to suspend. You can suspend the calling task by passing
0S_PRIO_SELF, in which case, the next highest priority task is executed.

Returned Value
OSTaskSuspend () returns one of the these error codes:
0S_ERR_NONE if the call is successful.

0S_ERR TASK_SUSPEND IDLE if you attempt to suspend the _C/OS-II idle task, which is
not allowed.

0S_ERR_PRIO_INVALID if you specify a priority higher than the maximum
allowed (i.e., you specify a priority of 0S_LOWEST PRIO
or more) or you don’t specify 0S_PRIO SELF.

0S_ERR TASK_SUSPEND PRIO if the task you are attempting to suspend does not exist.

0S_ERR TASK_NOT EXITS if the task is assigned to a Mutex PIP.

Notes/Warnings
1. o0STaskSuspend () and OSTaskResume () Must be used in pairs.

2. Asuspended task can only be resumed by 0STaskResume () .

531

Example

532

OSTaskQuery()

INT8U OSTaskQuery (INT8U prio,
OS TCB *p task data);

Chapter File Called from Code enabled by
4 0S_TASK.C Task or ISR OS_TASK_QUERY_EN

0sTaskQuery () obtains information about a task. Your application must allocate an 0s_Tcg data structure to
receive a snapshot of the desired task’s control block. Your copy contains every field in the os_TcB structure.
You should be careful when accessing the contents of the os TcB structure, especially osTCBNext and
0STCBPrev, because they point to the next and previous 0os_TcBs in the chain of created tasks, respectively.
You could use this function to provide a debugger kernel awareness.

Arguments

prio is the priority of the task from which you wish to obtain data. You can obtain information
about the calling task by specifying 0s_PRIO SELF.

p_task data isa pointer to a structure of type os_Tcs, which contains a copy of the task’s control block.

Returned Value
OSTaskQuery () returns one of these error codes:

0S_ERR_NONE if the call is successful.
0S_ERR_PRIO_INVALID if you specify a priority higher than 0s_LOWEST PRIO.
0S_ERR_PRIO if you try to obtain information from an invalid task.

0S_ERR TASK NOT EXIST if the task is assigned to a Mutex PIP.

0S_ERR_PDATA NULL ifp task data iSaNULL pointer.

Notes/\Warnings

1. The fields in the task control block depend on the following configuration options (see 0s CFG.H) :
+ OS_TASK CREATE EN
+ 0S_Q EN
+ O0S FLAG EN
+ 0S MBOX EN
+ 0OS_SEM EN

* 0S_TASK DEL EN

533

Example

534

OSTimeDly()

void OSTimeDly (INT32U ticks);

Chapter File Called from Code enabled by
5 0S TIME.C Task only N/A

osTimeDly () allows a task to delay itself for an integral number of clock ticks. Rescheduling always occurs
when the number of clock ticks is greater than zero. Valid delays range from one to 2%2-1 ticks. A delay of 0
means that the task is not delayed, and osTimeD1y () returns immediately to the caller. The actual delay time
depends on the tick rate (see 0s_TICKs PER_SEC in the configuration file 0s_cFG.#).

Arguments
ticks is the number of clock ticks to delay the current task.
Returned Value

none

Notes/\Warnings

1. Note that calling this function with a value of 0 results in no delay, and the function returns immediately to
the caller.

2. Toensure that a task delays for the specified number of ticks, you should consider using a delay value that
is one tick higher. For example, to delay a task for at least 10 ticks, you should specify a value of 11.

Example

void TaskX (void *p arg)
{
for (;:) {

OSTimeDly (10) ; /* Delay task for 10 clock ticks */

535

OSTimeDIyHMSM(O)

void OSTimeDlyHMSM (INT8U hours,
INT8U minutes,
INT8U seconds,
INT16U ms) ;

Chapter File Called from Code enabled by
5 0S TIME.C Task only N/A

osTimeD1yHMSM () allows a task to delay itself for a user-specified amount of time specified in hours, minutes,
seconds, and milliseconds. This format is more convenient and natural than ticks. Rescheduling always occurs
when at least one of the parameters is nonzero.

Arguments

hours is the number of hours the task is delayed. The valid range of values is 0 to 255.

minutes is the number of minutes the task is delayed. The valid range of values is 0 to 59.

seconds is the number of seconds the task is delayed. The valid range of values is 0 to 59.

ms is the number of milliseconds the task is delayed. The valid range of values is 0 to 999. Note

that the resolution of this argument is in multiples of the tick rate. For instance, if the tick rate is
set to 100Hz, a delay of 4ms results in no delay. The delay is rounded to the nearest tick. Thus,
a delay of 15ms actually results in a delay of 20ms.

Returned Value
0STimeD1yHMSM () returns one of the these error codes:
0S_ERR_NONE if you specify valid arguments and the call is successful.

0S_ERR TIME INVALID MINUTES if the minutes argument is greater than 59.

0S_ERR TIME INVALID SECONDS if the seconds argument is greater than 59.

0S_ERR TIME INVALID MS if the milliseconds argument is greater than 999.
OS_ERR _TIME ZERO DLY if all four arguments are 0.
0S_ERR TIME DLY ISR if you called this function from an ISR.

Notes/\Warnings

1. Note that 0STimeD1yHMSM(0,0,0,0) (i.e., hours, minutes, seconds, milliseconds) results in no delay,
and the function returns to the caller.

536

Example

537

OSTimeDlyResume()

INT8U OSTimeDlyResume (INT8U prio);

Chapter File Called from Code enabled by
5 0S TIME.C Task only N/A

0STimeDlyResume () resumes a task that has been delayed through a call to either 0STimeDly () or
0STimeD1yHMSM ().

Arguments

prio specifies the priority of the task to resume.

Returned Value
0OSTimeDlyResume () returns one of the these error codes:

0S_ERR_NONE if the call is successful.
0S_ERR_PRIO_INVALID if you specify a task priority greater than 0S_LOWEST PRIO.
0S_ERR_TIME NOT DLY if the task is not waiting for time to expire.

0S_ERR TASK NOT EXIST if the task has not been created or has been assigned to a Mutex
PIP.

Notes/\Warnings

1. Note that you must not call this function to resume a task that is waiting for an event with timeout. This
situation makes the task look like a timeout occurred (unless you desire this effect).

Example

void TaskX (void *pdata)

{
INT8U err;

pdata = pdata;
for (;;) {

err = OSTimeDlyResume (10); /* Resume task with priority 10 */

if (err == OS _ERR NONE) ({

/* Task was resumed w/

538

OSTimeGet()

INT32U OSTimeGet (void) ;

Chapter File Called from Code enabled by
5 0S TIME.C Task or ISR N/A

0STimeGet () obtains the current value of the system clock. The system clock is a 32-bit counter that counts
the number of clock ticks since power was applied or from a value set by 0STimeSet ().

Arguments
none

Returned Value
The current system clock value (in number of ticks).

Notes/Warnings
none

Example

void TaskX (void *p arg)

{
INT32U0 clk;

for (;7) {

clk = OSTimeGet (); /* Get current value of system clock */

539

OSTimeSet()

volid OSTimeSet (INT32U ticks);

Chapter File Called from Code enabled by
5 0S TIME.C Task or ISR N/A

0oSsTimeSet () sets the system clock. The system clock is a 32-bit counter that counts the number of clock ticks
since power was applied or since the system clock was last set.

Arguments

ticks isthe desired value for the system clock, in ticks.

Returned Value
none

Notes/\Warnings
none

Example

void TaskX (void *p_ arg)
{
for (;;) |

OSTimeSet (OL) ; /* Reset the system clock */

540

OSTimeTick()

void OSTimeTick (void) ;

Chapter File Called from Code enabled by
5 0S TIME.C Task or ISR N/A

0STimeTick () processes a clock tick. uC/OS-11 checks all tasks to see if they are either waiting for time to
expire [because they called 0sTimeDly () Or 0STimeD1yHMSM ()] Or waiting for events to occur until they
timeout.

Arguments
none

Returned Value
none
Notes/\Warnings

1. The execution time of osTimeTick () is directly proportional to the number of tasks created in an
application. osTimeTick () can be called by either an ISR or a task. If called by a task, the task priority
should be very high (i.e., have a low priority number) because this function is responsible for updating
delays and timeouts.

o241

Example

(Intel 80x86, real mode, large model)

~OSTickISR PROC FAR

_0STickISR

PUSHA
PUSH ES
PUSH DS

MOV AX, SEG(_OSIntNesting)

MOV DS, AX

INC BYTE PTR DS: OSIntNesting
CMP BYTE PTR DS:_ OSIntNesting, 1
JNE SHORT _OSTickISR1

MOV AX, SEG(_OSTCBCur)

MOV DS, AX
LES BX, DWORD PTR DS: OSTCBCur
MOV ES: [BX+2], SS

MOV ES: [BX+0], SP
CALL FAR PTR OSTimeTick

CALL FAR PTR _OSIntExit
POP DS

POP ES

POPA

IRET
ENDP

542

7

Save processor context

Reload DS

Notify pC/0S-II of ISR

if (OSIntNesting == 1)

Reload DS

OSTCBCur—->0STCBStkPtr = SS:SP

Process clock tick

User Code to clear interrupt

Notify HC/OS-II of end of ISR

Restore processor registers

Return to interrupted task

OSTmrCreate()

0S_TMR *OSTmrCreate (INT32U dly,

INT32U0 period,
INT8U opt,
OS_TMR CALLBACK callback,
void *callback arg,
INT8U *pname,
INT8U *perr) ;

Chapter File Called from Code enabled by

New in V2.83 0S_TMR.C Task OS_TMR_EN

OSTmrCreate (

) allows you to create a timer. The timer can be configured to run continuously (opt set to

0S_TMR OPT PERIODIC) Or only once (opt setto os_TMR OPT ONE_SHOT). When the timer counts down to
0 (from the value specified in period), an optional ‘callback’ function can be executed. The callback can be
used to signal a task that the timer expired or, perform any other function. However, it’s recommended that
you keep the callback function as short as possible.

You MUST call osTmrstart () to actually start the timer. If you configured the timer for one shot mode and
the timer expired, you need to call osTmrstart () to retrigger the timer or osTmrDel () to delete the timer if
you don’t plan on retriggering it and or not use the timer anymore. Note that you can use the callback function
to delete the timer if you use the one shot mode.

Arguments

dly

period

opt

specifies an initial delay used by the timer (see drawing below).

In ONE-SHOT mode, this is the time of the one-shot.

If in PERIODIC mode, this is the initial delay before the timer enters periodic mode.

The units of this time depends on how often you call 0STmrSignal (). In other words, if
0STmrSignal () is called every 1/10 of a second (i.e. 0S_TMR CFG_TICKS PER_SEC Setto
10) then, d1y specifies the number of 1/10 of a second before the delay expires. Note that
the timer is NOT started when it is created.

specifies the amount of time it will take before the timer expires. You should set the
‘period’ to 0 when you use one-shot mode. The units of this time depends on how often
you call 0sTmrSignal (). In other words, if 0STmrSignal () is called every 1/10 of a
second (i.e. 0S_TMR CFG TICKS PER SEC Setto 10) then, period specifies the number of
1/10 of a second before the timer times out.

0S_TMR OPT PERIODIC:
specifies whether you want to timer to automatically reload itself.

0S_TMR_OPT ONE_SHOT:
specifies to stop the timer when it times out.

Note that you MUST select one of these two options.

543

callback

callback arg

pname

perr

specifies the address of a function (optional) that you want to execute when the timer expires
or, is terminated before it expires (i.e. by calling osTmrstop ()). The callback function must
be declared as follows:

void MyCallback (void *ptmr, void *callback_arg);

When the timer expires, this function will be called and passed the timer ‘handle’ of the
expiring timer as well as the argument specified by callback arg.

You should note that you don’t have to specify a callback and, in this case, simply pass a
NULL pointer.

Is the argument passed to the callback function when the timer expires or is terminated.
callback_arg can be a NULL pointer if the callback function doesn’t require arguments.

Is a pointer to an ASCII string that allows you to give a name to your timer. You can retrieve
this name by calling 0STmrNameGet ().

a pointer to an error code and can be any of the following:

0S_ERR_NONE If the timer was created successfully.

0S_ERR_TMR INVALID DLY
You specified a delay of 0 when in ONE SHOT mode.

0S_ERR_TMR INVALID PERIOD
You specified a period of 0 when in PERIODIC mode.

OS_ERR TMR INVALID OPT
If you did not specify either oS TMR OPT PERIODIC Of
OS_TMR OPT ONE SHOT.

0S_ERR_TMR ISR
If you called this function from an ISR, which you are not
allowed to do.

0S_ERR_TMR NON AVAIL
You get this error when you cannot start a timer because all
timer elements (i.e. objects) have already been allocated.

0S_ERR_TMR NAME TOO LONG
The name you are giving to the timer is too long and must be
lessthan OS_TMR CFG NAME SIZE.

544

PERIODIC MODE (see ‘opt’)-dly > 0

dly period
«—>

|T |T lT I # Time.
OSTmrStart () T Ccallback T
Called called

v

PERIODIC MODE (see ‘opt’) —dly ==

v

I I I
Pttt e
OSTmrStart () Caligagk

Called cane

ONE-SHOT MODE (see ‘opt’) —dly MUST be non-zero
dly

v

v

Time
OSTmrStart () Callback
Ca”ed called

545

Returned Values

A pointer to an 0s_TMR object that you MUST use to reference the timer that you just created. A NULL pointer
is returned if the timer was not created because of errors (see returned error codes).

Notes/\Warnings
1. You should examine the return value to make sure what you get from this function is valid.

2. You MUST NOT call this function from an ISR.

3. Note that the timer is NOT started when it is created. To start the timer, you MUST call
OSTmrStart ().

Example

OS TMR *CloseDoorTmr;

void Task (void *p arg)

{
INT8U err;

(void)p_arg;
for (;;) {
CloseDoorTmr = OSTmrCreate(10,
100,
0S_TMR_OPT PERIODIC,
DoorCloseFnct,
(void *)O0,
“Door Close”,
s&err) ;
if (err == OS_ERR NONE) {
/* Timer was created but NOT started */

546

OSTmrDel ()

BOOLEAN OSTmrDel (OS_ TMR *ptmr,
INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.83 0S_TMR.C Task OS_TMR_EN

osTmrDel () allows you to delete a timer. If a timer was running, it will be stopped and then deleted. If the
timer has already timed out and is thus stopped, it will simply be deleted.

It is up to you to delete unused timers. If you delete a timer you MUST NOT reference it anymore.

Arguments

ptmr is a pointer to the timer that you want to delete. This pointer is returned to you when the timer
is created (See OSTmrCreate ()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the timer was deleted successfully.
0S_ERR_TMR INVALID If you passed a NULL pointer for the ptmr argument.

O0S_ERR TMR INVALID TYPE ‘ptmr’ iSnot pointing to a timer.
0S_ERR TMR ISR You called this function from an ISR which is NOT allowed.

0S_ERR TMR INACTIVE ptmr iS pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

0s_TRUE if the timer was deleted
0s_FALSE if an error occurred.

Notes/\Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

3. If you delete a timer you MUST NOT reference it anymore.

47

Example

548

OSTmrNameGet()

INT8U OSTmrNameGet (OS_TMR *ptmr,
INT8U **pname,

INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.81 0S_TMR.C Task 0S_TMR EN && OS_TMR CFG NAME EN

0STmrNameGet () allows you to retrieve the name associated with the specified timer. 0STmrNameGet ()
places the name of the timer in an array of characters which must be as big as 0S_TMR CFG_NAME SIZE (See
0S_CFG.H).

Arguments
ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the
timer is created (See OSTmrCreate ()).
pdest is a pointer to a pointer to the name of the timer.
perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the name of the task was copied to the array pointed to by
pname.

0S_ERR TMR INVALID DEST You specified a NULL pointer for pdest.

0S_ERR_TMR INVALID If you passed a NULL pointer for the ptmr argument.
0S_ERR TMR INVALID TYPE ‘ptmr’ iS not pointing to a timer.

O0S_ERR _NAME GET ISR You called this function from an ISR which is NOT allowed.

0S_ERR TMR INACTIVE ptmr iS pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

The length of the timer name (in number of characters).

Notes/\Warnings
1. You should examine the return value of this function.
2. You MUST NOT call this function from an ISR.

549

Example

550

OSTmrRemainGet()

INT32U OSTmrRemainGet (OS_TMR *ptmr,
INT8U *perr);

Chapter File Called from Code enabled by
New in V2.81 0S_TMR.C Task OS_TMR_EN

OSTmrRemainGet () allows you to obtain the time remaining (before it times out) of the specified timer. The
value returned depends on the rate (in Hz) at which the timer task is signaled (see
0S_TMR CFG_TICKS PER SEC iN 0S_CFG.H). In other words, if 0S TMR CFG TICKS PER SEC iSSetto 10
then the value returned is the number of 1/10 of a second before the timer times out. If the timer has timed out,
the value returned will be 0.

Arguments

ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the
timer is created (see OSTmrCreate ()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the function returned the time remaining for the timer.
0S_ERR_TMR INVALID If you passed a NULL pointer for the ptmr argument.

O0S_ERR TMR INVALID TYPE ‘ptmr’ iSnot pointing to a timer.
0S_ERR TMR ISR You called this function from an ISR which is NOT allowed.

0S_ERR TMR INACTIVE ptmr iS pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

The time remaining for the timer. The value returned depends on the rate (in Hz) at which the timer task is
signaled (see 0S TMR CFG_TICKS PER SEC in 0S_CFG.H). In other words, if
0S_TMR CFG_TICKS PER SEC is Set to 10 then the value returned is the number of 1/10 of a second before
the timer times out. If you specified an invalid timer, the returned value will be 0. If the timer has already
expired then the returned value will be 0.

Notes/\Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

551

Example

552

OSTmrSignal ()

INT8U OSTmrSignal (void) ;

Chapter File Called from Code enabled by
New in V2.81 0S_TMR.C Task or ISR OS_TMR_EN

osTmrSignal () is called either by a task or an ISR to indicate that it’s time to update the timers. Typically,
0STmrSignal () would be called by osTimeTickHook () at a multiple of the tick rate. In other words, if
0S_TICKS PER SEC isSetto 1000 in 0s_crG.H then you should call osTmrsignal () every 10" or 100™ tick
interrupt (100 Hz or 10 Hz, respectively). You should typically call osTmrsignal () every 1/10 of a second.
The higher the timer rate, of course, the more overhead timer management will impose on your system.
Generally, we recommend 10 Hz (1/10 of a second).

You ‘could’ call 0sTmrSignal () from the pC/OS-II tick ISR hook function (see example below). If the tick
rate occurs at 1000 Hz then you can simply call 0sTmrsignal () every 100" tick. Of course, you would have
to implement a simple counter to do this.

Arguments

None.

Returned Values

0STmrSignal () uses semaphores to implement the signaling mechanism. Because of that, 0STmrSignal ()
can return one of the following errors. However, it’s very unlikely you will get anything else but
0S_ERR_NONE.

0S_ERR_NONE The call was successful and the timer task was signaled.

0S_ERR_SEM OVF If 0STmrSignal () was called more often than 0STmr Task () can handle the
timers. This would indicate that your system is heavily loaded.

0S_ERR _EVENT TYPE Unlikely you would get this error because the semaphore used for signaling is
created by pC/OS-II.

0S_ERR_PEVENT NULL Again, unlikely you would ever get this error because the semaphore used for

signaling is created by pC/OS-I1.

553

Notes/Warnings
None.

Example

#if OS_TMR EN > 0
static INT16U OSTmrTickCtr = 0;
#endif

voild OSTimeTickHook (void)
{
#if OS TMR EN > 0
OSTmrTickCtr++;
if (OSTmrTickCtr >= (OS_TICKS PER SEC / OS TMR CFG TICKS PER SEC)) {
OSTmrTickCtr = 0;
OSTmrSignal () ;
}
#endif
}

554

OSTmrStart()

BOOLEAN OSTmrStart (OS_TMR *ptmr,

INT8U *perr) ;
Chapter File Called from Code enabled by
New in V2.81 0S_TMR.C Task OS_TMR_EN

osTmrStart () allows you to start (or restart) the countdown process of a timer. The timer to start MUST
have previously been created.

Arguments

ptmr is a pointer to the timer that you want to start (or restart). This pointer is returned to you when
the timer is created (see OSTmrCreate ()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the timer was started.
0S_ERR_TMR INVALID If you passed a NULL pointer for the ptmr argument.

0S_ERR_TMR INVALID TYPE ‘ptmr’ isnot pointing to a timer.
0S_ERR TMR ISR You called this function from an ISR which is NOT allowed.

0S_ERR_TMR INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

OS_TRUE if the timer was started
OS_FALSE if an error occurred.

Notes/\Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

3. The timer to start MUST have previously been created.

555

Example

556

OSTmrStateGet()

INT8U OSTmrStateGet (OS_TMR *ptmr,
INT8U *perr);

Chapter File Called from Code enabled by
New in V2.83 0S_TMR.C Task OS_TMR_EN

0STmrStateGet () allows you to obtain the current state of a timer. A timer can be in one of 4 states:

OS_TMR STATE UNUSED The timer has not been created
OS_TMR STATE STOPPED The timer has been created but has not been started or has been
stopped.
OS_TMR STATE COMPLETED The timer is in ONE-SHOT mode and has completed its delay.
OS_TMR_STATE RUNNING The timer is currently running
Arguments
ptmr is a pointer to the timer that you are inquiring about. This pointer is returned to you when the

timer is created (see OSTmrCreate ()).

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the function returned the time remaining for the timer.
0S_ERR_TMR INVALID If you passed a NULL pointer for the ptmr argument.

O0S_ERR TMR INVALID TYPE ‘ptmr’ iSnot pointing to a timer.
0S_ERR TMR ISR You called this function from an ISR which is NOT allowed.

0S_ERR TMR INACTIVE ptmr iS pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has been
deleted or was not created.

Returned Values

The state of the timer (see description).

Notes/\Warnings
1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

557

Example

558

OSTmrStop()

BOOLEAN OSTmrStop(0OS TMR “*ptmr,
INT8U opt,
void *callback arg,
INT8U *perr) ;

Chapter File Called from Code enabled by
New in V2.81 0S_TMR.C Task OS_TMR_EN

osTmrStop () allows you to stop (i.e. abort) a timer. You can execute the callback function of the timer when
it’s stopped and pass this callback function a different argument than what was specified when the timer was
started. This allows your callback function to know that the timer was stopped because the callback argument
can be made to indicate this (this, of course, is application specific). If the timer is already stopped, the
callback function is not called.

Arguments

ptmr Is a pointer to the timer you want to stop. This ‘handle’ was returned to your application
when you called osTmrStart () and uniquely identifies the timer.

opt specifies whether you want the timer to:

1) 0S_TMR OPT NONE:
Do NOT call the callback function.

2) 0S_TMR OPT_ CALLBACK:
Call the callback function and pass it the callback argument specified when you started
the timer (see 0STmrCreate ()).

3) 0S_TMR OPT CALLBACK_ ARG:
Call the callback function BUT pass it the callback argument specified in the
osTmrStop () function INSTEAD of the one defined in 0STmrCreate ().

callback arg If you set opt t0 0S TMR OPT CALLBACK ARG then this is the argument passed to the
callback function when it’s executed.

perr a pointer to an error code and can be any of the following:
0S_ERR_NONE If the timer was started.
0S_ERR_TMR_ INVALID If you passed a NULL pointer for the ptmr argument.

0S_ERR TMR INVALID TYPE ‘ptmr’ iSnot pointing to a timer.

0S_ERR_TMR_ ISR You called this function from an ISR which is NOT
allowed.

0S_ERR_TMR INVALID OPT You specified an invalid option for ‘opt’.

0S_ERR_TMR STOPPED The timer was already stopped. However, this is NOT
considered an actual error since it’s OK to attempt to stop a
timer that is already stopped.

0S_ERR_TMR INACTIVE ptmr is pointing to an inactive timer. In other words, you
would get this error if you are pointing to a timer that has
been deleted or was not created.

559

0S_ERR_TMR NO CALLBACK If you wanted the callback to be called but no callback has
been specified for this timer.

Returned Values

OS_TRUE if the timer was stopped (even if it was already stopped).
OS_FALSE if an error occurred.

Notes/Warnings

1. You should examine the return value to make sure what you get from this function is valid.
2. You MUST NOT call this function from an ISR.

3. The callback function is NOT called if the timer is already stopped.

Example

0S TMR *CloseDoorTmr;

void Task (void *p arg)

{
INT8U err;

(void)p_ arg;
for (;;) |
OSTmrStop (CloseDoorTmr,
0S_TMR OPT CALLBACK,
(void *)O0,

&err) ;
if (err == OS_ERR NONE || err == OS _ERR TMR STOPPED) ({
/* Timer was stopped ... w2/
/* ... callback was called only if timer was running */

560

OSVersion()

INT16U OSVersion (void) ;

Chapter

File

Called from

Code enabled by

3 OS CORE.C

Task or ISR

N/A

OSVersion () obtains the current version of uC/OS-II.

Arguments
none

Returned Value

The version is returned as x.yy multiplied by 100. For example, v2.87 is returned as 287.

Notes/\Warnings
none

Example

void TaskX (void *p arg)
{

INT16U os_version;

for (;;) {

os_version = OSVersion();

/* Obtain pC/0S-II's version)

561

