
 1

Micriµm
© Copyright 2009, Micriµm

All Rights reserved

New Features and Services
since

µC/OS-II V2.00
(Current Version: V2.89)

www.Micrium.com

http://www.micrium.com/

 2

Introduction
This document describes all the features and services added to µC/OS-II since the introduction
of the hard cover book MicroC/OS-II, The Real-Time Kernel, ISBN 0-87930-543-6. The
software provided with the book was version 2.00 or V2.04. The version number of the change
is shown when appropriate.

Delete task on incorrect return (V2.89)
µC/OS-II now contains a new function called OS_TaskReturn(). All µC/OS-II tasks are
not allowed to return. If a task returns by mistake, OS_TaskReturn() catches those and
deletes the task.

OS_TaskReturn() calls OSTaskReturnHook() which in turn calls
App_TaskreturnHook().

Pend on Multiple Events (V2.86)
µC/OS-II now contains a new function called OSEventPendMulti() which allows a task to
pend on multiple events (semaphores, mailboxes and queues) in any combination (see example
diagram below). This new function is found in OS_CORE.C and is enabled by setting
OS_EVENT_MULTI_EN to 1 in OS_CFG.H.

With OSEventPendMulti() it’s possible to pend on any number of semaphores, mailboxes
and message queues at the same time (we don’t support Mutex and Event Flags at this time). If a
task pends on a combination of the above ‘events’ then, as soon an event is posted (and the
pending task is the highest priority task pending on the event), the waiting task will wake up and
be ‘handed’ the event. If events are present as the task pends then ALL the available events will
be provided to the task.

TaskOR

ISR

ISR

ISR

ISR

Task

Task

Task

Post

Post

Post

Post

Post

Post

Pend

Timeout

 3

 4

Timer Manager (V2.81)
µC/OS-II now provides support for periodic as well as one-shot timers. This functionality is
found in OS_TMR.C and is enabled by setting OS_TMR_EN to 1 in OS_CFG.H. Your
application can have any number of timers (up to 65500). When a timer times out, an optional
callback function can be called allowing you to perform any action (signal a task, turn on/off a
light, etc.). Each timer has its own callback function.

IMPORTANT
The APIs for the Timer Manager were changed in V2.83 from
what they were in V2.81 and V2.82. This was necessary to correct
some issues with the Timer Manager. Please consult the Reference
Manual for the new APIs.

When timer management is enabled, µC/OS-II creates a timer task (OSTmrTask()) which is
responsible for updating all the timers. The priority of this task is determined by
OS_TASK_TMR_PRIO which should be defined in your application’s APP_CFG.H.

The timer manager provides a number of services to your applications. Specifically, you can call
one of the following functions (see the µC/OS-II reference manual for a description of these
functions) from your tasks:

 5

OSTmrCreate() Create a timer
OSTmrDel() Delete a timer
OSTmrRemainGet() Determine how much time before a timer expires
OSTmrNameGet() Get the name of a timer
OSTmrStateGet() Get the state of a timer (UNUSED, STOPPED, RUNNING, COMPLETED)

OSTmrStart() Start a timer
OSTmrStop() Stop a timer

You should note that you CANNOT call these functions from ISRs.

The drawing below shows the task model of the Timer Manager. You should note that
semaphore management needs to be enabled (you need to set OS_SEM_EN to 1 in OS_CFG.H)
for the timer manager to work. The timer manager requires two (2) semaphores.

(1) An ISR or an application task needs to ‘signal’ a counting semaphore by calling

OSTmrSignal() at the rate specified in OS_TMR_CFG_TICK_RATE (see
OS_CFG.H). The counting semaphore is called OSTmrSemSignal that is initialized to
0 by µC/OS-II when OSInit() is called. You should note that you should ONLY
call OSTmrSignal() and not worry about the semaphore; it’s encapsulated by
OSTmrSignal().

(2) The timer management task (OSTmrTask()) pends forever on the counting semaphore

waiting for it to be signaled. When the semaphore is signaled, OSTmrTask() acquires
another semaphore (a binary semaphore in this case, OSTmrSem) to gain exclusive
access to timer data structures. When OSTmrTask() is the owner of the semaphore it
updates all the timers created by your application.

(3) Your application accesses timer data structure via interface functions. These functions

allow you to create, delete, start and stop timers as well as examine the amount of time
remaining before a timer times out.

OSTmrSignal()

OSTmrSemSignal

ISR

Task

OR
OSTmrTask()

OSTimeTickHook()

Application
Tasks

OSTmrCreate()
OSTmrDel()
OSTmrRemainGet()
OSTmrNameGet()
OSTmrStateGet()
OSTmrStart()
OSTmrStop()

Timer
Data

Structures

(1)

(2)

(3)

OS_TMR.C

OSTmrSem

The drawing below shows the data structures used in the timer manager.

OS_TMR_WHEEL
OSTmrWheelTbl[]

 6

(4) Each timer is characterized by a data structure of type OS_TMR (see ucos_ii.h).

Each timer contains the ‘period’ of the timer (if the timer is to operate in periodic mode),
the name of the timer, a timer ‘match’ value (described later) and other fields used to link
the timer. Free timers are placed in a singly linked list of ‘unused’ timers pointed to by
OSTmrFreeList.

(4)

[0]

[1]

[2]

[OS_TMR_CFG_WHEEL_SIZE-1]

#Entries in Spoke Pointer to OS_TMR

0 0

0 0
2

3

0

0

0

0

0

0

0

0

0

0

0

0

OS_TMR

0

OS_TMR

OSTmrFreeList OSTmrFree

OSTmrUsed

3

5
(5)

(7)

(8)

(6)

325OSTmrTime

 7

(5) The number of free timers is held in OSTmrFree and the number of used (or allocated)
timers is held in OSTmrUsed. Of course, the total number of timers is the sum of these
two fields and, unless you don’t properly use the timer management services, that sum
should always equal OS_TMR_CFG_MAX.

(6) Every time OSTmrSignal() is called, the unsigned 32-bit variable OSTmrTime is

incremented by one and used to see if timers have expired.

(7) The timer manager keeps track of which timer it needs to update using a ‘timer wheel’.

The wheel is basically an array of structures of type OS_TMR_WHEEL (see
ucos_ii.h) that wraps around. This structure contains two fields: a pointer to a
doubly-linked list of OS_TMR structures and, the number of entries in that list.

(8) The ‘wheel’ contains OS_TMR_CFG_WHEEL_SIZE entries or spokes.

OS_TMR structures are inserted in the wheel when you call OSTmrStart(). The position (i.e.
spoke) in OSTmrWheelTbl[] for a specific timer is given by:

match = OSTmrTime + period;
spoke = match % OS_TMR_CFG_WHEEL_SIZE;

The ‘match’ corresponds to the value that OSTmrTime needs to reach before the timer expires.
For example, let’s say that OSTmrTime is 0 (just initialized) and we want to create a timer that
will expire every second (assuming OS_TMR_CFG_TICKS_PER_SEC is set to 10). Also, let’s
assume that OS_TMR_CFG_WHEEL_SIZE is 8 (as shown in the diagram above).

match = OSTmrTime + period;
match = 0 + 10;
match = 10;

spoke = match % OS_TMR_CFG_WHEEL_SIZE;
spoke = 10 % 8;
spoke = 2;

This means that OSTmrStart() will obtain a free OS_TMR data structure from the free list of
timers and the place this data structure in OSTmrWheelTbl[] at position #2 in the table.
OSTmrStart() will then store the ‘match’ value in the OS_TMR data structure.

Every time OSTmrTime is incremented by OSTmrTask(), OSTmrTask() goes through
ALL the OS_TMR structures placed at spoke (OSTmrTime % OS_TMR_CFG_WHEEL_SIZE)
to see if OSTmrTime ‘matches’ the value store in the OS_TMR structure. If a match occurs, the
timer is removed from the list. If the timer was started by OSTmrStart() with a ‘periodic’
option then, the OS_TMR structure is placed in the OSTmrWheelTbl[] by calculating its new
position, again using OSTmrTime + period. In our example, the new ‘spoke’ would be:

 8

match = OSTmrTime + period;
match = 10 + 10;
match = 20;

spoke = match % OS_TMR_CFG_WHEEL_SIZE;
spoke = 20 % 8;
spoke = 4;

The use of a timer wheel basically reduces the execution time of the timer task so that it only
handles a few of the timers. Of course, the worst case is such that all timers are placed in the
same spoke of the timer wheel. However, statistically, this will occur rarely. It’s generally
recommended to keep the size of the wheel a fraction of the total number of times. In other
words, you should set:

OS_TMR_CFG_WHEEL_SIZE <= Fraction of (OS_TMR_CFG_MAX)

A fraction of 2 to 8 should work well.

RAM usage (in bytes) for the timer manager is shown below:

2 * sizeof(INT16U) +
1 * sizeof(INT32U) +
3 * sizeof(POINTER) +
OS_TASK_TMR_STK_SIZE * sizeof(OS_STK) +
OS_TMR_CFG_WHEEL_SIZE * (sizeof(INT16U) + sizeof(POINTER)) +
OS_TMR_CFG_MAX * (4 * sizeof(POINTER) +
 2 * sizeof(INT32U) +
 3 * sizeof(INT8U) +
 OS_TMR_CFG_NAME_SIZE * sizeof(INT8U))

Because INT8Us and BOOLEANs are typically 1 byte, INT16Us are 2 bytes and INT32Us are 4
bytes, we can simplify the above equation as follows:

2 * 2 +
1 * 4 +
3 * sizeof(POINTER) +
OS_TASK_TMR_STK_SIZE * sizeof(OS_STK) +
OS_TMR_CFG_WHEEL_SIZE * (2 + sizeof(POINTER)) +
OS_TMR_CFG_MAX * (4 * sizeof(POINTER) +
 2 * 4 +
 3 +
 OS_TMR_CFG_NAME_SIZE)

Or,

8 +
3 * sizeof(POINTER)
OS_TASK_TMR_STK_SIZE * sizeof(OS_STK) +

 +

OS_TMR_CFG_WHEEL_SIZE * (2 + sizeof(POINTER)) +
OS_TMR_CFG_MAX * (4 * sizeof(POINTER) + 11 + OS_TMR_CFG_NAME_SIZE)

Support for 255 tasks (V2.80)
µC/OS-II can now support up to 255 tasks. To support up to 255 tasks, we simply increased
the ready list and event wait lists to a matrix of 16x16 instead of 8x8. In fact, the actual size of
the matrix (whether 8x8 or 16x16) depends on the value of OS_LOWEST_PRIO in OS_CFG.H.
If OS_LOWEST_PRIO is less than or equal to 63, we use an 8x8 matrix and thus µC/OS-II
behaves exactly the same as it used to. If you specify a value for OS_LOWEST_PRIO to be
greater than 63, we use the 16x16 matrix as show below.

7

0

0

15

HPT (0)

LPT (254)

NEVER used,
OS_PRIO_SELF

HPT (0)

LPT (63)

OSRdyGrp OSRdyTbl[]
8x8 Max.

OSRdyGrp OSRdyTbl[]
16x16 Max.

OS_LOWEST_PRIO <= 63 OS_LOWEST_PRIO > 63

0 15

0 7

You should note that the actual size of the matrix depends on OS_LOWEST_PRIO. For
example, if OS_LOWEST_PRIO is 10 then the matrix is actually 2x8 (two bytes of 8 bits).
Similarly, if OS_LOWEST_PRIO is set to 47, the matrix will be 6x8. When
OS_LOWEST_PRIO is above 63, we use 16-bit wide entries. For example, if you specify
OS_LOWEST_PRIO to be 100 then the matrix will be 7x16 (7 entries of 16 bits each). You
CANNOT set OS_LOWEST_PRIO to 255 because this value is reserved for OS_PRIO_SELF.

 9

 10

New Files

APP_CFG.H (Added in V2.80)

We now assume the presence of a file called APP_CFG.H which is declared in your application. The
purpose of this file is to assign task priorities, stack sizes and other configuration information for your
application.

OS_CFG_R.H (Added in V2.70)

This file is ‘reference’ file so that you don’t have to create this file from scratch. OS_CFG_R.H has been
added in V2.70 and is found in the ‘Source’ directory of the microprocessor independent portion of
µC/OS-II. It is recommended that you copy OS_CFG_R.H to OS_CFG.H of your project directory.

OS_TMR.C (Added in V2.81, revised in V2.83)

We added a timer manager function in µC/OS-II. You can now define any number of timers. The timers
can be periodic or one-shots. A user definable function can be called when the timer expires. One such
function is definable for each timer in your application.

New Port Files
OS_DBG.C (Added in V2.62 but renamed from OS_DEBUG.C in V2.70)
OS_DBG_R.C (Added in V2.70)

This file should be placed in the same directory as OS_CPU_C.C, OS_CPU.H and OS_CPU_A.ASM of
the port you are using. OS_DBG.C defines a series of variables that are placed in ROM (code space).
These variables are used by some Kernel Aware Debuggers to get information about µC/OS-II and its
configuration. If you DON’T use a Kernel Aware Debugger that requires this file, you DON’T need to
have it. Check you Kernel Aware Debugger documentation. OS_DBG.C used to be called OS_DEBUG.C
in V2.62.

OS_DBG_R.C is a ‘reference’ file so that you don’t have to create this file from scratch. OS_DBG_R.C
has been added in V2.70 and is found in the ‘Source’ directory of the microprocessor independent portion
of µC/OS-II.

 11

Changes
uCOS_II.H (Changed in V2.70, V2.80 and V2.84)

This file now includes #include statements to include APP_CFG.H, OS_CPU.H and OS_CFG.H. This
allows you to compile µC/OS-II without the needs of any other library functions.

Chaned error codes to make them more consistent. Specifically, all error codes start with OS_ERR_. The
old error codes have been kept for backward compatibility but you should now use and check for the new
error codes.

Time delays and Timeouts (Changed in V2.87)

All time delays and timeouts are now implemented using an unsigned 32-bit variable. This actually
simplified OSTimeDlyHMSM() and allowed OSTimeDlyResume() to work with any delay. Of
course, this means that additional storage is needed in the tasks OS_TCBs (2 extra bytes) but that should
not be a problem with most applications. It turns out that close to 90% of µC/OS-II users use 32-bit CPUs.

Names of objects stored as pointers (Changed in V2.87)

Names of objects were previously stored in RAM inside the different kernel objects. Specifically, RAM
storage was allocated in the OS_TCB, for example, to store the name of a task. As of V2.87, all such
names are now referenced using pointers. This drastically reduces the amount of RAM needed to store
ASCII names since names are now typically allocated by the compiler as constant strings and thus placed
in ROM. This was done to reduce the amount of RAM needed (a processor typically has more ROM than
RAM) and also to lift the limit of the length of a kernel object name.

 12

New #define Constants and Macros
OS_APP_HOOKS_EN (OS_CFG.H, V2.85)

This constant specifies whether µC/OS-II‘s hook functions will call application defined hooks.
Specifically, when set to 1 …

The µC/OS-II hook … Calls the Application-define hook …
OSTaskCreateHook() App_TaskCreateHook()
OSTaskDelHook() App_TaskDelHook()
OSTaskIdleHook() App_TaskIdleHook()
OSTaskStatHook() App_TaskStatHook()
OSTaskSwHook() App_TaskSwHook()
OSTCBInitHook() App_TCBInitHook()
OSTimeTickHook() App_TimeTickHook()

OS_ARG_CHK_EN (OS_CFG.H, V2.04)

This constant is used to specify whether argument checking will be performed at the beginning of most of
µC/OS-II services. You should always choose to turn this feature on (when set to 1) unless you need to
get the best performance possible out of µC/OS-II or, you need to reduce code size.

OS_CRITICAL_METHOD #3 (OS_CPU.H, V2.04)

This constant specifies the method used to disable and enable interrupts during critical sections of code.
Prior to V2.04, OS_CRITICAL_METHOD could be set to either 1 or 2. In V2.04, I added a local variable
(i.e. cpu_sr) in most function calls to save the processor status register which generally holds the state of
the interrupt disable flag(s). You would then declare the two critical section macros as follows:

 #define OS_ENTER_CRITICAL() (cpu_sr = OS_CPUSR_Save())
 #define OS_EXIT_CRITICAL() (OS_CPU_SR_Restore(cpu_sr))

Note that the functions OS_CPU_SR_Save() and OS_CPU_SR_Restore() would be written
in assembly language and would typically be found in OS_CPU_A.ASM (or equivalent).

OS_DEBUG_EN (OS_CFG.H, V2.60)

This constant is used to enable ROM constants used for debugging using a kernel aware debugger. The
constants are found in OS_CORE.C.

OS_EVENT_MULTI_EN (OS_CFG.H, V2.86)

This constant determines whether the code to support pending on multiple events will be enabled (1) or not
(0). This constant thus enables code for the function OSEventPendMulti(). This #define was
added in V2.86.

 13

OS_EVENT_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to a semaphore, a mutex, a mailbox or a message
queue. If OS_EVENT_NAME_EN is set to 0, this feature is disabled.

OS_FLAG_EN (OS_CFG.H, V2.51)

This constant is used to specify whether you will enable (when 1) code generation for the event flags.

OS_FLAG_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to event flag groups. If OS_FLAG_NAME_EN is
set to 0, this feature is disabled.

OS_FLAG_WAIT_CLR_EN (OS_CFG.H, V2.51)

This constant is used to enable code generation (when 1) to allow to wait on cleared event flags.

OS_MAX_FLAGS (OS_CFG.H, V2.51)
This constant is used to determine how many event flags your application will support.

OS_MBOX_PEND_ABORT_EN (OS_CFG.H, V2.84)

This constant is used to determine whether you will enable (when 1) code generation for the
OSMboxPendAbort() function.

OS_MEM_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to memory partitions. If OS_MEM_NAME_EN is
set to 0, this feature is disabled and no RAM is used in the OS_MEM for the memory partition.

OS_MUTEX_EN (OS_CFG.H, V2.04)

This constant is used to specify whether you will enable (when 1) code generation for mutual exclusion
semaphores.

OS_Q_PEND_ABORT_EN (OS_CFG.H, V2.84)

This constant is used to determine whether you will enable (when 1) code generation for the
OSQPendAbort() function.

OS_SEM_PEND_ABORT_EN (OS_CFG.H, V2.84)
This constant is used to determine whether you will enable (when 1) code generation for the
OSSemPendAbort() function.

 14

OS_TASK_NAME_EN (OS_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to tasks. If OS_TASK_NAME_EN is set to 0, this
feature is disabled and no RAM is used in the OS_TCB for the task name.

OS_TASK_PROFILE_EN (OS_CFG.H, V2.60)

This constant allows variables to be allocated in each task’s OS_TCB that hold performance data about
each task. Specifically, if OS_TASK_PROFILE_EN is set to 1, each task will have a variable to keep
track of the number of context switches, the task execution time, the number of bytes used by the task and
more.

OS_TASK_STAT_STK_CHK_EN (OS_CFG.H, V2.60)

This constant allows the statistic task to determine the actual stack usage of each active task. If
OS_TASK_STAT_EN is set to 0 (the statistic task is not enabled), you can call
OS_TaskStatStkChk() yourself from one of your tasks. . If OS_TASK_STAT_EN is set to 1, stack
sizes will be determined every second.

OS_TASK_SW_HOOK_EN (OS_CFG.H, V2.60)

Normally, µC/OS-II requires that you have a context switch hook function called OSTaskSwHook().
When set to 0, this constant allows you to omit OSTaskSwHook() from your code. This configuration
constant was added to reduce the amount of overhead during a context switch in applications that doesn’t
require the context switch hook. Of course, you will also need to remove the calls to OSTaskSwHook()
from OSTaskStartHighRdy(), OSCtxSw() and OSIntCtxSw() in OS_CPU_A.ASM.

OS_TASK_TMR_STK_SIZE (OS_CFG.H, V2.81)

This #define determines the stack size (in number of stack-size elements, i.e. OS_STK) of the timer task.
The size of the timer task’s stack greatly depends on the processor architecture and the functions that are
called when timers expire. Note that if you set OS_TMR_EN to 0 in OS_CFG.H then the value you set for
OS_TASK_TMR_STK_SIZE is irrelevant because the timer functionality would be disabled.

OS_TICK_STEP_EN (OS_CFG.H, V2.60)

µC/OS-View can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’ commands from
µC/OS-View. In other words, µC/OS-View can prevent µC/OS-II from calling OSTimeTick() so
that timeouts and time delays are no longer processed. However, though a keystroke from µC/OS-View,
you can execute a single tick at a time. If OS_TIME_TICK_HOOK_EN (see below) is set to 1,
OSTimeTickHook() is still executed at the regular tick rate in case you have time critical items to take
care of in your application.

OS_TIME_TICK_HOOK_EN (OS_CFG.H, V2.60)

Normally, µC/OS-II requires the presence of a function called OSTimeTickHook() which is called at
the very beginning of the tick ISR. When set to 0, this constant allows you to omit OSTimeTickHook()
from your code. This configuration constant was added to reduce the amount of overhead during a tick
ISR in applications that doesn’t require this hook.

 15

OS_TMR_EN (OS_CFG.H, V2.81)

This #define enables (when set to 1) or disables (when set to 0) the timer management code.

OS_TMR_CFG_MAX (OS_CFG.H, V2.81)

This #define determines the maximum number of timers that can exist in the application. If
OS_TMR_EN is set to 1, you should declare AT LEAST two (2) timers.

OS_TMR_CFG_NAME_EN (OS_CFG.H, V2.81 and changed in V2.87)

This #define determines whether names can be assigned to timers.

OS_TMR_CFG_WHEEL_SIZE (OS_CFG.H, V2.81)

This #define determines the number of entries in the timer wheel. This value should be a number
between 2 and 1024. Timer management overhead is somewhat determined by the size of the wheel. A
large number of entries might reduce the overhead for timer management but would require more RAM.
Each entry requires a pointer and a count (16-bit value). We recommend a number that is NOT a multiple
of the tick rate. If your application has many timers then it’s recommended that you have a high value. As
a starting value, you could use OS_TMR_CFG_MAX / 4.

OS_TMR_CFG_TICKS_PER_SEC (OS_CFG.H, V2.81)

This #define determines the rate at which timers will be updated. You would typically set to a fraction
of the tick rate (i.e. OS_TICKS_PER_SEC). We recommend that you set
OS_TMR_CFG_TICKS_PER_SEC to 10 (i.e. 10 Hz).

 16

The following table summarizes some of the new #define constants in OS_CFG.H which
were all added in since V2.00.

#define name in OS_CFG.H ... to enable the function(s):

OS_APP_HOOKS_EN App_TaskCreateHook()
App_TaskDelHook()
App_TaskIdleHook()
App_TaskStatHook()
App_TaskSwHook()
App_TCBInitHook()
App_TimeTickHook()

OS_DEBUG_EN Enable debug constants in OS_CORE.C. If you
are using a kernel aware debugger, you should
enable this feature.

OS_EVENT_NAME_EN OSEventNameGet()

OSEventNameSet()
And, to allow naming semaphores, mutexes,
mailboxes and message queues.

OS_EVENT_MULTI_EN OSEventPendMulti()

OS_FLAG_ACCEPT_EN OSFlagAccept()
OS_FLAG_DEL_EN OSFlagDel()
OS_FLAG_NAME_EN OSFlagNameGet()

OSFlagNameSet()
And, to allow naming event flag groups.

OS_FLAG_QUERY_EN OSFlagQuery()

OS_MBOX_ACCEPT_EN OSMboxAccept()
OS_MBOX_DEL_EN OSMboxDel()
OS_MBOX_PEND_ABORT_EN OSMboxPendAbort()
OS_MBOX_POST_EN OSMboxPost()
OS_MBOX_POST_OPT_EN OSMboxPostOpt()
OS_MBOX_QUERY_EN OSMBoxQuery()

OS_MEM_NAME_EN OSMemNameGet()

OSMemNameSet()
OS_MEM_QUERY_EN OSMemQuery()

OS_MUTEX_ACCEPT_EN OSMutexAccept()
OS_MUTEX_DEL_EN OSMutexDel()
OS_MUTEX_QUERY_EN OSMutexQuery()

 17

OS_Q_ACCEPT_EN OSQAccept()
OS_Q_DEL_EN OSQDel()
OS_Q_FLUSH_EN OSQFlush()
OS_Q_PEND_ABORT_EN OSQPendAbort()
OS_Q_POST_EN OSQPost()
OS_Q_POST_FRONT_EN OSQPostFront()
OS_Q_POST_OPT_EN OSQPostOpt()
OS_Q_QUERY_EN OSQQuery()

OS_SEM_ACCEPT_EN OSSemAccept()
OS_SEM_DEL_EN OSSemDel()
OS_SEM_PEND_ABORT_EN OSSemPendAbort()
OS_SEM_QUERY_EN OSSemQuery()
OS_SEM_SET_EN OSSemSet()

OS_TASK_NAME_EN OSTaskNameGet()

OSTaskNameSet()
And, to allow naming tasks.

OS_TASK_PROFILE_EN To allocate variables in OS_TCB for performance
monitoring of each task at run-time.

OS_TASK_QUERY_EN OSTaskQuery()
OS_TASK_STAT_STK_CHK_EN OS_TaskStatStkChk()
OS_TASK_SW_HOOK_EN OSTaskSwHook()
OS_TASK_TMR_STK_SIZE Size in OS_STK elements of the Timer

Management task.

OS_TICK_STEP_EN To support the stepping feature of

µC/OS-View.

OS_TIME_DLY_HMSM_EN OSTimeDlyHMSM()
OS_TIME_DLY_RESUME_EN OSTimeDlyResume()
OS_TIME_GET_SET_EN OSTimeGet() and OSTimeSet()
OS_TIME_TICK_HOOK_EN OSTimeTickHook()

OS_TMR_EN Enables (1) or Disables (0) timer management

functions.
OS_TMR_CFG_MAX Determines the maximum number of timers in

your application.
OS_TMR_CFG_NAME_EN Determines whether names can be assigned to

timers.
OS_TMR_CFG_WHEEL_SIZE Determines the size of the timer wheel (in

number of entries).
OS_TMR_CFG_TICKS_PER_SEC Rate at which timers will be updated (Hz)

OS_SCHED_LOCK_EN OSSchedLock()and OSSchedUnlock()

 18

New Data Types
OS_CPU_SR (OS_CPU.H, V2.04)

This data type is used to specify the size of the CPU status register which is used in conjunction with
OS_CRITICAL_METHOD #3 (see above). For example, if the CPU status register is 16-bit wide then you
would typedef accordingly.

OS_FLAGS (uCOS_II.H, V2.51)

This data type determines how many bits an event flag group will have. You can thus typedef this data
type to either INT8U, INT16U or INT32U to give event flags either 8, 16 or 32 bits, respectively.

OS_TMR (uCOS_II.H, V2.81)

This data type is a timer object which contains information about a specific timer that you started (see
OS_TMR.C).

New Hook Functions
void OSInitHookBegin(void) (OS_CPU.C, V2.04)

This function is called at the very beginning of OSInit() to allow for port specific initialization
BEFORE µC/OS-II gets initialized.

void OSInitHookEnd(void) (OS_CPU.C, V2.04)

This function is called at the end of OSInit() to allow for port specific initialization AFTER µC/OS-II
gets initialized.

void OSTCBInitHook(OS_TCB *ptcb) (OS_CPU.C, V2.04)

This function is called by OSTCBInit() during initialization of the TCB assigned to a newly created
task. It allows port specific initialization of the TCB.

void OSTaskIdleHook(void) (OS_CPU.C, V2.51)

This function is called by OSTaskIdle(). This allows you to STOP the CPU and thus reduce power
consumption while there is nothing to do.

 19

New Functions
The following table provides a list of all the new functions (i.e. services) that YOUR application
can call. The list also includes functions that used to exist but, if these are in this list, it’s
because their API may have changed.

Refer to the Reference Manual of the current release for a description of these functions.

Function Name File Enabled By …
OSEventNameGet() OS_CORE.C OS_EVENT_NAME_EN
OSEventNameSet() OS_CORE.C OS_EVENT_NAME_EN
OSEventPendMulti() OS_CORE.C OS_EVENT_MULTI_EN
OSFlagAccept() OS_FLAG.C OS_FLAG_EN && OS_FLAG_ACCEPT_EN
OSFlagCreate() OS_FLAG.C OS_FLAG_EN
OSFlagDel() OS_FLAG.C OS_FLAG_EN && OS_FLAG_DEL_EN
OSFlagNameGet() OS_FLAG.C OS_FLAG_NAME_EN
OSFlagNameSet() OS_FLAG.C OS_FLAG_NAME_EN
OSFlagPend() OS_FLAG.C OS_FLAG_EN
OSFlagPendGetFlagsRdy() OS_FLAG.C OS_FLAG_EN
OSFlagPost() OS_FLAG.C OS_FLAG_EN
OSFlagQuery() OS_FLAG.C OS_FLAG_EN
OSMboxDel() OS_MBOX.C OS_MBOX_EN && OS_MBOX_DEL_EN
OSMboxPendAbort() OS_MBOX.C OS_MBOX_EN && OS_MBOX_PEND_ABORT_EN
OSMboxPostOpt() OS_MBOX.C OS_MBOX_EN && OS_MBOX_POST_OPT_EN
OSMutexAccept() OS_MUTEX.C OS_MUTEX_EN && OS_MUTEX_ACCEPT_EN
OSMutexCreate() OS_MUTEX.C OS_MUTEX_EN
OSMutexDel() OS_MUTEX.C OS_MUTEX_EN && OS_MUTEX_DEL_EN
OSMutexPend() OS_MUTEX.C OS_MUTEX_EN
OSMutexPost() OS_MUTEX.C OS_MUTEX_EN
OSMutexQuery() OS_MUTEX.C OS_MUTEX_EN && OS_MUTEX_QUERY_EN
OSQAccept() OS_Q.C OS_Q_EN && OS_Q_ACCEPT_EN
OSQDel() OS_Q.C OS_Q_EN && OS_Q_DEL_EN
OSQFlush() OS_Q.C OS_Q_EN && OS_Q_FLUSH_EN
OSQPend() OS_Q.C OS_Q_EN
OSQPendAbort() OS_Q.C OS_Q_EN && OS_Q_PEND_ABORT_EN
OSQPost() OS_Q.C OS_Q_EN
OSQPostFront() OS_Q.C OS_Q_EN && OS_Q_POST_FRONT_EN
OSQPostOpt() OS_Q.C OS_Q_EN && OS_Q_POST_OPT_EN
OSSemDel() OS_SEM.C OS_SEM_EN && OS_SEM_DEL_EN
OSSemPendAbort() OS_SEM.C OS_SEM_EN && OS_SEM_PEND_ABORT_EN
OSSemSet() OS_SEM.C OS_SEM_EN && OS_SEM_SET_EN
OSTaskNameGet() OS_TASK.C OS_TASK_NAME_EN
OSTaskNameSet() OS_TASK.C OS_TASK_NAME_EN
OSTmrGetName() OS_TMR.C OS_TMR_EN
OSTmrGetRemain() OS_TMR.C OS_TMR_EN
OSTmrStart() OS_TMR.C OS_TMR_EN
OSTmrStop() OS_TMR.C OS_TMR_EN
OSTmrSignal() OS_TMR.C OS_TMR_EN

 20

References

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
CMP Books, 2002
ISBN 1-57820-103-9

Contacts

Micriµm
949 Crestview Circle
Weston, FL 33327
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631
(785) 841-2624 (FAX)
WEB: http://www.cmpbooks.com
e-mail: rdorders@cmpbooks.com

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.cmpbooks.com/
mailto:rdorders@cmpbooks.com

	© Copyright 2009, Micriµm
	New Features and Services
	since
	µC/OS-II V2.00

