Micripm

Empowering Embedded Systems

uC/CPU

V1.23

User’'s Manual

www.Micrium.com

Disclaimer

Specifications written in this manual are believed to be accurate, but are not guaranteed to
be entirely free of error. Specifications in this manual may be changed for functional or
performance improvements without notice. Please make sure your manual is the latest
edition. While the information herein is assumed to be accurate, Micripm assumes no
responsibility for any errors or omissions and makes no warranties. Micripm specifically
disclaims any implied warranty of fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without the
prior written permission of Micripm. The software described in this document is furnished
under a license and may only be used or copied in accordance with the terms of such a
license.

© 2004-2009 Micripm, Weston, Florida 33327-1848, U.S.A.

Trademarks
Names mentioned in this manual may be trademarks of their respective companies. Brand
and product names are trademarks or registered trademarks of their respective holders.

Registration

Please register the software via email. This way we can make sure you will receive updates
or notifications of updates as soon as they become available. For registration please
provide the following information:

= Your full name and the name of your supervisor
* Your company name

= Your job title

= Your email address and telephone number

e Company name and address

« Your company's main phone number

= Your company's web site address

< Name and version of the product

Please send this information to: licensing@micrium.com

Contact address

Micripm

949 Crestview Circle

Weston, FL 33327-1848

U.S.A.

Phone : +1 954 217 2036

FAX : +1 954 217 2037

WEB : www.micrium.com
Email : support@micrium.com

mailto:licensing@micrium.com
http://www.micrium.com/
mailto:support@micrium.com

Manual versions
If you find any errors in this document, please inform us and we will make the appropriate

corrections for future releases.

Manual Version | Date By | Description

V1.23 2009/06/22 | SR Created Manual

V1.23 2009/07/05 | I1TJ Updated Manual

V1.23 2009/07/13 1TJ Released Manual V1.23

Table Of Contents

1.1
1.2
1.3
1.4
1.5

1.6

1.00

2

2.01
2.02.01
2.02.02
2.03

2.04
2.04.01
2.04.02.01
2.04.02.02
2.04.03.01
2.04.03.02

INErOAUCTION ... ettt et e e aeaeens 6
POITADIE ...ttt bt bbbt b bbbt r e e e 6
SCAIADIE .. ettt bbbt re 6
(@00 o 100 IS = o P Lo SRS USPSRSRS 6
IMIISRA € ettt b et bbbtk b et be e b et be e b et b e e b et b bt et ettt bt e 6
Safety Critical CertifiCationc.coiiiiiiiie e sr e te e naesnens 7
LLC/CPU LIMIALIONS ..c.vtivicie ettt ste e te et e st e st a e s te e ste e eesaeesaeesbeesbeenbeenbessaesreesreas 7
Getting Started With LC/CPU ... e 8
INSEAITING [LC/CPU .ot bbbttt bttt 8
HC/CPU Processor/Compiler POrt FIle(S) e 11
SEANTAIT DAL TYPES ..ttt b ettt b ettt b etk b e et sb e bbb et be et e abeneere s 11
CPU WOTT SIZES ...ttt sttt bbbttt et b bt bt bt b et et e nb e e b e nb e bt eb e e e anbeee 11
CPU WOTd-IMEMOTY OFUEEceiiiieeeieiie sttt ettt sttt ettt bttt st e e e nee b e sbe bt sbe e e enee s 11
CPU STACKS ..ttt bbbttt b ettt b e et b e et sb et et et et et e et e te b e erens 12
CPU CritiCal SECLIONSvivveiiiteietiite ettt sttt et sb ettt st st teabe st et e abeneebesbeseerens 12
CPU_SR_ALLOC() t.tettiteieieitesieieste sttt ste sttt sttt sttt st tesbesaetesbeseetesbeseetesbeseetesbeneeresseseasens 13
CPU_CRITICAL_ENTER() tvt ettt sieeste ettt sttt ettt sbe st sttt sbe st sbe et b neenens 14
CPU_CRITICAL _EXIT() tetetttreetesterieiesiesieeste et ste ettt sbe et st et sttt sbe et sbeneetesneneesens 15
CPU_INT _DIS() cteiveeereiterieieste et ste ettt sttt ettt sbe et sb et sb et sbe et sb et beeb et et e abe st ebeabeneereas 16
CPU_INT _EN() tortitiiieteiteiieteitesiee sttt ettt sttt st st ta st et etesbe st et e sbe e atesbe st e taabe e eteabesaeteareseerens 17

3

3.00

3.01
3.02.01
3.02.02
3.02.03
3.03
3.03.01.01
3.03.01.02
3.03.02
3.03.03.01
3.03.03.02
3.03.04
3.04
3.04.01
3.04.02
3.04.03
3.05

A

(L@@ O I I T o] = ¥ VPP 18

[SL@7L @1 O I @o]) 1o 0] =1 o] PSSR 18
L0 =0 13 RS 19
(08 A F= o -1 [) PSSR 20
CPU _INGIMESEL() +rvververveitesrisiesieeieseese s e ste s e s e esee e e te e stestesseesae e enseseestesteaneeseeseenseseessesaesneereeneensees 21
(@8 =T 1T T S 22
(O8I T 41 7=V] oSS 23
CPU_TS GEU() . veveiveriereirerieieitesieteste st e e ste e e e st e e e e st e e e te st et etesbe e etesbe e etesbeseetesbe st etaabe e eteabesaeteabeseerens 24
CPU_TS GELLO() v.vevereiveieteiteiieteste st e e ste e e st et te st e te st e e te st et e tesbe st etesbe e ateabe s eteabe s eteabesaeteabesearens 25
CPU_TS UPUALE() cvevveveveriereiteiierastesteestestetestesaetastesaesasbesaesastessesassesaesessessasestessesastessesessessesessessasans 26
CPU_TS _TMIINIE() c1.veveriireriitiieeeitste sttt ettt s b e sa bt sb b enn bt n b eenenns 27
CPU_TS _TMIRA() 1.rveveriitetiititeetstete sttt sttt se b b sa et s e bt s s nn bt e b b nnnnenns 28
CPU_TS 10 USEC() ... veverrerereisiereisietesestetessstetesessetesasbese s sesese st ebe st e b ese b ebess s ebesesbebesenneberessebene s anens 29
CPU Interrupts Disable Time MEaSUMEIMENTS.........cccciueiiiieiieieiienieseste e e e seeie e sre e sresreeeenee s 31
CPU_INtDISMEASMAXGEL()....evvevveriiieiiestisieseeeesteste e ste e steetae s et e stesbe e saeetae e et e sresbestesneeraeneeneees 31
CPU_INtDiSMEASMAaXCUIGEI().....cveiveiieiriiieiieieiiesie e ste e steeae e esie st ste e e tae e et e sresbesbesnesraeneeneees 32
CPU_INtDiSMEaSMAaXCUIRESEE() ...veuveerrrrrrrireereeiesiesiestestesseesaeseesieseessessessssseeseessessessessessessessesnsenes 33
CPU_CNELEAAZEIOS() «.vevverereireereereesiesiestessesseeseeseesteseessessesssasaessesseseessessesssssessesssessessessessessesssensenes 34
HC/CPU Licensing POlICY ..uueiiii e e e 35

Introduction

Designed with Micripm's renowned quality, scalability and reliability, the purpose of LC/CPU is to provide a
clean, organized ANSI C implementation of each processor’s/compiler’s hardware-dependent.

1.1 Portable

LC/CPU was designed for the vast variety of embedded applications. The processor-dependent source code for

LC/CPU is designed to be ported to any processor (CPU) and compiler while uC/CPU’s core library source code
is designed to be independent of and used with any processor/compiler.

1.2 Scalable

The memory footprint of LLC/CPU can be adjusted at compile time based on the features you need and the desired
level of run-time performance.

1.3 Coding Standards

Coding standards have been established early in the design of L{C/CPU and include the following:

- Ccoding style

- Naming convention for #define constants, macros, variables and functions
- Commenting

- Directory structure

1.4 MISRA C

The source code for LC/CPU follows the Motor Industry Software Reliability Association (MISRA) C Coding
Standards. These standards were created by MISRA to improve the reliability and predictability of C programs in
critical automotive systems. Members of the MISRA consortium include Delco Electronics, Ford Motor Company,
Jaguar Cars Ltd., Lotus Engineering, Lucas Electronics, Rolls-Royce, Rover Group Ltd., and other firms and

universities dedicated to improving safety and reliability in automotive electronics. Full details of this standard can
be obtained directly from the MISRA web site, http://www.misra.org.uk.

1.5 Safety Critical Certification

LC/CPU has been designed and implemented with safety critical certification in mind. L C/CPU is intended for
use in any high-reliability, safety-critical systems including avionics RTCA DO-178B and EUROCAE ED-12B,
medical FDA 510(k), IEC 61508 industrial control systems, and EN-50128 rail transportation and nuclear systems.

For example, the FAA (Federal Aviation Administration) requires that ALL the source code for an application be
available in source form and conforming to specific software standards in order to be certified for avionics systems.

Since most standard library functions are provided by compiler vendors in uncertifiable binary format, L C/CPU
provides its library functions in certifiable source-code format.

If your product is NOT safety critical, you should view the software and safety-critical standards as proof that
LC/CPU is a very robust and highly-reliable software module.

1.6 LC/CPU Limitations

By design, we have limited some of the feature of LC/CPU. Table I-1 describes those limitations.

| Support for 64-bit data NOT available for all CPUs

Table I-1, pC/CPU limitations for current software version

http://www.misra.org.uk/

Getting Started with pC/CPU

This chapter provides information on the distribution and installation of LC/CPU.

Installing pC/CPU

= (2 Micriurm
=) software
B 1) uc-CPu
=) BSP
|5 Template
E’J cpu_bsp.c
= ([S
I Template
El cpu_cfg.h
=5 Dac
I3 Template
[Z] cpu_a.asm
r.%] cpuh
[Z] cpu_core.c
r.2=:| cpu_core.h
r.3=j cpu_def.h

Figure 1-1, uC/CPU Module Directories and Files

Chapter 1

The distribution of uC/CPU is typically included in a ZIP file called: uC-CPU-Vxyy.zip. pLC/CPU could also
have been included in the distribution of another Micripm ZIP file (LC/OS-II, pC/TCP-IP, uC/FS, etc.). The

ZIP file contains all the source code and documentation for LC/CPU. All modules are placed in their respective
directories as shown in Figure 1-1.

\uC-CPU

This directory contains CPU-specific code which depends on the processor and compiler used by
your application, as well as CPU-independent source files.

The main pC/CPU directory contains three master CPU files :

\MICRIUM\SOFTWARE\UC-CPU\cpu_def_h
\MICRIUM\SOFTWARE\UC-CPU\cpu_core.h
\MICRIUM\SOFTWARE\UC-CPU\cpu_core.c

cpu_def._h
This file declares #define constants used to configure processor/compiler-specific CPU word
sizes, endianness word order, critical section methods, and other processor configuration.

cpu_core.candcpu_core.h

These files contain source code that implements L C/CPU features such as host name allocation,
timestamps, time measurements, and counting lead zeros. See Chapter 3 for more details.

\Cfg\Template\cpu_cfg-h

This template file includes configuration for LC/CPU features such as host name allocation,
timestamps, time measurements, and assembly optimization. Your application MUST include a
cpu_cTg.h configuration file with application-specific configuration settings.

\BSP\Template\cpu_bsp.c

This file includes function templates for the Board-Specific (BSP) code required if certain
LC/CPU features such as timestamp time measurements and assembly optimization are enabled.
Your application MUST include code for all BSP functions enabled in cpu_cfg.h.

LC/CPU directory also contains additional sub-directories specific for each processor/compiler
combination organized as follows :

\MICRIUM\SOFTWARE\UC-CPU\<CPU Type>\<Compiler>\cpu.h

\MICRIUM\SOFTWARE\UC-CPU\<CPU Type>\<Compiler>\cpu.c

\MICRIUM\SOFTWARE\UC-CPU\<CPU Type>\<Compiler>\cpu_a.asm
\cpu_a.s

cpu.h

This file contains LLC/CPU configuration specific to the processor (CPU Type) and compiler
(Compiler), such as data type definitions, processor address and data word sizes, endianness
word order, and critical section macros. See Chapter 2 for more details.

Cpu_a.asmorcpu_a.s

These (optional) files contains assembly code to enable/disable interrupts, implement critical
section methods, and any other processor-specific code NOT already defined or implemented in
the processor’s cpu.h (or cpu.c).

cpu.c
This (optional) file contains C and/or assembly code to implement processor-specific code NOT
already defined or implemented in the processor’s cpu-h (or cpu_a.asm).

\Template\cpu.hand cpu_a.asm

These template LC/CPU configuration files include example configurations for a generic
processor/compiler.

An example of ARM-specific CPU processor files is shown in Figure 1-2.

= [Micrium
=1 1) Software
= 5 uC-cPU
=) ARM
g

2] cpu_a.asm
.'g’l cpu.h

IC5) 18R

.'E’l cpu.h

] cpu_a.s
) Realview
] cpu_a.asm

3,| cpu.h

Figure 1-2, uC/CPU ARM CPU Directories and Files Example

\Application

This directory represents the application's directory or directory tree. Application files which
intend to make use of LC/CPU constants, macros, or functions should #include the desired
LC/CPU header files.

cpu_cfg.h

This application-specific configuration file is required by LC/CPU to #define its configuration
constants.

10

Chapter 2

LUC/CPU Processor/Compiler Port File(s)

LC/CPU contains configuration specific to each processor and compiler, such as standard data type definitions,
processor address and data word sizes, endianness word order, critical section macros, and possibly other functions
and macros. These are defined in each specific processor/compiler subdirectory’s cpu.h.

2.01 Standard Data Types

UC/CPU ports define standard data types such as CPU_CHAR, CPU_BOOLEAN, CPU_INTO8U, CPU_INT16S,
CPU_FP32, etc. These data types are used in Micripum applications, and may be used in your applications, to

facilitate portability independent of and between processors/compilers. Most LC/CPU processor/compiler port
files minimally support 32-bit data types, but MAY optionally support 64-bit (or greater) data types.

In addition, several regularly-used function pointer data types are defined.

2.02.01 CPU Word Sizes

UC/CPU ports include word size configuration such as CPU_CFG_ADDR_SIZE and CPU_CFG_DATA_SIZE,
configured via CPU_WORD_SI1ZE_08, CPU_WORD_SIZE_16,and CPU_WORD_SIZE_32.

In addition, the following CPU word sizes are also defined based on the configured sizes of CPU_CFG_ADDR_SIZE
and CPU_CFG_DATA SIZE :CPU_ADDR, CPU_DATA, CPU_ALIGN, and CPU_SIZE_T.

2.02.02 CPU Word-Memory Order

C/CPU ports configure CPU_CFG_ENDIAN_TYPE to indicate the processor’s word-memory order endianness.
CPU_ENDIAN_TYPE_LITTLE indicates that a CPU stores/reads data words in memory with the most significant
octets at lower memory addresses (and the least significant octets at higher memory addresses) while a
CPU_ENDIAN_TYPE_BIG CPU stores/reads data words in memory with the most significant octets at higher
memory addresses (and the least significant octets at lower memory addresses).

11

2.03 CPU Stacks

UC/CPU ports configure CPU_CFG_STK_GROWTH to indicate the direction in memory a CPU updates its stack pointers
after pushing data onto its stacks. CPU_STK_GROWTH_HI TO_ LO indicates that a CPU decrements its stack pointers
to the next lower memory address after data is pushed onto a CPU stack while a CPU_STK_GROWTH_LO_TO HI
CPU increments its stack pointers to the next higher memory address after data is pushed.

In addition, each |LC/CPU processor port defines a CPU_STK data type to the CPU’s stack word size.

2.04 CPU Critical Sections

C/CPU ports include CPU critical section configuration CPU_CFG_CRITICAL_METHOD that indicates how a
CPU disables/re-enables interrupts when entering/exiting critical, protected sections :

CPU_CRITICAL_METHOD INT_DIS EN merely disables/enables interrupts on critical section enter/exit. This is
NOT a preferred method since it does NOT support multiple levels of interrupts. However, with some
processors/compilers, this is the only available method.

CPU_CRITICAL_METHOD_ STATUS STK pushes/pops interrupt status onto stack before disabling/re-enabling
interrupts. This is one preferred method since it supports multiple levels of interrupts. However, this method
assumes that the compiler provides C-level &/or assembly-level functionality for pushing/saving the interrupt status
onto a local stack, disabling interrupts, and popping/restoring the interrupt status from the local stack.

CPU_CRITICAL_METHOD STATUS LOCAL saves/restores interrupt status to a local variable before disabling/re-
enabling interrupts. This also is a preferred method since it supports multiple levels of interrupts. However, this
method assumes that the compiler provides C-level &/or assembly-level functionality for saving the interrupt status
to a local variable, disabling interrupts, and restoring the interrupt status from the local variable.

Each L C/CPU processor port implements critical section macros with calls to interrupt disable/enable macros.
Applications should ONLY use the critical section macros (Section 2.04.02) since interrupt disable/enable macros
(Section 2.04.03) are only intended for use by core 1 C/CPU functions.

Each uC/CPU processor port may define its interrupt disable/enable macros with inline-assembly directly in cpu.h,
or calls to C functions defined in cpu.c, or calls to assembly subroutines defined in cpu_a.asm (or cpu_a.s).
The specific implementation SHOULD be based on the processor port’s configured CPU critical section method
(see Section 2.04.03).

In addition, each L C/CPU processor port defines an appropriately-sized CPU_SR data type large enough to
completely store the processor’s/compiler's status word. CPU_CRITICAL METHOD STATUS LOCAL method
requires each function that calls critical section macros or interrupt disable/enable macros to declare local variable
cpu_sr of type CPU_SR, which SHOULD be declared via the CPU_SR_ALLOC() macro (see Section 2.04.01).

12

2.04.01 CPU_SR_ALLOC()

Allocates CPU status register word as local variable cpu_sr, when necessary, for use with critical section macros.

Prototype

CPU_SR_ALLOCQ);

Arguments

None.

Returned Value

None.

Notes / Warnings

1) CPU_SR_ALLOC(Q) MUST be called immediately after the last local variable declaration in a function.
Example
CPU_BOOLEAN ts_init;
CPU_TS ts_cur;
CPU_SR_ALLOCQ); /* Declared immediately after all local variables ... */
/* ... but before any code statements. */
ts_init = DEF_YES;
ts_cur = CPU_TS_TmrRdQ);

13

2.04.02.01 CPU_CRITICAL_ENTER()

Enters critical sections, disabling interrupts.

Prototype

CPU_CRITICAL_ENTERQ);

Arguments

None.

Returned Value

None.

Notes / Warnings

1) CPU_CRITICAL_ENTER()/CPU_CRITICAL_EXIT() SHOULD be used to protect critical
sections of code from interrupted or concurrent access when no other protection mechanisms are
available or appropriate. For example, system code that must be re-entrant but without use of a software
lock should protect the code using CPU critical sections.

2) Since interrupts are disabled upon calling CPU_CRITICAL_ENTER() and are not re-enabled until after
calling CPU_CRITICAL_EXIT(), interrupt and operating system context switching are postponed
while all critical sections have not completely exited.

3) Critical sections can be nested any number of times as long as CPU_CFG_CRITICAL_METHOD is
NOT configured as CPU_CRITICAL METHOD INT_DIS EN, which would re-enable interrupts
upon the first call to CPU_CRITICAL_EXIT(), not the last call.

4) CPU_CRITICAL_ENTER() SHOULD/MUST ALWAYS call CPU_CRITICAL_EXIT() once
critical section protection is no longer needed.

Example

CPU_SR_ALLOCQ);

CPU_CRITICAL_ENTERQ);

/* Code protected by critical sections ... */
/* ... from interrupts or concurrent access. */

CPU_CRITICAL_EXITQ);

14

2.04.02.02

CPU_CRITICAL_EXIT()

Exits critical sections, restoring previous interrupt status and/or enabling interrupts.

Prototype

CPU_CRITICAL_EXITQ);

Arguments

None.

Returned Value

None.

Notes / Warnings

1)

2)

3)

4)

Example

CPU_CRITICAL_ENTER()/CPU_CRITICAL_EXIT() SHOULD be used to protect critical
sections of code from interrupted or concurrent access when no other protection mechanisms are
available or appropriate. For example, system code that must be re-entrant but without use of a software
lock should protect the code using CPU critical sections.

Since interrupts are disabled upon calling CPU_CRITICAL_ENTER() and are not re-enabled until after
calling CPU_CRITICAL_EXIT(), interrupt and operating system context switching are postponed
while all critical sections have not completely exited.

Critical sections can be nested any number of times as long as CPU_CFG_CRITICAL_METHOD is
NOT configured as CPU_CRITICAL METHOD INT_DIS EN, which would re-enable interrupts
upon the first call to CPU_CRITICAL_EXIT(), not the last call.

CPU_CRITICAL_EXIT() MUST ALWAYS call CPU_CRITICAL_ENTER() at the start of critical
section protection.

CPU_SR_ALLOCQ);

CPU_CRITICAL_ENTERQ);

/* Code protected by critical sections ... */
/* ... from interrupts or concurrent access. */

CPU_CRITICAL_EXITQ);

15

2.04.03.01 CPU_INT_DIS()

Saves current interrupt status, if processor/compiler capable, & then disables interrupts.

Prototype

CPU_INT_DISQ);

Arguments

None.

Returned Value

None.

Notes / Warnings

1) CPU_INT_DIS() SHOULD be defined based on the processor port’s configured CPU critical section
method, CPU_CFG_CRITICAL_METHOD; and may be defined with inline-assembly directly in
cpu.h, or with calls to C functions defined in cpu.c, or calls to assembly subroutines defined in
cpu_a-asm (or cpu_a-s). See also Section 2.04.

Example Templates

The following example templates assume corresponding functions are defined in either cpu.c orcpu_a.asm:

#if (CPU_CFG_CRITICAL_METHOD == CPU_CRITICAL_METHOD_INT_DIS_EN)

#define CPU_INT_DISQ) { CPU_IntDis(Q); } /* Disable interrupts. */
#endif

#if (CPU_CFG_CRITICAL_METHOD == CPU_CRITICAL_METHOD_STATUS_STK)

#define CPU_INT_DIS(Q) { CPU_SR PushQ; } /* Push CPU status & disable interrupts. */
#endif

#if (CPU_CFG_CRITICAL_METHOD == CPU_CRITICAL_METHOD_STATUS_LOCAL)

#define CPU_INT_DIS() { cpu_sr = CPU_SR _Save(Q); } /* Save CPU status & disable interrupts. */
#endif

16

2.04.03.02 CPU_INT_EN()

Restores previous interrupt status and/or enables interrupts.

Prototype

CPU_INT_ENQ);

Arguments

None.

Returned Value

None.

Notes / Warnings

1) CPU_INT_DIS() SHOULD be defined based on the processor port’s configured CPU critical section
method, CPU_CFG_CRITICAL_METHOD; and may be defined with inline-assembly directly in
cpu.h, or with calls to C functions defined in cpu.c, or calls to assembly subroutines defined in
cpu_a-asm (or cpu_a-s). See also Section 2.04.

Example

The following example templates assume corresponding functions are defined in either cpu.c orcpu_a.asm:

#if (CPU_CFG_CRITICAL_METHOD == CPU_CRITICAL_METHOD_INT_DIS_EN)

#define CPU_INT_ENQ { CPU_INtEnQ; } /* Enable interrupts. */
#endif

#if (CPU_CFG_CRITICAL_METHOD == CPU_CRITICAL_METHOD_STATUS_STK)

#define CPU_INT_ENQ { CPU_SR Pop(Q; 3} /* Pop CPU status. */
#endif

#if (CPU_CFG_CRITICAL_METHOD == CPU_CRITICAL_METHOD_STATUS_LOCAL)

#define CPU_INT_ENQ { CPU_SR_Restore(cpu_sr); } /* Restore CPU status. */
#endif

17

LUC/CPU Library

Chapter 3

LC/CPU contains library features such as host name allocation, timestamps, time measurements, counting lead zeros, etc.

These functions are defined in cpu_core.c.

3.00 LC/CPU Configuration

The following L C/CPU configurations may be optionally configured in cpu_cfg.h:

CPU_CFG_NAME_EN

CPU_CFG_NAME_SIZE

CPU_CFG_TS_EN

CPU_CFG_INT_DIS_MEAS_EN

CPU_CFG_INT_DIS_MEAS_OVRHD_NBR

CPU_CFG_LEAD_ZEROS_ASM_PRESENT

18

Includes code to set & get a configured CPU host name
(see Section 3.02). This feature may be configured to
either DEF_DISABLED or DEF_ENABLED.

Configures the maximum CPU name size (in number of
ASCII characters, including the terminating NULL character).

Includes CPU timestamp functionality (see Section 3.03).
This feature may be configured to either DEF_DISABLED
or DEF_ENABLED.

Includes code to measure & return maximum interrupts
disabled time (see Section 3.04). This feature is enabled if
the macro is #define’d in cpu_cfg.h.

Configures the number of times to measure & calculate
the interrupts disabled time measurement overhead.

Implements counting lead zeros functionality in assembly
(see Section 3.05). This feature is enabled if the macro is
#define’din cpu_cfg.h (or cpu.h).

3.01 CPU_Init()

Initializes the core CPU module.

Prototype

void CPU_Init (void);

Arguments

None.

Returned Value

None.

Notes / Warnings
1) MUST be called prior to calling any other core CPU functions :
a) CPU host name

b) CPU timestamps
c) CPU interrupts disabled time measurements

19

3.02.01 CPU_NameClr()

Clears the CPU host name.

Prototype

void CPU_NameClr (void);

Arguments

None.

Returned Value

None.

Notes / Warnings

1) This function enabled ONLY if CPFU_CFG_NAME_EN is DEF_ENABLED in cpu_cfg.h (see Section 3.00).

Example

CPU_NameClr(); /* Clear CPU host name. */

20

3.02.02 CPU_NameSet()

Sets the CPU host name.

Prototype

void CPU_NameSet (CPU_CHAR *p_name,
CPU_ERR *p_err);

Arguments
p_name Pointer to CPU host name to set (see Note #2).
p_err Pointer to variable that will receive the return error code from this function:
CPU_ERR_NONE CPU host name successfully set.
CPU_ERR_NULL_PTR Argument p_name passed a NULL pointer.
CPU_ERR_NAME_SIZE Invalid CPU host name size.
Returned Value
None.
Notes / Warnings
1) This function enabled ONLY if CPFU_CFG_NAME_EN is DEF_ENABLED in cpu_cfg.h (see Section 3.00).
2) p_name ASCII string size, including the terminating NULL character, MUST be less than or equal to

CPU_CFG_NAME_SIZE.

Example

CPU_CHAR *p_name;

CPU_ERR err;

p_name = “ARM Target”;

CPU_NameSet(p_name, &err); /* Set CPU host name. */

if (err 1= CPU_ERR_NONE) {
printf(**COULD NOT SET CPU HOST NAME.™);
}

21

3.02.03 CPU_NameGet()

Gets the CPU host name.

Prototype

void CPU_NameGet (CPU_CHAR *p_name,
CPU_ERR *p_err);

Arguments
p_name Pointer to an ASCII character array that will receive the return CPU host name ASCII
string from this function (see Note #2).
p_err Pointer to variable that will receive the return error code from this function:
CPU_ERR_NONE CPU host name successfully returned.
CPU_ERR_NULL_PTR Argument p_name passed a NULL pointer.
Returned Value
None.
Notes / Warnings
1) This function enabled ONLY if CPFU_CFG_NAME_EN is DEF_ENABLED in cpu_cfg. h (see Section 3.00).
2) The size of the ASCII character array that will receive the return CPU host name ASCII string :

a) MUST be greater than or equal to the current CPU host name's ASCII string size including the
terminating NULL character;
b) SHOULD be greater than or equal to CPU_CFG_NAME_SIZE.

Example

CPU_CHAR *p_name;
CPU_ERR err;

CPU_NameGet(p_name, &err); /* Get CPU host name. */
if (err == CPU_ERR_NONE) {
printf(“CPU Host Name = %s”, p_name);

} else {
printf(““COULD NOT GET CPU HOST NAME.’”);

22

3.03 CPU Timestamps

CPU timestamps emulate a real-time 64-bit timer by accumulating timer counts via CPU_TS_Update() which
must be called periodically by an application-/developer-defined function (see Section 3.03.02). An application can
then get CPU timestamps and use either as raw timer counts or converted to microseconds (see Section 3.03.04).

Note that if either the CPU timestamp feature OR the interrupts disable time measurement feature is enabled (see
Section 3.00), then the application/developer MUST provide CPU timestamp timer functions (see Sections 3.03.03).

23

3.03.01.01 CPU_TS_Get()

Gets current CPU timestamp.

Prototype

void CPU_TS Get (CPU_TS *p_ts lo,
CPU_TS *p_ts_hi);

Arguments

p_ts lo Pointer to timestamp variable that will receive the current CPU timestamp's lower half
(in timestamp timer counts), if available.

p_ts hi Pointer to timestamp variable that will receive the current CPU timestamp's higher half

(in timestamp timer counts), if available.

Returned Value

None.

Notes / Warnings

1) This function enabled ONLY if CPU_CFG_TS_EN is DEF_ENABLED in cpu_cfg-h (see Section 3.00).
2) The amount of time measured by CPU timestamps is calculated by either of the following equations :
a) Time measured = Number timer counts * Timer period
where
Number timer counts ~ Number of timer counts measured
Timer period Timer's period in some units of (fractional) seconds
Time measured Amount of time measured, in same units of (fractional) seconds

as the Timer period

Number timer counts

b) Time measured = ---——-————————-
Timer frequency

where
Number timer counts Number of timer counts measured
Timer frequency Timer's frequency in some units of counts per second
Time measured Amount of time measured, in seconds

Example

CPU_TS ts_lo;
CPU_TS ts_hi;

CPU_TS_Get(&ts_lo, &ts_hi); /* Get current CPU timestamp. */

24

3.03.01.02

CPU_TS GetLo()

Gets current CPU timestamp, lower-half only.

Prototype

CPU_TS CPU_TS_GetLo (void);

Arguments

None.

Returned Value

Current CPU timestamp's lower half (in timestamp timer counts).

Notes / Warnings

1

2)

Example

This function enabled ONLY if CPU_CFG_TS_EN is DEF_ENABLED in cpu_cfg-h (see Section 3.00).

The amount of time measured by CPU timestamps is calculated by either of the following equations :

a) Time measured = Number timer counts * Timer period
where
Number timer counts ~ Number of timer counts measured
Timer period Timer's period in some units of (fractional) seconds
Time measured Amount of time measured, in same units of (fractional) seconds

as the Timer period

Number timer counts

b) Time measured = --————————m—m—
Timer frequency

where
Number timer counts Number of timer counts measured
Timer frequency Timer's frequency in some units of counts per second
Time measured Amount of time measured, in seconds

CPU_TS ts_lo;

ts_lo = CPU_TS_GetLo(); /* Get current CPU timestamp. */

25

3.03.02 CPU_TS Update()

Updates current CPU timestamp.

Prototype

void CPU_TS Update (void);

Arguments

None.

Returned Value

None.

Notes / Warnings
1) This function enabled ONLY if CPU_CFG_TS_EN is DEF_ENABLED in cpu_cfg-h (see Section 3.00).

2) a) CPU timestamp MUST be updated periodically by some application (or BSP) time handler in order to
(adequately) maintain the CPU timestamp time.

b) CPU timestamp MUST be updated more frequently than timestamp timer overflows; otherwise, CPU
timestamp will lose time.

Example

void AppPeriodicTimeHandler (void)

éPU_TS_Update(); /* Update current CPU timestamp (see Note #2). */

26

3.03.03.01

CPU_TS Tmrlnit()

Application-defined function to initialize and start the CPU timestamp’s (hardware or software) timer.

Prototype

CPU_INT16U CPU_TS Tmrinit (void);

Arguments

None.

Returned Value

Number of left-shifts to scale & return (hardware or software) timer as (32-bit) CPU_TS data type
(see Note #2al), if necessary.

O (see Note #2a2), otherwise.

Notes / Warnings

1) CPU_TS_TmrInit() is an application/BSP function that MUST be defined by the developer if either
of the following CPU features is enabled (see Section 3.00) :

a)
b)

2) a)

b)

CPU timestamps
CPU interrupts disabled time measurements

Timer count values MUST be scaled & returned via (32-bit) CPU_TS data type.

1) If timer has less bits, left-shift timer values until the most significant bit of the timer value is
shifted into the most significant bit of the return timestamp data type.

2) If timer has more bits, truncate timer values' higher-order bits greater than the return
timestamp data type.

Timer SHOULD be an 'up' counter whose values increase with each time count.

When applicable, timer period SHOULD be less than the typical measured time but MUST be less
than the maximum measured time; otherwise, timer resolution inadequate to measure desired times.

Example Template

CPU_INT16U CPU_TS Tmrinit (void)

{

CPU_INT16U

nbr_left_shifts;

ﬁbr_left_shifts = /* Insert code to initialize/start CPU timestamp timer (see Note #2). */ ;

return (nbr_left_shifts);

27

3.03.03.02

CPU_TS TmrRd()

Application-defined function to get current CPU timestamp timer count.

Prototype

CPU_TS CPU_TS_TmrRd (void);

Arguments

None.

Returned Value

(32-bit) CPU timestamp timer count value (see Notes #2a & #2b).

Notes / Warnings

1)

2)

CPU_TS_TmrRd() is an application/BSP function that MUST be defined by the developer if either of
the following CPU features is enabled (see Section 3.00) :

a)
b)

a)

b)

CPU timestamps
CPU interrupts disabled time measurements

Timer count values MUST be scaled & returned via (32-bit) CPU_TS data type.

1) If timer has less bits, left-shift timer values until the most significant bit of the timer value is
shifted into the most significant bit of the return timestamp data type.

2) If timer has more bits, truncate timer values' higher-order bits greater than the return
timestamp data type.

Timer SHOULD be an 'up' counter whose values increase with each time count.

When applicable, timer period SHOULD be less than the typical measured time but MUST be less
than the maximum measured time; otherwise, timer resolution inadequate to measure desired times.

Example Template

CPU_TS CPU_TS_ TmrRd (void)

{

CPU_TS ts_tmr_cnts;

ts_tmr_cnts = /* Insert code to get/return CPU timestamp timer counts (see Note #2). */ ;

return (ts_tmr_cnts);

28

3.03.04 CPU_TS to_uSec()

Application-defined function to convert a CPU timestamp from timer counts to microseconds.

Prototype
void CPU_TS to uSec (CPU_TS ts lo _cnts,
CPU_TS ts_hi_cnts,
CPU_INT32U *p_ts_lo_usec,
CPU_INT32U *p_ts_hi_usec);
Arguments
ts_lo _cnts CPU timestamp lower half (in timestamp timer counts [see Note #2aA]).
ts_hi_cnts CPU timestamp upper half (in timestamp timer counts [see Note #2aA]).
p_ts lo _usec Pointer to variable that will receive the converted CPU timestamp's lower half
[in microseconds (see Note #2aD)], if available.
p_ts hi_usec Pointer to variable that will receive the converted CPU timestamp's upper half

[in microseconds (see Note #2aD)], if available.

Returned Value

None.

Notes / Warnings

1) CPU_TS_to_uSec() is an application/BSP function that MAY be optionally defined by the developer
when either of the following CPU features is enabled (see Section 3.00) :

a) CPU timestamps
b) CPU interrupts disabled time measurements

2) a) The amount of time measured by CPU timestamps is calculated by either of the following equations :
10"6 microseconds
1) Time measured = Number timer counts * * Timer period
1 second
Number timer counts 10"6 microseconds
2) Time measured = *
Timer frequency 1 second
where
A) Number timer counts Number of timer counts measured
B) Timer frequency Timer's frequency in some units of counts per second
C) Timer period Timer's period in some units of (fractional) seconds
D) Time measured Amount of time measured, in microseconds

29

b) Timer period SHOULD be less than the typical measured time but MUST be less than the
maximum measured time; otherwise, timer resolution inadequate to measure desired times.

c) Specific implementations may convert any number of CPU_TS bits, up to 64, into microseconds.

Example Template

void CPU_TS_to_uSec (CPU_TS ts_lo _cnts,
CPU_TS ts_hi_cnts,
CPU_INT32U *p_ts_lo_usec,
CPU_INT32U *p_ts_hi_usec)

{
CPU_INT32U ts_lo_usec;
CPU_INT32U ts_hi_usec;
E /* Insert code to convert CPU timestamp into microseconds (see Note #2). */
if (p_ts_lo_usec = (CPU_INT32U *)0) {
*p_ts _lo_usec = (CPU_INT32U)ts lo_usec;
b
if (p_ts_hi_usec = (CPU_INT32U *)0) {
*p_ts_hi_usec = (CPU_INT32U)ts_hi_usec;
T
T

30

3.04 CPU Interrupts Disable Time Measurements

When enabled, the maximum amount of time interrupts are disabled during calls to
CPU_CRITICAL_ENTER()/CPU_CRITICAL_EXIT(Q) is measured and saved. There are two maximum
interrupts disable time measurements, one resetable and the other non-resetable, both measured in units of CPU
timestamps (see Section 3.03).

Note that the interrupts disable time measurement feature requires that the application/developer provide CPU
timestamp timer functions (see Sections 3.03.03).

3.04.01 CPU_IntDisMeasMaxGet()

Gets (non-resetable) maximum interrupts disabled time.

Prototype

CPU_TS CPU_IntDisMeasMaxGet (void);

Arguments

None.

Returned Value

(Non-resetable) maximum interrupts disabled time (in CPU timestamp timer counts).

Notes / Warnings

1) This function enabled ONLY if CPU_CFG_INT_DIS_MEAS EN is #define’d in cpu_cfg.h
(see Section 3.00).

Example

CPU_TS time_max_cnts;

time_max_cnts = CPU_IntDisMeasMaxGet(); /* Get maximum interrupts disabled time. */

31

3.04.02 CPU_IntDisMeasMaxCurGet()

Gets current/resetable maximum interrupts disabled time.

Prototype

CPU_TS CPU_IntDisMeasMaxCurGet (void);

Arguments

None.

Returned Value

Current maximum interrupts disabled time (in CPU timestamp timer counts).

Notes / Warnings

1) This function enabled ONLY if CPU_CFG_INT_DIS _MEAS EN is #define’d in cpu_cfg.h
(see Section 3.00).

Example

CPU_TS time_max_cnts;

time_max_cnts = CPU_IntDisMeasMaxCurGet(); /* Get current maximum interrupts disabled time. */

32

3.04.03 CPU_IntDisMeasMaxCurReset()

Resets current maximum interrupts disabled time.

Prototype

CPU_TS CPU_IntDisMeasMaxCurReset (void);

Arguments

None.

Returned Value

Maximum interrupts disabled time (in CPU timestamp timer counts) before resetting.

Notes / Warnings

1) This function enabled ONLY if CPU_CFG_INT_DIS _MEAS EN is #define’d in cpu_cfg.h
(see Section 3.00).

Example

CPU_TS time_max_cnts;

time_max_cnts = CPU_IntDisMeasMaxCurReset(); /* Reset current maximum interrupts disabled time. */

33

3.05 CPU_CntLeadZeros()

Counts the number of contiguous, most-significant, leading zero bits in a data value.

Prototype

CPU_DATA CPU_CntLeadZeros (CPU_DATA wval);

Arguments

val Data value to count leading zero bits.

Returned Value

None.

Notes / Warnings

1) This function implemented in cpu_core.c if CPU_CFG_LEAD ZEROS ASM_PRESENT is NOT
#define’d in cpu_cfg.h, and SHOULD be implemented in cpu_a.asm (or cpu_a.s) if
CPU_CFG_LEAD_ZEROS ASM_PRESENT is #define’d in cpu_cfg.h (see Section 3.00).

Example

CPU_DATA val;
CPU_DATA nbr_lead_zeros;

val
nbr_lead_zeros

0x0643A718;
CPU_CntLeadZeros(val);

34

Appendix A

LC/CPU Licensing Policy

You need to obtain an 'Object Code Distribution License' to embed 1C/CPU in a product that is sold with the intent
to make a profit. Each 'different’ product (i.e. your product) requires its own license but, the license allows you to
distribute an unlimited number of units for the life of your product. Please indicate the processor type(s) (i.e.
ARM7, ARM9, MCF5272, MicroBlaze, Nios Il, PPC,etc.) that you intend to use.

For licensing details, contact us at:

Micripm

949 Crestview Circle
Weston, FL 33327-1848
U.S.A.

Phone :+1 954 217 2036
FAX :+1954 217 2037

WEB : www.micrium.com
Email : licensing@micrium.com

35

http://www.micrium.com/
mailto:licensing@micrium.com

	Table of Contents
	Introduction
	I.1 Portable
	I.2 Scalable
	I.3 Coding Standards
	I.4 MISRA C
	I.5 Safety Critical Certification
	I.6 µC/CPU Limitations

	Chapter 1 Getting Started with µC/CPU
	1.00 Installing µC/CPU

	Chapter 2 µC/CPU Processor/Compiler Port File(s)
	2.01 Standard Data Types
	2.02.01 CPU Word Sizes
	2.02.02 CPU Word-Memory Order
	2.03 CPU Stacks
	2.04 CPU Critical Sections
	2.04.01 CPU_SR_ALLOC()
	2.04.02.01 CPU_CRITICAL_ENTER()
	2.04.02.02 CPU_CRITICAL_EXIT()
	2.04.03.01 CPU_INT_DIS()
	2.04.03.02 CPU_INT_EN()

	Chapter 3 µC/CPU Library
	3.00 µC/CPU Configuration
	3.01 CPU_Init()
	3.02.01 CPU_NameClr()
	3.02.02 CPU_NameSet()
	3.02.03 CPU_NameGet()
	3.03 CPU Timestamps
	3.03.01.01 CPU_TS_Get()
	3.03.01.02 CPU_TS_GetLo()
	3.03.02 CPU_TS_Update()
	3.03.03.01 CPU_TS_TmrInit()
	3.03.03.02 CPU_TS_TmrRd()
	3.03.04 CPU_TS_to_uSec()

	3.04 CPU Interrupts Disable Time Measurements
	3.04.01 CPU_IntDisMeasMaxGet()
	3.04.02 CPU_IntDisMeasMaxCurGet()
	3.04.03 CPU_IntDisMeasMaxCurReset()

	3.05 CPU_CntLeadZeros()

	Appendix A µC/CPU Licensing Policy

