UC/OS-11 V2.89
Configuration Manual

This chapter provides a description of the configurable elements of uC/OS-Il. Because uC/OS-I11 is provided in
source form, configuration is done through a number of #define constants, which are found in 0S_CFG_.H and
should exist for each project/product that you develop. In other words, configuration is done via conditional

compilation.

Instead of creating an 0S_CFG.H file from scratch, it is recommended that you copy and modify one of the
0S_CFG.H files provided in one of the examples that came with uC/OS-1l. 0S_CFG.H is independent of the

type of CPU used.

This section describes each of the #define constants in 0S_CFG.H.

557

Miscellaneous

0S_APP_HOOKS_EN

When set to 1, this #define specifies that application defined hooks are called from puC/OS-II’s hooks. See
also 0S_CPU_HOOKS_EN. Specifically:

The pC/OS-11 hook ... Calls the Application-define hook ...
OSTaskCreateHook() App_TaskCreateHook()
OSTaskDelHook() App_TaskDelHook()
OSTaskldleHook() App_TaskldleHook()
OSTaskStatHook() App_TaskStatHook ()
OSTaskSwHook () App_TaskSwHook()
OSTCBInitHook() App_TCBInitHook()
OSTimeTickHook() App_TimeTickHook()

0S_ARG_CHK_EN
0S_ARG_CHK_EN indicates whether you want most of uC/OS-I1 functions to perform argument checking. When
set to 1, uC/OS-I1 will ensure that pointers passed to functions are non-NULL, that arguments passed are within
allowable range and more. 0S_ARG_CHK_EN was added to reduce the amount of code space and processing time
required by pC/OS-I1. Set 0S_ARG_CHK_EN to 0 if you must reduce code space to a minimum. In general, you
should always enable argument checking and thus set 0S_ARG_CHK_EN to 1.

0S_CPU_HOOKS_EN

0S_CPU_HOOKS_EN indicates whether 0S_CPU_C.C declares the hook function (when set to 1) or not (when set
to 0). Recall that uC/OS-I11 expects the presence of nine functions that can be defined either in the port (i.e., in
0S_CPU_C.C) or by the application code. These functions are:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
0STaskDelHook()
OSTaskldleHook()
OSTaskStatHook()
0STaskSwHook ()
OSTCBInitHook()
OSTimeTickHook()

0S_DEBUG_EN

When set to 1, this #define adds ROM constants located in 0S_DEBUG.C to help support kernel aware
debuggers. Specifically, a number of named ROM variables can be queried by a debugger to find out about
compiled-in options. For example, the debugger can find out the size of an 0S_TCB, uC/OS-II’s version
number, the size of an event flag group (0S_FLAG_GRP) and much more.

558

0S_EVENT_MULTI_EN

This constant determines whether the code to support pending on multiple events will be enabled (1) or not (0).
This constant thus enables code for the function 0SEventPendMulti (). This #define was added in VV2.86.

0S_EVENT_NAME_EN

This constant determines whether names can be assigned to either a semaphore, a mutex, a mailbox or a
message queue. If 0OS_EVENT_NAME_EN is set to O, this feature is disabled. You should note that need to use
OSEventNameSet() to set the name of either a semaphores, a mutex, a mailbox or a message queue. You
need to use OSEventNameGet() to obtain the name of either a semaphores, a mutex, a mailbox or a message
queue.

0S_LOWEST_PRIO

OS_LOWEST_PRI0 specifies the lowest task priority (i.e., highest number) that you intend to use in your
application and is provided to reduce the amount of RAM needed by uC/OS-I11. As of V2.80 uC/OS-I11 priorities
can go from 0 (highest priority) to a maximum of 254 (lowest possible priority). Setting 0S_LOWEST_PRI10 to a
value less than 254 means that your application cannot create tasks with a priority number higher than
0S_LOWEST_PRI0. In fact, uC/OS-II reserves priorities 0S_LOWEST PRI10 and OS_LOWEST_PR10-1 for itself;
0S_LOWEST_PRIO is reserved for the idle task, 0S_Taskldle(), and 0S_LOWEST_PR10-1 is reserved for the
statistic task, 0S_TaskStat(). The priorities of your application tasks can thus take a value between 0 and
OS_LOWEST_PR10-2 (inclusive). The lowest task priority specified by 0S_LOWEST_PRIO is independent of
0S_MAX_TASKS. For example, you can set 0S_MAX_TASKS to 10 and 0OS_LOWEST_PRI10 to 32 and have up to
10 application tasks, each of which can have a task priority value between 0 and 30 (inclusive). Note that each
task must still have a different priority value. You must always set 0S_LOWEST_PRIO to a value greater than the
number of application tasks in your system. For example, if you set 0S MAX TASKS to 20 and
0S_LOWEST_PRI10 to 10, you can not create more than eight application tasks (0 to 7) since priority 8 is the
statistics task and priority 9 is the idle task. You are simply wasting RAM.

0S_MAX_EVENTS

0S_MAX_EVENTS specifies the maximum number of event control blocks that can be allocated. An event control
block is needed for every message mailbox, message queue, mutual exclusion semaphore, or semaphore object.
For example, if you have 10 mailboxes, five queues, four mutexes, and three semaphores, you must set
0S_MAX_EVENTS to at least 22. 0S_MAX_EVENTS must be greater than 0. See also 0S_MBOX_EN, 0S_Q_EN,
0S_MUTEX_EN, and OS_SEM_EN.

0S_MAX_FLAGS

OS_MAX_FLAGS specifies the maximum number of event flags that you need in your application.
0S_MAX_FLAGS must be greater than 0. To use event-flag services, you also need to set 0S_FLAG_EN to 1.

559

0S_MAX_MEM_PART

OS_MAX_MEM_PART specifies the maximum number of memory partitions that your application can create. To
use memory partitions, also need to set OS_MEM_EN to 1. If you intend to use memory partitions,
0S_MAX_MEM_PART must be set to at least the number of partitions you wish to create. For example, by setting
0S_MAX_MEM_PART to 3, your are allowed to create and use up to three memory partitions. Setting
0S_MAX_MEM_PART to a number greater than the number of memory partitions your application uses will not
cause problems but is unnecessary and a waste of RAM.

0S_MAX_QS
0S_MAX_QS specifies the maximum number of message queues that your application can create. To use
message queues, you also must set 0S_Q_EN to 1. If you intend to use message queues, 0S_MAX_QS must be set
to at least the number of queues you wish to create. For example, if you set 0S_MAX_QS to 3, you are allowed
to create and use up to three message queues. Setting OS_MAX_QS to greater than the number of message
queues your application uses will not cause problems but is unnecessary and a waste of RAM.

0S_MAX_TASKS

0S_MAX_TASKS specifies the maximum number of application tasks that can exist in your application. Note that
0S_MAX_TASKS cannot be greater than 253 (as of VV2.80) because nC/OS-1I currently reserves two tasks for
itself (see OS_N_SYS_TASKS in uCOS_11_H). If you set 0S_MAX_TASKS to the exact number of tasks in your
system, you need to make sure that you revise this value when you add additional tasks. Conversely, if you
make OS_MAX_TASKS much higher than your current task requirements (for future expansion), you are wasting
valuable RAM.

0S_SCHED_LOCK_EN

This constant enables (when set to 1) or disables (when set to 0) code generation for the two functions
0SSchedLock() and 0SSchedUnlock().

0S_TICK_STEP_EN

MC/OS-View (a Micrium product that allows you to display run-time data about your tasks on a Windows-based
PC) can now ‘halt” uC/OS-II’s tick processing and allow you to issue ‘step’ commands from uC/OS-View. In
other words, uC/OS-View can prevent uC/OS-I1 from calling 0STimeTick() so that timeouts and time delays
are no longer processed. However, though a keystroke from pC/OS-View, you can execute a single tick at a
time. If OS_TIME_TICK_HOOK_EN (see below) is set to 1, 0STimeTickHook() is still executed at the regular
tick rate in case you have time critical items to take care of in your application.

0S_TICKS_PER_SEC

OS_TICKS_PER_SEC specifies the rate at which you call 0STimeTick(). It is up to your initialization code to
ensure that 0STimeTick() is invoked at this rate. This constant is used by 0SStatInit(), 0S_TaskStat(),
and OSTimeDlyHMSMQ).

560

Event Flags

0S_FLAG_EN

0OS_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of all the event-flag services
and data structures, which reduces the amount of code and data space needed when your application does not
require the use of event flags. When 0S_FLAG_EN is set to 0, you do not need to enable or disable any of the
other #define constants in this section.

0S_FLAG_ACCEPT_EN

OS_FLAG_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagAccept().

0S_FLAG_DEL_EN

0S_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagDel).

0S_FLAG_NAME_EN

This constant determines whether names can be assigned to event flag groups. If 0S_FLAG_NAME_EN is set to
0, this feature is disabled.

0S_FLAG_QUERY_EN

OS_FLAG_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagQuery(Q).

0S_FLAG_WAIT_CLR_EN

0S_FLAG_WAIT_CLR_EN enables (when set to 1) or disables (when set to 0) the code generation used to wait
for event flags to be 0 instead of 1. Generally, you want to wait for event flags to be set. However, you might
also want to wait for event flags to be clear, and thus you need to enable this option.

0S_FLAGS_NBITS

OS_FLAGS_NBITS has been introduced in VV2.80 and specifies the number of bits used in event flags and MUST
be either 8, 16 or 32.

561

Message Mailboxes

0S_MBOX_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of all message-mailbox
services and data structures, which reduces the amount of code space needed when your application does not
require the use of message mailboxes. When 0S_MBOX_EN is set to 0, you do not need to enable or disable any
of the other #define constants in this section.

0S_MBOX_ACCEPT_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxAccept().

0S_MBOX_DEL_EN

This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
0OSMboxDel ().

0S_MBOX_PEND_ABORT_EN

0S_MBOX_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0SMboxPendAbort().

0S_MBOX_POST_EN

0S_MBOX_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxPost(). You can disable code generation for this function if you decide to use the more powerful
function 0SMboxPostOpt() instead.

0S_MBOX_POST_OPT_EN

0S_MBOX_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxPostOpt(). You can disable code generation for this function if you do not need the additional
functionality provided by 0SMboxPostOpt(). 0SMboxPost() generates less code.

0S_MBOX_QUERY_EN

0S_MBOX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SMboxQuery ().

562

Memory Management

0S_MEM_EN

OS_MEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the uC/OS-I11 partition-
memory manager and its associated data structures. This feature reduces the amount of code and data space
needed when your application does not require the use of memory partitions.

0S_MEM_NAME_EN

This constant determines whether names can be assigned to memory partitions. If 0OS_MEM_NAME_EN is set to
0, this feature is disabled and no RAM is used in the 0S_MEM for the memory partition for storage of names.

0S_MEM_QUERY_EN

OS_MEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0OSMemQuery().

563

Mutual Exclusion Semaphores

0S_MUTEX_EN

OS_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation of all mutual-exclusion-
semaphore services and data structures, which reduces the amount of code and data space needed when your
application does not require the use of mutexes. When 0S_MUTEX_EN is set to 0, you do not need to enable or
disable any of the other #define constants in this section.

0S_MUTEX_ACCEPT_EN

OS_MUTEX_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMutexAccept().

0S_MUTEX_DEL_EN

OS_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMutexDel ().

0S_MUTEX_QUERY_EN

OS_MUTEX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMutexQuery().

564

Message Queues

0S_Q _EN

0S_Q_EN enables (when set to 1) or disables (when set to 0) the code generation of all message-queue services
and data structures, which reduces the amount of code space needed when your application does not require the
use of message queues. When 0S_Q_EN is set to 0, you do not need to enable or disable any of the other
#define constants in this section. Note that if 0S_Q EN is set to 0, the #define constant OS_MAX_QS is
irrelevant.

0S_Q ACCEPT_EN

0S_Q_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQAccept().

0S_Q DEL_EN

0S_Q DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0sQDel Q).

0S_Q FLUSH_EN

0S_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQFlush().

0S_Q PEND_ABORT_EN

0S_Q_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQPendAbort().

0S_Q POST_EN

0S_Q POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQPost(). You can disable code generation for this function if you decide to use the more powerful function
0SQPostOpt() instead.

0S_Q_POST_FRONT_EN

0S_Q_POST_FRONT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQPostFront(). You can disable code generation for this function if you decide to use the more powerful
function 0SQPostOpt() instead.

0S_Q_POST OPT_EN

0S_Q_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQPostOpt(). You can disable code generation for this function if you do not need the additional
functionality provided by 0SQPostOpt(). 0SQPost() generates less code.

565

0S_Q QUERY_EN

0S_Q QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SQQuery(Q).

566

Semaphores

0S_SEM_EN

0S_SEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the uC/OS-11 semaphore
manager and its associated data structures, which reduces the amount of code and data space needed when your
application does not require the use of semaphores. When 0S_SEM_EN is set to 0, you do not need to enable or
disable any of the other #define constants in this section.

0S_SEM_ACCEPT_EN

OS_SEM_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SSemAccept().

0S_SEM_DEL_EN
0S_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SSemDel ().

0S_SEM_PEND_ABORT_EN

OS_SEM_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0SSemPendAbort().

0S_SEM_QUERY_EN

OS_SEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SSemQuery().

0S_SEM_SET_EN
0S_SEM_SET_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0SSemSet().

567

Task Management

0S_TASK_TMR_STK_SIZE

0S_TASK_TMR_STK_SIZE specifies the size of the uC/OS-I1 timer task stack. The size is specified not in bytes
but in number of elements. This is because a stack is declared to be of type 0S_STK. The size of the timer-task
stack depends on the processor you are using, the ‘callback’ functions that will be executed when each of the
timer times out and the deepest anticipated interrupt-nesting level.

0S_TASK_STAT STK_SIZE
0S_TASK_STAT_STK_SIZE specifies the size of the uC/OS-I1I statistic-task stack. The size is specified not in
bytes but in number of elements. This is because a stack is declared as being of type 0S_STK. The size of the
statistic-task stack depends on the processor you are using and the maximum of the following actions:

» The stack growth associated with performing 32-bit arithmetic (subtraction and division)
» The stack growth associated with calling 0STimeDly()
e The stack growth associated with calling 0STaskStatHook()

e The deepest anticipated interrupt-nesting level

If you want to run stack checking on this task and determine its actual stack requirements, you must enable
code generation for 0STaskCreateExt() by setting OS_TASK_CREATE_EXT_EN to 1. Again, the priority of
0S_TaskStat() is always set to 0S_LOWEST_PRI10-1.

0S_TASK_IDLE_STK_SIZE

OS_TASK_IDLE_STK_SIZE specifies the size of the uC/OS-I1 idle-task stack. The size is specified not in bytes
but in number of elements. This is because a stack is declared to be of type 0S_STK. The size of the idle-task
stack depends on the processor you are using and the deepest anticipated interrupt-nesting level. Very little is
being done in the idle task, but you should allow at least enough space to store all processor registers on the
stack and enough storage to handle all nested interrupts.

0S_TASK_CHANGE_PRIO_EN

0S_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function 0OSTaskChangePrio(). If your application never changes task priorities after they are assigned, you
can reduce the amount of code space used by pC/OS-I1 by setting 0S_TASK_CHANGE_PRIO_EN to 0.

0S_TASK_CREATE_EN

OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the
OSTaskCreate () function. Enabling this function makes pC/OS-I1 backward compatible with the pC/OS task-
creation function. If your application always uses OSTaskCreateExt() (recommended), you can reduce the
amount of code space used by uC/OS-11 by setting 0S_TASK_CREATE_EN to 0. Note that you must set at least
OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN to 1. If you wish, you can use both.

568

0S_TASK_CREATE_EXT_EN

0S_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSTaskCreateExt(), which is the extended, more powerful version of the two task-creation functions. If your
application never uses 0OSTaskCreateExt(), you can reduce the amount of code space used by pC/OS-I1 by
setting OS_TASK_CREATE_EXT_EN to 0. Note that you need the extended task-create function to use the stack-
checking function 0STaskStkChk().

0S_TASK_DEL_EN

OS_TASK_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of the function
OSTaskDel (), which deletes tasks. If your application never uses this function, you can reduce the amount of
code space used by uC/OS-11 by setting 0S_TASK_DEL_EN to 0.

0S_TASK_NAME_EN

This constant determines whether you can assign names to tasks. If 0S_TASK_NAME_EN is set to 0, this feature
is disabled and no RAM is used in the OS_TCB for the task name.

0S_TASK_PROFILE_EN

This constant allows variables to be allocated in each task’s 0S_TCB that hold performance data about each
task. Specifically, if 0S_TASK_PROFILE_EN is set to 1, each task will have a variable to keep track of the
number of context switches, the task execution time, the number of bytes used by the task and more.

0S_TASK_STAT_EN

OS_TASK_STAT_EN specifies whether or not you can enable the pC/OS-Il statistic task, as well as its
initialization function. When set to 1, the statistic task 0S_TaskStat() and the statistic-task-initialization
function are enabled. 0S_TaskStat() computes the CPU usage of your application. When enabled, it executes
every second and computes the 8-bit variable 0SCPUUsage, which provides the percentage of CPU use of your
application. 0S_TaskStat() calls 0STaskStatHook() every time it executes so that you can add your own
statistics as needed. See 0S_CORE. C for details on the statistic task. The priority of 0S_TaskStat() is always
set to OS_LOWEST_PRIO-1.

The global variables 0SCPUUsage, 0S1dleCtrMax, 0S1dleCtrRun, OSTaskStatStk[], and 0SStatRdy
are not declared when 0S_TASK_STAT_EN is set to 0, which reduces the amount of RAM needed by pC/OS-I11
if you don’t intend to use the statistic task. 0S1dleCtrRun contains a snapshot of 0SidleCtr just before
OSldlecCtr is cleared to zero every second. 0S1dleCtrRun is not used by uC/OS-11 for any other purpose.
However, you can read and display 0S1dleCtrRun if needed.

0S_TASK_STAT_STK_CHK_EN

This constant allows the statistic task to determine the actual stack usage of each active task. If
OS_TASK_STAT_EN is set to O (the statistic task is not enabled) but, you can call 0S_TaskStatStkChk()
yourself from one of your tasks. 1¥ OS_TASK_STAT_EN is set to 1, stack sizes will be determined every
second by the statistic task.

569

0S_TASK_SUSPEND_EN

OS_TASK_SUSPEND_EN enables (when set to 1) or disables (when set to 0) code generation of the functions
OSTaskSuspend() and OSTaskResume(), which allows you to explicitly suspend and resume tasks,
respectively. If your application never uses these functions, you can reduce the amount of code space used by
MC/OS-II by setting 0S_TASK_SUSPEND_EN to O.

0S_TASK_SW_HOOK_EN

Normally, pC/OS-11 requires that you have a context switch hook function called 0STaskSwHook (). When set
to 0, this constant allows you to omit 0STaskSwHook() from your code. This configuration constant was
added to reduce the amount of overhead during a context switch in applications that doesn’t require the context
switch hook. Of course, you will also need to remove the calls to 0STaskSwHook() from
OSTaskStartHighRdy (), 0SCtxSw() and OSIntCtxSw() in 0S_CPU_A_.ASM.

0S_TASK_TMR_PRIO (APP_CFG.H)

0S_TASK_TMR_PRI0 specifies the priority of the timer management task. You can set the priority of the timer
task to anything you want. Note that timer callback functions are executed by the timer task.
0S_TASK_TMR_PRI0 needs to be set in your application file called APP_CFG_H.

0S_TASK_QUERY_EN

0S_TASK_QUERY_EN enables (when set to 1) or disables (when set to 0) code generation of the function
0STaskQuery(). If your application never uses this function, you can reduce the amount of code space used by
HC/OS-I1 by setting 0S_TASK_QUERY_EN to 0.

570

Time Management

OS_TIME_DLY_HMSM_EN

OS_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
0STimeDIyHMSM(), which is used to delay a task for a specified number of hours, minutes, seconds, and
milliseconds.

0S_TIME_DLY_ RESUME_EN

OS_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSTimeDlyResume().

0S_TIME_GET_SET_EN

OS_TIME_GET_SET_EN enables (when set to 1) or disables (when set to 0) the code and data generation of the
functions 0STimeGet() and 0STimeSet(). If you don’t need to use the 32-bit tick counter OSTime, then you
can save yourself 4 bytes of data space and code space by not having the code for these functions generated by
the compiler.

0S_TIME_TICK_HOOK_EN

Normally, uC/OS-11 requires the presence of a function called OSTimeTickHook() which is called at the very
beginning of the tick ISR. When set to 0, this constant allows you to omit OSTimeTickHook() from your
code. This configuration constant was added to reduce the amount of overhead during a tick ISR in applications
that doesn’t require this hook.

571

Timer Management

Note that timer management requires semaphores and thus, you need to set 0S_SEM_EN to 1.

0S_TMR_EN

Enables (when set to 1) or disables (when set to 0) the code generation of the timer management services.

0S_TMR_CFG_MAX

Determines the maximum number of timers you can have in your application. Depending on the amount of
RAM available in your product, you can have hundreds or even thousands of timers (max. is 65500). 36 entries
are reserved.

0S_TMR_CFG_NAME_EN

This constant determines whether names can be assigned to timers. If 0S_TMR_CFG_NAME_EN is set to 0, this
feature is disabled and no RAM is used in the 0S_TMR for the timer name.

0S_TMR_CFG_WHEEL_SIZE

Timers are updated using a rotating wheel. This ‘wheel” allows to reduce the number of timers that need to be
updated by the timer manager task. The size of the wheel should be a fraction of the number of timers you have
in your application. In other words:

0S_TMR_CFG_WHEEL_SIZE <= 0S_TMR_CFG_MAX

This value should be a number between 2 and 1024. Timer management overhead is somewhat determined by
the size of the wheel. A large number of entries might reduce the overhead for timer management but would
require more RAM. Each entry requires a pointer and a count (16-bit value). We recommend a number that is
NOT a multiple of the tick rate. If your application has many timers then it’s recommended that you have a
high value. As a starting value, you could use 0S_TMR_CFG_MAX / 4.

0S_TMR_CFG_TICKS_PER_SEC

This configuration constant determines the rate at which timers are updated (in Hz). Timer updates should be
done at a fraction of the tick rate (i.e. 0S_TICKS_PER_SEC). We recommend that you update timers at 10
Hz.

572

Function Summary

Table 17.1 lists each pC/OS-II function by type (Service), indicates which variables enable the code
(Set to 1), and lists other configuration constants that affect the function (Other Constants).

Of course, 0S_CFG.H must be included when uC/OS-I1 is built, in order for the desired configuration to take

effect.
Table 17.1 UC/OS-11 functions and #define configuration constants.
Service Setto 1 Other Constants

Miscellaneous
OSEventNameGet()
OSEventNameSet()
OSEventPendMulti()
osInit(Q)

0SSchedLock()
0SSchedunlock()
oSsstart()
OSStatlnit()

OSVersion()

Interrupt Management
OSIntEnter(Q)
OSIntExit()

Event Flags
OSFlagAccept()
OSFlagCreate()
OSFlagDel O
OSFlagNameGet()
OSFlagNameSet()
OSFlagPend()
OSFlagPost()
OSFlagQuery()

0S_EVENT_NAME_EN
0S_EVENT_NAME_EN
OS_EVENT_MULTI_EN
N/A

0S_SCHED_LOCK_EN
0S_SCHED_LOCK_EN

N/A

0S_TASK_STAT EN &&
0S_TASK_CREATE_EXT_EN

N/A

N/A
N/A

0S_FLAG_EN
0S_FLAG_EN
0S_FLAG_EN
0S_FLAG_EN
0S_FLAG_EN
0S_FLAG_EN
0S_FLAG_EN
0S_FLAG_EN

N/A
N/A

0S_MAX_EVENTS
0S_Q _EN and 0S_MAX_QS
0S_MEM_EN
0S_TASK_IDLE_STK_SIZE
0S_TASK_STAT_EN
0S_TASK_STAT_STK_SIZE

N/A
N/A
N/A
0S_TICKS_PER_SEC

N/A

N/A
N/A

0S_FLAG_ACCEPT_EN
0S_MAX_FLAGS
0S_FLAG_DEL_EN
0S_FLAG_NAME_EN
0S_FLAG_NAME_EN
0S_FLAG_WAIT_CLR_EN
N/A
0S_FLAG_QUERY_EN

573

Message Mailboxes

0SMboxAccept() 0S_MBOX_EN 0S_MBOX_ACCEPT_EN
0OSMboxCreate() 0S_MBOX_EN 0S_MAX_EVENTS
0SMboxDel () 0S_MBOX_EN 0S_MBOX_DEL_EN
0SMboxPend() 0S_MBOX_EN N/A
OSMboxPendAbort() OS_MBOX_EN 0S_MBOX_PEND_ABORT_EN
0SMboxPost() 0S_MBOX_EN 0S_MBOX_POST_EN
0SMboxPostOpt() 0S_MBOX_EN 0S_MBOX_POST_OPT_EN
0SMboxQuery() 0S_MBOX_EN 0S_MBOX_QUERY_EN
Memory Partition Management
OSMemCreate() 0S_MEM_EN 0S_MAX_MEM_PART
0SMemGet() 0S_MEM_EN N/A
OSMemNameGet() 0S_MEM_EN 0S_MEM_NAME_EN
OSMemNameSet() 0S_MEM_EN 0S_MEM_NAME_EN
0SMemPut() 0S_MEM_EN N/A
OSMemQuery() OS_MEM_EN OS_MEM_QUERY_EN
Mutex Management
OSMutexAccept() 0S_MUTEX_EN 0S_MUTEX_ACCEPT_EN
OSMutexCreate() 0S_MUTEX_EN 0S_MAX_EVENTS
OSMutexDel) 0S_MUTEX_EN 0S_MUTEX_DEL_EN
OSMutexPend() 0S_MUTEX_EN N/A
OSMutexPost() OS_MUTEX_EN N/A
OSMutexQuery() 0S_MUTEX_EN 0S_MUTEX_QUERY_EN
Message Queues
0SQAccept() 0S_Q_EN 0S_Q_ACCEPT_EN
0SQCreate() 0S_Q_EN 0S_MAX_EVENTS
0S_MAX_QS
0sQDel O 0S_Q_EN 0S_Q DEL_EN
0SQFlushQ 0S_Q_EN 0S_Q_FLUSH_EN
0sQPend() 0S_Q_EN N/A
0SQPendAbort() OS_Q_EN 0S_Q _PEND_ABORT_EN
0SQPost() 0S_Q _EN 0S_Q _POST_EN
0SQPostFront() 0S_Q_EN 0S_Q_POST_FRONT_EN
0SQPostopt() 0S_Q _EN 0S_Q_POST_OPT_EN
0SQQuery(0S_Q_EN 0S_Q_QUERY_EN

574

Semaphore Management
0SSemAccept()
0SSemCreate()
0SSembDel)
0SSemPend()
0SSemPendAbort()
0SSemPost()
0SSemQuery()
0SSemSet()

Task Management
OSTaskChangePrio()
OSTaskCreate()
OSTaskCreateExt()

OSTaskDel)
0STaskDelReq()
OSTaskResume ()
OSTaskNameGet()
OSTaskNameSet()
0STaskStkChk()
0STaskSuspend()
OSTaskQuery()
0S_TaskStatStkChk()
Time Management
OSTimeDly()
OSTimeDIyHMSMO
OSTimeDlyResume()
OSTimeGet()
OSTimeSet()
OSTimeTick()
Timer Management
OSTmrCreate()
OSTmrDel OO
OSTmrNameGet()

OSTmrRemainGet()
OSTmrStart()
0STmrStop()
OSTmrSignal)

0S_SEM_EN
0S_SEM_EN
0S_SEM_EN
0S_SEM_EN
0S_SEM_EN
0S_SEM_EN
0S_SEM_EN
0S_SEM_EN

0S_TASK_CHANGE_PRIO_EN

0S_TASK_CREATE_EN
0S_TASK_CREATE_EXT_EN

0S_TASK_DEL_EN
0S_TASK_DEL_EN
0S_TASK_SUSPEND_EN
0S_TASK_NAME_EN
0S_TASK_NAME_EN
0S_TASK_CREATE_EXT_EN
0S_TASK_SUSPEND_EN
0S_TASK_QUERY_EN

0S_TASK_STAT_STK_CHK_EN

N/A
OS_TIME_DLY_HMSM_EN
0S_TIME_DLY_RESUME_EN
0S_TIME_GET_SET_EN
0S_TIME_GET_SET_EN

N/A

0S_TMR_EN
0S_TMR_EN

OS_TMR_EN &&
0S_TMR_CFG_NAME_EN

0S_TMR_EN
0S_TMR_EN
0S_TMR_EN
0S_TMR_EN

0S_SEM_ACCEPT_EN

0S_MAX_EVENTS
0S_SEM_DEL_EN
N/A

0S_SEM_PEND_ABORT_EN

N/A

0S_SEM_QUERY_EN

0S_SEM_SET_EN

0S_LOWEST_PRIO

0S_MAX_TASKS
0S_MAX_TASKS

0S_TASK_STK_CLR

0S_MAX_TASKS
0S_MAX_TASKS
0S_MAX_TASKS
N/A
N/A
0S_MAX_TASKS
0S_MAX_TASKS
0S_MAX_TASKS
N/A

N/A

0S_TICKS_PER_SEC

0S_MAX_TASKS
N/A
N/A
N/A

NZA
N/A
NZA

N/A
NZA
N/A

OS_TMR_CFG_TICKS_PER_SEC

575

User-Defined Functions
OSTaskCreateHook()
0STaskDe IHook()
OSTaskStatHook()
0STaskSwHook ()
OSTimeTickHook()

0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN
0S_CPU_HOOKS_EN

N/A

N/A

N/A
0S_TASK_SW_HOOK_EN
0S_TIME_TICK_HOOK_EN

576

