

µC/OS-II V2.89
Configuration Manual
This chapter provides a description of the configurable elements of µC/OS-II. Because µC/OS-II is provided in
source form, configuration is done through a number of #define constants, which are found in OS_CFG.H and
should exist for each project/product that you develop. In other words, configuration is done via conditional
compilation.

Instead of creating an OS_CFG.H file from scratch, it is recommended that you copy and modify one of the
OS_CFG.H files provided in one of the examples that came with µC/OS-II. OS_CFG.H is independent of the
type of CPU used.

This section describes each of the #define constants in OS_CFG.H.

 557

Miscellaneous

OS_APP_HOOKS_EN
When set to 1, this #define specifies that application defined hooks are called from µC/OS-II’s hooks. See
also OS_CPU_HOOKS_EN. Specifically:

The µC/OS-II hook … Calls the Application-define hook …
OSTaskCreateHook() App_TaskCreateHook()
OSTaskDelHook() App_TaskDelHook()
OSTaskIdleHook() App_TaskIdleHook()
OSTaskStatHook() App_TaskStatHook()
OSTaskSwHook() App_TaskSwHook()
OSTCBInitHook() App_TCBInitHook()
OSTimeTickHook() App_TimeTickHook()

OS_ARG_CHK_EN
OS_ARG_CHK_EN indicates whether you want most of µC/OS-II functions to perform argument checking. When
set to 1, µC/OS-II will ensure that pointers passed to functions are non-NULL, that arguments passed are within
allowable range and more. OS_ARG_CHK_EN was added to reduce the amount of code space and processing time
required by µC/OS-II. Set OS_ARG_CHK_EN to 0 if you must reduce code space to a minimum. In general, you
should always enable argument checking and thus set OS_ARG_CHK_EN to 1.

OS_CPU_HOOKS_EN
OS_CPU_HOOKS_EN indicates whether OS_CPU_C.C declares the hook function (when set to 1) or not (when set
to 0). Recall that µC/OS-II expects the presence of nine functions that can be defined either in the port (i.e., in
OS_CPU_C.C) or by the application code. These functions are:

OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

OS_DEBUG_EN
When set to 1, this #define adds ROM constants located in OS_DEBUG.C to help support kernel aware
debuggers. Specifically, a number of named ROM variables can be queried by a debugger to find out about
compiled-in options. For example, the debugger can find out the size of an OS_TCB, µC/OS-II’s version
number, the size of an event flag group (OS_FLAG_GRP) and much more.

 558

OS_EVENT_MULTI_EN
This constant determines whether the code to support pending on multiple events will be enabled (1) or not (0).
This constant thus enables code for the function OSEventPendMulti(). This #define was added in V2.86.

OS_EVENT_NAME_EN
This constant determines whether names can be assigned to either a semaphore, a mutex, a mailbox or a
message queue. If OS_EVENT_NAME_EN is set to 0, this feature is disabled. You should note that need to use
OSEventNameSet() to set the name of either a semaphores, a mutex, a mailbox or a message queue. You
need to use OSEventNameGet() to obtain the name of either a semaphores, a mutex, a mailbox or a message
queue.

OS_LOWEST_PRIO
OS_LOWEST_PRIO specifies the lowest task priority (i.e., highest number) that you intend to use in your
application and is provided to reduce the amount of RAM needed by µC/OS-II. As of V2.80 µC/OS-II priorities
can go from 0 (highest priority) to a maximum of 254 (lowest possible priority). Setting OS_LOWEST_PRIO to a
value less than 254 means that your application cannot create tasks with a priority number higher than
OS_LOWEST_PRIO. In fact, µC/OS-II reserves priorities OS_LOWEST_PRIO and OS_LOWEST_PRIO–1 for itself;
OS_LOWEST_PRIO is reserved for the idle task, OS_TaskIdle(), and OS_LOWEST_PRIO–1 is reserved for the
statistic task, OS_TaskStat(). The priorities of your application tasks can thus take a value between 0 and
OS_LOWEST_PRIO–2 (inclusive). The lowest task priority specified by OS_LOWEST_PRIO is independent of
OS_MAX_TASKS. For example, you can set OS_MAX_TASKS to 10 and OS_LOWEST_PRIO to 32 and have up to
10 application tasks, each of which can have a task priority value between 0 and 30 (inclusive). Note that each
task must still have a different priority value. You must always set OS_LOWEST_PRIO to a value greater than the
number of application tasks in your system. For example, if you set OS_MAX_TASKS to 20 and
OS_LOWEST_PRIO to 10, you can not create more than eight application tasks (0 to 7) since priority 8 is the
statistics task and priority 9 is the idle task. You are simply wasting RAM.

OS_MAX_EVENTS
OS_MAX_EVENTS specifies the maximum number of event control blocks that can be allocated. An event control
block is needed for every message mailbox, message queue, mutual exclusion semaphore, or semaphore object.
For example, if you have 10 mailboxes, five queues, four mutexes, and three semaphores, you must set
OS_MAX_EVENTS to at least 22. OS_MAX_EVENTS must be greater than 0. See also OS_MBOX_EN, OS_Q_EN,
OS_MUTEX_EN, and OS_SEM_EN.

OS_MAX_FLAGS
OS_MAX_FLAGS specifies the maximum number of event flags that you need in your application.
OS_MAX_FLAGS must be greater than 0. To use event-flag services, you also need to set OS_FLAG_EN to 1.

 559

OS_MAX_MEM_PART
OS_MAX_MEM_PART specifies the maximum number of memory partitions that your application can create. To
use memory partitions, also need to set OS_MEM_EN to 1. If you intend to use memory partitions,
OS_MAX_MEM_PART must be set to at least the number of partitions you wish to create. For example, by setting
OS_MAX_MEM_PART to 3, your are allowed to create and use up to three memory partitions. Setting
OS_MAX_MEM_PART to a number greater than the number of memory partitions your application uses will not
cause problems but is unnecessary and a waste of RAM.

OS_MAX_QS
OS_MAX_QS specifies the maximum number of message queues that your application can create. To use
message queues, you also must set OS_Q_EN to 1. If you intend to use message queues, OS_MAX_QS must be set
to at least the number of queues you wish to create. For example, if you set OS_MAX_QS to 3, you are allowed
to create and use up to three message queues. Setting OS_MAX_QS to greater than the number of message
queues your application uses will not cause problems but is unnecessary and a waste of RAM.

OS_MAX_TASKS
OS_MAX_TASKS specifies the maximum number of application tasks that can exist in your application. Note that
OS_MAX_TASKS cannot be greater than 253 (as of V2.80) because µC/OS-II currently reserves two tasks for
itself (see OS_N_SYS_TASKS in uCOS_II.H). If you set OS_MAX_TASKS to the exact number of tasks in your
system, you need to make sure that you revise this value when you add additional tasks. Conversely, if you
make OS_MAX_TASKS much higher than your current task requirements (for future expansion), you are wasting
valuable RAM.

OS_SCHED_LOCK_EN
This constant enables (when set to 1) or disables (when set to 0) code generation for the two functions
OSSchedLock() and OSSchedUnlock().

OS_TICK_STEP_EN
µC/OS-View (a Micrium product that allows you to display run-time data about your tasks on a Windows-based
PC) can now ‘halt’ µC/OS-II’s tick processing and allow you to issue ‘step’ commands from µC/OS-View. In
other words, µC/OS-View can prevent µC/OS-II from calling OSTimeTick() so that timeouts and time delays
are no longer processed. However, though a keystroke from µC/OS-View, you can execute a single tick at a
time. If OS_TIME_TICK_HOOK_EN (see below) is set to 1, OSTimeTickHook() is still executed at the regular
tick rate in case you have time critical items to take care of in your application.

OS_TICKS_PER_SEC
OS_TICKS_PER_SEC specifies the rate at which you call OSTimeTick(). It is up to your initialization code to
ensure that OSTimeTick() is invoked at this rate. This constant is used by OSStatInit(), OS_TaskStat(),
and OSTimeDlyHMSM().

 560

Event Flags

OS_FLAG_EN
OS_FLAG_EN enables (when set to 1) or disables (when set to 0) code generation of all the event-flag services
and data structures, which reduces the amount of code and data space needed when your application does not
require the use of event flags. When OS_FLAG_EN is set to 0, you do not need to enable or disable any of the
other #define constants in this section.

OS_FLAG_ACCEPT_EN
OS_FLAG_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagAccept().

OS_FLAG_DEL_EN
OS_FLAG_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagDel().

OS_FLAG_NAME_EN
This constant determines whether names can be assigned to event flag groups. If OS_FLAG_NAME_EN is set to
0, this feature is disabled.

OS_FLAG_QUERY_EN
OS_FLAG_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSFlagQuery().

OS_FLAG_WAIT_CLR_EN
OS_FLAG_WAIT_CLR_EN enables (when set to 1) or disables (when set to 0) the code generation used to wait
for event flags to be 0 instead of 1. Generally, you want to wait for event flags to be set. However, you might
also want to wait for event flags to be clear, and thus you need to enable this option.

OS_FLAGS_NBITS
OS_FLAGS_NBITS has been introduced in V2.80 and specifies the number of bits used in event flags and MUST
be either 8, 16 or 32.

 561

Message Mailboxes

OS_MBOX_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of all message-mailbox
services and data structures, which reduces the amount of code space needed when your application does not
require the use of message mailboxes. When OS_MBOX_EN is set to 0, you do not need to enable or disable any
of the other #define constants in this section.

OS_MBOX_ACCEPT_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxAccept().

OS_MBOX_DEL_EN
This constant enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxDel().

OS_MBOX_PEND_ABORT_EN
OS_MBOX_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSMboxPendAbort().

OS_MBOX_POST_EN
OS_MBOX_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxPost(). You can disable code generation for this function if you decide to use the more powerful
function OSMboxPostOpt() instead.

OS_MBOX_POST_OPT_EN
OS_MBOX_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxPostOpt(). You can disable code generation for this function if you do not need the additional
functionality provided by OSMboxPostOpt(). OSMboxPost() generates less code.

OS_MBOX_QUERY_EN
OS_MBOX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMboxQuery().

 562

Memory Management

OS_MEM_EN
OS_MEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the µC/OS-II partition-
memory manager and its associated data structures. This feature reduces the amount of code and data space
needed when your application does not require the use of memory partitions.

OS_MEM_NAME_EN
This constant determines whether names can be assigned to memory partitions. If OS_MEM_NAME_EN is set to
0, this feature is disabled and no RAM is used in the OS_MEM for the memory partition for storage of names.

OS_MEM_QUERY_EN
OS_MEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMemQuery().

 563

Mutual Exclusion Semaphores

OS_MUTEX_EN
OS_MUTEX_EN enables (when set to 1) or disables (when set to 0) the code generation of all mutual-exclusion-
semaphore services and data structures, which reduces the amount of code and data space needed when your
application does not require the use of mutexes. When OS_MUTEX_EN is set to 0, you do not need to enable or
disable any of the other #define constants in this section.

OS_MUTEX_ACCEPT_EN
OS_MUTEX_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMutexAccept().

OS_MUTEX_DEL_EN
OS_MUTEX_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMutexDel().

OS_MUTEX_QUERY_EN
OS_MUTEX_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSMutexQuery().

 564

Message Queues

OS_Q_EN
OS_Q_EN enables (when set to 1) or disables (when set to 0) the code generation of all message-queue services
and data structures, which reduces the amount of code space needed when your application does not require the
use of message queues. When OS_Q_EN is set to 0, you do not need to enable or disable any of the other
#define constants in this section. Note that if OS_Q_EN is set to 0, the #define constant OS_MAX_QS is
irrelevant.

OS_Q_ACCEPT_EN
OS_Q_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQAccept().

OS_Q_DEL_EN
OS_Q_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQDel().

OS_Q_FLUSH_EN
OS_Q_FLUSH_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQFlush().

OS_Q_PEND_ABORT_EN
OS_Q_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQPendAbort().

OS_Q_POST_EN
OS_Q_POST_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQPost(). You can disable code generation for this function if you decide to use the more powerful function
OSQPostOpt() instead.

OS_Q_POST_FRONT_EN
OS_Q_POST_FRONT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQPostFront(). You can disable code generation for this function if you decide to use the more powerful
function OSQPostOpt() instead.

OS_Q_POST_OPT_EN
OS_Q_POST_OPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQPostOpt(). You can disable code generation for this function if you do not need the additional
functionality provided by OSQPostOpt(). OSQPost() generates less code.

 565

OS_Q_QUERY_EN
OS_Q_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSQQuery().

 566

Semaphores

OS_SEM_EN
OS_SEM_EN enables (when set to 1) or disables (when set to 0) all code generation of the µC/OS-II semaphore
manager and its associated data structures, which reduces the amount of code and data space needed when your
application does not require the use of semaphores. When OS_SEM_EN is set to 0, you do not need to enable or
disable any of the other #define constants in this section.

OS_SEM_ACCEPT_EN
OS_SEM_ACCEPT_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSSemAccept().

OS_SEM_DEL_EN
OS_SEM_DEL_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSSemDel().

OS_SEM_PEND_ABORT_EN
OS_SEM_PEND_ABORT_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSSemPendAbort().

OS_SEM_QUERY_EN
OS_SEM_QUERY_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSSemQuery().

OS_SEM_SET_EN
OS_SEM_SET_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSSemSet().

 567

Task Management

OS_TASK_TMR_STK_SIZE
OS_TASK_TMR_STK_SIZE specifies the size of the µC/OS-II timer task stack. The size is specified not in bytes
but in number of elements. This is because a stack is declared to be of type OS_STK. The size of the timer-task
stack depends on the processor you are using, the ‘callback’ functions that will be executed when each of the
timer times out and the deepest anticipated interrupt-nesting level.

OS_TASK_STAT_STK_SIZE
OS_TASK_STAT_STK_SIZE specifies the size of the µC/OS-II statistic-task stack. The size is specified not in
bytes but in number of elements. This is because a stack is declared as being of type OS_STK. The size of the
statistic-task stack depends on the processor you are using and the maximum of the following actions:

• The stack growth associated with performing 32-bit arithmetic (subtraction and division)

• The stack growth associated with calling OSTimeDly()

• The stack growth associated with calling OSTaskStatHook()

• The deepest anticipated interrupt-nesting level
If you want to run stack checking on this task and determine its actual stack requirements, you must enable

code generation for OSTaskCreateExt() by setting OS_TASK_CREATE_EXT_EN to 1. Again, the priority of
OS_TaskStat() is always set to OS_LOWEST_PRIO-1.

OS_TASK_IDLE_STK_SIZE
OS_TASK_IDLE_STK_SIZE specifies the size of the µC/OS-II idle-task stack. The size is specified not in bytes
but in number of elements. This is because a stack is declared to be of type OS_STK. The size of the idle-task
stack depends on the processor you are using and the deepest anticipated interrupt-nesting level. Very little is
being done in the idle task, but you should allow at least enough space to store all processor registers on the
stack and enough storage to handle all nested interrupts.

OS_TASK_CHANGE_PRIO_EN
OS_TASK_CHANGE_PRIO_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSTaskChangePrio(). If your application never changes task priorities after they are assigned, you
can reduce the amount of code space used by µC/OS-II by setting OS_TASK_CHANGE_PRIO_EN to 0.

OS_TASK_CREATE_EN
OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the
OSTaskCreate() function. Enabling this function makes µC/OS-II backward compatible with the µC/OS task-
creation function. If your application always uses OSTaskCreateExt() (recommended), you can reduce the
amount of code space used by µC/OS-II by setting OS_TASK_CREATE_EN to 0. Note that you must set at least
OS_TASK_CREATE_EN or OS_TASK_CREATE_EXT_EN to 1. If you wish, you can use both.

 568

OS_TASK_CREATE_EXT_EN
OS_TASK_CREATE_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSTaskCreateExt(), which is the extended, more powerful version of the two task-creation functions. If your
application never uses OSTaskCreateExt(), you can reduce the amount of code space used by µC/OS-II by
setting OS_TASK_CREATE_EXT_EN to 0. Note that you need the extended task-create function to use the stack-
checking function OSTaskStkChk().

OS_TASK_DEL_EN
OS_TASK_DEL_EN enables (when set to 1) or disables (when set to 0) code generation of the function
OSTaskDel(), which deletes tasks. If your application never uses this function, you can reduce the amount of
code space used by µC/OS-II by setting OS_TASK_DEL_EN to 0.

OS_TASK_NAME_EN
This constant determines whether you can assign names to tasks. If OS_TASK_NAME_EN is set to 0, this feature
is disabled and no RAM is used in the OS_TCB for the task name.

OS_TASK_PROFILE_EN
This constant allows variables to be allocated in each task’s OS_TCB that hold performance data about each
task. Specifically, if OS_TASK_PROFILE_EN is set to 1, each task will have a variable to keep track of the
number of context switches, the task execution time, the number of bytes used by the task and more.

OS_TASK_STAT_EN
OS_TASK_STAT_EN specifies whether or not you can enable the µC/OS-II statistic task, as well as its
initialization function. When set to 1, the statistic task OS_TaskStat() and the statistic-task-initialization
function are enabled. OS_TaskStat() computes the CPU usage of your application. When enabled, it executes
every second and computes the 8-bit variable OSCPUUsage, which provides the percentage of CPU use of your
application. OS_TaskStat() calls OSTaskStatHook() every time it executes so that you can add your own
statistics as needed. See OS_CORE.C for details on the statistic task. The priority of OS_TaskStat() is always
set to OS_LOWEST_PRIO-1.

The global variables OSCPUUsage, OSIdleCtrMax, OSIdleCtrRun, OSTaskStatStk[], and OSStatRdy
are not declared when OS_TASK_STAT_EN is set to 0, which reduces the amount of RAM needed by µC/OS-II
if you don’t intend to use the statistic task. OSIdleCtrRun contains a snapshot of OSIdleCtr just before
OSIdleCtr is cleared to zero every second. OSIdleCtrRun is not used by µC/OS-II for any other purpose.
However, you can read and display OSIdleCtrRun if needed.

OS_TASK_STAT_STK_CHK_EN
This constant allows the statistic task to determine the actual stack usage of each active task. If
OS_TASK_STAT_EN is set to 0 (the statistic task is not enabled) but, you can call OS_TaskStatStkChk()
yourself from one of your tasks. If OS_TASK_STAT_EN is set to 1, stack sizes will be determined every
second by the statistic task.

 569

OS_TASK_SUSPEND_EN
OS_TASK_SUSPEND_EN enables (when set to 1) or disables (when set to 0) code generation of the functions
OSTaskSuspend() and OSTaskResume(), which allows you to explicitly suspend and resume tasks,
respectively. If your application never uses these functions, you can reduce the amount of code space used by
µC/OS-II by setting OS_TASK_SUSPEND_EN to 0.

OS_TASK_SW_HOOK_EN
Normally, µC/OS-II requires that you have a context switch hook function called OSTaskSwHook(). When set
to 0, this constant allows you to omit OSTaskSwHook() from your code. This configuration constant was
added to reduce the amount of overhead during a context switch in applications that doesn’t require the context
switch hook. Of course, you will also need to remove the calls to OSTaskSwHook() from
OSTaskStartHighRdy(), OSCtxSw() and OSIntCtxSw() in OS_CPU_A.ASM.

OS_TASK_TMR_PRIO (APP_CFG.H)
OS_TASK_TMR_PRIO specifies the priority of the timer management task. You can set the priority of the timer
task to anything you want. Note that timer callback functions are executed by the timer task.
OS_TASK_TMR_PRIO needs to be set in your application file called APP_CFG.H.

OS_TASK_QUERY_EN
OS_TASK_QUERY_EN enables (when set to 1) or disables (when set to 0) code generation of the function
OSTaskQuery(). If your application never uses this function, you can reduce the amount of code space used by
µC/OS-II by setting OS_TASK_QUERY_EN to 0.

 570

Time Management

OS_TIME_DLY_HMSM_EN
OS_TIME_DLY_HMSM_EN enables (when set to 1) or disables (when set to 0) the code generation of the function
OSTimeDlyHMSM(), which is used to delay a task for a specified number of hours, minutes, seconds, and
milliseconds.

OS_TIME_DLY_RESUME_EN
OS_TIME_DLY_RESUME_EN enables (when set to 1) or disables (when set to 0) the code generation of the
function OSTimeDlyResume().

OS_TIME_GET_SET_EN
OS_TIME_GET_SET_EN enables (when set to 1) or disables (when set to 0) the code and data generation of the
functions OSTimeGet() and OSTimeSet(). If you don’t need to use the 32-bit tick counter OSTime, then you
can save yourself 4 bytes of data space and code space by not having the code for these functions generated by
the compiler.

OS_TIME_TICK_HOOK_EN
Normally, µC/OS-II requires the presence of a function called OSTimeTickHook() which is called at the very
beginning of the tick ISR. When set to 0, this constant allows you to omit OSTimeTickHook() from your
code. This configuration constant was added to reduce the amount of overhead during a tick ISR in applications
that doesn’t require this hook.

 571

Timer Management

Note that timer management requires semaphores and thus, you need to set OS_SEM_EN to 1.

OS_TMR_EN
Enables (when set to 1) or disables (when set to 0) the code generation of the timer management services.

OS_TMR_CFG_MAX
Determines the maximum number of timers you can have in your application. Depending on the amount of
RAM available in your product, you can have hundreds or even thousands of timers (max. is 65500). 36 entries
are reserved.

OS_TMR_CFG_NAME_EN
This constant determines whether names can be assigned to timers. If OS_TMR_CFG_NAME_EN is set to 0, this
feature is disabled and no RAM is used in the OS_TMR for the timer name.

OS_TMR_CFG_WHEEL_SIZE
Timers are updated using a rotating wheel. This ‘wheel’ allows to reduce the number of timers that need to be
updated by the timer manager task. The size of the wheel should be a fraction of the number of timers you have
in your application. In other words:

OS_TMR_CFG_WHEEL_SIZE <= OS_TMR_CFG_MAX

This value should be a number between 2 and 1024. Timer management overhead is somewhat determined by
the size of the wheel. A large number of entries might reduce the overhead for timer management but would
require more RAM. Each entry requires a pointer and a count (16-bit value). We recommend a number that is
NOT a multiple of the tick rate. If your application has many timers then it’s recommended that you have a
high value. As a starting value, you could use OS_TMR_CFG_MAX / 4.

OS_TMR_CFG_TICKS_PER_SEC
This configuration constant determines the rate at which timers are updated (in Hz). Timer updates should be
done at a fraction of the tick rate (i.e. OS_TICKS_PER_SEC). We recommend that you update timers at 10
Hz.

 572

Function Summary
Table 17.1 lists each µC/OS-II function by type (Service), indicates which variables enable the code
(Set to 1), and lists other configuration constants that affect the function (Other Constants).

Of course, OS_CFG.H must be included when µC/OS-II is built, in order for the desired configuration to take
effect.

Table 17.1 µC/OS-II functions and #define configuration constants.
Service Set to 1 Other Constants

Miscellaneous
OSEventNameGet() OS_EVENT_NAME_EN N/A
OSEventNameSet() OS_EVENT_NAME_EN N/A
OSEventPendMulti() OS_EVENT_MULTI_EN
OSInit() N/A OS_MAX_EVENTS

OS_Q_EN and OS_MAX_QS
OS_MEM_EN
OS_TASK_IDLE_STK_SIZE
OS_TASK_STAT_EN
OS_TASK_STAT_STK_SIZE

OSSchedLock() OS_SCHED_LOCK_EN N/A
OSSchedUnlock() OS_SCHED_LOCK_EN N/A
OSStart() N/A N/A
OSStatInit() OS_TASK_STAT_EN &&

OS_TASK_CREATE_EXT_EN
OS_TICKS_PER_SEC

OSVersion() N/A N/A
Interrupt Management
OSIntEnter() N/A N/A
OSIntExit() N/A N/A
Event Flags
OSFlagAccept() OS_FLAG_EN OS_FLAG_ACCEPT_EN

OSFlagCreate() OS_FLAG_EN OS_MAX_FLAGS

OSFlagDel() OS_FLAG_EN OS_FLAG_DEL_EN

OSFlagNameGet() OS_FLAG_EN OS_FLAG_NAME_EN

OSFlagNameSet() OS_FLAG_EN OS_FLAG_NAME_EN

OSFlagPend() OS_FLAG_EN OS_FLAG_WAIT_CLR_EN

OSFlagPost() OS_FLAG_EN N/A
OSFlagQuery() OS_FLAG_EN OS_FLAG_QUERY_EN

 573

Message Mailboxes
OSMboxAccept() OS_MBOX_EN OS_MBOX_ACCEPT_EN

OSMboxCreate() OS_MBOX_EN OS_MAX_EVENTS

OSMboxDel() OS_MBOX_EN OS_MBOX_DEL_EN

OSMboxPend() OS_MBOX_EN N/A
OSMboxPendAbort() OS_MBOX_EN OS_MBOX_PEND_ABORT_EN

OSMboxPost() OS_MBOX_EN OS_MBOX_POST_EN

OSMboxPostOpt() OS_MBOX_EN OS_MBOX_POST_OPT_EN

OSMboxQuery() OS_MBOX_EN OS_MBOX_QUERY_EN

Memory Partition Management
OSMemCreate() OS_MEM_EN OS_MAX_MEM_PART

OSMemGet() OS_MEM_EN N/A
OSMemNameGet() OS_MEM_EN OS_MEM_NAME_EN

OSMemNameSet() OS_MEM_EN OS_MEM_NAME_EN

OSMemPut() OS_MEM_EN N/A
OSMemQuery() OS_MEM_EN OS_MEM_QUERY_EN

Mutex Management
OSMutexAccept() OS_MUTEX_EN OS_MUTEX_ACCEPT_EN

OSMutexCreate() OS_MUTEX_EN OS_MAX_EVENTS

OSMutexDel() OS_MUTEX_EN OS_MUTEX_DEL_EN

OSMutexPend() OS_MUTEX_EN N/A
OSMutexPost() OS_MUTEX_EN N/A
OSMutexQuery() OS_MUTEX_EN OS_MUTEX_QUERY_EN

Message Queues
OSQAccept() OS_Q_EN OS_Q_ACCEPT_EN

OSQCreate() OS_Q_EN OS_MAX_EVENTS
OS_MAX_QS

OSQDel() OS_Q_EN OS_Q_DEL_EN

OSQFlush() OS_Q_EN OS_Q_FLUSH_EN

OSQPend() OS_Q_EN N/A
OSQPendAbort() OS_Q_EN OS_Q_PEND_ABORT_EN

OSQPost() OS_Q_EN OS_Q_POST_EN

OSQPostFront() OS_Q_EN OS_Q_POST_FRONT_EN

OSQPostOpt() OS_Q_EN OS_Q_POST_OPT_EN

OSQQuery() OS_Q_EN OS_Q_QUERY_EN

 574

Semaphore Management
OSSemAccept() OS_SEM_EN OS_SEM_ACCEPT_EN

OSSemCreate() OS_SEM_EN OS_MAX_EVENTS

OSSemDel() OS_SEM_EN OS_SEM_DEL_EN

OSSemPend() OS_SEM_EN N/A
OSSemPendAbort() OS_SEM_EN OS_SEM_PEND_ABORT_EN

OSSemPost() OS_SEM_EN N/A
OSSemQuery() OS_SEM_EN OS_SEM_QUERY_EN

OSSemSet() OS_SEM_EN OS_SEM_SET_EN

Task Management
OSTaskChangePrio() OS_TASK_CHANGE_PRIO_EN OS_LOWEST_PRIO

OSTaskCreate() OS_TASK_CREATE_EN OS_MAX_TASKS

OSTaskCreateExt() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS
OS_TASK_STK_CLR

OSTaskDel() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskDelReq() OS_TASK_DEL_EN OS_MAX_TASKS

OSTaskResume() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskNameGet() OS_TASK_NAME_EN N/A
OSTaskNameSet() OS_TASK_NAME_EN N/A
OSTaskStkChk() OS_TASK_CREATE_EXT_EN OS_MAX_TASKS

OSTaskSuspend() OS_TASK_SUSPEND_EN OS_MAX_TASKS

OSTaskQuery() OS_TASK_QUERY_EN OS_MAX_TASKS

OS_TaskStatStkChk() OS_TASK_STAT_STK_CHK_EN N/A
Time Management
OSTimeDly() N/A N/A
OSTimeDlyHMSM() OS_TIME_DLY_HMSM_EN OS_TICKS_PER_SEC

OSTimeDlyResume() OS_TIME_DLY_RESUME_EN OS_MAX_TASKS

OSTimeGet() OS_TIME_GET_SET_EN N/A
OSTimeSet() OS_TIME_GET_SET_EN N/A
OSTimeTick() N/A N/A
Timer Management
OSTmrCreate() OS_TMR_EN N/A

OSTmrDel() OS_TMR_EN N/A

OSTmrNameGet() OS_TMR_EN &&
OS_TMR_CFG_NAME_EN

N/A

OSTmrRemainGet() OS_TMR_EN N/A

OSTmrStart() OS_TMR_EN N/A

OSTmrStop() OS_TMR_EN N/A

OSTmrSignal() OS_TMR_EN OS_TMR_CFG_TICKS_PER_SEC

 575

User-Defined Functions
OSTaskCreateHook() OS_CPU_HOOKS_EN N/A
OSTaskDelHook() OS_CPU_HOOKS_EN N/A
OSTaskStatHook() OS_CPU_HOOKS_EN N/A
OSTaskSwHook() OS_CPU_HOOKS_EN OS_TASK_SW_HOOK_EN

OSTimeTickHook() OS_CPU_HOOKS_EN OS_TIME_TICK_HOOK_EN

 576

