MiCcripm
949 Crestview Circle
Weston, FL 33327

U.S.A.
www.Micrium.com

LC/OS-I1

The Real-Time kernel

V2.89

Release Notes

© Copyright 2009, Micripm
All Rights reserved

Phone: +1 954 217 2036 FAX: +1 954 217 2037

1 of 88

http://www.micrium.com/

V2.89

(2009/06/09)

This is a minor release as it contains only a few items that were not caught prior to
releasing V2.89.

CHANGES TO V2.88

You should follow these steps in order to upgrade from a previous version to V2.87.

1)

2)

3)

4)

5)

6)

ALL files:
Added ‘u’ as a suffix to all constant values to denote that these numbers are
unsigned. This was done to satisfy one of the MISRA-C:2004 rules.

Added cast to (INT8U *) for all constants strings.

OS_CORE.C:
The ‘pname’ argument of OSEventNameGet() needed to be a ‘“**pname’
instead of “*pname’.

If OS_TASK SUSPEND_EN is not set to O then OS_TaskStat() will call
OSTimeDly(OS_TICKS_PER_SEC) if OSIdleCtrMax is zero.

OS_MEM.C:
The ‘pname’ argument of OSMemNameGet() needed to be a ‘**pname’
instead of “*pname’.

OS_MUTEX.C:
Needed to set OSPrioCur to ‘prio’ in internal function
OSMutex_RdyAtPrio().

OS_TASK.C:
The *pname’ argument of OSTaskNameGet() needed to be a ***pname’
instead of “*pname’.

Added OS_TaskReturn() to catch tasks from returning without deleting
themselves. This function requires that a new hook function be declared:
OSTaskReturnHook().

OS TASK.C:
The ‘pname’ argument of OSTaskNameGet() needed to be a ‘**pname’
instead of “*pname’.

2 of 88

V2.88

(2009/01/21)

This is a minor release as it contains only a few items that were not caught prior to
releasing VV2.87.

CHANGES TO V2.87

You should follow these steps in order to upgrade from a previous version to V2.87.

1)

2)

3)

OS_CORE.C:

OSIntExit() and 0S_Sched() have changed slightly because of a boundary
condition found with the Cortex-M3 port. Specifically, we needed to move the
statement:

OSTCBHiIghRdy = OSTCBPrioTbl[OSPrioHighRdy];
Before testing for the priority.

uCOS_II1L.H:

The function prototype for OSEventPendMulti () incorrectly declared the
timeout as an INT16U instead of an INT32U since we changed all time delays
and timeouts to now use 32-bit values.

All Files:

Changed the way functions are declared to be consistent with the prototypes in
ucos_1i.h.

30of 88

V2.87

(2009/01/07)

This is a major release as it contains changes to some of the elements of data structures as
well as #define configuration constants. Also, some of the functionality has changed
but this should not have any significant impact.

If you are using a Kernel Awareness plug-in for some of the debuggers, you will need to
obtain a newer version of the Kernel Awareness plug-in which is compatible with VV2.87
or higher. This is because ASCII strings for names are now referenced by using a pointer
instead of storing the ASCII name in the kernel object.

UPGRADING TO V2.87

You should follow these steps in order to upgrade from a previous version to V2.87.

1)

2)

OS_CFG.H:

You no longer need to specify the “size’ of ASCII strings used for names. That’s
because we now store a pointer to the name instead of actually allocating storage
for it in the corresponding kernel object. This was done to significantly reduce the
amount of RAM needed in your application. You will need to enable this feature.
Follow the following table:

This #define ... Changed to
OS_EVENT_NAME_SIZE OS_EVENT_NAME_EN
0S_TASK_NAME_SIZE 0S_TASK_NAME_EN
0S_FLAG_NAME_SIZE 0S_FLAG_NAME_EN
OS_MEM_NAME_SIZE OS_MEM_NAME_EN
OS_TMR_CFG_NAME_SIZE OS_TMR_CFG_NAME_EN

The new value of these #defines are either O (to disable naming the object) or 1
(to enable naming the object).

OS_TIME.C:

OSTimeDly() now accepts a 32-bit argument instead of a 16-bit argument.
This was done to allow longer time delays and also to simplify
OSTimeDlyHMSM(). In most cases, you will not need to change anything in
your code.

4 of 88

3)

4)

5)

6)

7)

8)

9)

10)

OS_CORE.C:
0S_StrCopy() has been eliminated since it’s no longer used by pLC/OS-II.

You should not have been using this function in your code since it was meant to
be an internal function. This change should thus not cause any problem.

OS_CORE.C:

Added task specific registers. You can have as many as
OS_TASK_REG_TBL_SIZE 32-bit unsigned registers for each task. These
registers ARE NOT the same as the CPU registers; they are more like task
specific variables. These ‘registers’ are typically used for such things as ‘error
codes’ (or errno in other operating systems). You can also communicate
information to tasks via these registers.

OS_MBOX.C:
Timeouts on OSMboxPend () are now 32-bit values.

OS MUTEX.C:
Timeouts on OSMutexPend() are now 32-bit values.

0S_Q.C:
Timeouts on 0SQPend () are now 32-bit values.

OS_SEM.C:
Timeouts on 0SSemPend () are now 32-bit values.

OS TASK.C:

You can set and get task registers (see item 4 above) by calling
OSTaskRegSet() and OSTaskRegGet(), respectively. Again, task registers
ARE NOT the same as CPU registers.

OS_TMR.C:

OSTmr_Lock() and OSTmr_Unlock() have been replaced with
0SSchedLock() and O0SSchedUnlock(), respectively. Now, timers no
longer need to rely on semaphores being available. Also, this allows you to call
other timer services from the timer callback.

5 of 88

V2.86

(2007/09/12)

This is a major release as it contains a new feature called “Multi-Pend’ (implemented in
OSEventPendMulti ()) which allows a task to pend on multiple objects (semaphores,
mailboxes or queues). If any one of those objects is posted to, the function returns and
indicates which (or all) events posted.

Multi-pend is the only feature added in this version and a number of changes throughout
the code has been implemented in order to support this new feature.

Details on how to use OSEventPendMulti () can be found in the uC/OS-II reference
manual.

UPGRADING TO V2.86

You should follow these steps in order to upgrade from a previous version to V2.86.
Even though only Multi-Pend was added in VV2.86, some of the items below are repeated
from previous versions because they are important to follow.

1) Timer Manager:
Timers MUST now be created by OSTmrCreate () before they can be used. In
V2.82, a timer was created and started when you called OSTmrStart(). Now
you MUST call OSTmrCreate() and then OSTmrStart() to create and start
the timer, respectively.

It is now your responsibility to delete a timer when it is no longer being used.
The Timer Manager user-available functions are now:

OSTmrCreate()
OSTmrDel)
OSTmrNameGet()
OSTmrRemainGet()
OSTmrStart()
OSTmrStop()

To create and start a timer, you need to call OSTmrCreate() and then

OSTmrStart(). When you are done using a timer, you can delete it by calling
OSTmrDel ().

6 of 88

2)

3)

4)

5)

6)

7)

TRUE and FALSE changed to OS_TRUE and OS_FALSE:

LLC/OS-11 now uses and returns OS_TRUE and OS_FALSE instead of TRUE and
FALSE. If you were using TRUE and FALSE in your application you will either
need to define TRUE and FALSE yourself or change those to OS_TRUE and
0S_FALSE.

Create APP_CFG.H:

As of VV2.81, you need to create a file called APP_CFG.H which would reside in
your project. APP_CFG.H is used to hold configuration information about your
project. Specifically, we expect that you place task priorities, task stack sizes and
other application related configuration information. The following page shows an
example of the contents of APP_CFG . H.

Include OS_TMR.C in your project:
As of V2.81, you need to include OS_TMR.C in your builds in order to obtain the
new services provided in OS_TMR . C and avoid compiler warnings/errors.

New #defines are needed in OS_CFG.H:
You will need to include the following #defines (they are found in 0S_CFG_R_.H,
the reference file for OS_CFG.H). See also the configuration manual:

0S_APP_HOOKS_EN
OS_EVENT_MULTI_EN

0S_TMR_EN
0S_TMR_CFG_MAX
0S_TMR_CFG_NAME_SIZE
0S_TMR_CFG_WHEEL_SIZE
0S_TMR_CFG_WHEEL_SIZE

0S_MBOX_PEND_ABORT_EN
0S_Q_PEND_ABORT_EN
0S_SEM_PEND_ABORT_EN

Add 0S_TASK_TMR_STK_SIZE:

If you use the timer manager, you will need to define the size of the timer task
stack, i.e. OS_TASK TMR_STK_SIZE. This is declared in your project’s
OS_CFG.H.

Add OS_TASK_TMR_PRIO:

If you use the timer manager, you will need to define the priority of the timer
manager task, i.e. OS_TASK _TMR_PRIO. This is declared in your project’s
APP_CFG.H.

7 of 88

8)

9)

10)

11)

Place prototypes in 0S_CPU _H:

As of V2.81, it’s IMPORTANT that you place the prototypes for 0SCtxSw(),
OSIntCtxSw() and OSStartHighRdy() in OS_CPU.H. Typically, these
functions would be prototyped as follows but, depending on the compiler, they
may need to be different:

void OSStartHighRdy(void);
void OSIntCtxSw(void);
void O0SCtxSw(void);

Start using OS_ERR_?7?? as error return values:
We recommend that you start using the new #define constants for error return
values. All error return values start with OS_ERR__ for consistency.

0S????NameGet() and 0S????NameSet() not callable from ISRs:
Since 0S?7???NameGet() and 0S????NameSet() can no longer be called
from ISRs, make sure your code didn’t make use of those in ISRs.

OSMutexAccept() returns a BOOLEAN:
Since OSMutexAccept() now returns a BOOLEAN make sure you change
your code accordingly.

8 of 88

CHANGES IN V2.86

0s_core.c
OSEventPendMulti () was added.

Optimized OS_EventTaskRdy() and added support for multi-pend.
Optimized OS_EventTaskWait().

Removed 0OS_EventTOAbort() and added OS_EventTaskWaitMulti (),
0S_EventTaskRemove() and OS_EventTaskRemoveMulti ().

Optimized OS_TaskStat().

0os_mbox.c
Rearranged OSMboxPend () to support multi-pend.

0os_mutex.c
Rearranged OSMutexPend () for consistency.

0S_(g-cC
Rearranged OSQPend () to support multi-pend.

0s_sem.c
Rearranged 0SSemPend () to support multi-pend.

os_task.c
Made cosmetic changes to OSTaskChangePrio() and added support for
multi-pend.

Added support for multi-pend in 0OSTaskDel ().

ucos_ii.h
Added support for multi-pend.

9 of 88

V2.85

(2007/06/15)

In this release, we made some minor changes and are summarized below:

Added OS_APP_HOOKS EN in OS_CFG.H to allow pC/OS-1I to call
application define hook functions.

msg was changed to pmsg.
err was changed to perr.

0S????NameGet() and 0S????NameSet() can no longer be called from
ISRs

OSTimeDly() and OSTimeDlyHMSM() now contain checks to prevent them
from being called from an ISR.

OSMutexAccept() now returns a BOOLEAN instead of an INT8U.
Hook functions in port files now should call application specific hooks.

Added new error codes.

10 of 88

ALL

CHANGES IN V2.85

We removed all checks for OS_VERSION in the code. The reason is that you
should actually upgrade your application when you upgrade your version of
MC/OS-11. The extra checks for OS_VERSION created ‘pollution’ in the code
which was not deemed necessary.

Replaced the ‘magic number’ (OS_TCB *)1 to OS_TCB_ RESERVED when
reserving a TCB.

msg was changed to pmsg. err was changed to perr to reflect that these are
pointers.

0s_core.cC

OSEventNameGet() and OSEventNameSet() can no longer be called from
an ISR. The reason is to keep ISRs as short as possible. Getting and setting
ASCII names is performed through loops and could increase ISR times. This
change should not cause backwards compatibility issues since names for OS
objects are typically set once when the object is created. If you call
OSEventNameGet() from an ISR, the function will not be performed and you
will get an OS_ERR_NAME_GET ISR error code. If you call
OSEventNameSet() from an ISR, the function will not be performed and you
will getan 0S_ERR_NAME_SET ISR error code.

os_flag.c

OSFlagNameGet() and OSFlagNameSet() can no longer be called from an
ISR. The reason is to keep ISRs as short as possible. Getting and setting ASCI|I
names is performed through loops and could increase ISR times. This change
should not cause backwards compatibility issues since names for OS objects are
typically set once when the object is created. If you call OSFlagNameGet()
from an ISR, the function will not be performed and you will get an
OS_ERR_NAME_GET __ISR error code. If you call OSFlagNameSet() from
an ISR, the function will not be performed and you will get an
0S_ERR_NAME_SET ISR error code.

0S_mem.c

In OSMemCreate() we no longer require that a memory block be a multiple of
a pointer size. However, we still require that a memory block contains storage for
at least one pointer.

OSMemNameGet () and OSMemNameSet() can no longer be called from an

ISR. The reason is to keep ISRs as short as possible. Getting and setting ASCII
names is performed through loops and could increase ISR times. This change

11 of 88

should not cause backwards compatibility issues since names for OS objects are
typically set once when the object is created. If you call OSMemNameGet()
from an ISR, the function will not be performed and you will get an
OS_ERR_NAME_GET __ISR error code. If you call OSMemNameSet() from an
ISR, the function will not be performed and you will get an
OS_ERR_NAME_SET ISR error code.

0s_mutex.c
We now cast 0S_MUTEX_KEEP_LOWER_8, 0OS_MUTEX_KEEP_UPPER_8 and
OS_MUTEX_MUTEX_AVAILABLE to (INT16U) to prevent compiler warnings.

OSMutexAccept() now returns OS_TRUE or OS_FALSE based on whether
the resource was available or not, respectively.

OSMutexQuery() now sets the .OSValue field to OS_TRUE or OS_FALSE
based on whether the resource was available or not, respectively.

os_task.c

OSTaskNameGet () and OSTaskNameSet() can no longer be called from an
ISR. The reason is to keep ISRs as short as possible. Getting and setting ASCII
names is performed through loops and could increase ISR times. This change
should not cause backwards compatibility issues since names for OS objects are
typically set once when the object is created. If you call 0OSTaskNameGet()
from an ISR, the function will not be performed and you will get an
OS_ERR_NAME_GET ISR error code. If you call OSTaskNameSet() from
an ISR, the function will not be performed and you will get an
0S_ERR_NAME_SET ISR error code.

os_time.c
Even though OSTimeDly() and OSTimeDlyHMSM() should never have been
called from ISRs, there were no checks to that effect. This has been corrected and
we now check that OSIntNesting is O in order to allow this function to
execute. If called from an ISR, OST imeD lyHMSM() will return an error code of
0S_ERR_TIME_DLY_ISR.

os_tmr.c
OSTmrNameGet () can no longer be called from an ISR. The reason is to keep
ISRs as short as possible. Getting and setting ASCII names is performed through
loops and could increase ISR times. This change should not cause backwards
compatibility issues since names for OS objects are typically set once when the
object is created. If you call 0STaskNameGet() from an ISR, the function will
not be performed and you will get an OS_ERR_NAME_GET ISR error code.

12 of 88

OSTmrStop() now returns OS_TRUE when the timer is stopped even if you
passed an invalid ‘opt’ argument or we used the callback argument specified in
the call. In other words, if we stop the timer, we return OS_TRUE.

ucos_1ii.h
Added OS_ERR_??? #define constants for consistency.

Use ... Instead of ... Value
0S_ERR_NONE 0S_NO_ERR 0
0S_ERR_TIMEOUT 0S_TIMEOUT 10
0S_ERR_TASK_NOT_EXIST 0S_TASK_NOT_EXIST 11
0S_ERR_NAME_GET_ISR 17
0S_ERR_NAME_SET_ISR 18
0S_ERR_MBOX_FULL 0S_MBOX_FULL 20
0S_ERR_Q FULL 0S_Q FULL 30
0S_ERR_Q _EMPTY 0S_Q _EMPTY 31
0S_ERR_PRIO_EXIST 0S_PRIO_EXIST 40
0S_ERR_PRIO 0S_PRIO_ERR 41
0S_ERR_PRIO_INVALID 0S_PRIO_INVALID 42
0S_ERR_SEM_OVF 0S_SEM_OVF 50
0S_ERR_TASK_DEL 0S_TASK_DEL_ERR 60
0S_ERR_TASK_DEL_IDLE 0S_TASK_DEL_IDLE 61
0S_ERR_TASK_DEL_REQ 0S_TASK_DEL_REQ 62
0S_ERR_TASK_DEL_ISR 0S_TASK_DEL_ISR 63
0S_ERR_NO_MORE_TCB 0S_NO_MORE_TCB 70
0S_ERR_TIME_NOT_DLY 0S_TIME_NOT_DLY 80
0S_ERR_TIME_INVALID_MINUTES | OS_TIME_INVALID_MINUTES 81
0S_ERR_TIME_INVALID_SECONDS | OS_TIME_INVALID_SECONDS 82
OS_ERR_TIME_INVALID_MS 0S_ERR_TIME_INVALID_MS 83
0S_ERR_TIME_ZERO DLY 0S_ERR_TIME_ZERO DLY 84
0S_ERR_TIME_DLY_ISR 85
0S_ERR_TASK_SUSPEND_PRI0 0S_ERR_TASK_SUSPEND_PRIO 90
0S_ERR_TASK_SUSPEND_IDLE 0S_ERR_TASK_SUSPEND_IDLE o1
0S_ERR_TASK_RESUME_PRIO 0S_ERR_TASK_RESUME_PRI0 100
0S_ERR_TASK_NOT_SUSPENDED 0S_ERR_TASK_NOT_SUSPENDED | 101
0S_ERR_MEM_INVALID_PART 0S_ERR_MEM_INVALID_PART 110
0S_ERR_MEM_INVALID_BLKS 0S_ERR_MEM_INVALID_BLKS 111
OS_ERR_MEM_INVALID_SIZE 0S_ERR_MEM_INVALID_SIZE 112
0S_ERR_MEM_NO_FREE_BLKS 0S_ERR_MEM_NO_FREE_BLKS 113
0S_ERR_MEM_FULL 0S_ERR_MEM_FULL 114
0S_ERR_MEM_INVALID_PBLK 0S_ERR_MEM_INVALID_PBLK 115
0S_ERR_MEM_INVALID_PMEM 0S_ERR_MEM_INVALID_PMEM 116
0S_ERR_MEM_INVALID_PDATA 0S_ERR_MEM_INVALID_PDATA 117
0S_ERR_MEM_INVALID_ADDR 0S_ERR_MEM_INVALID_ADDR 118
0S_ERR_MEM_NAME_TOO_LONG 0S_ERR_MEM_NAME_TOO_LONG 119
0S_ERR_TASK_OPT 0S_ERR_TASK_OPT 130
0S_ERR_FLAG_INVALID_PGRP 0S_ERR_FLAG_INVALID_PGRP 150
0S_ERR_FLAG_WAIT_TYPE 0S_ERR_FLAG_WAIT_TYPE 151
0S_ERR_FLAG_NOT_RDY 0S_ERR_FLAG_NOT_RDY 152
0S_ERR_FLAG_INVALID OPT 0S_ERR_FLAG_INVALID_OPT 153
0S_ERR_FLAG_GRP_DEPLETED 0S_ERR_FLAG_GRP_DEPLETED 154

The .OSValue field of OS_MUTEX_DATA is now a BOOLEAN instead of an
INT8U.

OSMutexAccept() now returns a BOOLEAN.

13 of 88

Hook functions have been changed in the ports as follows. In other words, we
now assume that hook functions are declared in application code INSTEAD of
port code. Hooks are thus enabled when OS_APP_HOOKS EN > O in
OS_CFG.H.

In Hook ... Changed From ... To...
OSTaskCreateHook() | OSView_TaskCreateHook() App_TaskCreateHook ()
OSTaskDe lHook() App_TaskDelHook()
OSTaskldleHook() App_TaskldleHook()
OSTaskStatHook() App_TaskStatHook()
O0STaskSwHook () OSView_TaskSwHook() App_TaskSwHook ()
OSTCBInitHook() App_TCBInitHook()
OSTimeTickHook() OSView_TickHook() App_TimeTickHook()

Added a ‘SAFETY CRITICAL USE’ section to detect configuration issues
when performing safety critical tests. This section does not generate any code and
is thus harmless.

14 of 88

V2.84

(2007/01/31)

In this release, we added new functionality to Mailbox, Queue and Semaphore
management.

We also added new #define constants for error return values. For example, you can now
use OS_ERR_TIMEOUT instead of OS_TIMEOUT. In fact, we added OS_ERR_?7?? for
consistency and you should now always use OS_ERR_7??7? when checking for error
codes. Note that you can still use the previous #define values since those were kept for
backwards compatibility. However, we might remove those is a future version.

FIXED BUGS IN V2.83

os_task.c
Corrected a subtle bug in OSTaskChangePrio(). We now check if an event
control block exist after readying a task at the new priority.

os_tmr.c
OSTmr_Unlock() was missing in a couple of places in OSTmrStop ().

15 of 88

CHANGES IN V2.84

0s_core.c
We are now locking the scheduler when in OSTimeTick() instead of disabling
interrupts. This reduces interrupt latency when this function is called.

ucos 1ii.h
Added OS_ERR_?7?? #define constants for consistency. It turns out that not all
error return values started with the prefix OS_ERR_. To correct this, new #define
constants have been added. It’s highly recommended that you start using the new
OS_ERR_?7?7? error codes instead of their previous counterparts, see table below.

Use ... Instead of ... Value
0S_ERR_NONE 0S_NO_ERR 0
0S_ERR_TIMEOUT 0S_TIMEOUT 10
0S_ERR_TASK_NOT_EXIST 0S_TASK_NOT_EXIST 11
0S_ERR_MBOX_FULL 0S_MBOX_FULL 20
0S_ERR_Q_FULL 0S_Q_FULL 30
0S_ERR_Q EMPTY 0S_Q _EMPTY 31
0S_ERR_PRIO_EXIST 0S_PRIO_EXIST 40
0S_ERR_PRIO 0S_PRIO_ERR 41
0S_ERR_PRIO_INVALID 0S_PRIO_INVALID 42
0S_ERR_SEM_OVF 0S_SEM_OVF 50
0S_ERR_TASK_DEL 0S_TASK_DEL_ERR 60
0S_ERR_TASK_DEL_IDLE 0S_TASK_DEL_IDLE 61
0S_ERR_TASK_DEL_REQ 0S_TASK_DEL_REQ 62
0S_ERR_TASK_DEL_ISR 0S_TASK_DEL_ISR 63
0S_ERR_NO_MORE_TCB 0S_NO_MORE_TCB 70
0S_ERR_TIME_NOT_DLY 0S_TIME_NOT_DLY 80
OS_ERR_TIME_INVALID_MINUTES | OS_TIME_INVALID MINUTES 81
0S_ERR_TIME_INVALID_SECONDS | OS_TIME_INVALID_SECONDS 82
OS_ERR_TIME_INVALID_MS 0S_ERR_TIME_INVALID_MS 83
0S_ERR_TIME_ZERO DLY 0S_ERR_TIME_ZERO DLY 84
0S_ERR_TASK_SUSPEND_PRI0 0S_ERR_TASK_SUSPEND_PRIO 90
0S_ERR_TASK_SUSPEND_IDLE 0S_ERR_TASK_SUSPEND_IDLE 91
0S_ERR_TASK_RESUME_PRIO 0S_ERR_TASK_RESUME_PRI0 100
0S_ERR_TASK_NOT_SUSPENDED 0S_ERR_TASK_NOT_SUSPENDED | 101
0S_ERR_MEM_INVALID_PART 0S_ERR_MEM_INVALID_PART 110
0S_ERR_MEM_INVALID_BLKS 0S_ERR_MEM_INVALID_BLKS 111
0S_ERR_MEM_INVALID_SIZE 0S_ERR_MEM_INVALID_SIZE 112
0S_ERR_MEM_NO_FREE_BLKS 0S_ERR_MEM_NO_FREE_BLKS 113
0S_ERR_MEM_FULL 0S_ERR_MEM_FULL 114
0S_ERR_MEM_INVALID_PBLK 0S_ERR_MEM_INVALID_PBLK 115
0S_ERR_MEM_INVALID_PMEM 0S_ERR_MEM_INVALID_PMEM 116
0S_ERR_MEM_INVALID_PDATA 0S_ERR_MEM_INVALID_PDATA 117
0S_ERR_MEM_INVALID_ADDR 0S_ERR_MEM_INVALID_ADDR 118
0S_ERR_MEM_NAME_TOO_LONG 0S_ERR_MEM_NAME_TOO_LONG 119
0S_ERR_TASK_OPT 0S_ERR_TASK_OPT 130
0S_ERR_FLAG_INVALID_PGRP 0S_ERR_FLAG_INVALID_PGRP 150
0S_ERR_FLAG_WAIT_TYPE 0S_ERR_FLAG_WAIT_TYPE 151
0S_ERR_FLAG_NOT_RDY 0S_ERR_FLAG_NOT_RDY 152
0S_ERR_FLAG_INVALID_OPT 0S_ERR_FLAG_INVALID_OPT 153
0S_ERR_FLAG_GRP_DEPLETED 0S_ERR_FLAG_GRP_DEPLETED 154

16 of 88

V2.83

(2006/06/02)

In this release, we made significant changes to the timer manager module. Please consult
the Reference Manual for the new APIs of functions OSTmrCreate(), OSTmrDel (),
OSTmrStop() and OSTmrStart().

FIXED BUGS IN V2.82

os_tmr.c
You could not call OSTmrNameGet() and OSTmrRemainGet() when a
timer was in one-shot mode and the timer expired because the timer was
automatically deleted. This has now been fixed because timers are created and
deleted by the user.

CHANGES IN V2.83
os_tmr.c
When a timer times out, it will no longer be deleted. In other words, it is now
your responsibility to delete unused timers.
OSTmrStop() no longer deletes the timer.
You can now safely call OSTmrRemainGet() and OSTmrNameGet()
whenever a timer is created until it gets deleted. In V2.81 and VV2.82, you could

not use these functions when a timer was configured in one-shot mode.

We added an entry in the OS_TMR data structure to allow us to verify that you are
passing a pointer to an OS_TMR structure when you call timer manager services.

OSTmrStart() now ONLY starts (or restarts) a timer and does NOT create a
timer. A timer must now be created before it can be started.

You must call 0OSTmrDel () to delete any unused timers.

Added OSTmrStateGet () which returns the state of a timer.

17 of 88

V2.82

(2006/03/24)

This is a minor release. However, we change the name of two (2) API calls:
OSTmrGetName(), OSTmrGetRemain() and, we added an argument to
OSTmrStart().

FIXED BUGS IN V2.81

Fixed an error in OSMutexDel () (see OS_MUTEX. C below).

CHANGES IN V2.82

Miscel laneous:
Changed TRUE and FALSE to OS_TRUE and OS_FALSE. pC/OS-11 should not
be dictating the value of TRUE and FALSE.

os dbg r.c
Added new constants to monitor the size of some variables and data structures,
specifically related to the new Timer management module introduced in VV2.81.

os flag.c
Added a check in OSFlagPend () to ensure that this function is not called from
an ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

0S_mbox.c
Added a check in 0SMboxPend () to ensure that this function is not called from
an ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

In OSMboxPostOpt() we added a new option called
OS_POST_OPT_NO_SCHED which, when set, indicates that you do not want
OSMboxPostOpt() to call the scheduler when you have completed the post.

0s_mutex.c
Added a check in OSMutexDel () and the OS_DEL_ALWAYS case to make the
owner of the mutex ready-to-run (if there was an owner). Because of some code
similarities found in OSMutexPost(), we created the local function called

18 of 88

0S_(-

OSMutex_RdyAtPrio() to perform this operation and thus not increase the
code by too much.

Added a check in OSMutexPend() to ensure that this function is not called
from an ISR. Note that the documentation clearly warned about this but, we
added the code just to be sure.

C
Added a check in 0SQPend() to ensure that this function is not called from an
ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

In OSQPostOpt() we added a new option called OS_POST_OPT_NO_SCHED
which, when set, indicates that you do not want OSQPostOpt() to call the
scheduler when you have completed the post.

0s_sem.c

Added a check in 0SSemPend() to ensure that this function is not called from
an ISR. Note that the documentation clearly warned about this but, we added the
code just to be sure.

os_tmr.c

Changed the name of OSTmrGetName() to OSTmrNameGet() to be
consistent with other similar services.

Changed the name of OSTmrGetRemain() to OSTmrRemainGet() to be
consistent with other similar services.

Added an argument (dly) to OSTmrStart(). This, of course, will make the
compiler issue an error if you previously used the timer manager in V2.81. The
argument specifies an initial delay before the timer enters periodic mode (see
drawing below). If you set the dly to the same value as the period then you will
obtain the same result as in V2.81. If you specify a dly of O, period will be
used as the initial delay:

dly period

|

OSTmrStart()
Called

19 of 88

ucos _1i.h
Added OS_POST_OPT_NO_SCHED and its value is 0x04.

Added .OSTmrDly in the OS_TMR data structure

20 of 88

V2.81

(2005/09/06)

LC/OS-1l now provides support for periodic as well as one-shot timers. This
functionality is found in OS_TMR.C. For more information about this new feature,
consult the “New Features and Services since V2.00” document.

FIXED BUGS IN V2.80

Fixed a number of errors introduced when we increased the number of task to 255.

CHANGES IN V2.81

os_cfg.h (see template inos_cfg_r.h)
Re-arranged the order of #defines in this file.

Added a number of #define constants to support timer management:
OS_I1SR_PROTO_EXT

0S_TMR_EN

OS_TMR_CFG_MAX

0S_TMR_CFG_WHEEL_SIZE

OS_TMR_CFG_NAME_SIZE

0S_TMR_CFG_TICKS_PER_SEC
0S_TASK_TMR_STK_SIZE

0s_core.c
Added call to OSTmr_Init().

ucos_ii.h
Added OS_TASK_TMR__ID and its value is 65533.
Changed OS_IDLE_PR10 to 0OS_TASK_IDLE_PRI0
Changed OS_STAT _PRIO to 0S_TASK_STAT_PRIO

Added 0S_ERR_TMR_??? and 0S_TMR_OPT_?7?7.

21 of 88

Added the OS_TMR, OS_TMR_WHEEL and OS_TMR_CALLBACK data types
needed to support timer management.

22 of 88

V2.80

(2005/03/21)
This is a big release because pC/OS-I1 now supports up to 255 tasks.
We also made a number of minor changes related to MISRA C rules.

To support up to 255 tasks, we simply increased the ready list and event wait lists to a
matrix of 16x16 instead of 8x8. In fact, the actual size of the matrix depends on the value
of OS_LOWEST_PRIO in OS_CFG.H. If OS_LOWEST_PRIO is less than or equal to
63, we use an 8x8 matrix and thus uC/OS-I1 behaves exactly the same as it used to. If
you specify a value for OS_LOWEST_PRIO to be greater than 63, we use the 16x16
matrix as show below.

HPT (0) | —
B 15 0
0
- 7 0 |
0 | ||
7 UL -
OSRdyGrp | OSRdyTblI[]]
8x8 Max.]
15 || NE
OSRdyGrp OSRdyThl[]
16x16 Max.
LPT (254)
NEVER used,
0S_PRIO_SELF
OS_LOWEST_PRIO <= 63 OS_LOWEST_PRIO > 63

You should note that the actual size of the matrix depends on OS_LOWEST_PRI10O. For
example, if OS_LOWEST_PRIO is 10 then the matrix is actually 2x8 (two bytes of 8
bits). Similarly, if OS_LOWEST_PRIO is set to 47, the matrix will be 6x8. When
OS_LOWEST_PRIO is above 63, we use 16-bit wide entries. For example, if you specify
OS_LOWEST_PRIO to be 100 then the matrix will be 7x16 (7 entries of 16 bits each).
You CANNOT have OS_LOWEST_PRIO at 255 because that value is reserved for
OS_PRIO_SELF.

23 of 88

FIXED BUGS IN V2.77

No bugs were reported in V2.77.

CHANGES IN V2.80

OS CFG.H (see template in 0S_CFG_R.H)
OS_LOWEST_PRIO in OS_CFG.H can now be up to 254 thus supporting up to
255 tasks (including the idle task).

You now need to add the #define OS_FLAGS NBITS which MUST be
either 8, 16 or 32. This #define defines the number of bits used for event flags.

We REMOVED the type definition of OS_FLAGS and thus, you will also have
to remove it in your OS_CFG.H file.

OS_CORE.C
We removed the OSMapTb B[] and replaced its use in the code witha 1 << n
operation.

Added a new function called OS_SchedNew() to find the new highest priority
task ready-to-run. In other words, this function determines the value of the
variable OSPrioHighRdy. 0S_SchedNew() is called by OS Sched(),
OSIntExit() and OSStart().

ucos_1ii.h
Moved the #define OS _VERSION before the #include statements of
OS CFG.H and OS_CPU.H to allow these files to have definitions based on
which version of uC/OS-11I.

Added OS TASK OPT NONE to allow this to be used in
OSTaskCreateExt() instead of O.

GENERAL
Functions that used char now use INT8U to satisfy one of the MISRA C rules.

24 of 88

V2.77

(2004/11/29)

This release corrects a number of very minor issues with \VV2.76.

FIXED BUGS IN V2.76

Bug V2.76-001:

There were a number of typos and incorrect comments that were fixed.

CHANGES IN V2.77

V2.77 adds a few minor enhancements to VV2.76. However, none of these enhancements
were critical.

IMPORTANT

The prototypes for OSStartHighRdy(), O0SCtxSw() and OSIntCtxSw() are
NOW assumed to be placed in OS_CPU.H since they have been removed from
ucos_1i.h. The reason this was done was to allow different declarations for these
functions. For example, with the IAR ARM compiler, these functions are declared as
follows:

__arm void OSStartHighRdy(void);
__arm void O0SCtxSw(void);
__arm void OSIntCtxSw(void);

The “standard’ declarations should be:

void OSStartHighRdy(void);
void O0SCtxSw(void);
void OSIntCtxSw(void);

Please add these prototypes in YOUR os_cpu.h file.

25 of 88

OS_CFG.H

We now expect the presence of OS_VIEW_MODULE in your OS configuration file. This
is such that you can more easily add pC/OS-View to your product. Defining
OS_VIEW_MODULE to 1 indicates that you will include pC/OS-View in your product’s
build. Setting OS_VIEW_MODULE to O indicates that you will not be using
HC/OS-View.

If you DO NOT add this #define, the compiler will complain via a #error directive
that we added in ucos_11i.h.

OS_CORE.C

We now assign a name to the pC/OS-IlI idle task and statistics task if
OS_TASK_NAME_SIZE is defined as being greater than 14 in OS_CFG.H. This is used
for debugging purposes. The idle task is called: “uC/0S-11 1dle” and the statistics
task is called “uC/0S-11 Stat”.

GENERAL

In ALL the functions that pass *err so than an error code is returned to the caller, err
is checked to make sure it’s not a NULL pointer. The function returns if it is.
Unfortunately, you are not told why because we have no way to give you an error code.

In ALL the functions that pass a pointer, we now check to make sure that the pointer is
not a NULL pointer. This was previously done for some of the pointers but not all.

26 of 88

V2.76

(2004/02/06)

This release corrects a number of minor issues with VV2.75 and also add a new Semaphore
interface function (0SSemSet()).

FIXED BUGS IN V2.75

Bug V2.75-001:

OSTaskDlyResume() makes the same test as the new OSTimeTick() in that if a
task was delayed and was pending on an event then, .OSTCBPendTO will be set to
TRUE indicating that the task timed out.

Bug V2.75-002:

The following functions:

OSTaskChangePrio()
OSTaskDel)
OSTaskDelReq()
OSTaskNameSet()
OSTaskNameGet()
OSTaskResume()
OSTaskSuspend()

All needed to check for ‘ptcb’ pointing to (void *)1 in case the task was assigned to
a Mutex PIP.

Bug V2.75-003:
OSTaskDelReq() had a local variable ‘stat’ which was declared as a BOOLEAN but
was in fact used as an 8 bit integer. This local variable is now an INT8U.

NEW FEATURE

V2.76 adds a new semaphore function (0SSemSet()) that allows you to set the value
(i.e. count) of the semaphore. This new feature is useful when you use semaphores as a
signaling mechanism. You enable this function by setting OS_SEM_SET EN to 1 in
OS_CFG.H of your product. See details about this function in the reference manual.

27 of 88

V2.75

(2003/12/15)

This release corrects a number of issues that were reported by users of V2.70. This
release also contains some changes. Probably the most significant improvement is that
we made sure that pC/OS-I1 passes LINT without warnings and errors. PC Lint V8 by
Gimpel Software was used to LINT pC/OS-I1: http://www.gimpel.com/html/contact.htm.

FIXED BUGS IN V2.70

Bug V2.70-001:
OSTaskSuspend() and OSTaskResume() bug has been corrected. The problem
and correction are described later.

Bug V2.70-002:

In OSMemNameSet(), a return statement was missing for the case when pmem is
NULL. This bug has been corrected.

Bug V2.70-003:

In OSQPostOpt(), the test for msg being NULL must be deleted. This is because, as
of V2.62, it’s now possible to post NULL pointer messages to a message queue. This has
been corrected.

Bug V2.70-004:
In 0SQDel (), the first test should return pevent instead of a NULL pointer upon
failure. This bug has been corrected.

Bug V2.70-005:
OSTaskNameGet() and OSTaskNameSet() were missing an
0S_EXIT_CRITICAL(Q) before the exit of the first test. This has been corrected.

Bug V2.70-006:
In OSFlagPend () the returned flags_rdy was not set correctly if you didn’t specify
OS_FLAG_CONSUME. This has been corrected.

28 of 88

http://www.gimpel.com/html/contact.htm

Bug V2.70-007:
In OSTaskQuery() we needed to check to see if the TCB was assigned to a Mutex.
An additional test has thus been added to correct the problem.

Bug V2.70-008:
In OSMutexPend() we removed a &= statement in an §f statement for MISRA
compliance.

Bug V2.70-009:
In ucos_11.h we tested for 0OS_MAX_EVENTS >= 256 when it should have been

testing for >= 65500.

Bug V2.70-010:
Added test for 0OS_ARG_CHK_EN in OST imeDlyHMSM().

29 of 88

CHANGES IN V2.75
V2.75-001

We added a version number at the top of each file in the main comment header.

V2.75-002

ucos_1i1.h now includes os_cfg.-h and os_cpu.h. This allows you to compile
HC/OS-11 with only those three headers.

V2.75-003
Changed the data type for the variable 1 in OS_InitRdyList() from INT16U to
INT8U.

V2.75-004

Added cpu_sr = 0 in all the functions that need to use OS_ENTER_CRITICAL()
and OS_EXIT_CRITICAL(). This is done because some compilers generate warnings
when the variable is not directly referenced in the code because it’s buried inside a
macro. We could have used cpu_sr = cpu_sr but, LINT complained about the fact
that cpu_sr is being assigned a value that has not been initialized.

V2.75-005
Removed the global variable OSIntExitY in OSIntExit() and replaced it with a
local variable called y. Note that you will need to delete the line:

+ sizeof(OSIntExitY)

in the file os_dbg. c of your port file (if this file exits in your port).

IMPORTANT

If you use an OLD pC/OS-I11 port, you might need to adjust the constant to add to the SP
(Stack Pointer) in OSIntCtxSw(). In other words, if you use a port that adjust the SP
in OSIntCtxSw(), you might need to adjust the constant because your port will NOT
WORK. If your port uses the new scheme outline in the hardcover edition of the
HUC/OS-11 book, you will not have to do anything as your port will work just fine.

30 of 88

V2.75-006
Added a flag in OS_TCB (called .OSTCBPendTO) that indicates whether a ‘pend’ call

has timed out or not. The addition of this flag was necessary to fix bug V2.70-001.
Details about the changes are described on the next page.

V2.75-007

Added a test in OSTaskCreate() and OSTaskCreateExt() to prevent calling
these functions from an ISR.

V2.75-008

Added a (void) in front of 0S_FlagTaskRdy() in OS_FLAG.C and in front of
OS_EventTaskRdy() in OS_MBOX.C, OS_Q.C, OS_SEM.C and OS_MUTEX.C
because the return value is not being used. This was done to prevent LINT warnings.

V2.75-009
Changed #if OS_EVENT_EN > O with #if OS_EVENT_EN because LINT was

complaining that the boolean value OS_EVENT_EN was being compared with an integer
value.

31 of 88

Correction of Bug V2.70-001

Problem description:

If a task pends on an event with a timeout but .OSTCBD ly gets decremented to O before
the task gets suspended (using OSTaskSuspend()) by another task then, when the
suspension is removed, the task ‘appears’ to be waiting forever on the message queue
(when it was waiting with a timeout). Of course, if the queue is posted, the task would be
made ready to run by the post.

Problem correction:

The problem was corrected by adding a variable called .OSTCBPendTO in the OS_TCB.
This variable is set by OSTimeTick() when OSTimeTick() determines that the
delayed task is in fact pending on either a semaphore, mailbox, queue, mutex or event
flag. To find and correct the problem, we drew a state transition diagram of the different
states a task can take as shown in the figure below.

pCc/OS-1l swt [0]o/o[o]o]o/o[o]
Va.75 I_-_ o
Task States Using Queues ‘ :
Delayed Reacly L
[MLLLLDEEE) sy pa o LLEEEELD
Di\; | > U | D“jr | U _| CSTCEPendTO .::;F.T:L-JIZI
D E -Jziwtn;ii,;.;::rnll paLse m DERFand{)
Suspended + Delayed Suspended + Pend w! Timeout Fend wig Timeout
sut [0]0[0]o[1]0]0]9] ___|s= [o[o]o[o[1]1]0[0] s ERECEEED
oy [-0 | oy [0] Dy | 0 |
5T
(] (]] [(]]
B |':1‘:!: Fal I i
Suspended Fend wi! Timeout ISuspended + Pend wio Timeout
st [0]0]0[0[1]0[0]0]] (_tormere=tl stat [0]o[ojo[o]1]0]0] st [0]o]0]o[1]1]0]0]
DE\; |—D | ASTCEPondTO = THUE Di‘,l’ i—>[} | Di‘," |—U _I
=] =

SaPend)

Each large box represents a state a task can be in. A ‘red’ state can be entered directly by
a task or from another task. The Stat byte contains the value of the .OSTCBStat field
in the OS_TCB of the task. DIy represents the value of .OSTCBDly and can be either O
or a non-zero value (i.e. > 0). We assumed message queues in this example but the

32 of 88

states apply to semaphores, mailboxes, mutexes and event flags. Below is a narration of
the different states.

A running task calls OSTimeDly(). .OSTCBStat doesn’t get changed and
only .OSTCBDYy is affected.

OSTimeTick() decrements .OSTCBDly to zero and the task is made ready-to-
run.

A delayed task gets suspended by another task.

The task suspension is removed by another task.

OSTimeTick() decrements .OSTCBDly to zero but, since the task is still

suspended, it doesn’t get readied. Also, the flag .OSTCBPendTO gets set to
FALSE since the task was not pending on anything.

A task gets suspended by itself or by another task. Of course, this task is removed
from the ready list but is not waiting for any event.

The suspended task is readied by another task that calls 0STaskResume ().

A task calls 0SQPend() and specifies a non-zero timeout value. This means

that the task will be readied if a message is received within the timeout period or,
if the timeout expires.

OSTimeTick() is called before a message is received. In this case, the flag
.OSTCBPendTO is set and the OS _STAT Q flag is cleared by
OSTimeTick(). In previous versions, we didn’t clear the OS_STAT_Q flag
because we used it to indicate that the task timed out waiting for the event to
occur. Since we now have the .OSTCBPendTO flag, we will use it for this
purpose.

A task calls 0SQPost () sending a message to the task via a message queue. In
this case, the timeout is cancelled and the flag .OSTCBPendTO is set to FALSE.

A task calls 0STaskSuspend() to suspend a task that was already waiting on a
message gqueue (with timeout).

33 of 88

A task calls 0STaskResume () to resume the task suspended. In this case, the

task is still not ready-to-run because the message queue has not been posted and
the timeout has not expired.

A task calls 0SQPost() before the timeout expires. However, the task is still

suspended. Note that the OSQPost () cancels the timeout (sets .OSTCBDIly to
0) and sets the flag .OSTCBPendTO to FALSE because we didn’t get a timeout.
Note also that the message is given to the task because it was the highest priority
task waiting for the message, even though the task is still suspended.

OSTimeTick() occurs before the message gets posted to the queue. In this

case, OSTimeTick() sets the .OSTCBPendTO flag to TRUE indicating that
the message was not received within the specified timeout period. However, the
task is still unconditionally suspended. If the message is posted before the task is
resumed, the .OSTCBPendTO flag will be cleared.

A task calls 0SQPend() and specifies a zero timeout value indicating that the
task will wait forever to receive a message.

A task calls 0STaskSuspend() to suspend a task that was already waiting on a
message queue (without timeout).

A task calls 0STaskResume () to resume the task suspended. In this case, the
task is still not ready-to-run because it’s waiting for an event that did not occur.

A task calls OSQPost(). However, the task is still suspended. The flag

-.OSTCBPendTO is set to FALSE because we didn’t get a timeout. Note also
that the message is given to the task because it was the highest priority task
waiting for the message, even though the task is still suspended.

A task calls 0SQPost(). The flag .OSTCBPendTO is set to FALSE because
we didn’t get a timeout.

34 of 88

V2.70

(2003/04/01)

V2.70 is a considered a major release for a number of reasons:

1)

2)

3)

4)

5)

6)
7)

8)

9)

The directory structure for ports has been completely revised. This doesn’t really
affect the source code for uC/OS-II per-se but it does imply that port files have
been moved around.

Include files are now surrounded by brackets instead of double quotes. This
allows you to locate uC/OS-Il and the port files anywhere on your computer
system, and let your compile environment resolve include paths. In other words,
you now need to tell your compiler which path to search for include files since
MC/OS-11 file no longer assume an absolute path.

All calls to standard library functions have been removed from pC/OS-II and
have been replaced with internal 0OS_7??7?() functions. This was done to
simplify third party certification.

Item #3 above has an additional advantage - compilation of uC/OS-Il now only
depends on the following three files: os_cpu.h, os_cfg.h and ucos_1i1.h.
In other words, if you define the contents of os_cpu.h and os_c¥g.h for your
product, you will be able to compile uC/OS-II files standalone.

Port files for the 80x86 CPU running in a DOS environment are no longer
included with the distribution. This has been done for two reasons. First, we
don’t want uC/OS-II to be thought of as ‘only’ an 80x86 RTOS since it’s been
ported to a large number of processors. Second, all the other processor ports are
available on the web site as a free download and now, the 80x86 ports are no
different.

The DOS utility TO . EXE is no longer part of the distribution.

We now include two new files: os_cfg_r.h and os_dbg_r.c. These are
described later.

Initialization of the statistic task now takes 1/10 of a second instead of 1 second.
This has been done to reduce the boot time of an embedded system target.
Changed the returned value from OSFlagAccept() and OSFlagPend() to
now return the value of the flags that caused the task to become ready-to-run.
This was done because a lot of users requested this “preferred’” behavior.

35 of 88

This release corrects just one minor issue that was reported by a user of V2.62. This
release also contains some minor changes. No new features or functions were added.

Important
ucos_ii.h now includes #include statements to include os cpu.h and
os_cfg.h. This means that you MUST now REMOVE these #include statements
from includes_h. In other words, ucos_11.h now has:

#include <os_cpu.h>
#include <os _cfg.h>

and those statements MUST be REMOVED from includes.h otherwise the above
two files would be multiply included

36 of 88

FIXED MINOR ISSUE WITH V2.62

Bug V2.62-001:
In OSTaskDel (), we had added a statement to clear the stack pointer of the task being

deleted. This statement appears on line 428 and has been since removed. The code was
added originally to show that the stack of a task that has been deleted is no longer valid.
This was to support Kernel Awareness but was found to cause side effects. The line to

delete is:

ptcb->0STCBStkPtr = (0S_STK *)0; /* Show that TCB is "unused® */

37 of 88

CHANGES IN V2.70
V2.70-001

In V2.70, we changed the directory structure of where ports are placed. This change was
necessary because of the growing confusion about where ports should be placed. The
new directory structure is explained in AN-2002 which can be downloaded from the
Micripm web site.

V2.70-002
The file 0S_DEBUG. C has been renamed to OS_DBG.C. 0OS_DEBUG. C was introduced
in V2.62.

V2.70-003

Conditional compilation of object names is now checking for greater than 1 (i.e. > 1)
instead of greater than zero (i.e. > 0). The reason is because of the following code
example:

#1T OS_EVENT_NAME_SIZE > 1
pevent->0SEventName[O]
pevent->0SEventName[1]

#endif

‘?’ ;
0S_ASCII_NUL;

If OS_EVENT_NAME_SIZE was set to 1 then there would not be sufficient room in the
-.OSEventName file to hold the *?’ as well as the NUL character. This was really not a
big problem in the past because it would be unlikely that you would have allocated only
ONE character to the name of an object.

V2.70-004

Removed all calls to standard library functions and replaced them with local functions
which are found in OS_CORE. C as follows:

Standard Library Function: Has been replaced by:
memcpy () 0S_MemCopy ()
memset() 0S _MemCIr(Q)
strien() 0S_StrLen(Q
strcpy() 0S_StrCopy(Q

38 of 88

V2.70-005

Added call to function OSDebuglnit() in OSInit(). OSDebuglnit() is a
function that has been added in VV2.70 because some compilers will actually optimize out
all the ‘const’ variables in os_dbg.c if they are not referenced by any code. The
‘const’ in os_dbg. c are used by a Kernel Aware debugger and all of the ‘const’ are
needed. OSDebuglInit() is a function that really doesn’t do anything except reference
the ‘const’ variables in os_dbg. c to prevent the compiler from optimizing them out.
Of course, if OS_DEBUG_EN is set to O in os_cfg.h then OSDebugInit() is not
called and is thus not needed.

V2.70-006

Changed the name of all variables called ‘pdata’ and ‘data’ to more appropriate
variable names. The reason for this change is that some 8051 compilers reserve the
words pdata and data for storage classes.

V2.70-007

ucos_ii1.h now includes #include statements to include os_cpu.h and
os_cfg.h and thus, you MUST now REMOVE these include statements from the
project’s master include file, includes.h to prevent double inclusion of os_cpu.h
and os_cfg.h in your project. Because of this change, all of the uC/OS-I1 source files
now include ucos_ii.hinstead of includes.h.

V2.70-008
Include files are now surrounded by brackets instead of double quotes. This allows you
to locate uC/OS-I1 and the port files anywhere on your computer system, and let your
compile environment resolve include paths. In other words, you now need to tell your
compiler which path to search for include files since uC/OS-II file no longer assume an
absolute path.

V2.70-009

Changed OSStatInit() and OS_TaskStat() so that the statistic task only needs
1/10 of a second to determine the CPU capacity. This change was done to speed up the
boot time of an embedded system.

V2.70-010

Changed the returned value from OSFlagAccept() and OSFlagPend() to now
return the value of the flags that caused the task to become ready-to-run. This was done
because a lot of users requested this ‘preferred’ behavior.

39 of 88

V2.62

(2003/01/15)

V2.62 is a simple maintenance release. The release corrects a few very minor issues that
were reported by users and also, contains some changes to better support Kernel Aware

debuggers. No new features or functions were added.

FIXED MINOR ISSUES WITH V2.61

Bug V2.61-001:
In OS_FLAG.C, the second OS_ENTER_CRITICALQ
OSFlagPendGetFlagsRdy () needed to be changed

OS_EXIT_CRITICALQ)- This problem has been corrected.

The BAD code was:

0S_FLAGS OSFlagPendGetFlagsRdy (void)
{
#if OS_CRITICAL_METHOD == 3
0S_CPU_SR cpu_sr;
#endi
0S_FLAGS flags;

OS_ENTER_CRITICALQ);
flags = OSTCBCur->0STCBFlagsRdy;
OS_ENTER_CRITICALQ);
return (flags);
¥

and should have been:

0S_FLAGS OSFlagPendGetFlagsRdy (void)
{
#if OS_CRITICAL_METHOD == 3
0S_CPU_SR cpu_sr;
#endif
0S_FLAGS flags;

0S_ENTER_CRITICALQ);

flags = OSTCBCur->0STCBFlagsRdy;
0S_EXIT_CRITICALQ);

return (flags);

40 of 88

Bug V2.61-002:
In OS_MEM_C, the following code on line #242 was:

if (len > (0OS_EVENT NAME_SIZE - 1)) {

and should have been:

if (len > (0S_MEM NAME_SIZE - 1)) {

Bug V2.61-003:
In OS_CORE.C, OS_TaskStatStkChk() didn't check for a task that was

assigned to a MUTEX and thus attempted to compute the stack size of an invalid task.
The correct code for this function is:

#1f (OS_TASK_STAT_STK_CHK_EN > 0) && (OS_TASK_CREATE_EXT_EN > 0)
void O0S_TaskStatStkChk (void)

{
0S_TCB *ptch;
OS_STK_DATA stk_data;
INT8U err;
INT8U prio;

for (prio = 0; prio <= OS_IDLE_PRIO; prio++) {
err = OSTaskStkChk(prio, &stk_data);
if (err == OS_NO_ERR) {
ptcb = OSTCBPrioTbl[prio];
if (ptcb = (0S_TCB *)0) { /* Make sure task "ptcb” is ... */
if (ptcb !'= (0S_TCB *)1) { /* ... still valid. */
#if OS_TASK_PROFILE_EN > O
#1T OS_STK_GROWTH == 1
ptcb->0STCBStkBase = ptcb->0STCBStkBottom + ptcbh->0STCBStkSize;

#else
ptch->0STCBStkBase = ptchb->0STCBStkBottom - ptch->0STCBStkSize;
#endif
ptchb->0STCBStkUsed = (INT32U)stk_data.OSUsed; /* Store the number of bytes used */
#endif
¥
3
}
3
3
#endif

Bug V2.61-004:

In OS_CORE.C, OS_TaskStatStkChk() had an error computing the stack base.
The code presented in VV2.61-003 above corrects the issue.

41 of 88

CHANGES IN V2.62

V2.62-001

In V2.62, we removed the ‘debug’ code from OS_CORE.C and created a NEW file
called OS_DEBUG.C. On other words, in V2.61, there were a number of ‘const’
variables that were added to better support kernel aware debuggers. These consts have
been moved to the new file 0S_DEBUG . C for two reasons:

1) If you don’t have a kernel aware debugger, OS_CORE.C would have added about
100 bytes of code that would serve no purpose. By moving the const to
0OS_DEBUG.C, if you don’t have a kernel aware debugger, you don’t need to compile
and link OS_DEBUG . C with your uC/OS-I1 based application.

2) Some compilers (such as the IAR) compiles-out code or constants that don’t appear to
be used anywhere. In the case of the debug variables, the variables reside in ROM
and are only there for the debugger. In other words, they serve no other purpose for
MC/OS-11 based applications and some compilers would be ‘smart’ enough to not
include them. To prevent this from happening and thus make the variable available
for the debugger, the debug variable were placed in OS_DEBUG.C so that you can
use compiler specific directives to prevent this type of optimization. However, these
directives are very compiler specific and could thus change from one compiler to
another. This would cause compatibility problems if these directives were placed in
OS_CORE.C because OS CORE.C is supposed to be compiler and processor
independent. Having a separate file (OS_DEBUG. C) solves this problem because the
file can be associated with the PORT and not the processor independent code.

NOTE

This all means that a PORT should now contain OS_DEBUG.C if you use a Kernel
Aware Debugger that requires the “const’ provided in OS_DEBUG.C. In fact, you might
have to modify OS_DEBUG. C based on the compiler you are using.

V2.62-002

In OS_MUTEX.C, there were a couple of places where some of the MISRA C rules had
not been followed (in OSMutexPend () and OSMutexPost()).

V2.62-003

Added ‘tags’ to structures.

42 of 88

V2.62-004
Added OSEndianessTest const in OS_DEBUG.C to allow the debugger to
automatically determine whether the processor is little endian or big endian.

43 of 88

V2.61

(2002/10/20)

V2.61 is a simple maintenance release and no run-time bugs were found in pC/OS-II
V2.60. The release only corrects a few very minor issues that mostly affected kernel
awareness support, and adds a bit of internal code. No new features or functions were

added.

FIXED MINOR ISSUES WITH V2.60

Bug V2.60-001:
In 0S_CORE.C, the following ROM constant was set to:

INT16U const OSTaskStatStkChkEn

And should have been:

INT16U const OSTaskStatStkChkEn = 0S TASK_STAT STK CHK_EN;

Bug V2.60-002:

In uCOS__ 11 _H, the following code was:

#if OS_EVENT_NAME_SIZE > O

INT8U OSEventNameGet(OS_EVENT *pevent, char
void OSEventNameSet(0OS_EVENT *pevent, char
#endif

and should have been:

#if (0OS_EVENT EN > 0) && (OS_EVENT NAME_SIZE > 0)

INT8U OSEventNameGet(0OS_EVENT *pevent, char
void OSEventNameSet(OS_EVENT *pevent, char
#endif

44 of 88

0S_TASK_STAT_EN;

*pname,
*pname,

*pname,
*pname,

INT8U
INT8U

INT8U
INT8U

*err);
*err);

*err);
*err);

Bug \V2.60-003:

In uCOS__11 _H, the following code was:

#if OS_FLAG_NAME_SIZE > O

INT8U OSFlagNameGet(OS_FLAG_GRP *pgrp, char *pname, INT8U *err);
void OSFlagNameSet(0S_FLAG_GRP *pgrp, char *pname, INT8U *err);
#endif

and should have been:

#if (0S_FLAG EN > 0) && (OS_FLAG_NAME_SIZE > 0)

INT8U OSFlagNameGet(0OS_FLAG_GRP *pgrp, char *pname, INT8U *err);
void OSFlagNameSet(0S_FLAG_GRP *pgrp, char *pname, INT8U *err);
#endif

Bug V2.60-004:

In OS_MEM.C, the following code was missing in 0S_MemInit(), for the last
0S_MEM element:

#if OS_MEM_NAME_SIZE > O
(void)strcpy(pmem->0SMemName, *'?");
#endif

Bug V2.60-005:
In OS_CORE . C, added conditional compilation for the following prototype:

#if 0S_TASK_STAT EN > O
static void OS_InitTaskStat(void);
#endif

ADDED CODE

Added V2.61-001:
In 0S_CORE . C, added the following ROM constant for kernel awareness support:

OSMemSize = sizeof(0OS_MEM);

45 of 88

V2.60

(2002/09/28)
Changes were made to VV2.52 for the following reasons:

a) To fix minor issues with V2.52.

b) To simplify FAA Level A certification by removing all MCDC (Modified Condition
Decision Coverage).

c) To follow most of the guidelines of The Motor Industry Software Reliability
Association “Guidelines for the use of the C language in vehicle based software”.

d) To add support for kernel awareness.

e) To directly support uC/OS-View.

f) Added new features.

g) Made some changes to the code.

46 of 88

FIXED ISSUES WITH V2.52

Bug V2.52-001:
In 0S_CORE.C, function OS_InitMisc(), there is no need to test
OS_TASK_CREATE_EXT_EN:

#if (OS_TASK_STAT_EN > 0) && (OS_TASK_CREATE_EXT_EN > 0)
0SlidleCtrRun OL;

osidleCtrMax = OL:
OSStatRdy = FALSE
#endi

The correct code is thus:

#if 0S_TASK_STAT EN > 0

OoSldleCtrRun = OL;

OoSldleCtrMax = OL;

0SStatRdy = FALSE;
#endi

Bug V2.52-002:
In OS_TASK.C, function OSTaskDel (), the variable sel T was never used. The
variable is now removed.

Bug V2.52-003:
In OS_TASK.C, function OSTaskStkChk() was missing a test. The incorrect
code was:

ptcb = OSTCBPrioTbl[prio];

if (ptcb == (0S_TCB *)0) {
OS_EXIT_CRITICALQ;
return (OS_TASK_NOT_EXIST);

}

The correct code is:

ptcb = OSTCBPrioTbl[prio];

if (ptcb == (0S_TCB *)0]| ptcb == (0S_TCB *)1) {
OS_EXIT_CRITICALQ;
return (OS_TASK_NOT_EXIST);

47 of 88

Bug V2.52-004:
In OS_MUTEX.C, function OSMutexPost() the condition to check to see if the
current task is the owner of the mutex has been changed from:

it (OSTCBCur->0STCBPrio != pip &&
OSTCBCur->0STCBPrio != prio) {
OS_EXIT_CRITICALQ;
return (OS_ERR_NOT_MUTEX_OWNER) ;
}

To:

it (OSTCBCur != (0S_TCB *)pevent->0SEventPtr) {
OS_EXIT_CRITICALQ;
return (OS_ERR_NOT_MUTEX_OWNER) ;

}

This change allows a task to obtain multiple mutexes. A task could thus have the
following code:

Acquire Mutex #1;
Acquire Mutex #2;
Release Mutex #2;
Release Mutex #1;

Mutexes MUST be released in the same order as they were acquired.

Bug V2.52-005:
In OS_MUTEX.C, the function OSMutexPend() was changed to allow a mutex

owner to pend on another kernel object such as a semaphore. In other words, a task
could have the following code:

Acquire Mutex; /* Mutex is available, task now owns it */
Acquire Semaphore; /* Semaphore is NOT available, suspend task! */

Then, a high priority task that would call OSMutexPend() on the same mutex
would notice that the mutex owner has a lower priority than the task that needs the
mutex. OSMutexPend() would then raise the priority of the task that owns the
mutex and will notice that the task is also waiting on a semaphore.
OSMutexPend() would then change the priority of the mutex owner in the
semaphore wait list.

48 of 88

SIMPLIFYING ‘FAA LEVEL A’ CERTIFICATION

Changes were made to V2.52 to remove all MCDC (Modified Condition Decision
Coverage). MCDCs are basically conditionals with multiple possible outcomes. For
example, in the following code, there are eight (8) possible outcomes based on the
different values of a, b, c, d, e and T:

if(@a=Dbé&&k c==d&& e ==°%) {
/* Conditions met */
}

A better way to write the above code (from a certification perspective) is shown below:
if (a==Db) {
if (c ==4d) {
if (e ==1) {
/* Conditions met */
}

}

I went through all the uC/OS-1I code and removed the MCDCs. Of course, the code
behaves exactly the same as before.

49 of 88

FOLLOWED MOST OF THE MISRA GUIDELINES

MISRA stands for “The Motor Industry Software Reliability Association” and this
association published back in April 1998, a list of 127 guidelines for programming
applications using the C programming language. You can obtain this document by
visiting:

http://www.misra.org.uk

The document is called:

“Guidelines For The Use Of The C Language In Vehicle Based Software”
ISBN 09524156 9 0

It so happens that pC/OS-I1 was written by following most of the MISRA guidelines
even before the guidelines were ever published. At this time, pC/OS-I1 is not ‘compliant’
with the guidelines but simply follows most of them.

One of the most significant changes to uC/OS-11’s code is the removal of assignments
inside conditionals. For instance, the following code:

iIT ((pevent->0SEventTbl[y] &= ~bitx) == 0) {
/> . */

}

Has been replaced by:

pevent->0SEventTbl[y] &= ~bitx;

1T (pevent->0SEventTbl[y] == 0) {
/> . */
}

50 of 88

http://www.misra.org.uk/

SUPPORT OF KERNEL AWARE DEBUGGERS

Variables and constants have been added to help support kernel aware debuggers.
Specifically, a number of variables can be queried by a debugger to find out about
compiled-in options. For example, the debugger can find out the size of an OS_TCB,
HC/OS-11’s version number, the size of an event flag group (OS_FLAG_GRP) and much
more. Those variables are enabled by OS_DEBUG_EN in 0OS_CFG . H.

SUPPORT OF pC/OS-View

Variables in OS_TCB have been added (see OS_TASK_PROFILE_EN) to support
profiling tools such as uC/OS-View.

Also 0S_TaskStat() can now check the stack of each of the active tasks (see
0S_TASK_STAT_STK_CHK_EN).

An OS_TCB can also contain the name of each task which can then be displayed on the
pHC/OS-View Windows application.

HC/OS-View can ‘step’ tick interrupts one at a time. In other words, through a command
sent by a user of uC/OS-View, uC/OS-Il can process one tick at a time. Each tick
requires a user to press a key from the uC/OS-View application.

ADDED NEW FEATURES

1) Find out which flag(s) caused task to wakeup.
Added the function OSFlagPendGetFlagsRdy () (file 0S_FLAG.C) to allow to
determine which flag(s) caused the current task to become ready. In other words, you
will now be able to know what event flag(s) caused the pending task to wake up.

2) Posting NULL pointers to queues.
It is now possible to send NULL pointer message through queues. OSQPost() and
0OSQPostFront() no longer blocks NULL pointers from being deposited into
queues. This means that OSQPend () will thus be able to receive NULL pointer
messages. You should now check the status of the err argument to determine
whether the return from the pend was caused by a timeout or the actual reception of a
message.

Because of this change, I had to change the API for OSQAccept() so that it returns
an error code indicating the outcome of the call.

51 of 88

3) Assigning names to Tasks and other kernel objects.
It is now possible to assign names to Tasks, Memory Partitions, Semaphores,
Mutexes, Event Flags, Mailboxes and Queues. The names are useful when
debugging applications. You assign names by calling one of the following functions:

OSEventNameSet()
OSFlagNameSet()
OSMemNameSet()
OSTaskNameSet()

You can obtain the name of a task or a kernel object by calling the following
functions:

OSEventNameGet()
OSFlagNameGet()
OSMemNameGet()
OSTaskNameGet()

This version doesn’t allow you to manipulate kernel objects using names. For
example, you can’t delete a task by specifying its name, you can’t post to a queue by
specifying the queue by its name, etc.

4) Disable calls to OSTaskSwHook() and OSTimeTickHook()
It is now possible to disable (at compile time) the need to have the functions
OSTaskSwHook() and OSTimeTickHook(). This feature was requested
because of the overhead involved in calling empty functions during a context switch
and also every tick.

To disable OSTaskSwHook(), simply set OS_TASK_SW_HOOK_EN to O in
0OS_CFG.H. Of course, the port (OS_CPU_A.ASM) for the processor you are using
must not call 0STaskSwHook ().

To disable OSTimeTickHook(), simply set OS_TIME_TICK_HOOK_EN to O in
OS_CFG.H.

5) Added variables in OS_TCB to allow profiling
Variables have been added to OS_TCB to allow each task to be profiled. In other
words, UC/OS-Il contains variables that register the number of time a task is
‘switched-in’, how long a task takes to execute, how much stack space each task
consumes and more. These variables have been added to better support uC/OS-View
and other profiling tools.

52 of 88

6) Added tick stepping support for uC/OS-View
MC/OS-View can now ‘halt’ uC/OS-I11’s tick processing and allow you to issue ‘step’
commands from uC/OS-View. In other words, pC/OS-View can prevent uC/OS-II
from calling OSTimeTick() so that timeouts and time delays are no longer
processed. However, though a keystroke from pC/OS-View, you can execute a single
tick at a time. If enabled, OSTimeTi1ckHook() is still executed at the regular tick
rate in case you have time critical items to take care of in your application.

7) Added new #defines in OS_CFG.H
Instead of edition your OS_CFG.H, | recommend that you copy one of the
OS_CFG.H files provided with the VV2.60 release and then modify it to satisfy your
application requirements.

OS_DEBUG_EN
This #define adds ROM constants to help support kernel aware debuggers. Specifically, a
number of named ROM variables can be queried by a debugger to find out about compiled-in
options. For example, the debugger can find out the size of an 0OS_TCB, uC/OS-II’s version
number, the size of an event flag group (OS_FLAG_GRP) and much more.

OS_EVENT_NAME_SIZE
This #define determines the size of ASCII strings used to name either semaphores, mutexes,
mailboxes and queues. If set to O, this feature will be disabled: no RAM will be allocated and the
functions OSEventNameGet() and OSEventNameSet() will not be compiled. If set to a
non-zero value, it determines the number of bytes allocated for the name. Please note that you
need to accommaodate for the NUL character and if you do use a non-zero value, you should have a
minimum of 2 for this value.

0OS_FLAG_NAME_SIZE
This #define determines the size of ASCII strings used to name event flag groups. If set to O,
this feature will be disabled: no RAM will be allocated and the functions OSFlagNameGet()
and OSFlagNameSet() will not be compiled. If set to a non-zero value, it determines the
number of bytes allocated for the name. Please note that you need to accommodate for the NUL
character and if you do use a non-zero value, you should have a minimum of 2 for this value.

0S_MEM_NAME_SIZE
This #deFine determines the size of ASCII strings used to name memory partitions. If set to O,
this feature will be disabled: no RAM will be allocated and the functions OSMemNameGet() and
OSMemNameSet() will not be compiled. If set to a non-zero value, it determines the number of
bytes allocated for the name. Please note that you need to accommodate for the NUL character and
if you do use a non-zero value, you should have a minimum of 2 for this value.

0S_TASK_NAME_SIZE
This #define determines the size of ASCII strings used to name tasks. If set to O, this feature
will be disabled: no RAM will be allocated and the functions OSTaskNameGet() and
OSTaskNameSet () will not be compiled. If set to a non-zero value, it determines the number
of bytes allocated for the name. Please note that you need to accommodate for the NUL character
and if you do use a non-zero value, you should have a minimum of 2 for this value.

53 of 88

OS_TASK_PROFILE_EN
This #define is used to allocate storage for variables used for run-time task profiling. These
variables are used by pC/OS-View and some kernel aware debuggers.

0OS_TASK_STAT_STK_CHK_EN
This #define allows the statistic task to do run-time checking of all the stacks of all the active

tasks. In other words, when set to 1, OS_TaskStat() calls the function
0S_TaskStatStkChk(). Of course, for this to happen, 0S_TASK_STAT_EN must also be
setto 1.

OS_TASK_SW _HOOK_EN
It is now possible to disable (at compile time) the need to have the functions 0OSTaskSwHook ().
This feature was requested because of the overhead involved in calling empty functions during a
context switch and also every tick. To disable OSTaskSwHook(), simply set
0S_TASK_SW_HOOK_EN to O in OS_CFG.H. Of course, the port (0OS_CPU_A_ASM) for the
processor you are using must not call 0STaskSwHook ().

0S_TICK_STEP_EN

HC/OS-View can now ‘halt’ pnC/OS-I1’s tick processing and allow you to issue ‘step’ commands
from pC/OS-View. In other words, pC/OS-View can prevent puC/OS-1lI from calling
0STimeTick() so that timeouts and time delays are no longer processed. However, though a
keystroke from pC/OS-View, you can execute a single tick at a time. If
OS_TIME_TICK_HOOK_EN (see below) is set to 1, OSTimeTickHook() is still executed at
the regular tick rate in case you have time critical items to take care of in your application.

OS_TIME_TICK_HOOK_EN
It is now possible to disable (at compile time) the need to have the functions
OSTimeTickHook(). This feature was requested because of the overhead involved in calling
empty functions during a context switch and also every tick. To disable OSTimeTickHook(),
simply set 0S_TIME_TICK_HOOK_ENto O in 0S_CFG.H.

CHANGES

1) Added ‘extern C’ in uCOS_II1.H
An “extern C” statement has been added to allow you to compile uC/OS-II using a
C++ compiler.

2) Renamed ALL files to lower case
All the uC/OS-II files have been renamed to lower case to make it easier to compile
under UNIX environments.

3) Changed the structure of OSTaskChangePrio()
I changed the structure of the code for OSTaskChangePrio() to reduce the
indentation, simplify and make the code cleaner. 1 also removed the re-enabling of

54 of 88

interrupts when computing X, y, bitx and bity. There is thus, there is no need to
‘reserve’ the OSTCBPrioTbl[] entry by setting itto (0OS_TCB *)1

4) Assigning a NULL pointer to OSTCBStkPtr
I now assign a NULL pointer to OSTCBStkPtr when the free list of TCBs is created
and when a task is deleted.

5) Posting NULL pointers to queues.
Because it is now possible to post NULL pointers to queues, | had to change the API
for OSQAccept () so that it returns an error code indicating the outcome of the call.

6) Removed assignments inside 1 () statements.
Code like shown below:

iIT ((pevent->0SEventTbl[y] &= ~bitx) == 0) {
/* . */
¥

Has been replaced by:

pevent->0SEventTbl[y] &= ~bitx;

if (pevent->0SEventTbl[y] == 0) {
/* . */

ks

7) Removed MCDCs.
Code like shown below:

if (a==b&& c==d& e ==71) {
/* Conditions met */

¥
Has been replaced by the following code:
if (a=0Db) {
if (c ==d) {
if (e == 1) {

/* Conditions met */

}

55 of 88

8) Added memset() to clear RAM
Added calls to memset() to clear (i.e. initialize) the OSTCBPrioTblI[],
OSTCBTbI[], OSMemTbl[], OSFlagTbl[] and OSEventTbl[]. The
reason memset() was used was for speed and to reduce code size. These tables are

cleared during initialization to prevent a kernel aware debugger to display un-
initialized values.

In most cases, the initialization code for the different kernel objects has also been
reduced.

56 of 88

V2.52

(2002/01/26)

This release is for the new edition of the book: MicroC/OS-I11, The Real-Time Kernel, 2nd
Edition.

V2.52 fixes minor bugs reported in V2.51.

Bug V2.51-003:

In uCOS__ 11 _H, the following code was corrected as follows:

#ifndef OS_FLAG_QUERY_EN
#error "OS_CFG.H, Missing OS_FLAG_DEL_EN: Include code for OSFlagQuery()"

needs to be:

#ifndef OS_FLAG_QUERY_EN
#error "0S_CFG.H, Missing OS_FLAG QUERY_EN: Include code for OSFlagQuery(Q"

Bug V2.51-002:

In 0S_Q.C, the following code was corrected as follows:

The function 0SQQuery () contains a BUG in the following code which is towards
the end of the function.

pq = (0S_Q *)pevent->0SEventPtr;
if (pg->0SQEntries > 0) {
pdata->0SMsg = pg->0SQOut; /* Get next message to return if available */
} else {
pdata->0SMsg = (void *)0;
¥

The CORRECT code is shown below. Note that pq->0SQOut was missing the *.

pq = (0S_Q *)pevent->0SEventPtr;
if (pg->0SQEntries > 0) {
pdata->0SMsg = *pg->0SQOut; /* Get next message to return if available */

} else {
pdata->0SMsg = (void *)0;
}

57 of 88

Bug V2.51-001:
In 0S_CPU_A_ASM, the following code was corrected as follows:

The NEW ISRs MUST check to see if 0SIntNesting == 1 BEFORE you save the
SP in the current task's 0S_TCB. The incorrect 'pseudo’ code is:

OSTCBCur->0STCBStkPtr = SP /* Save SP onto current task"s stack */

and should be:

it (OSIntNesting == 1) {
OSTCBCur->0STCBStkPtr = SP /* Save SP onto current task"s stack */
3

The reason we need this change is that we don't want to save the current value of sp if
the ISR is for a nested ISR!

V2.52 adds a few minor changes to V2.51.

0OS_CORE.C:
I decided to split OSInit() into calls to multiple functions to make the code
cleaner. The new functions should be self-explanatory:

static void O0S_InitEventList(void);
static void O0S InitMisc(void);
static void O0S_InitRdyList(void);
static void O0S_InitTaskldle(void);
static void O0S_InitTaskStat(void);
static void O0S _InitTCBList(void);

In OSInteEnter(), | removed the OS _ENTER _CRITICAL() and
OS_EXIT_CRITICAL() macros because it is assumed that OSIntEnter () will
be called with interrupts disabled. Also, | added a check to make sure OSRunning
is set to TRUE.

In 0OSIntExit(), | added a check to make sure OSRunning is set to TRUE.

In OSTimeTick(), | added a check to make sure OSRunning is set to TRUE
before going through the OS_TCBs.

In 0S_TaskStat(), | changed the equation to prevent overflowing the calculation
on very fast CPUs. The equation was written as:

CPU Usage (%) = 100 — 100 * OSidleCtr / OSldleCtrMax;

58 of 88

Because the compiler would first perform the 100 * OSldleCtr
operation, an OSIdleCtr greater than 42,949,763 would overflow the
calculation and thus report an incorrect result. The equation is now written as:

CPU Usage (%) = 100 — OSldleCtr * (OSldleCtrMax / 100);

This allows OS1dleCtr to reach 4,294,967 ,295 (i.e. 2%2-1) before the
equation fails. I don’t expect this to happen for a while since 0SIdleCtr is
incremented in a loop. The loop contains instructions that would consume a
few CPU cycles each iteration.

0S_MBOX.C:
In OSMboxPend () (0OS_MBOX.C), | moved the check for OSIntNesting at the
beginning of the function because you should NEVER call 0OSMboxPend () from an
ISR.

0S_Q.C:
In 0SQPend () (0S_Q.C), I moved the check for OSIntNesting at the beginning
of the function because you should NEVER call 0SQPend () from an ISR.

0S_SEM.C:
In 0SSemPend() (OS_SEM.C), I moved the check for OSIntNesting at the
beginning of the function because you should NEVER call 0SSemPend () from an
ISR.

59 of 88

V2.51

(2001/06/09)

Two weeks ago, | released V2.05 and today, | found a bug in it (bug
V205-001). | decided to slightly change the numbering system of
releases. Complex releases (like VV2.04 to VV2.05) will now increase by
0.10 and minor (bug fixes or slight improvements) will now be
increasing by 0.01. This means that V2.51 is now called V2.50 and
with this bug fix, the release is V2.51. The reason this is done is to
allow you to call OSVersion() and get the proper release number. If
| didn’t change the numbering system, | would have had to call the
release with the bug correction V2.06. | was reserving such releases as
major releases.

Bug V2.51-001:

In the NEW port file, an ISR MUST first check to see 1f
OSIntNesting == 1 before we save the SP in the current task
OS_TCB. This bug only applies to the NEW algorithm for the port
files and thus does NOT affect previous ports.

See New Algorithm For Ports at the end of the V2.51 notes.

60 of 88

V2.51 is a big upgrade for uC/OS-I11 for the following reasons:

1)

2)

3)

4)

5)

In this release, | added Event Flags (see OS_FLAG.C). Event flags are
described in AN-1007 which can be downloaded from www.Micrium.com.

I received numerous e-mails requesting to reduce the footprint of uC/OS-IlI to
a minimum. To address this issue, | added a number of #define constants
in OS_CFG.H which allow you to take out most of the features in uC/OS-11
that you might not be using. Specifically, there are #defines to remove the
code for 0S???Accept(), 0S???Query(), 0S???Post(),
0SSchedLock() and 0SSchedUnlock() and more.

This release comes with NEW ports for the Intel 80x86. These ports have
been revised to REMOVE the dependency on compilers. Specifically, you no
longer need to change the function OSIntCtxSw() in order to adjust the
value of the Stack Pointer (i.e. the SP) register based on compiler options.
The modification to accomplish this feature can ALSO be added to most
processor ports!

WARNING
If you use the NEW port files in your product you WILL need to change ALL
your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

All pC/OS-I11 internal functions are now prefixed with OS_ instead of OS.
This allows you to immediately determine that these functions should NOT be
called by your application. Also, these functions have been moved at the end
of their respective file to get them ‘out-of-the-way’.

0S_Taskldle() now calls OSTaskldleHook() to allow you to do such
things as STOP the CPU to conserve power when running the idle task. You
will need to add code in OSTaskldleHook() to execute whatever is
necessary for your CPU to enter it’s power down mode.

61 of 88

http://www.micrium.com/

6)

7)

8)

9)

| added OSMboxPostOpt() and OSQPostOpt(). The new calls allow
you to ‘broadcast’ a message to all tasks waiting on either a message mailbox
or a message queue. In addition, OSQPostOpt() can replace both
0SQPost() AND 0SQPostFront(). This was done to further reduce the
amount of code space needed by pC/OS-1I. In other words, you can start
using OSQPostOpt() INSTEAD of OSQPost() and OSQPostFront()
and thus save a significant amount of code space.

Added #error directives in uCOS_11.H to have the compiler complain
whenever there are missing #defines in your application. This will be
useful to ensure that you have not forgotten any of the NEW #defines
added in VV2.51.

Previous versions required that you declared a minimum of 2 event control
blocks, 2 message queues, and 2 memory partitions. V2.51 now allows you to
reduce the RAM footprint by allowing you to declare only ONE of each of the
data structures mentioned (and well as only 1 event flag group). In other
words, you can now specify in 0S_CFG . H:

#define 0S_MAX_EVENTS
#define O0S_MAX_FLAGS
#define 0S_MAX_MEM_PART
#define 0S_MAX QS

P RRR

All conditional compilation is now done as follows:
#1T condition_name > 0
instead of:
#iFf condition_name
The condition name is checked for a non-zero value to enable the code.

This will allow the compiler to complain in case you forget to define
condition_name.

62 of 88

10) VV2.51 correct the four know bugs that were reported in \V2.04.

V2.04-001:
The wrong argument was being passed to the call 0STaskCreateHook()
in OSTCBInit(). The bad code was:

OSTaskCreateHook (OSTCBPrioTbl[prio]);

It is now:

OSTaskCreateHook(ptcb);

V2.04-002:
The test in OSMutexPost() to see if the posting task owns the MUTEX
was incorrect. The correct test needed to have && instead of | | as follows:

if (OSTCBCur->0STCBPrio != pip &&
OSTCBCur->0STCBPrio != prio) {
0S_EXIT_CRITICALQ;
return (0S_ERR_NOT_MUTEX_OWNER);

V2.04-003:
The function OSMutexDel () needed to release the priority of the PIP. The
following line was added in OSMutexDel ():

OSTCBPrioThI[pip] = (OS_TCB *)0;

V2.04-004-
The function prototype for OSMutexDel() needed to be added in

ucos_11.H

63 of 88

0S_CFG.H:
Added a number of #define in OS_CFG.H to allow you to reduce the amount
of code and data space. The reason this is done using #defines instead of
simply using a librarian is to prevent having to support a large number of
librarians and also to ensure that data space is also reduced when un-needed
features (i.e. functions) also require data storage.

OS_MAX_FLAGS is used to determine how many event flags your application
will support.

OS_FLAG_EN to Enable (1) or Disable (0) code generation for ALL event flag
services and data storage. Also, OS_FLAG_WAIT_CLR_EN allows you to
Enable (1) or Disable (0) code generation for code to wait for ‘cleared’ event
flags.

The following table summarizes all the other #define constants ADDED in
V2.51. The #defines are set to 1 by default, enabling the code.

#define name in 0S_CFG.H ... to enable the function:
OS_FLAG_ACCEPT_EN OSFlagAccept()
OS_FLAG_DEL_EN OSFlagDel)
OS_FLAG_QUERY_EN OSFlagQuery(Q)
OS_MBOX_ACCEPT_EN OSMboxAccept()
OS_MBOX_POST_EN OSMboxPost()
0S_MBOX_POST_OPT_EN OSMboxPostOpt()
0S_MBOX_QUERY_EN 0SMBoxQuery ()
OS_MEM_QUERY_EN OSMemQuery ()
OS_MUTEX_ACCEPT_EN OSMutexAccept()
0S_MUTEX_QUERY_EN OSMutexQuery()
0S_Q_ACCEPT_EN 0SQAccept()

0S_Q POST_EN 0SQPost()

OS_Q POST_FRONT_EN OSQPostFront()

0S_Q POST_OPT_EN 0SQPostOpt()

OS_Q QUERY_EN 0SQQuery(Q
OS_SEM_ACCEPT_EN 0SSemAccept()
0OS_SEM_QUERY_EN 0SSemQuery()
OS_TASK_QUERY_EN OSTaskQuery()
OS_TIME_DLY_HMSM_EN OSTimeDIyHMSMQO)
OS_TIME_DLY_RESUME_EN | OSTimeDlyResume()
OS_TIME_GET_SET_EN 0STimeGet() and OSTimeSet()
0S_SCHED_LOCK_EN 0SSchedLock()and 0SSchedunlock()

Added the typedef OS_FLAGS to allow you to specify the width of flags in an

event flag group.

64 of 88

IMPORTANT

You WILL need to add ALL of the above #define in your OS _CFG.H
files because uCOS__ 11 _H contains error checks that will make your compiler
complain if you don’t include these #defines. The easiest way to
accomplish this is to simply copy one of the OS_CFG.H files supplied in this
release and paste it into your application and enable/disable the features you
need.

0S_CORE.C:
Added call to OS_FlagInit() in 0SInit() to support event flags.

Added call to OSTaskldleHook() in OS_Taskldle() to allow you to do
such things as STOP the CPU to conserve power when running the idle task. You
will need to add code in OSTaskldleHook () to execute whatever is necessary
for your CPU to enter it’s power down mode.

Added conditional compilation so that when OS_SCHED_LOCK_EN issetto 1 in
0OS_CFG.H, the code for 0SSchedLock() and 0SScheduUnlock() will be
produced.

Corrected a bug in OS_TCBInit(). OSTaskCreateHook() was being
OSTCBPrioTbl[prio] passed INSTEAD of ptch.
OSTCBPrioTbl[prio] didn’t contain a wvalid pointer when
OSTaskCreateHook () was being called.

WARNING
If you use the NEW port files in your product you will need to change ALL
your Interrupt Service Routines (ISRs) to handle the new way the port works.

See New Algorithm For Ports at the end of the V2.51 notes.

65 of 88

0S_FLAG.C:
Added event flags to uC/OS-11, see AN-1007.

0S_MBOX.C:
Added conditional compilation so that when OS_MBOX_ACCEPT_EN is set to 1
in OS_CFG.H, the code for OSMboxAccept() will be produced.

Added conditional compilation so that when OS_MBOX_ POST _EN is setto 1 in
0S_CFG.H, the code for OSMboxPost () will be produced. This allows you to
reduce the amount of code space. The reason this conditional compilation has
been added is because | added the more powerful function OSMboxPostOpt()
which can emulate OSMboxPost() and also allows you to broadcast messages
to all tasks waiting on the mailbox.

Added OSMboxPostOpt() which can emulate OSMboxPost() and also
allows you to broadcast messages to all tasks waiting on the mailbox. The
#define constant 0S_MBOX_POST_OPT_EN found in OS_CFG.H allows you
to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_MBOX_QUERY_EN issetto 1 in
0S_CFG.H, the code for OSMboxQuery () will be produced. This allows you
to reduce the amount of code space.

0OS_MEM.C:
Added code to test the argument addr to make sure it’s not a NULL pointer in
OSMemCreate().

Added code to test the argument pmem to make sure it’s not a NULL pointer in
OSMemGet().

Added code to test the argument pmem and pb 1k to make sure they are not NULL
pointers in OSMemGet ().

Added conditional compilation so that when OS_MEM_QUERY_EN is setto 1 in
0S_CFG.H, the code for OSMemQuery () will be produced. This allows you to
reduce the amount of code space.

Added code to test the argument pmem and pdata to make sure they are not
NULL pointers in OSMemQuery().

66 of 88

Added conditional compilation to allow you to declare storage for a single
memory partition. In other words, you are now allowed to set
OS_MAX_MEM_PART to 1in OS_CFG.H.

0S_MUTEX.C:
Added conditional compilation so that when OS_MUTEX_ ACCEPT_ENissetto 1
in OS_CFG.H, the code for OSMutexAccept() will be produced. This allows
you to reduce the amount of code space.

Added conditional compilation so that when OS_MUTEX_QUERY_EN is set to 1
in OS_CFG.H, the code for OSMutexQuery() will be produced. This allows
you to reduce the amount of code space.

Fixed a bug in OSMutexDel (). The entry in OSTCBPrioTbl[] was not
being freed at the priority inheritance priority. This has been corrected.

Fixed a bug in OSMutexPost(). The current task priority was being tested for
&& instead of | |. This has been corrected.

0S Q.C:
Added conditional compilation so that when OS_Q_ ACCEPT_EN is set to 1 in
0S_CFG.H, the code for 0SQAccept() will be produced. This allows you to
reduce the amount of code space.

Added conditional compilation so that when OS_Q FLUSH_EN is set to 1 in
0OS_CFG.H, the code for OSFlushAccept() will be produced. This allows
you to reduce the amount of code space.

Added conditional compilation so that when OS_Q POST _EN is set to 1 in
0OS_CFG.H, the code for 0SQPost() will be produced. This allows you to
reduce the amount of code space. The reason this conditional compilation has
been added is because | added the more powerful function OSQPostOpt()
which can emulate both OSQPost() and 0SQPostFront() also allows you
to broadcast messages to all tasks waiting on the queue.

Added conditional compilation so that when OS_Q POST_FRONT_EN issetto 1
in OS_CFG.H, the code for 0SQPostFront() will be produced. This allows
you to reduce the amount of code space. The reason this conditional compilation
has been added is because | added the more powerful function OSQPostOpt().

Added OSQPostOpt() which can emulate both 0OSQPost() and
OSQPostFront() and also allows you to broadcast messages to all tasks

67 of 88

waiting on the queue. The #define constant 0S_Q_ POST_OPT_EN found in
0S_CFG.H allows you to enable (when 1) or disable (when 0) this feature.

Added conditional compilation so that when OS_Q QUERY_EN is set to 1 in
0S_CFG.H, the code for 0SQQuery () will be produced. This allows you to
reduce the amount of code space.

Added conditional compilation to allow you to declare storage for a single
message queue. In other words, you are now allowed to set 0OS_MAX_QSto 1 in
OS_CFG.H.

0S_SEM.C:
Added conditional compilation so that when OS_SEM_ACCEPT_EN issetto 1 in
0S_CFG.H, the code for 0SSemAccept() will be produced.

Added conditional compilation so that when OS_SEM_QUERY_EN is setto 1 in
0S_CFG.H, the code for 0SSemQuery () will be produced. This allows you to
reduce the amount of code space.

0S_TASK.C:
Added call to 0S_FlagUnlink() in OSTaskDel () to support event flags.
Note that this code is conditionally compiled in when OS_FLAG_EN is set to 1.

Added conditional compilation so that when OS_ TASK_QUERY_EN issetto 1 in
0S_CFG.H, the code for OSTaskQuery() will be produced. This allows you
to reduce the amount of code space.

OS_TIME.C:
Added conditional compilation so that when OS_TIME_DLY_HMSM_EN is set to
1 in OS_CFG.H, the code for OSTimeDlyHMSM() will be produced. This

allows you to reduce the amount of code space in case you chose not to use this
function.

Added conditional compilation so that when OS_TIME_DLY_RESUME_EN is set
to 1 in OS_CFG.H, the code for OSTimeDlyResume () will be produced. This

allows you to reduce the amount of code space in case you chose not to use this
function.

Added conditional compilation so that when OS_TIME_GET_SET ENissetto 1
in OS_CFG.H, the code for OSTimeGet() and OSTimeSet() will be
produced. This allows you to reduce the amount of code space in case you chose
not to use this function.

68 of 88

ucos_1I1.C:
Added OS_FLAG.C.

uCoS_11.H:
Changed OS_VERSION to 205.

Added constants, data types and function prototypes to support Event Flags.

Added OS_POST_OPT_7?7?? which are the options to specify in
OSMboxPostOpt() and 0SQPostOpt() calls.

The global variable OST ime is not allocated when OS_TIME_GET_SET_EN is
setto 0. This reduces the RAM footprint by 4 bytes.

Added checks at the end of uCOS_11_H to ensure that you don’t forget any
#defines that are assumed to be declared in OS_CFG.H. If you do forget any
of the required #defines in OS_CFG.H, the compiler will issue an error
message. In other words, your compiler should complain about the fact that you
didn’t specify all the necessary #defines.

69 of 88

New Algorithm For Ports:
V2.51 comes with a new algorithm which prevents from having to adjust the stack
pointer in OSINtCtxSw() and thus making the port independent of compilers
and compiler options.

You should still be able to use your OLD (V2.04 and earlier) ports without
change (except you’ll need to add a few HOOK functions as described in the next
section.

This new algorithm affects ALL your ISRs and thus you MUST play close
attention to the following changes.

The OLD pseudo code for OSIntCtxSw() was:

oSIntCtxsw(): /* OLD */
Adjust the SP to remove call to OSIntExit(),
locals in OSIntExit() and the call to 0SIntCtxSw();
Save the stack pointer to OSTCBCur->0STCBStkPtr;
Call 0OSTaskSwHook()
OSTCBCur OSTCBHighRdy;
OSPrioCur OSPrioHighRdy;
CPU Stack Pointer = OSTCBHighRdy->0STCBStkPtr;
POP all the CPU registers from the new task’s stack;
Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

oSIntCtxSw(): /> NEW */
Call 0OSTaskSwHook()
OSTCBCur = OSTCBHighRdy;
OSPrioCur = OSPrioHighRdy;

CPU Stack Pointer = OSTCBHighRdy->0STCBStkPtr;
POP all the CPU registers from the new task’s stack;
Execute a return from interrupt instruction;

You should notice that you NO LONGER need to adjust the SP. The reason this
is possible is because, the SP of the task that can be switched out now NEEDS to
be saved in ALL the ISRs as described below.

70 of 88

You MUST now change ALL your ISRs. The OLD pseudo code for your ISRs
was:

YourlISRQ): /* OLD */
Save processor registers onto current task’s stack;
Call OSIntEnter() or increment OSIntNesting;

QOUR ISR Handler code;

Call OSInteExit();
Restore processor registers from current task’s stack;
Execute a return from interrupt instruction;

The NEW pseudo code for OSIntCtxSw() is now:

YourlSR(Q): /* NEW */
Save processor registers onto current task’s stack;
Call OSIntEnter() or increment OSIntNesting;
if (OSIntNesting == 1) {
Save the CPU”’s Stack Pointer onto current task’s stack;
}

QOUR ISR Handler code;
Call OSIntExit();

Restore processor registers from current task’s stack;
Execute a return from interrupt instruction;

71 of 88

Upgrading from V2.04 (or earlier) to V2.51:

You should be able to use processor ports made for VV2.04 or earlier. Because |
added new features, you will most likely need to change the following files:

1)

2)

3)

4)

5)

OS_CFG.H:

You will need to ADD all the new #define constants and also, declare the
data type OS_FLAGS. As | mentioned previously, you can simply copy one
of the OS_CFG.H files supplied with this release and paste it into your own
and make the appropriate selection of features you need in your product.

0S_CPU_C.C:
You will need to ADD an empty function for OSTaskldleHook() as
follows unless you actually want to add your own code to the function:

void OSTaskldleHook (void)

{
}

OS_CPU_A_ASM:

If you want to use the new ALGORITHM described in the previous section,
you will need to change OSIntCtxSw(), OSTickISR() AND all your
ISRs. You should be able to use your OLD ports without change if you don’t
want to use the new algorithm.

OS_CPU_H:
No change.

Your ISRs:

If you want to use the new ALGORITHM described in the previous section,
you will need to change ALL your ISRs. You should be able to use your
OLD ports without change if you don’t want to use the new algorithm.

72 of 88

V2.04

(2000/10/31)

MISCELLANEOUS:
Removed revision history from all the source code. The revision history is now
described in this document. This was done to reduce the amount of “clutter’ from
the source files.

Added OS_ARG_CHK_EN to enable (when 1) MicroC/OS-Il argument checking.
By setting this configuration constant to O, you would be able to reduce code size
and improve on performance by not checking the range of the arguments passed
to MicroC/OS-11 functions. However, it is recommended to leave argument
checking enabled.

Added Mutual Exclusion Semaphores (OS_MUTEX.C) that are described in
AN1002.PDF.

Added support for OS_CRITICAL_METHOD #3 that allows the status register of
the CPU to be saved in a local variable. The status register is assumed to be saved
by OS_ENTER_CRITICAL() in a local variable called cpu_sr of type
OS _CPU_SR. The data type OS_CPU_SR is assumed to be declared in
OS_CPU_H. The status register (and thus the state of the interrupt disable flag) is
assumed to be restored by OS_EXIT_CRITICAL() from the contents of this
variable. The macros would be declared as follows:

#define OS_ENTER_CRITICAL() (cpu_sr = 0SCPUSaveSR())
#define OS_EXIT _CRITICALQO (OSCPURestoreSR(cpu_sr))

Note that the functions OSCPUSaveSR() and OSCPURestoreSR()
would be written in assembly language and would typically be found in
OS_CPU_A_.ASM (or equivalent).

The check for OSIntNesting in all pC/OS-1l services is now being done

without disabling interrupts in order to reduce interrupt latency. In other words,
the following code:

OS_ENTER_CRITICALQ);
it (OSIntNesting > 0) {

0S_EXIT_CRITICALQ;

Has been replaced by:

73 of 88

it (OSIntNesting > 0) {

}

The reason is that ALL currently known processors will treat this byte size
variable (OSIntNesting) indivisibly.

0S_CORE.C:
Moved all local variables to uCOS__I'1 .H making them all global variables. This
helps when testing.

Calls to OSTaskCreate() and OSTaskCreateExt() in OSInit() now
return (void) to indicate that the return value is not being used. This prevents
warnings from LINT.

Although not critical, OSInit() was optimized for speed.

Added OSInitHookBegin() at the beginning of OSInit() to allow for a
processor port to provide additional ‘OS” specific initialization which would be
done BEFORE MicroC/OS-11 is initialized.

Added OSInitHookEnd() at the end of OSInit() to allow for a processor
port to provide additional ‘OS” specific initialization which would be done
AFTER MicroC/OS-11 is initialized.

Initialized .OSEventType to OS_EVENT_TYPE_UNUSED in OSInit().

Added boundary check for OSIntNesting in OSIntEnter() to prevent
wrapping back to O if OSIntNesting is already at 255.

Added boundary check on OSIntNesting in OSIntExit() to prevent
wrapping back to 255 if OSIntNesting is already at O.

Changed the test for rescheduling in OSIntExit() and 0SSched() from:
iIT ((--0SIntNesting | OSLockNesting) == 0) {
to
iIT ((OSIntNesting == 0) && (OSLockNesting == 0)) {

for sake of clarity.

74 of 88

Removed unreachable code in 0STaskStat() for CPU usage > 100%.

Added call to OSTCBInitHook() in OSTCBInit() to allow user (or port)
specific TCB extension initialization.

Moved the increment of OSTimeTick() immediately after calling
OSTimeTickHook().

Made OSTime volatile.

0S_MBOX.C:
Removed checking of pevent from the critical section to reduce interrupt
latency.

Removed checking of msg from the critical section to reduce interrupt latency.

Added OSMBoxDe 1 () to delete a message mailbox and free up its Event Control
Block. All tasks pending on the mailbox will be readied. This feature is enabled
by setting OS_MBOX_DEL_EN to 1.

Changed test:
it (pevent->0SEventGrp)
to
1T (pevent->0SEventGrp != 0x00).
0OS_MEM.C:
Moved the local variables OSMemFreeList and OSMemTbl[] to
uCoS_1I1._H.

Added code to initialize all the fields of the last node in OSMeminit().

0OS_MUTEX.C:
Added services to support Mutual Exclusion Semaphores that are used to reduce
priority inversions.

0S_Q.C:
Removed checking of pevent from the critical section to reduce interrupt
latency.

75 of 88

Removed checking of msg from the critical section to reduce interrupt latency.

Added 0SQDel () to delete a message queue and free up its Event Control
Block. All tasks pending on the queue will be readied. This feature is enabled by
setting OS_Q_DEL_ENto 1.

Changed test:
it (pevent->0SEventGrp)

to
1T (pevent->0SEventGrp !'= 0x00).

Moved the definition of the data type OS_Q to uCOS_11_H.

0S_SEM.C:
Removed checking of pevent from the critical section to reduce interrupt
latency.

Added 0SSemDel () to delete a semaphore and free up its Event Control Block.
All tasks pending on the semaphore will be readied. This feature is enabled by
setting OS_SEM_DEL_ENto 1.

Changed test:
it (pevent->0SEventGrp)

to
it (pevent->0SEventGrp !'= 0x00).

0OS_TASK.C:
Task stack is now cleared in OSTaskCreateExt() when either options
0S_TASK_OPT_STK_CHK or 0S_TASK_OPT_STK_CLR is set. The new code
IS:

if (((opt & 0S_TASK_OPT_STK_CHK) 1= 0x0000) ||
((opt & 0S_TASK_OPT_STK_CLR) != 0x0000)) {

OSTaskCreateHook() has been removed from OSTaskCreate() and
OSTaskCreateExt() and moved to OSTCBInit() so that the hook is called
BEFORE the task is made ready-to-run. This avoids having the possibility of
readying the task before calling the hook function.

If you don’t specify any Mailboxes (0S_MBOX == 0), Queues (0S_Q == 0),
Semaphores (OS_SEM == 0) or Mutexes (OS_MUTEX == 0) in OS_CFG.H
in order to create a minimal system, OSTaskChangePrio() and
OSTaskDel () will no longer reference OSTCBEventPtr.

76 of 88

OS _TIME.C:
Added cast to INT16U for all references of tick in OSTimeDlyHMSM().

ucos_11.C:
Added OS_MUTEX.C.

ucos_11.H:
Changed OS_VERSION to 204.

Moved all ‘local’ variables from OS_MEM.C, OS _Q.C and OS_TASKS.C to
simplify debugging and unit testing.

Added constants, data types and function prototypes to support Mutual Exclusion
Semaphores.

77 of 88

This page is intentionally blank.

78 of 88

V2.03

(1999/09/09)

MISCELLANEOUS:
The distribution of pC/OS-I1 now assumes the Borland C/C++ V4.51 or higher
compiler instead of the V3.1 compiler. The code should, however, compile and
run using V3.1.

This release contains a slightly different directory structure. The name of the
compiler is added to the directory structure in order to support multiple compilers
and have the same directory structure for all of these.

\SOFTWARE\uUCOS- I IN\SOURCE
Contains the source files for the processor independent code of uC/OS-II.

\SOFTWARE\UCOS-1I\1x86L\BC45

Contains the source files for the 80x86 real mode, large model port. The
port now contains the function OSTaskStkInit_FPE_x86() which
needs to be called before you create a task that will use Borland C/C++'s
floating-point emulation (FPE) library. See application note AN-1001
found on www.Micrium.com.

\SOFTWARE\UCOS-11\1x86L-FP\BC45

Contains the source files for the 80x86 real mode, large model port. This
port also contains hardware floating-point support. In other words,
MC/OS-11 performs a context switch on the floating-point registers as well
as the integer registers. This port was not present on the original
distribution of uC/OS-I1 (i.e. V2.00).

\SOFTWARE\UCOS- I INEX1_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #1

\SOFTWARE\UCOS-1I\EX1_x86L\BCA5\TEST

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #1. To build the executable for example #1,
simply type MAKETEST at the DOS prompt. You may have to change
TEST . MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E-\BC45 directory. To execute example
#1, type TEST at the DOS prompt.

\SOFTWARE\UCOS- 1 IN\EX2_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #2

\SOFTWARE\UCOS- 1 I\EX2_x86L\BC45\TEST
79 of 88

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #2. To build the executable for example
#2, simply type MAKETEST at the DOS prompt. You may have to
change TEST . MAK to tell it where the Borland C/C++ V4.51 compiler is
located. My compiler was located in the E-\BC45 directory. To execute
example #2, type TEST at the DOS prompt.

\SOFTWARE\UCOS- 1 INEX3_x86L\BC45\SOURCE
Contains the source code for the sample code of Example #3

\SOFTWAREN\UCOS-11\EX3_x86L\BC45\TEST

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #3. To build the executable for example #3,
simply type MAKETEST at the DOS prompt. You may have to change
TEST .MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the E-\BC45 directory.

To execute example #3, type TEST at the DOS prompt.

\SOFTWARE\UCOS- I INEX4_x86L . FP\BC45\SOURCE
Contains the source code for the sample code of Example #4

\SOFTWAREN\UCOS-1I1\EX4_ x86L\BCA5\TEST

Contains the build files (MAKETEST.BAT and TEST.MAK) as well as
the executable for Example #4. Example #4 demonstrate the use of
IX86L-FP, the port that saves/restores the 80x86's floating-point
registers during a context switch. This of course applies for 80x86
processors having a floating-point unit. You may have to change
TEST . MAK to tell it where the Borland C/C++ V4.51 compiler is located.
My compiler was located in the Ez\BC45 directory. To execute example
#1, type TEST at the DOS prompt.

\SOFTWARE\BLOCKS\PC\BC45

Contains the source files for the PC services used to display characters on
the screen, read the keyboard etc.

80 of 88

EXAMPLES:

Example #1 (V2.00)
TEST . C was previously called EX1L.C

PC_DispClrLine() has been changed to PC_DispClrRow().
TaskCIlk() now calls PC_GetDateTime().

The floating-point code in TaskStart() has been removed so that the
task only executes integer arithmetic instructions.

Example #2 (VV2.00)
TEST . C was previously called EX2L.C
Added TaskStartCreateTasks() to create all the application tasks.
TaskStart() now uses the Borland C/C++ Floating-Point Emulation
library and thus, the stack needs to be 'preconditioned’ by calling the
function OSTaskStkInit FPE_x86() (see www.Micrium.com,
AN-1001).
PC_DispClrLine() has been changed to PC_DispClrRow().
TaskCIlk() now calls PC_GetDateTime().

Example #3 (V2.00)
TEST . C was previously called EX3L.C

Added TaskStartCreateTasks() to create all the application tasks.
PC_DispClrLine() has been changed to PC_DispClrRow().
TaskClk() now calls PC_GetDateTime().

Floating-point operations have been replaced with integer operations.

Example #4 (V2.00)
Example #4 is a new example using hardware assisted floating-point.

TEST . C was previously called EX4L .C
PC_DispClrLine() has been changed to PC_DispClrRow().

TaskCIlk() now calls PC_GetDateTime().

81 of 88

PC Services (V2.00)
PC.C:

Functions are now listed in alphabetical order in the file.

PC_ElapsedStart() and PC_ElapsedStop() now protect the
critical section of code that accesses the timer ports.

PC_VectGet() and PC_VectSet() no longer depend on the Borland
C/C++ functions getvect() and setvect(). This should make these
functions more portable.

Changed the name of PC_DispClrLine() to PC_DispClrRow().
Added function PC_DispClrCol ().
The following function now cast MK_FP() to (INT8U far *):
PC_DispChar()
PC_DispClrLine()
PC_DispClrScr()
PC_DispStr()
PC_ElapsedStop(), cast inp() to INT8U.
PC_GetKey(), castgetch()to INT16S.
PC_H:

Function prototypes are now listed in alphabetical order.

Added prototype for PC_DispClrCol ().

82 of 88

0S_CORE.C:
Changed the return type of OSEventTaskRdy() from void to INT8U to
return the priority of the task readied even though the current version of
MicroC/OS-I1 doesn't make use of this feature. This change was done to support
future versions.

Moved OSDummy() from OS_TASK.C to OS_CORE.C to be able to call
OSDummy () from other services.

0S_MBOX.C:
Added check in OSMboxPost() to see if the caller is attempting to post a NULL
pointer. By definition, you should NOT send a NULL pointer message. If you
attempt to post a NULL pointer, OSMboxPost() will return
0S_ERR_POST_NULL_PTR.

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:

OSMboxPost()

OSMboxQuery()
Note that OSMboxAccept() will return a NULL pointer because it doesn't
provide the capability of returning an error code.

OSMboxPend () sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL
pointer.

0S_Q.C:
Added check in OSQPost() and OSQPostFront() to see if the caller is
attempting to post a NULL pointer. By definition, you should NOT send a NULL
pointer message. If you attempt to post a NULL pointer, OSQPost() and
0SQPostFront() will return 0OS_ERR_POST_NULL_PTR.

83 of 88

Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
OS_ERR_PEVENT_NULL:

OSQFlush()

OSQPost()

OSQPostFront()

0SQQuery()
Note that OSQAccept() simply returns a NULL pointer because it doesn't
provide the capability of returning an error code.

0SQPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL

pointer.
0S_SEM.C:
Added checks to make sure pevent is not a NULL pointer. If pevent is a
NULL pointer, each of the following functions will return
0S_ERR_PEVENT_NULL:
0SSemPost()
0SSemQuery ()

Note that 0SSemAccept() returns O because it doesn't provide the capability to
return an error code.

0SSemPend() sets *err to OS_ERR_PEVENT_NULL if pevent is a NULL

pointer.

0OS_TASK.C:
Moved OSDummy () to OS_CORE.C

uCoS 11 ._H:
Added error code OS_ERR_POST_NULL_PTR (value is 3).
Changed the return type of OSEventTaskRdy() from void to INT8U to
return the priority of the task readied.

Added function prototype for OSDummy () -

Added error code 0S_ERR_PEVENT_NULL (value is 4)

84 of 88

V2.02

(1999/07/18)

0S_MBOX.C:

Removed last else statement in OSMboxPend() because the code is
unreachable.

0S _Q.C:
Removed last e I se statement in 0SQPend () because the code is unreachable.

0S_TASK.C:
OSTaskCtr is always included.

uCoS _11.C:
Added check for definition of macro OS_ISR_PROTO_EXT so that the prototype
of 0SCtxSw() and OSTickISR() can be changed based on compiler specific
requirements. To use a different prototype, simply add:
#define OS_ISR_PROTO_EXT
in OS_CPU.H of the port and then define the new prototype format for
0SCtxSw() and OSTickISR() in 0OS_CPU .H of the port.

OSTaskCtr is always included. Previously it was conditionally compiled only
if OS_TASK_ CREATE_EN, OS_TASK_CREATE_EXT_EN or
OS_TASK_DEL_EN was set to 1. It turns out that you MUST always have either
0S_TASK_CREATE_EN or 0S_TASK_CREATE_EXT_EN set to 1 anyway!

85 of 88

This page is intentionally blank.

86 of 88

V2.01

(1999/07/15)

OS_CORE.C:

Changed for loop inside OSEventWaitListInit() to inline code for
speed. This eliminates the loop overhead.

The argument stk_size in OSTCBInit() has been changed from INT16U to
INT32U to accommodate large stacks.

0S_MBOX.C:

Changed " for " loop inside *OSMboxQuery()' to inline code for speed. This
eliminates the loop overhead.

0S_Q.C:

Added typecast to avoid compiler error/warning:
pg = (0S_Q *)pevent->0SEventPtr;
NNNNNNNN
Affected functions:
0SQAccept()
OSQFlush(Q
0SQPend()
0SQPost()
0SQPostFront()

Changed for loop inside OSQQuery() to inline code for speed. This
eliminates the loop overhead.

Added msg = (void *)O0O; in1f (OSIntNesting > 0) case.

0S_SEM.C:

Second IF statement in function 0SSemPend() needed to be and if/else
clause.

87 of 88

OS_TASK.C:
Stack filling is now done using the ANSI C function memset () for speed.

Copying of the OS_TCB structure in OSTaskQuery() is now done using
memcpy () for speed.

Function 0STaskStkChk() now cast the value O to (0OS_STK)O in while
loops.

ucos_11.C:

Changed the comment for OSTCBStkSize in the OS_TCB structure to indicate
that the size is in number of elements and not bytes.

The argument stk_size in OSTCBInit() has been changed from INT16U to
INT32U to accommodate large stacks.

88 of 88

	© Copyright 2009, Micriµm

