Micripm
© Copyright 2009, Micripm
All Rights reserved

New Features and Services
since

OS-11 V2.00

(Current Version: V2.89)

www.Micrium.com

http://www.micrium.com/

Introduction

This document describes all the features and services added to 1C/OS-I11 since the introduction
of the hard cover book MicroC/OS-1l, The Real-Time Kernel, ISBN 0-87930-543-6. The
software provided with the book was version 2.00 or V2.04. The version number of the change
is shown when appropriate.

Delete task on incorrect return (V2.89)

LC/OS-11 now contains a new function called 0S_TaskReturn(). All uC/OS-II tasks are
not allowed to return. If a task returns by mistake, OS_TaskReturn() catches those and
deletes the task.

0S_TaskReturn() calls OSTaskReturnHook() which in turn calls
App_TaskreturnHook().

Pend on Multiple Events (V2.86)

LC/OS-11 now contains a new function called OSEventPendMul ti () which allows a task to
pend on multiple events (semaphores, mailboxes and queues) in any combination (see example
diagram below). This new function is found in OS_CORE.C and is enabled by setting
OS_EVENT_MULTI_ENto 1in0OS_CFG.H.

With OSEventPendMulti () it’s possible to pend on any number of semaphores, mailboxes
and message queues at the same time (we don’t support Mutex and Event Flags at this time). If a
task pends on a combination of the above ‘events’ then, as soon an event is posted (and the
pending task is the highest priority task pending on the event), the waiting task will wake up and
be ‘handed’ the event. If events are present as the task pends then ALL the available events will
be provided to the task.

Post R F
Post I

v

Post - \’
o —>
Post g \> Pend
ISR > — OR |—
Post > F / X
Post . I / Timeout

v

DO

Timer Manager (V2.81)

PC/OS-11 now provides support for periodic as well as one-shot timers. This functionality is
found in OS_TMR.C and is enabled by setting OS_TMR_EN to 1 in OS_CFG.H. Your
application can have any number of timers (up to 65500). When a timer times out, an optional
callback function can be called allowing you to perform any action (signal a task, turn on/off a
light, etc.). Each timer has its own callback function.

IMPORTANT
The APIs for the Timer Manager were changed in V2.83 from
what they were in V2.81 and VV2.82. This was necessary to correct
some issues with the Timer Manager. Please consult the Reference
Manual for the new APIs.

When timer management is enabled, |1C/OS-11 creates a timer task (OSTmrTask()) which is
responsible for updating all the timers. The priority of this task is determined by
OS_TASK_TMR_PR10 which should be defined in your application’s APP_CFG. H.

The timer manager provides a number of services to your applications. Specifically, you can call
one of the following functions (see the LLC/OS-I11 reference manual for a description of these
functions) from your tasks:

OSTmrCreate() Create a timer

OSTmrDel) Delete a timer

OSTmrRemainGet() Determine how much time before a timer expires
OSTmrNameGet() Get the name of a timer

OSTmrStateGet() Get the state of a timer (UNUSED, STOPPED, RUNNING, COMPLETED)
OSTmrStart() Start a timer

OSTmrStop() Stop a timer

You should note that you CANNOT call these functions from ISRs.

The drawing below shows the task model of the Timer Manager. You should note that
semaphore management needs to be enabled (you need to set 0OS_SEM_ENto 1 in OS_CFG.H)
for the timer manager to work. The timer manager requires two (2) semaphores.

1)

(2)

©)

An ISR or an application task needs to ‘signal’ a counting semaphore by calling
OSTmrSignal() at the rate specified in OS _TMR_CFG_TICK_RATE (see
0OS_CFG.H). The counting semaphore is called OSTmrSemSignal that is initialized to

0 by pC/OS-11 when OSInit() is called. You should note that you should ONLY
call OSTmrSignal() and not worry about the semaphore; it’s encapsulated by
OSTmrSignal ().

The timer management task (OSTmrTask()) pends forever on the counting semaphore
waiting for it to be signaled. When the semaphore is signaled, OSTmrTask() acquires
another semaphore (a binary semaphore in this case, OSTmrSem) to gain exclusive
access to timer data structures. When OSTmrTask() is the owner of the semaphore it
updates all the timers created by your application.

Your application accesses timer data structure via interface functions. These functions
allow you to create, delete, start and stop timers as well as examine the amount of time
remaining before a timer times out.

OSTimeTickHook()

(2 0S_TMR.C

(1) OR

1
: \ OSTmrSem
1
e Timer
1 Data
Structures

|
]

(3) I OSTmrCreate()
' 0STmrDel)

Application | OSTmrRemainGet()
Tasks | OSTmrNameGet()
1 OSTmrStateGet()
: OSTmrStart()

L _ _0STmrSton()

The drawing below shows the data structures used in the timer manager.

N
0S_TMR_WHEEL
OSTmrWheelTbI[]
0S_TMR
—» [01]| 3 .——————————j=> <+» <+ Na
0 0
11| o —»0
[21{ o o—»0
(8) i 0 —»0
O] —>»0
|
P *— 2 <> Na
! 0 0
1| 0 o—»0
I (6)
[0S_TMR_CFG_WHEEL_SI1ZE-1]| O o—1p 0
\ OSTmrTime 325
#Entries in Spoke Pointer to OS_TMR
1
0S_TMR
OSTmrFree OSTmrFreeList —p > > —» 0

)

4) Each timer is characterized by a data structure of type OS_TMR (see ucos_ii.h).
Each timer contains the “period” of the timer (if the timer is to operate in periodic mode),
the name of the timer, a timer “match’ value (described later) and other fields used to link
the timer. Free timers are placed in a singly linked list of ‘unused’ timers pointed to by
OSTmrFreeList.

5) The number of free timers is held in OSTmrFree and the number of used (or allocated)
timers is held in OSTmrUsed. Of course, the total number of timers is the sum of these
two fields and, unless you don’t properly use the timer management services, that sum
should always equal OS_TMR_CFG_MAX.

(6) Every time OSTmrSignal () is called, the unsigned 32-bit variable OSTmrTime is
incremented by one and used to see if timers have expired.

(7) The timer manager keeps track of which timer it needs to update using a ‘timer wheel’.
The wheel is basically an array of structures of type OS_TMR_WHEEL (see
ucos_11.h) that wraps around. This structure contains two fields: a pointer to a
doubly-linked list of OS_TMR structures and, the number of entries in that list.

(8) The ‘wheel’ contains 0S_ TMR_CFG_WHEEL _SIZE entries or spokes.
OS_TMR structures are inserted in the wheel when you call OSTmrStart(). The position (i.e.
spoke) in OSTmrWheel Tb 1 [] for a specific timer is given by:

match
spoke

OSTmrTime + period;
match % OS_TMR_CFG_WHEEL_SIZE;

The “match’ corresponds to the value that OSTmrT ime needs to reach before the timer expires.
For example, let’s say that OSTmrTime is O (just initialized) and we want to create a timer that
will expire every second (assuming OS_TMR_CFG_TICKS_PER_SEC is set to 10). Also, let’s
assume that OS_ TMR_CFG_WHEEL_SI1ZE is 8 (as shown in the diagram above).

match = OSTmrTime + period;

match = 0 + 10;

match = 10;

spoke = match % OS _TMR_CFG_WHEEL_ SIZE;
spoke = 10 % 8;

spoke = 2;

This means that OSTmrStart() will obtain a free OS_TMR data structure from the free list of
timers and the place this data structure in OSTmrWheel Tbl[] at position #2 in the table.
OSTmrStart() will then store the ‘match’ value in the OS_TMR data structure.

Every time OSTmrTime is incremented by OSTmrTask(), OSTmrTask() goes through
ALL the OS_TMR structures placed at spoke (OSTmrTime % OS_TMR_CFG_WHEEL_SIZE)
to see if OSTmrTime “matches’ the value store in the OS_TMR structure. If a match occurs, the
timer is removed from the list. If the timer was started by OSTmrStart() with a ‘periodic’
option then, the OS_TMR structure is placed in the OSTmrWhee I Tb1[] by calculating its new
position, again using OSTmrTime + period. Inour example, the new ‘spoke’ would be:

match = OSTmrTime + period;

match = 10 + 10;

match = 20;

spoke = match % OS_TMR_CFG_WHEEL_SIZE;
spoke = 20 % 8;

spoke = 4;

The use of a timer wheel basically reduces the execution time of the timer task so that it only
handles a few of the timers. Of course, the worst case is such that all timers are placed in the
same spoke of the timer wheel. However, statistically, this will occur rarely. It’s generally
recommended to keep the size of the wheel a fraction of the total number of times. In other
words, you should set:

0S_TMR_CFG_WHEEL_SIZE <= Fraction of (0S_TMR_CFG_MAX)
A fraction of 2 to 8 should work well.

RAM usage (in bytes) for the timer manager is shown below:

2 * sizeof(INT16U) +
1 * sizeof(INT32U) +
3 * sizeof(POINTER) +
0OS_TASK_TMR_STK_SIZE * sizeof(0S_STK) +
OS_TMR_CFG_WHEEL_SIZE * (sizeof(INT16U) + sizeof(POINTER)) +
OS_TMR_CFG_MAX * (4 * sizeof(POINTER) +

2 * sizeof(INT32U) +

3 * sizeof(INT8U) +

OS_TMR_CFG_NAME_SIZE * sizeof(INT8U))

Because INT8Us and BOOLEANSs are typically 1 byte, INT16Us are 2 bytes and INT32Us are 4
bytes, we can simplify the above equation as follows:

2*2 +
1*4 +
3 * sizeof(POINTER) +
0S_TASK_TMR_STK_SIZE * sizeof(0S_STK) +
0S_TMR_CFG_WHEEL_SIZE * (2 + sizeof(POINTER)) +
OS_TMR_CFG_MAX * (4 * sizeof(POINTER) +
2*4 +
3 +
0S_TMR_CFG_NAME_SIZE)

Or,

8

3 * sizeof(POINTER)
0S_TASK_TMR_STK_SIZE * sizeof(0S_STK)
0S_TMR_CFG_WHEEL_SIZE * (2 + sizeof(POINTER)) +

0S_TMR_CFG_MAX * (4 * sizeof(POINTER) + 11 + OS_TMR_CFG_NAME_SIZE)

+ 4+ +

Support for 255 tasks (V2.80)

LC/OS-11 can now support up to 255 tasks. To support up to 255 tasks, we simply increased
the ready list and event wait lists to a matrix of 16x16 instead of 8x8. In fact, the actual size of
the matrix (whether 8x8 or 16x16) depends on the value of 0S_LOWEST_PRI10 in OS_CFG.H.
If OS_LOWEST_PRIO is less than or equal to 63, we use an 8x8 matrix and thus L C/OS-I1
behaves exactly the same as it used to. If you specify a value for OS_LOWEST_PRIO to be
greater than 63, we use the 16x16 matrix as show below.

EGCHES

15 0
HPT (0) 0
7 0]
o [] ||
7 L N
OSRdyGrp OSRdyThbl[]]
8x8 Max.]
15 : N Y
OSRdyGrp OSRdyThbl[]
16x16 Max.
LPT (254)
NEVER used,
0S_PRIO_SELF
OS_LOWEST _PRIO <= 63 OS_LOWEST_PRIO > 63

You should note that the actual size of the matrix depends on OS_LOWEST_ PRIO. For
example, if OS_LOWEST_PRIO is 10 then the matrix is actually 2x8 (two bytes of 8 bits).
Similarly, if OS_LOWEST _PRIO is set to 47, the matrix will be 6x8. When
OS_LOWEST_PRIO is above 63, we use 16-bit wide entries. For example, if you specify
OS_LOWEST_PRIO to be 100 then the matrix will be 7x16 (7 entries of 16 bits each). You
CANNOT set OS_LOWEST_PRIO to 255 because this value is reserved for OS_PRIO_SELF.

New Files

APP_CFG.H (Added in \VV2.80)

We now assume the presence of a file called APP_CFG.H which is declared in your application. The
purpose of this file is to assign task priorities, stack sizes and other configuration information for your
application.

0S_CFG_R.H (Added in V2.70)

This file is ‘reference’ file so that you don’t have to create this file from scratch. OS_CFG_R_H has been
added in V2.70 and is found in the ‘Source’ directory of the microprocessor independent portion of

HC/OS-I1. Itis recommended that you copy OS_CFG_R_H to OS_CFG.H of your project directory.

0S_TMR.C (Added in V2.81, revised in V2.83)

We added a timer manager function in L C/OS-I11. You can now define any number of timers. The timers
can be periodic or one-shots. A user definable function can be called when the timer expires. One such
function is definable for each timer in your application.

New Port Files

0S_DBG.C (Added in V2.62 but renamed from OS_DEBUG. C in V2.70)
0S_DBG_R.C (Added in V2.70)

This file should be placed in the same directory as OS_CPU_C.C, OS_CPU.H and OS_CPU_A_ASM of
the port you are using. OS_DBG.C defines a series of variables that are placed in ROM (code space).
These variables are used by some Kernel Aware Debuggers to get information about L C/OS-I1 and its
configuration. If you DON’T use a Kernel Aware Debugger that requires this file, you DON’T need to
have it. Check you Kernel Aware Debugger documentation. OS_DBG. C used to be called OS_DEBUG.C
in V2.62.

0S_DBG_R.C is a ‘reference’ file so that you don’t have to create this file from scratch. OS_DBG_R.C
has been added in VV2.70 and is found in the ‘Source’ directory of the microprocessor independent portion

of LC/OS-II.

10

Changes

uCoS_11.H (Changed in V2.70, V2.80 and VV2.84)

This file now includes #include statements to include APP_CFG.H, 0OS_CPU.Hand OS_CFG.H. This
allows you to compile pC/OS-11 without the needs of any other library functions.

Chaned error codes to make them more consistent. Specifically, all error codes start with OS_ERR_. The
old error codes have been kept for backward compatibility but you should now use and check for the new
error codes.

Time delays and Timeouts (Changed in V2.87)

Names

All time delays and timeouts are now implemented using an unsigned 32-bit variable. This actually
simplified OSTimeDlyHMSM() and allowed OSTimeDlyResume() to work with any delay. Of
course, this means that additional storage is needed in the tasks OS_TCBs (2 extra bytes) but that should
not be a problem with most applications. It turns out that close to 90% of uC/OS-I11 users use 32-bit CPUSs.

of objects stored as pointers (Changedin V2.87)

Names of objects were previously stored in RAM inside the different kernel objects. Specifically, RAM
storage was allocated in the OS_TCB, for example, to store the name of a task. As of V2.87, all such
names are now referenced using pointers. This drastically reduces the amount of RAM needed to store
ASCII names since names are now typically allocated by the compiler as constant strings and thus placed
in ROM. This was done to reduce the amount of RAM needed (a processor typically has more ROM than
RAM) and also to lift the limit of the length of a kernel object name.

11

New #define Constants and Macros

0S_APP_HOOKS_EN (0S_CFG.H, V2.85)

This constant specifies whether L C/OS-11‘s hook functions will call application defined hooks.
Specifically, when setto 1 ...

The pC/OS-11 hook ... Calls the Application-define hook ...
OSTaskCreateHook() App_TaskCreateHook()
OSTaskDelHook() App_TaskDelHook()
OSTaskldleHook() App_TaskldleHook()
OSTaskStatHook () App_TaskStatHook ()
OSTaskSwHook () App_TaskSwHook ()
OSTCBInitHook() App_TCBInitHook()
OSTimeTickHook() App_TimeTickHook()
0S_ARG_CHK_EN (0S_CFG.H, VvV2.04)

This constant is used to specify whether argument checking will be performed at the beginning of most of
LC/OS-11 services. You should always choose to turn this feature on (when set to 1) unless you need to
get the best performance possible out of LC/OS-I1 or, you need to reduce code size.

OS_CRITICAL_METHOD #3 (OS_CPU.H, V2.04)

This constant specifies the method used to disable and enable interrupts during critical sections of code.
Prior to V2.04, 0OS_CRITICAL_METHOD could be set to either 1 or 2. In VV2.04, | added a local variable
(i.e. cpu_sr) in most function calls to save the processor status register which generally holds the state of
the interrupt disable flag(s). You would then declare the two critical section macros as follows:

#define OS_ENTER_CRITICAL() (cpu_sr = 0S_CPUSR_Save())
#define OS_EXIT_CRITICALQO (0S_CPU_SR_Restore(cpu_sr))

Note that the functions 0OS_CPU_SR_Save() and OS_CPU_SR_Restore() would be written
in assembly language and would typically be found in 0OS_CPU_A_.ASM (or equivalent).

0S_DEBUG_EN (0S_CFG.H, V2.60)

This constant is used to enable ROM constants used for debugging using a kernel aware debugger. The
constants are found in OS_CORE.C.

0S_EVENT_MULTI_EN (0S_CFG.H, V2.86)

This constant determines whether the code to support pending on multiple events will be enabled (1) or not
(0). This constant thus enables code for the function OSEventPendMulti (). This #define was
added in V2.86.

12

OS_EVENT_NAME_EN (0S_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to a semaphore, a mutex, a mailbox or a message
queue. If OS_EVENT_NAME_EN is set to O, this feature is disabled.

OS_FLAG_EN (0S_CFG.H, Vv2.51)
This constant is used to specify whether you will enable (when 1) code generation for the event flags.

0OS_FLAG_NAME_EN (0S_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to event flag groups. If OS_FLAG_NAME_EN is
set to O, this feature is disabled.

0S_FLAG_WAIT _CLR_EN (0S_CFG.H, V2.51)
This constant is used to enable code generation (when 1) to allow to wait on cleared event flags.

0S_MAX_FLAGS (0S_CFG.H, V2.51)
This constant is used to determine how many event flags your application will support.

0S_MBOX_PEND_ABORT_EN (0S_CFG.H, Vv2.84)
This constant is used to determine whether you will enable (when 1) code generation for the
OSMboxPendAbort() function.

0S_MEM_NAME_EN (0S_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to memory partitions. If 0S_MEM_NAME_EN is
set to 0, this feature is disabled and no RAM is used in the 0S_MEM for the memory partition.

OS_MUTEX_EN (0S_CFG.H, Vv2.04)
This constant is used to specify whether you will enable (when 1) code generation for mutual exclusion
semaphores.

0S_Q_PEND_ABORT_EN (0S_CFG.H, Vv2.84)

This constant is used to determine whether you will enable (when 1) code generation for the
0SQPendAbort() function.

OS_SEM_PEND_ABORT_EN (0S_CFG.H, Vv2.84)
This constant is used to determine whether you will enable (when 1) code generation for the
0SSemPendAbort() function.

13

0S_TASK_NAME_EN (0S_CFG.H, V2.60 and changed in V2.87)

This constant determines whether names can be assigned to tasks. If 0S_TASK _NAME_EN is set to O, this
feature is disabled and no RAM is used in the OS_TCB for the task name.

0S_TASK_PROFILE_EN (0S_CFG.H, V2.60)

This constant allows variables to be allocated in each task’s OS_TCB that hold performance data about
each task. Specifically, if OS_TASK PROFILE_EN is set to 1, each task will have a variable to keep
track of the number of context switches, the task execution time, the number of bytes used by the task and
more.

0S_TASK_STAT_STK_CHK_EN (OS_CFG.H, V2.60)

This constant allows the statistic task to determine the actual stack usage of each active task. If
0OS TASK _STAT EN is set to O (the statistic task is not enabled), you can call
0S_TaskStatStkChk() yourself from one of your tasks. . If 0S_TASK_STAT_EN is set to 1, stack
sizes will be determined every second.

0S_TASK_SW_HOOK_EN (0S_CFG.H, V2.60)

Normally, LLC/OS-11 requires that you have a context switch hook function called 0STaskSwHook().
When set to 0, this constant allows you to omit 0STaskSwHook () from your code. This configuration
constant was added to reduce the amount of overhead during a context switch in applications that doesn’t
require the context switch hook. Of course, you will also need to remove the calls to 0STaskSwHook ()
from OSTaskStartHighRdy (), OSCtxSw() and OSIntCtxSw() in OS_CPU_A_ASM.

0S_TASK_TMR_STK_SIZE (0S_CFG.H, V2.81)

This #define determines the stack size (in number of stack-size elements, i.e. 0S_STK) of the timer task.
The size of the timer task’s stack greatly depends on the processor architecture and the functions that are
called when timers expire. Note that if you set 0S_TMR_EN to O in OS_CFG.H then the value you set for
0S_TASK_TMR_STK_SIZE is irrelevant because the timer functionality would be disabled.

0S_TICK_STEP_EN (0S_CFG.H, V2.60)

LC/OS-View can now ‘halt” LLC/OS-I11’s tick processing and allow you to issue ‘step” commands from
LC/OS-View. In other words, LC/OS-View can prevent LLC/OS-11 from calling OSTimeTick() so
that timeouts and time delays are no longer processed. However, though a keystroke from LC/OS-View,
you can execute a single tick at a time. If OS_TIME_TICK_HOOK_EN (see below) is set to 1,
OSTimeTickHook() is still executed at the regular tick rate in case you have time critical items to take
care of in your application.

0S_TIME_TICK_HOOK_EN (0S_CFG.H, V2.60)

14

Normally, uC/OS-I1 requires the presence of a function called OSTimeTickHook() which is called at
the very beginning of the tick ISR. When set to 0, this constant allows you to omit OST imeTickHook()
from your code. This configuration constant was added to reduce the amount of overhead during a tick
ISR in applications that doesn’t require this hook.

0S_TMR_EN (0S_CFG.H, Vv2.81)
This #define enables (when set to 1) or disables (when set to 0) the timer management code.

0S_TMR_CFG_MAX (0S_CFG.H, V2.81)

This #define determines the maximum number of timers that can exist in the application. If
0S_TMR_EN is set to 1, you should declare AT LEAST two (2) timers.

0S_TMR_CFG_NAME_EN (0S_CFG.H, V2.81 and changed in V2.87)
This #define determines whether names can be assigned to timers.

0S_TMR_CFG_WHEEL_SIZE (OS_CFG.H, V2.81)

This #define determines the number of entries in the timer wheel. This value should be a number
between 2 and 1024. Timer management overhead is somewhat determined by the size of the wheel. A
large number of entries might reduce the overhead for timer management but would require more RAM.
Each entry requires a pointer and a count (16-bit value). We recommend a number that is NOT a multiple
of the tick rate. If your application has many timers then it’s recommended that you have a high value. As
a starting value, you could use 0OS_ TMR_CFG_MAX / 4.

0S_TMR_CFG_TICKS_PER_SEC (OS_CFG.H, V2.81)

This #define determines the rate at which timers will be updated. You would typically set to a fraction
of the tick vrate (i.e. OS_TICKS PER _SEC). We recommend that you set
OS_TMR_CFG_TICKS_PER_SEC to 10 (i.e. 10 Hz).

15

The following table summarizes some of the new #define constants in OS_CFG.H which

were all added in since VV2.00.

#define namein 0OS _CFG.H

... to enable the function(s):

OS_APP_HOOKS_EN

App_TaskCreateHook()
App_TaskDelHook()
App_TaskldleHook()
App_TaskStatHook()
App_TaskSwHook ()
App_TCBInitHook()
App_TimeTickHook()

OS_DEBUG_EN

Enable debug constants in OS_CORE.C. If you
are using a kernel aware debugger, you should
enable this feature.

OS_EVENT_NAME_EN

OSEventNameGet()
OSEventNameSet()

And, to allow naming semaphores, mutexes,
mailboxes and message queues.

OS_EVENT_MULTI_EN OSEventPendMulti ()
OS_FLAG_ACCEPT_EN OSFlagAccept()
0S_FLAG_DEL_EN OSFlagDel)
OS_FLAG_NAME_EN OSFlagNameGet()
OSFlagNameSet()

And, to allow naming event flag groups.

OS_FLAG_QUERY_EN

OSFlagQuery(Q)

OS_MBOX_ACCEPT_EN OSMboxAccept()
OS_MBOX_DEL_EN OSMboxDel ()
OS_MBOX_PEND_ABORT_EN OSMboxPendAbort()
OS_MBOX_POST_EN OSMboxPost()
0S_MBOX_POST_OPT_EN OSMboxPostOpt()
OS_MBOX_QUERY_EN OSMBoxQuery ()
OS_MEM_NAME_EN OSMemNameGet()
OSMemNameSet()
OS_MEM_QUERY_EN OSMemQuery ()
OS_MUTEX_ACCEPT_EN OSMutexAccept()
0S_MUTEX_DEL_EN OSMutexDel)
OS_MUTEX_QUERY_EN OSMutexQuery ()

16

0S_Q ACCEPT_EN

0SQAccept()

OS_Q DEL_EN 0SQDel)
OS_Q FLUSH_EN OSQFlush()
OS_Q_PEND_ABORT_EN 0SQPendAbort()
0S_Q_POST_EN 0SQPost()
OS_Q_POST_FRONT_EN OSQPostFront()
OS_Q POST_OPT_EN 0SQPostOpt()
0OS_Q_QUERY_EN 0SQQuery()
OS_SEM_ACCEPT_EN 0SSemAccept()
OS_SEM_DEL_EN 0SSembel ()
OS_SEM_PEND_ABORT_EN 0SSemPendAbort()
0OS_SEM_QUERY_EN 0SSemQuery ()
OS_SEM_SET_EN 0SSemSet()
0OS_TASK_NAME_EN OSTaskNameGet()
OSTaskNameSet()

And, to allow naming tasks.

0S_TASK_PROFILE_EN

To allocate variables in OS_TCB for performance
monitoring of each task at run-time.

OS_TASK_QUERY_EN OSTaskQuery()

OS_TASK_STAT_STK_CHK_EN | 0S_TaskStatStkChk()

0S_TASK_SW_HOOK_EN OSTaskSwHook()

OS_TASK_TMR_STK_SIZE Size in OS_STK elements of the Timer
Management task.

OS_TICK_STEP_EN To support the stepping feature of
HC/OS-View.

OS_TIME_DLY_HMSM_EN OSTimeDIyHANSM()

OS_TIME _DLY_RESUME_EN OSTimeDIyResume ()

OS_TIME_GET_SET_EN 0STimeGet() and OSTimeSet()

OS_TIME_TICK_HOOK_EN OSTimeTickHook()

0S_TMR_EN

Enables (1) or Disables (0) timer management
functions.

0S_TMR_CFG_MAX

Determines the maximum number of timers in
your application.

OS_TMR_CFG_NAME_EN

Determines whether names can be assigned to
timers.

0S_TMR_CFG_WHEEL_SIZE

Determines the size of the timer wheel (in
number of entries).

OS_TMR_CFG_TICKS_PER_SEC

Rate at which timers will be updated (Hz)

OS_SCHED_LOCK_EN

0SSchedLock()and 0SSchedunlock()

17

New Data Types

0S_CPU_SR (0S_CPU.H, V2.04)

This data type is used to specify the size of the CPU status register which is used in conjunction with
0S_CRITICAL_METHOD #3 (see above). For example, if the CPU status register is 16-bit wide then you
would typedef accordingly.

OS_FLAGS (uCOS_11.H, V2.51)

This data type determines how many bits an event flag group will have. You can thus typedef this data
type to either INT8U, INT16U or INT32U to give event flags either 8, 16 or 32 bits, respectively.

OS_TMR (uCOS_11.H, v2.81)

This data type is a timer object which contains information about a specific timer that you started (see
0S_TMR.C).

New Hook Functions

void OSInitHookBegin(void) (0s_CPU.C, V2.04)

This function is called at the very beginning of 0SInit() to allow for port specific initialization
BEFORE 1C/OS-I1 gets initialized.

void OSInitHookEnd(void) (0S_CPU.C, V2.04)

This function is called at the end of 0SInit() to allow for port specific initialization AFTER L C/OS-I11
gets initialized.

void OSTCBInitHook(0S_TCB *ptch) (0S_CPU.C, V2.04)

This function is called by OSTCBInit() during initialization of the TCB assigned to a newly created
task. It allows port specific initialization of the TCB.

void OSTaskldleHook(void) (0s_CPU.C, V2.51)

This function is called by OSTaskldle(). This allows you to STOP the CPU and thus reduce power
consumption while there is nothing to do.

18

New Functions

The following table provides a list of all the new functions (i.e. services) that YOUR application

can call.

because their APl may have changed.

Refer to the Reference Manual of the current release for a description of these functions.

The list also includes functions that used to exist but, if these are in this list, it’s

Function Name File Enabled By ...

OSEventNameGet() 0S_CORE.C 0S_EVENT_NAME_EN

OSEventNameSet() 0S_CORE.C 0S_EVENT_NAME_EN
OSEventPendMulti() 0S_CORE.C O0S_EVENT_MULTI_EN

OSFTagAccept() 0S_FLAG.C 0S_FLAG_EN && 0S_FLAG_ACCEPT_EN
OSFlagCreate() 0S_FLAG.C OS_FLAG_EN

OSFTagbel O 0S_FLAG.C 0S_FLAG_EN && OS_FLAG DEL_EN
OSFlagNameGet() 0S _FLAG.C 0S_FLAG_NAME_EN

OSFTagNameSet() 0S_FLAG.C 0S_FLAG_NAME_EN

OSFlagPend() 0S_FLAG.C OS_FLAG_EN
OSFTagPendGetFlTagsRdy() | OS_FLAG.C 0S_FLAG_EN

OSFlagPost() 0S FLAG.C 0S_FLAG_EN

OSFlagQuery() OS_FLAG.C OS_FLAG_EN

0SMboxDeT () 0S_MBOX.C 0S_MBOX_EN && 0S_MBOX_DEL_EN
OSMboxPendAbort() 0S_MBOX.C 0S_MBOX_EN && 0OS_MBOX_PEND_ABORT_EN
0SMboxPostOpt() 0S_MBOX.C 0S_MBOX_EN && 0OS_MBOX_POST_OPT_EN
OSMutexAccept() 0S_MUTEX.C | OS_MUTEX_EN && OS_MUTEX_ACCEPT_EN
OSMutexCreate() OS_MUTEX.C | OS_MUTEX_EN

OSMutexDel) O0S_MUTEX.C | OS_MUTEX_EN && OS_MUTEX_DEL_EN
OSMutexPend) 0S_MUTEX.C | OS_MUTEX_EN

OSMutexPost() 0S_MUTEX.C | OS_MUTEX_EN

OSMutexQuery() 0S_MUTEX.C | OS_MUTEX_EN && 0OS_MUTEX_QUERY_EN
0SQAccept() 0S_Q.C 0S_Q _EN && 0S_Q ACCEPT_EN

0SQDel) 0S _Q.C 0S_Q _EN && OS_Q DEL_EN

OSQFlush() 0S Q.C 0S_Q _EN && 0S_Q FLUSH_EN
0SQPend() 0S _Q.C 0S_Q_EN

0SQPendAbort() 0S_Q.C 0S_Q _EN && 0S_Q _PEND_ABORT_EN
0SQPost() 0S_Q.C 0S_Q_EN

0SQPostFront() 0S Q.C 0S_Q EN && 0S_Q POST_FRONT_EN
0SQPostOpt() 0S _Q.C 0S_Q EN && 0S_Q POST OPT_EN
0SSemDel) 0S_SEM.C 0S_SEM_EN && OS_SEM_DEL_EN
0SSemPendAbort() 0S_SEM.C 0S_SEM_EN && OS_SEM_PEND_ABORT_EN
0SSemSet() OS_SEM.C OS_SEM_EN && OS_SEM_SET_EN
0STaskNameGet() 0S_TASK.C 0S_TASK_NAME_EN

OSTaskNameSet() 0S_TASK.C 0S_TASK_NAME_EN

OSTmrGetName () 0S _TMR.C 0OS_TMR_EN

OSTmrGetRemain() OS_TMR.C OS_TMR_EN

OSTmrStart() 0S_TMR.C 0S_TMR_EN

0STmrStop) 0S_TMR.C 0S_TMR_EN

OSTmrSignal) 0S TMR.C 0OS_TMR_EN

19

References

HC/OS-II, The Real-Time Kernel, 2" Edition
Jean J. Labrosse

CMP Books, 2002

ISBN 1-57820-103-9

Contacts

Micripm

949 Crestview Circle

Weston, FL 33327

954-217-2036

954-217-2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

CMP Books, Inc.

1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
(785) 841-1631

(785) 841-2624 (FAX)

WEB: http://www.cmpbooks.com
e-mail: rdorders@cmpbooks.com

20

mailto:Jean.Labrosse@Micrium.com
http://www.micrium.com/
http://www.cmpbooks.com/
mailto:rdorders@cmpbooks.com

	© Copyright 2009, Micriµm
	New Features and Services
	since
	µC/OS-II V2.00

