
ZYNQ XC7Z020 開発ボード マニュアル SDK 編

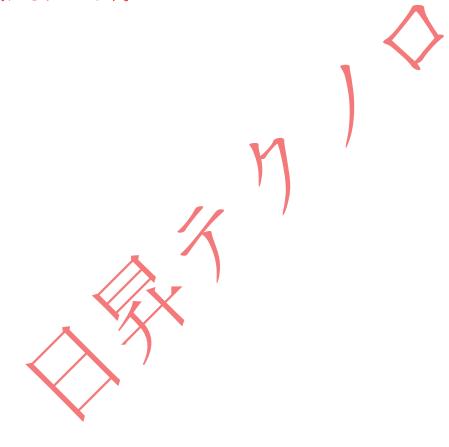
株式会社日昇テクノロジー

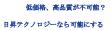
https://www.csun.co.jp

info@csun. co. jp

作成日 2019/10/18

copyright@2019-2020




• 修正履歴

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2019/10/18

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。 最新版は弊社ホームページからご参照ください。「https://www.csun.co.jp」

※ (株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に 禁じられています。

目次

第一章	PS 側 MIO 操作・LED 点灯	. 6
1.1	ハードウェア環境構築	. 6
1.2	SDK プログラムの開発	. 8
1.3	ソフトウェアスキル	14
1.4	本章まとめ	16
第二章	PS 側 MIO 操作・ボタン割り込み	17
2.1	割り込みの紹介	17
2.2	レジスタ紹介	20
2.3	GPIO 構造の紹介	21
2.4	SDK プログラム開発	
2.5	本章のまとめ	24
第三章	PS 側の UART 読み書き制御	25
3. 1	UART モジュールの紹介	25
3.2	SDK プログラムの開発	
3.3	検証	29
3.4	まとめ	31
第四章	XADC の使用	32
4. 1	ハードウェアが XADC を読み取る	32
4.2	PS が XADC を読み取る	34
4.3	AXI バスが XADC 情報を読み取る	37
4.4	まとめ	43
第五章	PL から PS 側の DDR データを読み書く	44
5. 1	ZYNQ の HP ポートの使用	44
5.2	PL側 AXI Master	45
5.3	DDR 読み書きデータの検証	54
5.4	Vivado ソフトウェアのデバッグのヒント	57
5.5	検証	60
5.6	まとめ	63
第六章	BRAM での PS と PL のデータ通信	64
6.1	ハードウェア環境の構築	64
6.2	SDK プログラムの開発	69
6.3	実験現象	71
6.4	ま とめ	73
第七章	デュアルコア AMP の使用	74
7.1	ハードウェア環境の構築	74
7.2	SDK プログラムの開発	76
7.3	検証	80
7.4	QSPI Flash の起動	82
7.5	まとめ	83
第八章	ZYNQでFree RTOSの使用	84
8.1	SDK プログラムの開発	84
8.2	オンボード検証	86
8.3	まとめ	87

株式会社日昇テクノロジー

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

第九章	DMA ループスルーテスト	88
9.1	実験説明	88
9.2	ハードウェア環境の構築	91
9.3	SDK プログラムの開発	96
9.4	プログラム検証	99
9.5	まとめ	101
第十章	0V5640 カメラの使用一	102
10.1	0V5640 の概要	102
10.2	VDMA の使用	102
10.3	ハードウェアプロジェクトの作成	106
10.4	SDK プログラムの開発	108
10.5		110
10.6		111
第十一	章 0V5640 カメラの使用二	112
11. 1		112
11.2		
11.3		
11.4	オンボード検証	116
第十二	章 双眼カメラデータのイーサネット通信	118
12. 1	ハードウェア環境の構築	118
12. 2		
12.3	オンボード検証	130
12.4		
第十三	章 7 インチ LCD モジュールの使用 /	135
13. 1	7 インチ LED モジュールの説明	135
13. 2		
13. 3	SDK プログラム開発	138
13. 4	オンボード検証	140
第十四	章 7インチのタッチスクリーンの使用	141
14. 1	LCD タッチスグリーンの説明	141
14. 2		142
14. 3		
14. 4		
14. 5	SDK プログラムの開発	146
14. 6	オンボード検証	149
第十五	章 SD カードの読書操作の BMP 画像表示	151
15. 1	FatFs の概要	151
15. 2	ハードウェアプロジェクの作成	151
15. 3	SDK プログラムの開発	152
15. 4	オンボード検証	155
第十六	章 SD カード読書操作のカメラ画像摂取	157
16. 1	オンボード検証	157
16. 2		
16. 3	オンボード検証	160
第十七	章 UDP / TCPに基づく QSPI Flashのリモート更新	162

株式会社日昇テクノロジー

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

17. 1	ハードウェア環境の構築	162
17.2	SDK プログラムの開発	162
17.3	オンボード検証	166
17 /	キレめ	171

