Spartan-6 FPGA
Integrated
Endpoint Block for
PCIl Express

Pre-Production User Guide

UG672 (v1.0) October 5, 2010

The ISE Design Suite 12.3 is a Pre-production release for designs that make use of AXI IP.

» The AXI IP in this release have not completed qualification for use in production designs.

« The software in this release has not completed qualification for use in production designs containing
AXIIP.

* Some wizard functionality in Xilinx Platform Studio does not yet fully support AXI-based designs.

FOR ISE DESIGN SUITE 12.3, PRE-PRODUCTION STATUS APPLIES ONLY TO DESIGNS MAKING USE
OF AXI IP.

Customers can still successfully create and implement embedded and non-embedded AXI-based designs
using ISE Design Suite 12.3.

& XILINX.

& XILINX.

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© Copyright 2009-2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. PCI, PCI Express, PCle, and PCI-X are trademarks of PCI-SIG. All other
trademarks are the property of their respective owners.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Revision History

The following table shows the revision history for this document.

Date

Version

Revision

10/05/10

1.0

Initial Xilinx release.

UG672 (v1.0) October 5, 2010

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block

http://www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Table of Contents

Revision History 3

Preface: About This Guide

Guide Contentst 13
Additional Documentation 14
Additional ReSOUICeS oot e 15

Chapter 1: Introduction

Aboutthe Core. 17
System Requirements i 17
Recommended Design Experience... 18
Additional Core Resources i 18

Chapter 2. Core Overview

OVerIVIeW 19
Protocol Layers......... 20
TransactionLayer.................... i 20
DataLink Layer 21
Physical Layer. 21
Configuration Management 21
PCI Configuration Space 22
CorelInterfaces.......... 24
System Interface 24
PCIExpressInterface.............. i i i i i 24
Transaction Interface........... 24
CommonInterface 25
Transmit Interface 26
Receive Interface 27
Configuration Interface 28
Error Reporting Signals 32

Chapter 3: Licensing the Core

Chapter 4. Getting Started Example Design

OVerview 37
Simulation Design Overviewo i 37
Implementation Design Overview 39
Example Design Elements 39
Generatingthe Core........... 40
Simulating the Example Design 43
Setting up for Simulation 43
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Simulator Requirements.ttt 43

Running the Simulation o oo 43
Implementing the Example Design 44
Using the ISE Project Navigator GUITool.............. 45
Directory Structure and File Contents 50
Example Design 51
<project directory> 51
<project directory>/<component name> i 52
<component name>/doC 52
<component name>/example_design 52
<component name>/implement oo oo 53
implement/results. 53
<component name>/simulation 54
simulation/dsport 54
simulation/functional 54
SIMUIAtION /tESES . . o ot 55
<COMPONENt NAME>/SOUICE o oo v 55

Chapter 5. Generating and Customizing the Core

Customizing the Core through the CORE Generator Software................ 57
Basic Parameter Settings 58
Component Name. oottt e 58

PCle Device / POrt Type. . . oottt e e 58
Base Address Registers i 59
Base Address Register OVerviewttt 59
Managing Base Address Register Settings i, 60
PCIRegisters.o 61
IDInitial Values i 61
Class Codettt 62
Cardbus CISPOINtErottt i 62
Configuration Register Settings 63
Capabilities Register.t 64
Device Capabilities Registert i 64
Block RAM Configuration Options.ooviiiiin i 65

Link Capabilities Register. 65

Link Status Register i i 65
Interrupt Capabilities 66
Legacy Interrupt Settings o i 66

MSI Capabilitieso 66
Power Management RegistersLL 67
Power Management Registers il 67

PCI Express Extended Capabilities oo i 68
Device Serial Number Capability i i 68

User Defined Configuration Capabilities 69
Advanced Settings 69
Transaction Layer Module 70
Advanced Physical Layer 70
Xilinx Reference Boards i 70
Reference Clock Frequency. i 70
Transceiver Selection i 70

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Chapter 6: Designing with the Core

TLP Format on the AXI-Stream Interface............., 72
Transmitting Outbound Packets, 73
Basic TLP Transmit Operationottt 73
Presenting Back-to-Back Transactions on the Transmit Interface.................. 76

Source Throttling on the Transmit Datapath 76
Destination Throttling of the Transmit Datapath 77
Discontinuing Transmission of Transaction by Source. 78
Discarding of Transaction by Destination. 79

Packet Data Poisoning on the Transmit AXI-Stream Interface 80

Streaming Mode for Transactions on the Transmit Interface 81
Appending ECRCto Protect TLPsot 81
Maximum Payload Size 81

Transmit Buffers i e e 81
Receiving Inbound Packets.l 83
Basic TLP Receive Operationttt 83

Throttling the Datapath on the Receive AXI-Stream Interface 85

Receiving Back-to-Back Transactions on the Receive AXI-Stream Interface.......... 86

Packet Re-ordering on Receive AXI-Stream Interface........................... 86

Packet Data Poisoning and TLP Digest on Receive AXI-Stream Interface 88

Packet Base Address Register Hit on Receive AXI-Stream Interface................ 88

Packet Transfer During Link-Down Event on Receive AXI-Stream Interface. 90

Receiver Flow Control Credits Available 91

Design with Configuration Space Registers and Configuration Interface.. ... 92
Registers Mapped Directly onto the Configuration Interface.................... 92
Device Control and Status Register Definitions 93
cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0] 93

cfg status[15:0] . . . oot 93
cfg_command[15:0]. oo 94

cfg dstatus[15:0].ottt 94
cfg_dcommand[15:0]. oot 95

cfg Istatus[15:0]ot 95

cfg lcommand[15:0]o ot 96
Accessing Additional Registers through the Configuration Port................. 96
User Implemented ConfigurationSpace, 97

PCI Configuration Space.ottt 97

PCI Express Extended ConfigurationSpace., 97
Additional Packet Handling Requirements 98
Generation of Completions. o o 98
Tracking Non-Posted Requests and Inbound Completions 98
Reporting User Error Conditions 99
Brror Types 99
Completion TIMEOULS . « « . vt vttt ettt e 102
Unexpected Completionsottt i 102
Completer AbOTt.ot 102
Unsupported Request.t 103

S G 25 s ') o 103

Flow Control Credit Information ... 103
Using the Flow Control CreditSignals.................... 103
Receive Credit Flow Control Information.oiiutiiieennnneennn. 105

Transmit Credit Flow Control Information.0iiiiiiinnn.... 105

Power Management.............. il 106

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Active State Power Management................ 106
Programmed Power Management 106
PPMLOState. . ..ottt 107
PPMLIState. . ..ottt 107
PPML3State. . ..ot 107
Generating Interrupt Requests 108
MSIModeo 109
Legacy Interrupt Mode 111
Clocking and Reset of the Integrated Endpoint Block Core.................. 112
Reset. ..o 112
Clocking. 112
Synchronous and Non-Synchronous Clocking. 113

Chapter 7. Core Constraints

Contents of the User Constraints File 115
Part Selection Constraints: Device, Package, and Speed Grade 115
User Timing Constraints. i i, 115
User Physical Constraints.o i 115
Core Pinout and I/O Constraintsvut ittt e 116
Core Physical Constraints. i i i i 116
Core Timing Constraints. i i 116

Required Modifications.............. L 116

Device Selection 116

CoreI/O Assignments. i 117

Core Physical Constraints 117

Core Timing Constraints 117

Relocating the Integrated Endpoint Block 118

Supported Core Pinouts................. 118

Chapter 8: FPGA Configuration

Configuration Terminology, 121
Configuration Access Time.......... i, 122
Configuration Access Specification Requirements 122
Board Power in Real-World Systems. 124
Hot-Plug Systems. 125
Recommendations 125
FPGA Configuration Times for Spartan-6 Devices............................ 125
Configuration Time Matrix: ATX Motherboards 126
Configuration Time Matrix: Non-ATX-Based Motherboards. 127

Sample Problem Analysis.......... 127
Failed FPGA Recognitionoiiuiii i it 127

Successful FPGA Recognition.ttt 128
Workarounds for Closed Systems L. 129

Chapter 9: Known Restrictions

Master Data Parity Error Bit Set Incorrectly 131
Areaof Impact 131
Detailed Description 131
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

COMIMENES .« o\ ettt et e e e e e e 131
Non-Posted UpdateFC During PPM Transition 131
Areaof Impact 131
Detailed Description 132
(000 ' 4 T<3 a1 =0 132
Appendix A: Programmed Input/Output Example Design

System Overview 133
PIO HardWareuun et e 134
Base Address Register Support o i 135
Changing CORE Generator Software Default BAR Settings. 135

TLP Data FIOW . ..ottt e e e e e et 136
Memory and I/O Write TLP Processing.ouiiiiiniininnnnnenn . 136

Memory and I/O Read TLP Processingoiiiiiniiniinninnann.. 136

PIO FIle Structure.ottt e e e e e e e ittt 137

PIO Application 139
Receive Path 140
Transmit Path o e 142
Endpoint Memory 143
PIO Operation 145
PIORead Transactionottt ettt 145

PIO Write Transaction v it i et e ettt et et e e e 146
Device UtIZation.t e e e e et et et e 146
Summary ... 146
Root Port Model Test Bench for Endpoint 147
Architecture i e 148
Simulating the Design 149
Scaled Simulation Timeoutst e 149

Test Selection e 150
VHDL Test Selection.o vv ettt et ettt et e e e 150

Verilog Test Selectiont 150

VHDL and Verilog Root Port Model Differences 150
Waveform Dumping 151
VHD L FlOW. « oottt it e e e e e 151

Verilog FIOW . . . oo 152
OutputLoggingo 152
Parallel Test Programs. i i i i 152

Test Description 153

Test Program: pio_writeReadBack_test0.o at. 154
Expanding the RootPort Model oL 154

Root Port Model TPI Task LiSt . . .ot v it e e et 155

Appendix B: Migration Considerations
Integrated PHY. 163
System Clockingand Reset............... 163
Interface Changes.......... 163
Streaming Signal Added 163
TRN Transmit Destination Discontinue Removed 163
TRN Buffer Available SizeChange 164
CMM Arbitrationot 164
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

TRN Credit Buses Additional Functionality 164
Configuration Error Completion Ready..................................... 164
Configuration Error Locked oo 164
Removed Configuration Signals 165
HotReset............... i 165
Block RAM Settings. 165
Signal Change Summary 165

Appendix C: Debugging Designs

Finding Help on Xilinx.com 167
Documentation. 167
Release Notes and KnownIssuesooo .. 168

Answer Recordst 168
Contacting Xilinx Technical Support 169
Debug Tools 169
Example Design 169
ChipScope ProTool 169
Link Analyzers 169
Third-Party Software Tools 170
LSPCT (LATUX) « o v v et et e et e et e e e e e e et et ettt et e e 170

PCItree (WINdOWS) . . o oot e e ettt e e et ettt et et et e e 170
HWDIRECT (WindOWS) .+« o v v it ettt e ettt ettt et e e e aea 172

PCI-SIG Software SUites oo vttt 172

Debug Ports. 173
Usingthe Debug Ports o i i i 174
Hardware Debug......... 175
FPGA Configuration Time Debug............ 177
Linkis Training Debug 178
FPGA Configuration TimeDebug i .. 179
Debugging PCI Configuration Space Parameters.o ... 179
Application Requirementst 180

Using a Link Analyzer to Debug Device Recognition Issues 180

Data Transfer Failing Debug 181
Identifying Errors. 182
Transmitot 182

RECOIVE . .ottt 183
Non-Fatal Errors. 183
NeXt Steps . ..o 184
Simulation Debug 184
ModelSim Debug 185

PIO Simulator Expected Output.o 186
Compiling Simulation Libraries i 186
NextStep ... 187

Appendix D: Managing Receive-Buffer Space for Inbound Completions

General Considerations and Concepts 189
CompletionSpace 189
Maximum RequestSize......................l 190
Read Completion Boundary...............l 190
Methods of Managing Completion Space................................... 191
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 10

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

The LIMIT FCMethodoooi e 191
The PACKET_FCMethod. ... e 192
The RCB_FC Methodo i e 192
The DATA FCMethodo e 193

Appendix E: Board Design Guidelines

OVeIVIOW . .. 195
Example PCB Reference............ 195
Board Stackup 196
SP605S Example 196
Power Supply Design 197
Data Routing Guidelines......... 197
Breakout from FPGA BGA e 197
Microstrip vs. Stripline 198
Plane Referenceand Splits L 198
Bends .. 198
PropagationDelay 199
Intrapair Skew 199
Symmetrical Routing o o 199

VaaS . 199
TraceImpedance 199
Trace Separation........... ... i 200
Lane Polarity Inversion............ o o i i 200
ACCoupling. ... 200
Systemand Add-inCards. 200
Chip-to-Chip. . ..ot 200

General GUIdENeSo oottt e e 200

Data Signal Termination i 200
Additional Considerations for Add-In Card Designs 201
Reference Clock Considerations. 201
JIt T .o e 201
Trace Impedance 202
Termination.ot e 202
ACCoupling. ... 202
Fanout 202
Sideband PCI Express Signals 202

PE RS T . . oot e e e e 202

PROIN T, . o e e 203
Summary Checklist 203

Appendix F: PCIE_AL1 Port Descriptions

Clock and Reset Interface 205
Transaction Layer Interface. 206
Block RAM Interface......... 209
GTP Transceiver Interface........... 209
Configuration Management Interface....................................... 212
Management Interface Ports. 212
Error Reporting Ports 212
Interrupt Generation and Status Ports 214
Power Management Ports. 215
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 11

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Specific Register Ports
Miscellaneous Configuration Management Ports.............................

Debug Interface Ports

Appendix G: PCIE_AL Attribute Descriptions
Appendix H: PCIE_A1 Timing Parameter Descriptions

Appendix I: TRN to AXI Interface Migration Considerations

High-Level Summary
Step-by-Step Migration Guide
Signal Changes
Data Path DWORD Ordering.,

Start-Of-Frame Signaling.
32-and 64-bit Interfaces e
128-bit Interface

Remainder/Strobe Signaling
64-Dit TTanSIMUIL . . . oottt e e e
64-Dit RECOIVE . . .ottt
128-bit TransmUutottt
128-Dit RECEIVE . . oottt e e

Packet Transfer Discontinueon Receive

Packet Reordering on Receive

System Reset.........

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Preface

About This Guide

This user guide describes the function and operation of the Spartan®-6 FPGA Integrated
Endpoint Block for PCI Express® core, including how to design, customize, and
implement the core.

Guide Contents

This manual contains these chapters and appendices:

Chapter 1, Introduction, describes the core and related information, including
recommended design experience, additional resources, technical support, and
submitting feedback to Xilinx.

Chapter 2, Core Overview, describes the main components of the integrated Endpoint
block core architecture.

Chapter 3, Licensing the Core, contains information about licensing the core.

Chapter 4, Getting Started Example Design, provides instructions for quickly
generating, simulating, and implementing the example design using the
demonstration test bench.

Chapter 5, Generating and Customizing the Core, describes how to use the graphical
user interface (GUI) to configure the integrated Endpoint block using the
CORE Generator™ software.

Chapter 6, Designing with the Core, provides instructions on how to design a device
using the integrated Endpoint block core.

Chapter 7, Core Constraints, discusses the required and optional constraints for the
integrated Endpoint block core.

Chapter 8, FPGA Configuration, discusses considerations for FPGA configuration
and PCI Express.

Chapter 9, Known Restrictions, describes any known restrictions for this core.

Appendix A, Programmed Input/Output Example Design, describes the
Programmed Input/Output (PIO) example design for use with the core, and the test
bench environment, which provides a test program interface for use with the PIO
example design.

Appendix B, Migration Considerations, defines the differences in behaviors and
options between the integrated Endpoint block and Endpoint PIPE core.

Appendix C, Debugging Designs, provides information on resources available on the
Xilinx support website, available debug tools, and a step-by-step process for
debugging designs that use the Spartan-6 FPGA Integrated Endpoint Block for PCI
Express.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 13

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Preface: About This Guide

& XILINX.

Appendix D, Managing Receive-Buffer Space for Inbound Completions, provides
example methods for handling finite receive buffer space for inbound completions
with regards to the PCI Express Endpoint requirement to advertise infinite
completion credits.

Appendix E, Board Design Guidelines, discusses topics related to implementing a
PCI Express design that uses the Spartan-6 FPGA on a printed circuit board.

Appendix F, PCIE_A1 Port Descriptions.
Appendix G, PCIE_A1 Attribute Descriptions.
Appendix H, PCIE_A1 Timing Parameter Descriptions.

Appendix I, TRN to AXI Interface Migration Considerations, describes the differences
in signal naming and behavior for users migrating to the Spartan-6 FPGA Integrated
Block for PCI Express, v2.x from the Spartan-6 FPGA Integrated Block for PCI
Express, v1.x.

Additional Documentation

These documents are also available for download at:
http:/ /www.xilinx.com/products/spartané.

Spartan-6 Family Overview
This overview outlines the features and product selection of the Spartan-6 family.
Spartan-6 FPGA Data Sheet: DC and Switching Characteristics

This data sheet contains the DC and Switching Characteristic specifications for the
Spartan-6 family.

Spartan-6 FPGA Packaging and Pinout Specifications

This specification includes the tables for device/package combinations and maximum
I/0s, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and
thermal specifications.

Spartan-6 FPGA SelectlO Resources User Guide
This guide describes the SelectlO™ resources available in all Spartan-6 devices.
Spartan-6 FPGA Clocking Resources User Guide

This guide describes the clocking resources available in all Spartan-6 devices,
including the DCMs and the PLLs.

Spartan-6 FPGA Block RAM Resources User Guide
This guide describes the Spartan-6 device block RAM capabilities.
Spartan-6 FPGA Configurable Logic Blocks User Guide

This guide describes the capabilities of the configurable logic blocks (CLBs) available
in all Spartan-6 devices.

Spartan-6 FPGA Memory Controller User Guide

This guide describes the Spartan-6 FPGA memory controller block, a dedicated,
embedded multi-port memory controller that greatly simplifies interfacing Spartan-6
FPGAs to the most popular memory standards.

Spartan-6 FPGA GTP Transceivers User Guide
This guide describes the GTP transceivers available in Spartan-6 LXT FPGAs.

14

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/products/spartan6

8 X||_|NX Additional Resources

e Spartan-6 FPGA DSP48A1 Slice User Guide

This guide describes the architecture of the DSP48A1 slice in Spartan-6 FPGAs and
provides configuration examples.

e Spartan-6 FPGA PCB Designer’s Guide

This guide provides information on PCB design for Spartan-6 devices, with a focus on
strategies for making design decisions at the PCB and interface level.

Additional Resources

To find additional documentation, see the Xilinx website at:

http:/ /www.xilinx.com /support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http:/ /www.xilinx.com /support/mysupport.htm.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 15
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support/mysupport.htm

Preface: About This Guide & XILINX.

16 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 1

Introduction

This chapter introduces the Spartan®-6 FPGA Integrated Endpoint Block for PCI Express®
core and provides related information including system requirements, recommended
design experience, additional core resources, technical support, and submitting feedback
to Xilinx.

About the Core

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a reliable, high-
bandwidth, scalable serial interconnect building block for use with the Spartan-6 FPGA
family. The core instantiates the Spartan-6 FPGA Integrated Endpoint Block for PCI
Express found in the Spartan-6 family, and supports both Verilog-HDL and VHDL.

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a

CORE Generator™ IP core, included in the latest IP Update on the Xilinx IP Center. For
detailed information about the core, see the Spartan-6 FPGA Integrated Endpoint Block for
PCI Express product page. For information about licensing options, see Chapter 3,
Licensing the Core.

System Requirements

Windows

e Windows XP Professional 32-bit/64-bit
e Windows Vista Business 32-bit/64-bit

Linux

* Red Hat Enterprise Linux WS v4.0 32-bit/64-bit
* Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)
e SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Software
e JSE® v12.1 software or later

Check the release notes for the required Service Pack; ISE software Service Packs can be
downloaded from www.xilinx.com /support/download /index.htm.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 17
UG672 (v1.0) October 5, 2010

http://www.xilinx.com/support/download/index.htm
www.xilinx.com/support/documentation/ipbusinterfacei-o_pci-express_s6pciexpressendpointblock.htm
http://www.xilinx.com

Chapter 1: Introduction & XILINX.

Recommended Design Experience

Although the Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a fully
verified solution, the challenge associated with implementing a complete design varies
depending on the configuration and functionality of the application. For best results,
previous experience building high-performance, pipelined FPGA designs using Xilinx
implementation software and User Constraints Files (UCF) is recommended.

Additional Core Resources

For detailed information and updates about the integrated Endpoint block core, see these
documents:

* LogiCORE™ IP Spartan-6 FPGA Integrated Endpoint Block for PCI Express Data Sheet
* LogiCORE IP Spartan-6 FPGA Integrated Endpoint Block for PCI Express Release Notes

Additional information and resources related to the PCI Express technology are available
from the following websites:

e PCI Express at PCI-SIG

e PCI Express Developer’s Forum

18

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.pcisig.com/specifications/pciexpress
http://developer.intel.com/technology/pciexpress/devnet
http://www.xilinx.com

& XILINX.
Chapter 2

Core QOverview

This chapter describes the main components of the Spartan®-6 FPGA Integrated Endpoint
Block for PCI Express® core architecture.

Overview
Table 2-1 defines the Spartan-6 FPGA Integrated Endpoint Block for PCI Express solution.
Table 2-1: Product Overview

FPGA User Lane Widths [Link Speeds PCI Exp.r.esslBase
Product Name Architecture Interface Supported | Supported Specification
Width PP PP Compliance
1-lane Integrated | Spartan-6 32 x1 25Gb/s vl.l
Endpoint Block

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core internally instantiates
the Spartan-6 FPGA Integrated Endpoint Block for PCI Express. See , Appendix F,
PCIE_A1 Port Descriptions, and Appendix G, PCIE_A1 Attribute Descriptions, for
information about the software primitive, PCIE_A1, which represents the hardened-IP
integrated Endpoint block. The integrated Endpoint block follows the PCI Express Base
Specification layering model, which consists of the Physical, Data Link, and Transaction
Layers.
Figure 2-1 illustrates the interfaces to the core, as defined below:
* System (SYS) interface
e PCI Express (PCI_EXP) interface
e Configuration (CFG) interface
¢ Transaction interface

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 19

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

LogiCORE IP Spartan-6 FPGA
Integrated Endpoint Block for PCI Express
User Transaction /1; PCI
Logic (AXI-ST) freiexm,) Express
Spartan-6 FPGA Transceiver \l’ Fabric
Integrated Endpoint
Block for
PCI Express
Host Configuration (PC| E_A l)
Interface (CFe)
— Clock
(55) and
Reset

UG672_c2_01_092110
Figure 2-1: Top-Level Functional Blocks and Interfaces

The core uses packets to exchange information between the various modules. Packets are
formed in the Transaction and Data Link Layers to carry information from the transmitting
component to the receiving component. Necessary information is added to the packet
being transmitted, which is required to handle the packet at those layers. At the receiving
end, each layer of the receiving element processes the incoming packet, strips the relevant
information and forwards the packet to the next layer.

As a result, the received packets are transformed from their Physical Layer representation
to their Data Link Layer representation and the Transaction Layer representation.

Protocol Layers

The functions of the protocol layers, as defined by the PCI Express Base Specification, include
generation and processing of Transaction Layer Packets (TLPs), flow control management,
initialization, power management, data protection, error checking and retry, physical link
interface initialization, maintenance and status tracking, serialization, deserialization and
other circuitry for interface operation. Each layer is defined in the remainder of this
section.

Transaction Layer

The Transaction Layer is the upper layer of the PCI Express architecture, and its primary
function is to accept, buffer, and disseminate Transaction Layer packets or TLPs. TLPs
communicate information through the use of memory, I/O, configuration, and message
transactions. To maximize the efficiency of communication between devices, the
Transaction Layer enforces PCI compliant Transaction ordering rules and manages TLP
buffer space via credit-based flow control.

20

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Protocol Layers

Data Link Layer

The Data Link Layer acts as an intermediate stage between the Transaction Layer and the
Physical Layer. Its primary responsibility is to provide a reliable mechanism for the
exchange of TLPs between two components on a link.

Services provided by the Data Link Layer include data exchange (TLPs), error detection
and recovery, initialization services and the generation and consumption of Data Link
Layer Packets (DLLPs). DLLPs are used to transfer information between Data Link Layers
of two directly connected components on the link. DLLPs convey information such as
Power Management, Flow Control, and TLP acknowledgments.

Physical Layer

The Physical Layer interfaces the Data Link Layer with signalling technology for link data
interchange, and is subdivided into the Logical sub-block and the Electrical sub-block.

* The Logical sub-block is responsible for framing and deframing of TLPs and DLLPs. It
also implements the Link Training and Status State machine (LTSSM) which handles
link initialization, training, and maintenance. Scrambling, descrambling and 8B/10B
encoding and decoding of data is also performed in this sub-block.

e The Electrical sub-block defines the input and output buffer characteristics that
interfaces the device to the PCle® link.

The Physical Layer also supports Lane Polarity Inversion, as indicated in the PCI Express
Base Specification rev 1.1 requirement.

Configuration Management

The Configuration Management layer maintains the PCI Type0 Endpoint configuration
space and supports these features:

¢ Implements PCI Configuration Space
e Supports Configuration Space accesses
¢ Power Management functions
¢ Implements error reporting and status functionality
¢ Implements packet processing functions
® Receive
- Configuration Reads and Writes
¢ Transmit
- Completions with or without data
- TLM Error Messaging
- User Error Messaging
- Power Management Messaging/Handshake
e Implements MSI and INTx interrupt emulation

e Implements the Device Serial Number Capability in the PCle Extended Capability
space

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 21
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

PCI Configuration Space

The configuration space consists of three primary parts, illustrated in Table 2-4. These
include:

* Legacy PCIv3.0 Type 0 Configuration Header
* Legacy Extended Capability Items
¢ PCle Capability Item
¢ Power Management Capability Item
* Message Signaled Interrupt (MSI) Capability Item
¢ PCle Extended Capabilities
* Device Serial Number Extended Capability Structure (optional)

The core implements three legacy extended capability items. The remaining legacy
extended capability space from address 0x6C to OxFF is reserved. The core returns
0x00000000 when this address range is read.

The core also optionally implements one PCle Extended Capability. The remaining PCle
Extended Capability space is reserved. If the Device Serial Number Capability is
implemented, addresses from 0x10C to Ox FFF are reserved; otherwise addresses from
0x104 to OXFFF are reserved. The core returns a Completion with Data of 0x00000000 if
there is a configuration read to addresses in the reserved space range; writes are ignored.

22

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

PCI Configuration Space

Table 2-2: PCI Configuration Space Header

31 16 15 0
Device ID Vendor ID
Status Command
Class Code Rev ID
BIST Header Lat Timer | CacheLn
Base Address Register 0
Base Address Register 1
Base Address Register 2
Base Address Register 3
Base Address Register 4
Base Address Register 5
Cardbus CIS Pointer
Subsystem ID Subsystem Vendor ID
Expansion ROM Base Address
Reserved CapPtr
Reserved
Max Lat | Min Gnt Intr Pin Intr Line
PM Capability NxtCap PM Cap
Data | BSE PMCSR
MSI Control NxtCap MSI Cap
Message Address (Lower)
Message Address (Upper)
Reserved Message Data
PE Capability NxtCap PE Cap

PCI Express Device Capabilities

Device Status | Device Control

PCI Express Link Capabilities

Link Status | Link Control

Reserved Legacy Configuration
Space (Returns 0x00000000)

Optional
Returns 0 if not
implemented

Next Cap | Capability PCI Express Extended
Version Capability - DSN

PCI Express Device Serial Number (1st)

PCI Express Device Serial Number (2nd)

Reserved Extended Configuration
Space (Returns Completion with 0x00000000)

000h
004h
008h
00Ch
010h
014h
018h
01Ch
020h
024h
028h
02Ch
030h
034h
038h
03Ch
040h
044h
048h
04¢Cnh
050h
054h
058h
05Ch
060h
064h
068h

06Ch-
OFFh

100h

104h
108h

10Ch-
FFFh

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

23

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

Core Interfaces

The Integrated Endpoint Block for PCI Express core includes top-level signal interfaces
that have sub-groups for the receive direction, transmit direction, and signals common to
both directions.

System Interface

The System (SYS) interface consists of the system reset signal, sys_reset, the system clock
signal, sys_clk, and a hot reset indicator, received_hot_reset, as described in Table 2-3.

Table 2-3: System Interface Signals

Function Signal Name Direction Description
System Reset sys_reset Input Asynchronous signal.
System Clock sys_clk Input Reference clock: 100 or 125 MHz.
Hot Reset received_hot_reset | Output | The core received a hot reset.

The system reset signal is an asynchronous input. The assertion of sys_reset causes a hard
reset of the entire core. The system input clock must be either 100 MHz or 125 MHz, as
selected in the CORE Generator software GUL

The reset provided by the PCI Express system is typically active Low (e.g., PERST#) and
needs to be inverted before connecting to the sys_reset signal.

PCI Express Interface

The PCI Express (PCI_EXP) interface consists of differential transmit and receive pairs. A
PCI Express lane consists of a pair of transmit differential signals {pci_exp_txp,
pci_exp_txn} and a pair of receive differential signals {pci_exp_rxp, pci_exp_rxn}. The
1-lane core supports only Lane 0. Transmit and receive signals of the PCI_EXP interface are
defined in Table 2-4.

Table 2-4: PCI Express Interface Signals for the 1-lane Endpoint Core

Lane . . I
Number Name Direction Description

0 pci_exp_txp0 Output | PCI Express Transmit Positive: Serial Differential
Output 0 (+)

0 pci_exp_txn0 Output | PCI Express Transmit Negative: Serial
Differential Output 0 (-)

0 pci_exp_rxp0 Input PCI Express Receive Positive: Serial Differential
Input 0 (+)

0 pci_exp_rxn0 Input PCI Express Receive Negative: Serial Differential
Input 0 (-)

Transaction Interface

The Transaction interface provides a mechanism for the user design to generate and
consume TLPs. The signal descriptions for this interface are provided in Table 2-5,
Table 2-6, and Table 2-7.

24

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Transaction Interface

Common Interface

Table 2-5 defines the common interface signals.

Table 2-5: Common Transaction Interface Signals

Name

Direction

Description

user_clk_out

Output

Transaction Clock: Transaction and Configuration interface
operations are referenced to and synchronous with the rising
edge of this clock. user_clk_out is unavailable when the core
sys_reset is held asserted. user_clk_out is guaranteed to be stable
at the nominal operating frequency only after user_reset_out is
deasserted. The user_clk_out clock output is a fixed frequency
clock output. user_clk_out does not change frequencies in case of
link recovery.

¢ 1-lane Integrated Endpoint Block Frequency: 62.5 MHz

user_reset_out

Output

Transaction Reset: User logic interacting with the Transaction
and Configuration interfaces must use user_reset_out to return
toits quiescent state. user_reset_outis deasserted synchronously
with respect to user_clk_out, user_reset_out is asserted
asynchronously with sys_reset assertion. The user_reset_out
signal is asserted for core in-band reset events like Hot Reset or
Link Disable.

user_Ink_up

Output

Transaction Link Up: Transaction link-up is asserted when the
core and the connected upstream link partner port are ready and
able to exchange data packets. Transaction link-up is deasserted
when the core and link partner are attempting to establish
communication, or when communication with the link partner is
lost due to errors on the transmission channel. user_Ink_up is
also deasserted when the core is driven to Hot Reset or Link
Disable states by the link partner, and all TLPs stored in the core
are lost.

fc_sel[2:0]

Input

Flow Control Informational Select: Selects the type of flow
control information presented on the fc_* signals. Possible
values:

000 == receive buffer available space

001 == receive credits granted to the link partner

010 == receive credits consumed

100 == transmit user credits available

101 == transmit credit limit

110 == transmit credits consumed

fc_ph[7:0]

Output

Posted Header Flow Control Credits: The number of Posted
Header FC credits for the selected flow control type

fc_pd[11:0]

Output

Posted Data Flow Control Credits: The number of Posted Data
FC credits for the selected flow control type.

fc_nph[7:0]

Output

Non-Posted Header Flow Control Credits: The number of Non-
Posted Header FC credits for the selected flow control type.

fc_npd[11:0]

Output

Non-Posted Data Flow Control Credits: The number of Non-
Posted Data FC credits for the selected flow control type.

fc_cplh[7:0]

Output

Completion Header Flow Control Credits: The number of
Completion Header FC credits for the selected flow control type.

fc_cpld[11:0]

Output

Completion Data Flow Control Credits: The number of
Completion Data FC credits for the selected flow control type.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com 25

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

Transmit Interface

Table 2-6 defines the transmit (Tx) interface signals. Note that the bus s_axis_tx_tuser
consists of unrelated signals. Mnemonics for these signals are used throughout this
document in place of the TUSER signal names.

Table 2-6: Transmit Interface Signals

Name Mnemonic Direction Description

s_axis_tx_tlast Input Transmit End-of-Frame (EOF): Signals the end of a
packet. Valid only along with assertion of
s_axis_tx_tvalid.

s_axis_tx_tdata[31:0] Input Transmit Data: Packet data to be transmitted.

s_axis_tx_tvalid Input Transmit Source Ready: Indicates that the user
application is presenting valid data on
s_axis_tx_tdata[31:0].

s_axis_tx_tready Output | Transmit Destination Ready: Indicates that the core is
ready to accept data on s_axis_tx_tdata[31:0]. The
simultaneous assertion of s_axis_tx_tvalid and
s_axis_tx_tready marks the successful transfer of one
data beat on s_axis_tx_tdata[31:0].

s_axis_tx_tuser[3] src_dsc Input Transmit Source Discontinue: Can be asserted any time
starting on the first cycle after SOF to EOF, inclusive.

tx_buf_av[5:0] Output | Transmit Buffers Available: Indicates the number of
transmit buffers available in the core. Each free transmit
buffer can accommodate one TLP up to the supported
Maximum Payload Size. Maximum number of Transmit
buffers is determined by the Supported Maximum
Payload Size and block RAM configuration selected.

tx_terr_drop Output | Transmit Error Drop: Indicates that the core discarded a
packet because of a length violation or, when streaming,
data was not presented on consecutive clock cycles.

Length violations include packets longer than supported.

s_axis_tx_tuser[2] str Input Transmit Streamed: Indicates a packet is presented on
consecutive clock cycles and transmission on the link can
begin before the entire packet has been written to the
core. Commonly referred to as transmit cut-through
mode.

tx_cfg_req Output | Transmit Configuration Request: Asserted when the core
is ready to transmit a Configuration Completion or other
internally-generated TLP.

26 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Transaction Interface

Table 2-6: Transmit Interface Signals (Cont’d)

Name

Mnemonic

Direction

Description

tx_cfg_gnt

Input

Transmit Configuration Grant: Asserted by the user
application in response to tx_cfg_req, to allow the core to
transmit an internally generated TLP. Holding tx_cfg_gnt
deasserted after tx_cfg_req allows user-initiated TLPs to
be given higher priority of transmission over core
generated TLPs. tx_cfg_req is asserted once for each
internally generated packet. It cannot be deasserted
immediately following tx_cfg_gntif there are no transmit
buffers available. If the user does not wish to alter the
prioritization of the transmission of internally generated
TLPs, this signal can be continuously asserted.

s_axis_tx_tuser[1]

terr_fwd

Input

Transmit Error Forward: This input marks the current
packet in progress as error-poisoned. It can be asserted
any time between SOF and EOF, inclusive.

Receive Interface

Table 2-7 defines the receive (RX) interface signals. Note that the bus m_axis_rx_tuser
consists of unrelated signals. Mnemonics for these signals are used throughout this
document in place of the TUSER signal names.

Table 2-7: Receive Transaction Interface Signals

Name Mnemonic Direction Description
m_axis_rx_tlast Output Receive End-of-Frame (EOF): Signals the end of
a packet. Valid only if m_axis_rx_tvalid is also
asserted.
m_axis_rx_tdata[31:0] Output Receive Data: Packet data being received. Valid
only if m_axis_rx_tvalid is also asserted.
m_axis_rx_tuser[1] rerr_fwd Output Receive Error Forward: Marks the packet in

progress as error poisoned. Asserted by the core
for the entire length of the packet.

m_axis_rx_tvalid

Output Receive Source Ready: . Indicates the core is

presenting valid data on m_axis_rx_tdata[31:0]

m_axis_rx_tready

Input Receive Destination Ready: Indicates the user

application is ready to accept data on
m_axis_rx_tdata[31:0]. The simultaneous
assertion of m_axis_rx_tvalid and
m_axis_rx_tready marks the successful transfer
of one data beat on s_axis_tx_tdata[31:0].

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com 27

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

Table 2-7: Receive Transaction Interface Signals (Cont'd)
Name Mnemonic Direction Description
rx_np_ok Input Receive Non-Posted OK: The user application

asserts this signal when it is ready to accept a
Non-Posted Request TLP. rx_np_ok must be
deasserted when the user application cannot
process received Non-Posted TLPs, so that these
can be buffered within the core's receive queue.
In this case, Posted and Completion TLPs
received after the Non-Posted TLPs will bypass
the blocked Non-Posted TLPs.

When the user application approaches a state
where it is unable to service Non-Posted
Requests, it must deassert rx_np_ok two clock
cycles before the core presents m_axis_rx_tlast of
the second-to-last Non-Posted TLP the user
application can accept.

m_axis_rx_tuser[9:2]

bar_hit[6:0] Output Receive BAR Hit: Indicates BAR(s) targeted by

the current receive transaction. Asserted

throughout the packet, from beginning of the

packet to m_axis_rx_tlast.

e m_axis_rx_tuser[2] => BARO

e m_axis_rx_tuser[3] => BAR1

e m_axis_rx_tuser[4] => BAR2

* m_axis_rx_tuser[5] => BAR3

e m_axis_rx_tuser[6] => BAR4

e m_axis_rx_tuser[7] => BAR5

* m_axis_rx_tuser[8] => Expansion ROM
Address.

If two BARs are configured into a single 64-bit
address, both corresponding m_axis_rx_tuser
bits are asserted.

m_axis_rx_tuser[9] is reserved for future use.

Configuration Interface

The Configuration (CFG) interface enables the user design to inspect the state of the
Endpoint for PCle configuration space. The user provides a 10-bit configuration address,
which selects one of the 1024 configuration space double word (DWORD) registers. The
endpoint returns the state of the selected register over the 32-bit data output port. Table 2-8
defines the Configuration interface signals. See Design with Configuration Space Registers
and Configuration Interface, page 92 for usage.

28

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Interface

Table 2-8: Configuration Interface Signals

Name

Direction

Description

cfg_do[31:0]

Output

Configuration Data Out: A 32-bit data output port
used to obtain read data from the configuration
space inside the core.

cfg_rd_wr_done

Output

Configuration Read Write Done: Read-write done
signal. Indicates a successful completion of the user
configuration register access operation.

e For a user configuration register read operation,
the signal validates the cfg_do[31:0] data-bus
value.

e Writes to the configuration space are not
supported.

cfg_dwaddr[9:0]

Input

Configuration DWORD Address: A 10-bit address
input port used to provide a configuration register
DWORD address during configuration register
accesses.

cfg_rd_en

Input

Configuration Read Enable: Active Low read-
enable for configuration register access.

Note: cfg_rd_en must be asserted for no more than 1
user_clk_out cycle for each access.

cfg_interrupt

Input

Configuration Interrupt: Interrupt request signal.
The user application can assert this to cause the
selected interrupt message type to be transmitted
by the core. The signal should be held Low until
cfg_interrupt_rdy is asserted.

cfg_interrupt_rdy

Output

Configuration Interrupt Ready: Interrupt grant
signal. The simultaneous assertion of
cfg_interrupt_rdy and cfg_interrupt indicates that
the core has successfully transmitted the requested
interrupt message.

cfg_interrupt_assert

Input

Configuration Legacy Interrupt Assert/Deassert
Select: Selects between Assert and Deassert
messages for Legacy interrupts when cfg_interrupt
is asserted. Not used for MSI interrupts.

Value Message Type

0 Deassert
1 Assert

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

29

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

Table 2-8: Configuration Interface Signals (Cont’'d)

Name Direction Description

cfg_interrupt_di[7:0] Input | Configuration Interrupt Data In: For Message
Signaling Interrupts (MSI), the portion of the
Message Data that the endpoint must drive to
indicate MSI vector number, if Multi-Vector
Interrupts are enabled. The value indicated by
cfg_interrupt_mmenable[2:0] determines the
number of lower-order bits of Message Data that
the endpoint provides; the remaining upper bits of
cfg_interrupt_di[7:0] are not used.

For Single-Vector Interrupts, cfg_interrupt_di[7:0]
is not used. For Legacy interrupt messages
(Assert_INTx, Deassert_INTX), this list defines the
type of message to be sent:

Value Legacy Interrupt

00h INTA
01h INTB
02h INTC
03h INTD
cfg_interrupt_do[7:0] Output | Configuration Interrupt Data Out: The value of the

lowest eight bits of the Message Data field in the
endpoint's MSI capability structure. This value is
not used and is provided for informational
purposes and backwards compatibility.

cfg_interrupt_mmenable[2:0] | Output | Configuration Interrupt Multiple Message Enable:
This is the value of the Multiple Message Enable
field and defines the number of vectors the system
allows for multi-vector MSI. Values range from
000b to 101b. A value of 000b indicates that single
vector MSI is enabled, while other values indicate
the number of lower-order bits that can be used for
cfg_interrupt_di[7:0].
cfg_interrupt_mmenable[2:0] values:

* 000b, 0 bits

* 001b, 1 bit

010b, 2 bits

011b, 3 bits

100b, 4 bits

101b, 5 bits

cfg_interrupt_msienable Output | Configuration Interrupt MSI Enabled: Indicates
that the Message Signaling Interrupt (MSI)
messaging is enabled. If 0, then only Legacy (INTx)
interrupts can be sent. If 1, only MSI interrupts can
be sent.

30 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Interface

Table 2-8: Configuration Interface Signals (Cont’'d)

Name

Direction

Description

cfg_bus_number[7:0]

Output

Configuration Bus Number: Provides the assigned
bus number for the device. The user application
must use this information in the Bus Number field
of outgoing TLP requests. Default value after reset
is O0h. Refreshed whenever a Type 0 Configuration
Write packet is received.

cfg_device_number[4:0]

Output

Configuration Device Number: Provides the
assigned device number for the device. The user
application must use this information in the Device
Number field of outgoing TLP requests. Default
value after reset is 00000b. Refreshed whenever a
Type 0 Configuration Write packet is received.

cfg_function_number[2:0]

Output

Configuration Function Number: Provides the
function number for the device. The user
application must use this information in the
Function Number field of outgoing TLP request.
Function number is hardwired to 000b.

cfg_status[15:0]

Output

Configuration Status: Status register from the
Configuration Space Header.

cfg_command[15:0]

Output

Configuration Command: Command register from
the Configuration Space Header.

cfg_dstatus[15:0]

Output

Configuration Device Status: Device Status register
from the PCI Express Extended Capability
Structure.

cfg_dcommand[15:0]

Output

Configuration Device Command: Device Control
register from the PCI Express Extended Capability
Structure.

cfg_lstatus[15:0]

Output

Configuration Link Status: Link Status register
from the PCI Express Extended Capability
Structure.

cfg_lcommand[15:0]

Output

Configuration Link Command: Link Control
register from the PCI Express Extended Capability
Structure.

cfg_to_turnoff

Output

Configuration To Turnoff: This output notifies the
user that a PME_TURN_Off message has been
received and the CMM will start polling the
cfg_turnoff_ok input coming in from the user. After
cfg_turnoff_ok is asserted, CMM sends a
PME_To_Ack message to the upstream device.

cfg_turnoff ok

Input

Configuration Turnoff OK: The user application can
assert this to notify the integrated Endpoint block
core that it is safe to turn the power off.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

31

http://www.xilinx.com

Chapter 2: Core Overview & XILINX.

Table 2-8: Configuration Interface Signals (Cont’'d)

Name Direction Description

cfg_pm_wake Input | Configuration Power Management Wake: A one-
clock cycle active Low assertion signals the core to
generate and send a Power Management Wake
Event (PM_PME) Message TLP to the upstream link
partner.

Note: The user is required to assert this input only
under stable link conditions as reported on the
cfg_pcie_link_state[2:0] bus. Assertion of this signal
when the PCI Express Link is in transition results in
incorrect behavior on the PCI Express Link.

cfg_pcie_link_state[2:0] Output | PCI Express Link State: This encoded bus reports
the PCle Link State Information to the user.

e 110b - PCI Express Link State is "L0"

¢ 101b - PCI Express Link State is "L0s"

* 011b - PCI Express Link State is "L1"

¢ 111b - PCI Express Link State is "in transition"

cfg_trn_pending Input | User Transaction Pending: If asserted, sets the
Transactions Pending bit in the Device Status
register.

Note: The user is required to assert this input if the
user application has not received a completion to an
upstream request.

cfg_dsn[63:0] Input | Configuration Device Serial Number: Serial
Number register fields of the Device Serial Number
extended capability. Not used if DSN capability is
disabled.

cfg_ltssm_state[4:0] Output | LTSSM State: Indicates the current state of the Link

Training and Status State Machine. For state
encodings, see CFGLTSSMSTATE in Table F-10,
page 220.

Error Reporting Signals

Table 2-9 defines the user application error-reporting signals.

Table 2-9: User Application Error-Reporting Signals

Port Name Direction Description

cfg_err_ecrc Input | ECRC Error Report: The user can assert this
signal to report an ECRC error (end-to-end CRC).

cfg_err_ur Input | Configuration Error Unsupported Request: The
user can assert this signal to report that an
unsupported request was received. This signal is
ignored if cfg_err_cpl_rdy is deasserted.

32 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Error Reporting Signals

Table 2-9: User Application Error-Reporting Signals (Cont’d)

Port Name

Direction

Description

cfg_err_cpl_timeout

Input

Configuration Error Completion Timeout: The
user can assert this signal to report a completion
timed out.

Note: The user should assert this signal only if the
device power state is D0. Asserting this signal in
non-DO0 device power states might result in an
incorrect operation on the PCle link. For
additional information, see the PCI Express Base
Specification, Rev.1.1, Section 5.3.1.2.

cfg_err_cpl_abort

Input

Configuration Error Completion Aborted: The
user can assert this signal to report that a
completion was aborted. This signal is ignored if
cfg_err_cpl_rdy is deasserted.

cfg_err_posted

Input

Configuration Error Posted: This signal is used to
further qualify any of the cfg_err_* input signals.
When this input is asserted concurrently with one
of the other signals, it indicates that the
transaction which caused the error was a posted
transaction.

cfg_err_cor

Input

Configuration Error Correctable Error: The user
can assert this signal to report that a correctable
error was detected.

cfg_err_tlp_cpl_header[47:0]

Input

Configuration Error TLP Completion Header:
Accepts the header information from the user
when an error is signaled. This information is
required so that the core can issue a correct
completion, if required.

This information should be extracted from the
received error TLP and presented in the indicated
format:

[47:41] Lower Address
[40:29] Byte Count
[28:26] TC

[25:24] Attr

[23:8] Requester ID
[7:0] Tag

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

33

http://www.xilinx.com

Chapter 2: Core Overview

& XILINX.

Table 2-9: User Application Error-Reporting Signals (Cont’d)

Port Name

Direction

Description

cfg_err_cpl_rdy

Output

Configuration Error Completion Ready: When
asserted, this signal indicates that the core can
accept assertions on cfg_err_ur and
cfg_err_cpl_abort for Non-Posted transactions.
Assertions on cfg_err_ur and cfg_err_cpl_abort
are ignored when cfg_err_cpl_rdy is deasserted.

cfg_err_locked

Input

Configuration Error Locked: This signal is used
to further qualify any of the cfg_err_* input
signals. When this input is asserted concurrently
with one of the other signals, it indicates that the
transaction that caused the error was a locked
transaction.

This signal is intended to be used in Legacy
mode. If the user needs to signal an unsupported
request or an aborted completion for a locked
transaction, this signal can be used to return a
Completion Locked with UR or CA status.

Note: When not in Legacy mode, the core
automatically returns a Completion Locked, if
appropriate.

34

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 3

Licensing the Core

This version of the Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® core
does not require a license key. Previous versions of the core released in ISE® v11.2 and
earlier required a license key. Refer to the corresponding version of this User Guide for
information on obtaining a license key. The Spartan-6 FPGA Integrated Endpoint Block for
PCI Express core is provided under the terms of the Xilinx End User Agreement.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 35
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm

Chapter 3: Licensing the Core & XILINX.

36 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 4

Getting Started Example Design

This chapter provides an overview of the Spartan®-6 FPGA Integrated Endpoint Block for
PCI Express® example design and instructions for generating the core. It also includes
information about simulating and implementing the example design using the provided
demonstration test bench.

Overview

The example simulation design consists of two discrete parts:

¢ The Root Port Model, a test bench that generates, consumes, and checks PCI Express
bus traffic.

e The Programmed Input/Output (PIO) example design, a completer application for
PCI Express. The PIO example design responds to Read and Write requests to its
memory space and can be synthesized for testing in hardware.

Simulation Design Overview

For the simulation design, transactions are sent from the Root Port Model to the integrated
Endpoint block core and processed by the PIO example design. Figure 4-1 illustrates the
simulation design provided with the integrated Endpoint block core. For more information
about the Root Port Model, see Root Port Model Test Bench for Endpoint, page 147.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 37
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 4: Getting Started Example Design

& XILINX.

CQut put
Logs

<

usrapp_com

!

f

usrapp_rx [

usrapp_tx <

i

¢

dsport

Root Port
Model TPI f

/ PCl Expres
Test
Program

-

y

Endpoi nt Core f
PCI Express

=

PIO
Desi gn

Endpoint DUT f or

PCl Express

> PCI Express Fabric

UG672_c4_01_083110

Figure 4-1: Simulation Example Design Block Diagram

38

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Overview

Implementation Design Overview

The implementation design consists of a simple PIO example that can accept read and
write transactions and respond to requests, as illustrated in Figure 4-2. Source code for the
example is provided with the core. For more information about the PIO example design,
see Appendix A, Programmed Input/Output Example Design.

Spartan-6 FPGA Integrated Endpoint Block for PCI Express

ep_memo PIO_TO_CTRL
ep_mem]
EP_TX EP_RX ep_mem?2
ep_mem3
EP_MEM
PIO_EP

PIO

UG672_c4_02_083110

Figure 4-2: Implementation Example Design Block Diagram

Example Design Elements

The PIO example design elements include:

Core wrapper

An example Verilog HDL or VHDL wrapper (instantiates the cores and example
design)

A customizable demonstration test bench to simulate the example design

The example design has been tested and verified with Xilinx ISE® v12.1 software and these
simulators:

Mentor Graphics ModelSim v6.5¢

Cadence Incisive Enterprise Simulator (IES) 9.2
Synopsys VCS and VCS MX 2009.12

ISE Simulator (ISim)

Note: The VHDL example design supports only ModelSim.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 39

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 4: Getting Started Example Design

& XILINX.

Generating the Core

To generate a core using the default values in the CORE Generator software GUI, follow

these steps:

1. Start the CORE Generator tool.

For help starting and using the CORE Generator tool, see the Xilinx CORE Generator
Guide, available from the ISE Design Suite web page.

2. Choose File > New Project.

"'. Mew Project

M ame |< project_names:

Location |E:'\<pn:uiect_name>

[ak |[Cancel J

UG672_c4_03_083110

Figure 4-3: New Project Dialog Box

3. Enter a project name and location, then click OK. <pr oj ect _di r > is used in this
example. The Project Options dialog box appears.

40

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

& XILINX.

Generating the Core

- Generation
e Advanced

—Part

Select the part For wour projeck:
Family ISpartanlS j
Device Ixcﬁslx45t :I
Package IFgg484 ;I

Speed Grade [- |

[0]4 Cancel Apply

Help I,

Figure 4-4: Project Options

2
UG672_c4_04_083110

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

41

http://www.xilinx.com

Chapter 4: Getting Started Example Design & XILINX.

4. Set the project options:

From the Part tab, select these options:
¢ Family: Spartan6

* Device: xc6slx45t

e Package: fgg484

* Speed Grade: -2

Note: If an unsupported silicon device is selected, the core is dimmed (unavailable) in the list of
cores.

From the Generation tab, select these parameters, and then click OK.
e Design Entry. Select Verilog or VHDL.
e Vendor. Select Synplicity or ISE (for XST).

Locate the core in the selection tree under St andard Bus | nterfaces/ PCl Express;
then double-click the core name to display the integrated Endpoint block main screen.

% Spartan-6 Integrated Block for PCI Express g@@
giC3PE Spartan-6 Integrated Block for PCI
= Express 5
Component Name ;sﬁine_vl_Z
PCle Device { Port Type
The Integrated Block for PCI Exprese allows selection of the Device [Port Type
Device | Port Type _PCI Ex_press Enr_i_pnint device ®
Datasheet Back Page 10f 9 Next > | [Generate | [Cancel | [Help

UG672_c4_05_083110
Figure 4-5: Integrated Endpoint Block Main Screen

In the Component Name field, enter a name for the core. <conponent _narmne> is used
in this example.

Click Finish to generate the core using the default parameters. The core and its
supporting files, including the PIO example design and Root Port Model test bench,
are generated in the project directory.

42

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Simulating the Example Design

For detailed information about the example design files and directories see Directory
Structure and File Contents, page 50. See the README file.

Simulating the Example Design

The example design provides a quick way to simulate and observe the behavior of the core.
The simulation environment provided with the integrated Endpoint block core performs
simple memory access tests on the PIO example design. Transactions are generated by the
Root Port Model and responded to by the PIO example design.

* PCI Express Transaction Layer Packets (TLPs) are generated by the test bench
transmit user application (pci _exp_usr app_t x). As it transmits TLPs, it also
generates a log file, t x. dat .

e PCI Express TLPs are received by the test bench receive user application

(pci _exp_usrapp_r x). As the user application receives the TLPs, it generates a log
file, r x. dat .

For more information about the test bench, see Root Port Model Test Bench for Endpoint,
page 147.

Setting up for Simulation

To run the functional simulation the Xilinx Simulation Libraries must be compiled for the
user system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx ISE
Synthesis and Verification Design Guide, and the Xilinx ISE Software Manuals and Help.
Documents can be downloaded from www.xilinx.com/support/software_manuals.htm.

Simulator Requirements

Spartan-6 device designs require a Verilog LRM-IEEE 1364-2005 encryption-compliant
simulator.

Note for Cadence IUS users: The work construct must be manually inserted into the
CDS.LIB file as shown below.

DEFI NE WORK WORK

Running the Simulation

The simulation scripts provided with the example design support pre-implementation
(RTL) simulation. The existing test bench can be used to simulate with a
post-implementation version of the example design.

The pre-implementation simulation consists of these components:

e Verilog or VHDL model of the test bench
® Verilog or VHDL RTL example design
¢ The Verilog or VHDL model of the Integrated Endpoint Block for PCI Express
1. To run the simulation, go to this directory:
<proj ect _di r>/ <conponent _nane>/ si nul ati on/ f uncti onal
2. Run the script that corresponds to the user simulation tool using one of these:
e ModelSim:vsim-do sinulate_nti.do

e VCS: >./sinulate_vcs. sh

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 43
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/software_manuals.htm

Chapter 4: Getting Started Example Design & XILINX.

e JUS: > ./sinulate_ncsimsh
e ISIM (UNIX):> ./sinulate_isimsh

e ISIM (Windows): > sinul at e_i si m bat

Implementing the Example Design

After generating the core, the netlists and the example design can be processed using the
Xilinx implementation tools. The generated output files include scripts to assist in running
the Xilinx software.

To implement the example design:
Open a command prompt or terminal window and type:
Windows

ns- dos> cd <project _dir>\<conmponent _nanme>\i npl enent
ns-dos> i npl enent . bat

Linux

% cd <proj ect _dir>/ <conponent _name>/i npl ement
% . /inpl enent. sh

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design, and then generates a post-par simulation model for use in timing
simulation. The resulting files are placed in the r esul t s directory and execute these
processes:

1. Removes data files from the previous runs.

2. Synthesizes the example design using XST or Synplify.

3. ngdbui | d. Builds a Xilinx design database for the example design.
- Inputs:

Part-Package-Speed Grade selection:
For example, XC6SLX45T-FGG484-1

Example design UCF:
xilinx_pcie_1_lane_ep_<device>.ucf

map: Maps design to the selected FPGA using the constraints provided.
par : Places cells onto FPGA resources and routes connectivity.

t r ce: Performs static timing analysis on design using constraints specified.

N O

net gen: Generates a logical Verilog HDL or VHDL representation of the design and
an SDF file for post-layout verification.

8. bi t gen: Generates a bitstream file for programming the FPGA.
These FPGA implementation related files are generated in the r esul t s directory:

e routed. bit
FPGA configuration information.

e routed.v[hd]
Verilog or VHDL functional Model.

e routed. sdf
Timing model Standard Delay File.

44

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Implementing the Example Design

The

mapped. nT p
Xilinx map report.

rout ed. par
Xilinx place and route report.

routed. tw
Xilinx timing analysis report.

script file starts from Verilog or VHDL source files and results in a bitstream file.

Users can also use the ISE Project Navigator GUI tool to implement designs. An example

ISE

Using the IS

software project file is provided when the core is generated.

E Project Navigator GUI Tool

To build a core and PIO example design with the ISE Project Navigator GUI tool:

1.

Start the ISE Project Navigator GUI tool.

For help starting and using the ISE Project Navigator tool, see the ISE Project Navigator
Guide, available from the ISE tool documentation web page
(http:/ /www.xilinx.com /support/documentation/dt_ise.htm).

Choose File — New Project.
Enter a project name and location, then click Next > (see Figure 4-6).

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 45

UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/dt_ise.htm

Chapter 4: Getting Started Example Design

& XILINX.

S New Project Wizard

Create New Project

Specify project lacation and type,

Marne:
Location:

Working Direckory:

Descripkion:

—Enter a name, locations, and comment For the project

Inewgrnject

IC:'|,S|3artans_PCIe'gHEWJ:roject

IC:'I,SDal’tanﬁ_PCIB'l,nBle’DjBCt

i

—5elect the type of top-level source For the project

Top-level source bype:

JHDL

B

Mare Info |

Text = I Cancel |

UG762_c4_06_083110

Figure 4-6: Create New Project

46

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Implementing the Example Design

4. Set the project options (see Figure 4-7):
Family: Spartan6
Device: Any LXT device

= New Project Wizard) x|
Project Settings
Specify device and project properties,
—3Select the dewvice and design flow for the project

Property Marne Yalue
Product Category Al LI
Farnily Spartané |
Device NCESLEAST =l
Package FiaG4a4 |
Speed 23 E[
Top-Level Source Type HOL ;I
Synthesis Tool *3T (WHDLverilog) LI
Simulatar 15im (YHDLverilog) |
Preferred Language ‘erilog ;I
Property Specification in Praject File Store all values LI
Manual Compile Crder —
¥HOL Source Analysis Standard YHOL-93 |
Enable Message Filtering |

More Info | < Back | Mext = I Zancel

Figure 4-7: Project Settings

5. Click Next > and then Finish to create the project.
6. Choose Project — New Source.
7. Select IP (Core Generator & Architecture Wizard).

UGT762_c4_07_083110

Spartan-6 FPGA Integrated Endpoint Block

www.xilinx.com

UG672 (v1.0) October 5, 2010

47

http://www.xilinx.com

Chapter 4: Getting Started Example Design & XILINX.

8. Enter a file name and ensure the “Add to project” checkbox is checked (see Figure 4-8).

E New Source Wizard . ﬂ

Select Source Type
Seleck source bype, file name and its location,

IF (CORE Generator & Architecture Wizard)
Schematic

User Document

verilog Module

verilog Test Fixture

WHDL Module Eile name:
WHOL Library ISﬁjCiE
WHOL Package

WHOL Test Bench Location:
Embedded Processor

IC:'I,Spartan6_PCIe'l,newgrnject'l,ipcore_dir o

¥ add to project

Mare Infao | Mext = I Cancel

UG762_c4_08_083110

Figure 4-8: Select Source Type

9. Select Spartan-6 Integrated Block for PCl Express. Click Next > and then Finish
(see Figure 4-9).

48 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Implementing the Example Design

% Spartan-6 Integrated Block for PCI Express i =10 x|

Spartan-6 Integrated Block

iC ﬁ;::}?\.t
Ly for PCI Express -

—advanced Settings

— Transaction Layer Module sdvanced Settings
™ Trim TLP Digest ECRC

Pipeline Registers for Transaction Block Rak Buffers INone VI

—Advanced Physical Layer Settings

I Force Mo Scrarmbling

—Xilinx Reference Boards

Generate Xilink Reference Board specific Design files,
Kilinx Reference Boards INunE =

—Reference Clock Frequency

The Integrated Block for PCI Express allows selection of the reference clock frequency
Frequency (MHz) I].DD hHz 'l

— Transceiver Selection

Transceiver Location |X0v0 'l
Transceiver Channel [Channel 0 VI

r Expose Unused Transceiver Forts

Datashest | < Back | Page 9 of 9 et = | Generate Cancel Help

UGT762_c4_09_083110

Figure 4-9: Select IP

10. Configure the core as described in Chapter 5, Generating and Customizing the Core.
11. Choose File — Open Project.
12. Enter thei pcor e_di r directory (see Figure 4-10).

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 49
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 4: Getting Started Example Design

& XILINX.

Look in: I [new_project

~| @& & E-

iseconfig
new_project, xise

File narme: I

= Do

Files of type: |ISE Project Files [* =ize)

i

- Cancel
J A

UGT762_c4_10_083110

Figure 4-10: Directory ipcore_dir

13. Select the <conponent _nane>_<I| ang>_exanpl e_pr oj ect . xi se file to load an
example project with the PIO example design along with the core built in step 1

through step 9 (see Figure 4-11).

Hier arch

B £ wceshedst-afggeat

..
i

Figure 4-11:

Directory Structure and File Contents

s6_pcie_verilog_sxample_project

app - prie_app_sh {pie_app_s6.v)

= @.‘n wilime_peie 1 1 _ep_s6 (xilin:_poie_1 1 ep_s&.v)

e A0 s6_prie_j - sb_prig (s6_prie.xcoy
E wilinz_pcie_1_lane_ep_xcoslx45t-fog484-3,uck

UG672_c4_11_083110

Load Example Project

The integrated Endpoint block example design directories and their associated files are
defined in the sections that follow. Click a directory name to go to the desired directory and

its associated files.

50 www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Directory Structure and File Contents

Example Design
1 <project directory>
Top-level project directory; name is user-defined

) <project directory>/<component name>
Core release notes readme file

) <component name>/doc
Product documentation

) <component name>/example_design
Verilog or VHDL design files

) <component name>/implement
Implementation script files

) implement/results

Results directory, created after implementation scripts are run, and
contains implement script results

) <component name>/simulation

) simulation/dsport
Root Port Bus Functional Model

) simulation/functional
Functional simulation files

) simulation/tests
Test command files

) <component name>/source
Core source files

<project directory>

The project directory contains all the CORE Generator tool project files.

Table 4-1: Project Directory

Name Description

<project_dir>

<conponent _nane>. Xco CORE Generator tool project-specific option file; can
be used as an input to the CORE Generator software.

<conponent _name>_flist.txt | Listof files delivered with core.

<conponent _nanme>_<I| ang>_ ISE software Project Navigator project file for the PIO
exanpl e_proj ect . xi se example design.
<conponent _name>. v[eo| ho] Verilog or VHDL instantiation template.
Back to Top
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 51

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 4: Getting Started Example Design & XILINX.

<project directory>/<component name>

The component name directory contains the release notes readme file provided with the
core, which can includes tool requirements, last-minute changes, updates, and issue
resolution.

Table 4-2: Component Name Directory

Name Description

<proj ect _di r >/ <conponent _nane>

s6_pci e_readme. t xt Readme file.

Back to Top

<component name>/doc

The doc directory contains the PDF documentation provided with the core.

Table 4-3: Doc Directory

Name Description

<pr oj ect _di r >/ <conponent _name>/ doc

s6_pci e_ug672. pdf Spartan-6 FPGA Integrated Endpoint Block for PCI Express
User Guide.

s6_pci e_ds801. pdf Spartan-6 FPGA Integrated Endpoint Block for PCI Express
Data Sheet.

Back to Top

<component name>/example_design

The example design directory contains the example design files provided with the core.
Table 4-4: Example Design Directory

Name Description

<proj ect _di r >/ <conponent _nane>/ exanpl e_desi gn

xilinx_pcie_1 |ane_ep_<device>. ucf Example design UCF. Filename varies by
part, package, and speed grade.

xilinx_pcie_1_1 ep_s6. v[hd] Top-level PIO example design files for
1-lane cores.

pci e_app_s6. v[hd]
Pl O_EP_MEM v[hd]
Pl O. v[hd]

Pl O_EP. v[hd]

Pl O_EP_MEM ACCESS. v|[hd] PIO example design files.
Pl O_TO _CTRL. v[hd]

Pl O_32. v[hd]

Pl O_32_RX_ENG NE. v[hd]
Pl O _32_TX_ENG NE. v[hd]

Back to Top

52 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Directory Structure and File Contents

<component name>/implement

The i mpl ement directory contains the core implementation script files.
Table 4-5: Implement Directory

Name Description

<proj ect _di r >/ <conponent _name>/i npl enent

xst. scr XST synthesis script.

i npl ement . bat DOS and Linux implementation scripts.
i mpl enent . sh

synplify.prj Synplify synthesis script.

Xst. prj XST project file for the example design.
Back to Top

implement/results

The r esul t s directory is created by the implement script, after which the implement script
results are placed in the r esul t s directory.

Table 4-6: Results Directory

Name Description

<pr oj ect _di r >/ <conponent _nane>/i npl enent/results

Implement script result files.

Back to Top

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 53
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 4: Getting Started Example Design

& XILINX.

<component name>/simulation

simulation/dsport

The dsport directory contains the Root Port Bus Functional model files provided with the

core.

Table 4-7: dsport Directory

Name

Description

<proj ect _di r >/ <conponent _na

me>/ si mul ati on/ dsport

gt x_drp_chanal i gn_fix_3752_v6. v[hd]
gtx_rx_valid_filter_v6. v[hd]
gt x_tx_sync_rate_v6. v[hd]

gt x_wr apper _v6. v[hd]

pci _exp_usrapp_cfg. v[hd]

pci _exp_usrapp_com v

pci _exp_usrapp_pl . v[hd]

pci _exp_usrapp_r x. v[hd]

pci _exp_usrapp_t x. v[hd]
pcie_2 0_rport_v6. v[hd]
pcie_2 0_v6_rp. v[hd]

pci e_bram top_v6. v[hd]

pci e_bram v6. v[hd]

pci e_brans_v6. v[hd]

pci e_cl ocki ng_v6. v[hd]

pci e_gt x_v6. v[hd]

pci e_pi pe_l ane_v6. v[hd]

pci e_pi pe_m sc_v6. v[hd]

pci e_pi pe_v6. v[hd]

pci e_reset _del ay_v6. v[hd]
pci e_upconfig_fix_3451_v6. v[hd]
test _interface. vhd

xilinx_pcie_2_0 rport_v6.v[hd]

Root port model files.

Back to Top

simulation/functional

The f uncti onal directory contains functional simulation scripts provided with the core.

Table 4-8: Functional Directory

Name

Description

<proj ect _di r >/ <conponent _nane>/ si nul ati on/ functi ona

boar d_conmon. v

Contains test bench definitions.

board. f

List of files for RTL simulations.

boar d. v[hd]

Top-level simulation module.

isimecend. tcl

Simulation helper script for ISim.

simul ate_i si mbat/sinulate_isimsh

Simulation scripts for ISIM DOS/UNIX.

simulate_nti.do

Simulation script for ModelSim.

54

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Directory Structure and File Contents

Table 4-8: Functional Directory (Cont'd)

Name

Description

simul ate_ncsi m sh

Simulation script for Cadence IUS.

simul ate_vcs. sh

Simulation script for VCS.

sys_cl k_gen_ds. v[hd]

System differential clock source.

sys_cl k_gen. v[hd]

System clock source.

wave. {do, sv, tcl, wcfg}

Waveform setup scripts.

Back to Top

simulation/tests

The t est s directory contains test definitions for the example test bench.

Table 4-9: Tests Directory

Name

Description

<proj ect _di r>/ <conponent _name>/si mul ation/tests

tests. v[hd]

Test definitions for example test bench.

Back to Top

<component name>/source

This directory contains the source files for the core.

Table 4-10: Source Directory

Name

Description

<proj ect _di r >/ <conponent _name>/ sour ce

<component nane>. v[hd]

Verilog or VHDL top-level wrapper, which
instantiates the Endpoint block, block RAMs,
GTP transceiver, and clocking resources.

gt pal_dual _wrapper_tile.v[hd]
gt pal_dual _wrapper. v[hd]

Wrapper for the GTPA1, which configures the
transceiver and presents the interfaces required
for use with the integrated Endpoint block.

pci e_bramtop_s6. v[hd]
pci e_brans_s6. v[hd]
pci e_bram s6. v[hd]

Configures and instantiates block RAMs for use
with the integrated Endpoint block.

Back to Top

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

UG672 (v1.0) October 5, 2010

55

http://www.xilinx.com

Chapter 4: Getting Started Example Design & XILINX.

56 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 5

Generating and Customizing the Core

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core is a fully configurable
and highly customizable solution. The integrated Endpoint block is customized using the
CORE Generator software GUIL

Note: The screen captures in this chapter are conceptual representatives of their subjects and
provide general information only. For the latest information, see the CORE Generator tool.

Customizing the Core through the CORE Generator Software

The CORE Generator software GUI for the Spartan-6 FPGA Integrated Endpoint Block for
PCI Express consists of nine screens:

e Screen 1: Basic Parameter Settings

® Screen 2: Base Address Registers

e Screen 3: PCI Registers

e Screens 4 and 5: Configuration Register Settings
¢ Screen 6: Interrupt Capabilities

® Screen 7: Power Management Registers

e Screen 8: PCI Express Extended Capabilities

¢ Screen 9: Advanced Settings

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 57
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

Basic Parameter Settings

The initial customization screen shown in Figure 5-1 is used to define the basic parameters
for the core, including the component name, lane width and link speed.

% Spartan-6 Integrated Block for PCI Express E@@
1giCERE Spartan-6 Integrated Block for PCI
G- Express 0
Component Name };6;n:ie7v172
PCle Device [Port Type
The Integrated Blodk for PCI Express allows selection of the Device [Port Type
Device | Port Type PCI Express Endpoint device w
cBack Page1of9 [mext> | [Generate |[cancel | [Hep

UG672_c5_01_083110

Figure 5-1: Screen 1: Integrated Endpoint Block for PCI Express Parameters

Component Name

Base name of the output files generated for the core. The name must begin with a letter and
can be composed of these characters: atoz,0to 9, and “_."”

PCle Device / Port Type
* Device Port Type: Indicates the PCI Express logical device type.

58 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Customizing the Core through the CORE Generator Software

Base Address Registers

The Base Address Register (BAR) screen shown in Figure 5-2 lets the user set the base
address register space. Each Bar (0 through 5) represents a 32-bit parameter.

® Spartan-6 Integrated Block for PCI Express g@@
logiC SRe Spartan-6 Integrated Block for PCI
Express 12
Base Address Registers

Base Address Registers (EARS) serve two purposes. Initially, they serve as a mechanism for the device to request blocks of address space in the system
memory map. After the BIOS or OS determines what addresses to assign to the device, the Base Address Registers are programmed with addresses and the
device uses this information to perform address decoding.

BAR 0 Opbons BAR 1 Options

[8ar0 Type [Memory | [64bit | | prefetchable O art Type [Nja | [] 64bit | | Prefetchable
size |128 v [Bytes v size [1 | [Bytes v
Value [FFFFFFB0 | (Hex) Value [00000000 | (Hex)

BAR 2 Options BAR 3 Options

Bar2 Type -m [s4bit Prefetchable [Bar3 Type :Na-i 54 bit Prefetchable
Size -128 v/ !Bytes bl Size il Bytes
Value [FFFFFFB0 | (Hex) Value (00000000 | (Hex)

EAR 4 Options BAR 5 Options

[Bard Type [n/A | [64bit [| prefetchable [Bar5 Type Ill-l_-'.'-. Prefatchable
size |1 :IB\-“.\:: | Size |1 | [Kilobytes
Value [00000000 | (Hew) value (00000000 | (Hex)

Expansion ROM Base Address Register

[ExpansionRom 5ize |2 | [iobytes

Datasheet PageZon[Next > I[Generate I[Cancel I[Help

UG672_c5_02_083110

Figure 5-2: Screen 2: BAR Options

Base Address Register Overview

The Endpoint for PCle supports up to six 32-bit Base Address Registers (BARs) or three
64-bit BARs, and the Expansion ROM BAR. BARs can be one of two sizes:

® 32-bit BARs: The address space can be as small as 128 bytes for Memory or 16 bytes
for I/O, or as large as 2 gigabytes. Used for Memory to I/0O.

® 64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes.
Used for Memory only.

All BAR registers share these options:

e Checkbox: Click the checkbox to enable the BAR; deselect the checkbox to disable the
BAR.
¢ Type: BARs can either be I/O or Memory.

e [/O:1/0 BARs can only be 32-bit; the Prefetchable option does not apply to I/O
BARs.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 59
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

* Memory: Memory BARs can be either 64-bit or 32-bit and can be prefetchable.
When a BAR is set as 64 bits, it uses the next BAR for the extended address space
and makes the next BAR inaccessible to the user

e Size

* Memory: When Memory and 64-bit are not selected, the size can range from
128 bytes to 2 gigabytes. When Memory and 64-bit are selected, the size can range
between 128 bytes and 8 exabytes.

® I/O: When selected, the size can range from 16 bytes to 2 gigabytes.
e Prefetchable: Identifies the ability of the memory space to be prefetched.
® Value: The value assigned to the BAR based on the current selections.
For more information about managing the Base Address Register settings, see Managing
Base Address Register Settings.
Expansion ROM Base Address Register
If selected, the Expansion ROM is activated and can be a value from 2 KB to 4 GB.

Managing Base Address Register Settings

Memory, I/O, Type, and Prefetchable settings are handled by setting the appropriate GUI
settings for the desired base address register.

Memory or I/O settings indicate whether the address space is defined as memory or I/0O.
The base address register only responds to commands that access the specified address
space. Generally, memory spaces less than 4Kbytes in size should be avoided. The
minimum I/O space allowed is 16 bytes; use of I/O space should be avoided in all new
designs.

Prefetchability is the ability of memory space to be prefetched. A memory space is
prefetchable if there are no side effects on reads (that is, data is not destroyed by reading, as
from a RAM). Byte write operations can be merged into a single doubleword write, when
applicable.

When configuring the core as an Endpoint for PCle (non-Legacy), 64-bit addressing must
be supported for all BARs (except BAR5) that have the prefetchable bit set. 32-bit
addressing is permitted for all BARs that do not have the prefetchable bit set. The
prefetchable bit related requirement does not apply to a Legacy Endpoint. In either of the
above cases (Endpoint for PCI Express or Legacy Endpoint), the minimum memory
address range supported by a BAR is 128 bytes.

Disabling Unused Resources

For best results, disable unused base address registers to conserve system resources. A
base address register is disabled by deselecting unused BARs in the GUI.

60

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Customizing the Core through the CORE Generator Software

PCI Registers

The PCI Registers Screen shown in Figure 5-3 is used to customize the IP initial values,
class code and Cardbus CIS pointer information.

® Spartan-6 Integrated Block for PCI Express Q@@
logiC pr Spartan-6 Integrated Block for PCI
' Express 2

1D Initial Values

Vendor ID mes Range: 0000..FFFF

Device ID 0007 | Range: 0000..FFFF

Revision ID [o0 | Range: 00..FF

Subsystem Vendor 1D | 10€E | Range: 0000. FFFF

Subsystem ID (0007 | Range: 0000. FFFF

Class Code

Base Class :_ps___ Range: 00..FF

Sub-Class [0 | Range: 00..FF

Interface [o0 | Range: o0..FF

Class Code |0s0000 | (Hex)

Cardbus CIS Pointer

Cardbus CIS Pointer EDD'ENJCIOUD Range: 00000000..FFFRRFFF

Datasheet Page30f9[Next > I[Generate I[Cancel I[Help

UG672_c5_03_083110

Figure 5-3: PCI Registers: Screen 3

ID Initial Values

e Vendor ID: Identifies the manufacturer of the device or application. Valid identifiers
are assigned by the PCI Special Interest Group to guarantee that each identifier is
unique. The default value, 10EEh, is the Vendor ID for Xilinx. Enter a vendor
identification number here. FFFFh is reserved.

* Device ID: A unique identifier for the application; the default value is 0007h. This
field can be any value; change this value for the application.

* Revision ID: Indicates the revision of the device or application; an extension of the
Device ID. The default value is 00h; enter values appropriate for the application.

* Subsystem Vendor ID: Further qualifies the manufacturer of the device or
application. Enter a Subsystem Vendor ID here; the default value is 10EE. Typically,
this value is the same as Vendor ID. Setting the value to 0000h can cause compliance
testing issues.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 61
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

* Subsystem ID: Further qualifies the manufacturer of the device or application. This

value is typically the same as the Device ID; default value is 0007h. Setting the value
to 0000h can cause compliance testing issues.

Class Code

The Class Code identifies the general function of a device, and is divided into three byte-
size fields:

Base Class: Broadly identifies the type of function performed by the device.
* Sub-Class: More specifically identifies the device function.

* Interface: Defines a specific register-level programming interface, if any, allowing

device-independent software to interface with the device.

Class code encoding can be found at www.pcisig.com.

Cardbus CIS Pointer

Used in cardbus systems and points to the Card Information Structure for the cardbus
card. If this field is non-zero, an appropriate Card Information Structure must exist in the

correct location. The default value is 0000_0000h; value range is 0000_0000h through
FFFF_FFFFh.

62

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.pcisig.com
http://www.xilinx.com

& XILINX. Customizing the Core through the CORE Generator Software

Configuration Register Settings

The Configuration Registers screens shown in Figure 5-4 and Figure 5-5 show the options
for the Device Capabilities and Registers, the Block RAM Configuration Options, the Link
Capabilities Register, and the Link Status Register.

® Spartan-6 Integrated Block for PCI Express E@@
[ggi(.}i pr Spartan-6 Integrated Block for PCI
Express 12

Configuration Register Settings (1 of 2)
Capabilities Register

Capability Version |1 | (Hex)
Device Port [Type | PCI_Express_Endpoint_device
Capabilties Register [0001 | tHex)

Device Capabilities Register
Device Capabilities
Max Payload Size [s12bytes v|
] Extended Tag Field

Phantom Functions |Nn function number bits used v

Acceptable L0s Latency Mo limit |

Acceptable L1 Latency No limit v|

Device Capabilites Register [00000FC2 | (Hex)

BRAM Configuration Options

Performance Transmit TLPs Receiver Buffer Posted Posted Non-posted Completion Completion Total BRAMS
Level Buffered Size (bytes) Header Credits Data Credits Credits Header Credits Data Credits Required

(&) Good 15 8192 32 211 8 40 211 8

) High 30 16384 32 467 8 40 467 1B

Finite Completions

< Back Page4of9[Next > ILgenerate I[Cancel |[Help f

UG672_c5_04_083110

Figure 5-4: Screen 4: Configuration Settings

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 63
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

lagi

< Back PageSof?[Mext = ILgenerate I[Cancel I[Help

® Spartan-6 Integrated Block for PCI Express Q@@

P Spartan-6 Integrated Block for PCI
* Express 12

Configuration Register Settings (2 of 2)
Link Capabiities Register
Supported Link Speeds | 2.5GT/s
Maximurn Link Width | lane
[] Enable ASPM L1 Support
Link Capabiities Register |0003F411 | (Hex)
Link Status Register

[] Enable Slot Clock Configuration

UG672_c5_05_083110

Figure 5-5: Screen 5: Configuration Settings

Capabilities Register

Capability Version: Indicates PCI-SIG defined PCI Express capability structure
version number; this value cannot be changed.

Device Port Type: Indicates the PCI Express logical device type.

Capabilities Register: Displays the value of the Capabilities register presented by the
integrated Endpoint block, and is not editable.

Device Capabilities Register

Max Payload Size: Indicates the maximum payload size that the device/function can
support for TLPs.

Extended Tag Field: Indicates the maximum supported size of the Tag field as a
Requester. When selected, indicates 8-bit Tag field support. When deselected,
indicates 5-bit Tag field support.

Phantom Functions: Indicates the support for use of unclaimed function numbers to
extend the number of outstanding transactions allowed by logically combining
unclaimed function numbers (called Phantom Functions) with the Tag identifier. See
Section 2.2.6.2 of the PCI Express Base Specification version 1.1 for a description of

64

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Customizing the Core through the CORE Generator Software

Tag Extensions. This field indicates the number of most significant bits of the function
number portion of Requester ID that are logically combined with the Tag identifier.

Acceptable L0s Latency: Indicates the acceptable total latency that an Endpoint can
withstand due to the transition from LOs state to the L0 state.

Acceptable L1 Latency: Indicates the acceptable latency that an Endpoint can
withstand due to the transition from L1 state to the LO state.

Device Capabilities Register: Displays the value of the Device Capabilities register
presented by the integrated Endpoint block and is not editable.

Block RAM Configuration Options

Performance Level: Selects the Performance Level settings, which determines the
Receiver and Transmitter Sizes. The table displayed specifies the Receiver and
Transmitter settings - number of TLPs buffered in the Transmitter, the Receiver Size,
the credits advertised by the core to the Link Partner and the number of block RAMs
required for the configuration, corresponding to the Max Payload Size selected, for
each of the Performance Level options.

Finite Completions: If selected, causes the device to advertise to the Link Partner the
actual amount of space available for completions in the receiver. For an Endpoint, this
is not compliant to the PCI Express Base Specification version 1.1, as endpoints are
required to advertise an infinite amount of completion space. Finite completions are
not supported in this release of the core.

Link Capabilities Register

This section is used to set the Link Capabilities register.

Maximum Link Speed: Indicates the maximum link speed of the given PCI Express
Link. This value is set to 2.5 Gb/s and is not editable.

Maximum Link Width: This value is set to 1 lane.

Enable ASPM L1 Support: Indicates the level of ASPM supported on the given PCI
Express Link. L0Os is always supported by the integrated Endpoint block core; L1
support is optional and is enabled if this box is checked.

Link Capabilities Register: Displays the value of the Link Capabilities register
presented by the Endpoint and is not editable.

Link Status Register

Enable Slot Clock Configuration: Indicates that the Endpoint uses the platform-
provided physical reference clock available on the connector. Must be cleared if the
Endpoint uses an independent reference clock.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 65

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

Interrupt Capabilities

The Interrupt Settings screen shown in Figure 5-6 sets the Legacy Interrupt Settings and

MSI Capabilities.
® Spartan-6 Integrated Block for PCI Express L@@
lag*"c"" pr Spartan-6 Integrated Block for PCI
’ Express 2
Interrupt Capabilities
Legacy Interrupt Settings
Interrupt PIN | INTA v
MSI Capabilities
Multiple Message Capable 1 vector v
Page 60f 9 [Next >] [Generate] [Cancel] [Help

UG672_c5_06_083110

Figure 5-6: Interrupt Capabilities: Screen 6

Legacy Interrupt Settings

e Interrupt PIN: Indicates the mapping for Legacy Interrupt messages. A setting of
“None” indicates no Legacy Interrupts are used.

MSI Capabilities

* Multiple Message Capable: Selects the number of MSI vectors to request from the
Root Complex.

66 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Customizing the Core through the CORE Generator Software

Power Management Registers

The Power Management Registers screen shown in Figure 5-7 includes settings for the
Power Management Registers, power consumption and power dissipation options.

® Spartan-6 Integrated Block for PCI Express Q@@
giC R Spartan-6 Integrated Block for PCI
G Express "
Power Management Registers
[[] Device Specific Initialization
D1 Support D2 Support
PME Support from:
0o D1 D2 D3hot
Power Consumption Power Dissipation
Power Consumed Scale Factor Total Power Power Dissipated ~ Scale Factor Total Power
o [0 1 x[o | = 0.0 (Watts) po o 1 x[o | = 0.0 (Watts)
D10 i = :_p | = 0.0 (watts) b1 0 x |0 | = 0.0 (watts)
D2 [0 | x|o | = 0.0 (watts) b2 o | x|o | = 0.0 (watts)
3 [0] xfo = 0.0 (Watis) p3lo x |0 | = 0.0 (Watts)
Range: 0..255 Range: 0..3 Range: 0..255 Range: 0..3
<Back | Page70f9 | Next> | [Generate | [cancel |[heb

UG672_c5_07_083110

Figure 5-7: Power Management Registers: Screen 7

Power Management Registers

* Device Specific Initialization: This bit indicates whether special initialization of this
function is required (beyond the standard PCI configuration header) before the
generic class device driver is able to use it. When selected, this option indicates that
the function requires a device specific initialization sequence following transition to
the DO uninitialized state. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

* D1 Support: When selected, this option indicates that the function supports the D1
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

e D2 Support: When selected, this option indicates that the function supports the D2
Power Management State. See section 3.2.3 of the PCI Bus Power Management Interface
Specification Revision 1.2.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 67
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

* PME Support From: When this option is selected, indicates the power states in which
the function can assert PME#. See section 3.2.3 of the PCI Bus Power Management
Interface Specification Revision 1.2.

Power Consumption

For information about power consumption, see section 3.2.6 of the PCI Bus Power
Management Interface Specification Revision 1.2

Power Dissipated

For information about power dissipation, see section 3.2.6 of the PCI Bus Power
Management Interface Specification Revision 1.2.

PCI Express Extended Capabilities

The PCle Extended Capabilities screen shown in Figure 5-8 includes settings for Device
Serial Number Capability and optional user-defined Configuration capabilities.

 Spartan-6 Integrated Block for PCI Express H[=1E3
ugiCP! Spartan-6 Integrated Block for PCI
Express 1.2

PCle Extended Capabilities
Device Serial Number Capability

The Device Serial Number (DSN) Capability is an optional PCIe Extended Capability, that contains a unique Device Serial Number. This identifier must be
presentad on the Device Serial Number Input pin of the port,

Enable DSN Capability

Advanced User Configuration Space Settings
[pc1 Configuration Space Enable
[[] PCI Express Extended Configuration Space Enable

Page 30f9| Next > |[Generate][Cancel][Help

UG672_c5_08_083110

Figure 5-8: Screen 8: PCle Extended Capabilities

Device Serial Number Capability

¢ Device Serial Number Capability: An optional PCle Extended Capability containing
a unique Device Serial Number. If enabled, the core presents the Device Serial

68

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Customizing the Core through the CORE Generator Software

Number Capability using the value presented on the Device Serial Number input pin
of the port. If disabled, no Device Serial Number Extended Capability is presented.

User Defined Configuration Capabilities

PCI Configuration Space Enable: Allows the user application to add/implement PCI
Legacy capability registers. This option should be selected if the user application
implements a legacy capability configuration space. This option enables the routing of
Configuration Requests to addresses outside the built-in PCI-Compatible
Configuration Space address range to the AXI-Stream interface.

PCI Express Extended Configuration Space Enable: Allows the user application to
add/implement PCI Express Extended capability registers. This option should be
selected if the user application implements such an extended capability configuration
space. This enables the routing of Configuration Requests to addresses outside the
built-in PCI Express Extended Configuration Space address range to the user
application.

Advanced Settings

The Advanced Settings screen shown in Figure 5-9 includes settings for Transaction Layer,
Physical Layer, Reference Clock Frequency and Xilinx Reference Boards options.

% sSpartan-6 Integrated Block for PCI Express = | 0 5'

Spartan-6 Integrated Block

iC P
1 for PCI Express 12

- Advanced Settings

— Transaction Layer Module Advanced Settings
™ Trim TLP Digest ECRC

Fipeline Registers for Transaction Block RAM Buffers |N0ne 'l

—Advanced Physical Layer Settings

™ Farce Mo Scrambling

— Hilinx Reference Boards

Generate Xilinx Reference Board specific Design files.
Kilinx Reference Boards INDne T

—Reference Clock Frequency

The Integrated Block for PCI Express allows selection of the reference clock frequency
Frequency (MHz) I].DD MHz 'l

— Transceiver Selection

Transceiver Location |X0v0 'I
Transceiver Channel |Channel 0 'I

™ Expose Unused Transceiver Ports

Datashest | < Back | Page 9 of 9 [dext = | Generate | Cancel Help

UG672_c5_09_083110

Figure 5-9: Screen 9: Advanced Settings 1

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 69

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 5: Generating and Customizing the Core & XILINX.

Transaction Layer Module

e Trim TLP Digest ECRC: Causes the core to trim any TLP digest from an inbound
packet and clear the TLP Digest bit in the TLP header, before presenting it to the user.

* Pipeline Registers for Transaction Block RAM Buffers: Selects the Pipeline registers
enabled for the Transaction Buffers. Pipeline registers can be enabled on either the
Write path or both the Read and Write paths of the Transaction Block RAM buffers.

Advanced Physical Layer

e Force No Scrambling: Used for diagnostic purposes only and should never be
enabled in a working design. Setting this bit results in the data scramblers being
turned off so that the serial data stream can be analyzed.

Xilinx Reference Boards

Selecting this option enables the generation of Xilinx Reference Board specific design files.
Selecting the SP605 board configures the Reference Clock Frequency, Transceiver Location
and Transceiver Channel corresponding with the PCI Express edge connector on the
reference board. It also sets the corresponding pin locations in the UCEF file. The user must
select the correct part/package combination when setting up the project to generate Xilinx
reference board specific design files.

Reference Clock Frequency

Selects the frequency of the reference clock provided on sys_clk. For important information
about clocking the Spartan-6 FPGA Integrated Endpoint Block for PCI Express, see
Clocking and Reset of the Integrated Endpoint Block Core, page 112.

Transceiver Selection

* Transceiver Location: Selects the GTPA1_DUAL location for the PCI Express link.
e Transceiver Channel: Selects the channel within the GTPA1_DUAL.

70

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 6

Designing with the Core

This chapter provides design instructions for the Spartan®-6 FPGA Integrated Endpoint
Block for PCI Express® user interface and assumes knowledge of the PCI Express
Transaction Layer Packet (TLP) header fields. Header fields are defined in PCI Express Base
Specification v1.1, Chapter 2, Transaction Layer Specification.

This chapter includes the following design guidelines:
¢ Transmitting Outbound Packets
® Receiving Inbound Packets
¢ Design with Configuration Space Registers and Configuration Interface
¢ Additional Packet Handling Requirements
¢ Power Management
¢ Generating Interrupt Requests

* Clocking and Reset of the Integrated Endpoint Block Core

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 71
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

TLP Format on the AXI-Stream Interface

Data is transmitted and received in Big-Endian order as required by the PCI Express Base
Specification. See Chapter 2 of the PCI Express Base Specification for detailed information
about TLP packet ordering. Figure 6-1 represents a typical 32-bit addressable Memory
Write Request TLP (as illustrated in Chapter 2 of the specification).

+0 +1 +2 +3
7 6‘5 4‘3‘2‘1‘0 7 6‘5‘4 3‘2‘1‘0 716 5‘4 3‘2 1‘0 7‘6‘5‘4‘3‘2‘1‘0
Byte 0 > V=
Byte 4 > Requester ID Tag ‘Lasété)w‘ 1StBEW
Byte 8 > Address[31:2] ‘ R
Byte 12 > Data 0
Byte 16 > Data 1
Byte 20 > Data 2
Byte 24 > TLP Digest

UG672_c6_01_083110

Figure 6-1: PCIl Express Base Specification Byte Order

When using the 32-bit AXI-Stream interface, packets are arranged on the 32-bit datapath in
the same order as shown in Figure 6-1. PCle Byte 0 of the packet appears on
s_axis_tx_tdata[31:24] (outbound) or m_axis_rx_tdata[31:24] (inbound) of the first
DWORD, byte 1 on s_axis_tx_tdata[23:16] or m_axis_rx_tdata[23:16], and so forth. Byte 4
of the packet then appears on s_axis_tx_tdata[31:24] or m_axis_rx_tdata[31:24] of the
second DWORD. The Header section of the packet consists of either three or four
DWORDs, determined by the TLP format and type as described in section 2.2 of the PCI
Express Base Specification.

Packets sent to the core for transmission must follow the formatting rules for Transaction
Layer Packets (TLPs) as specified in Chapter 2 of the PCI Express Base Specification. The user
application is responsible for ensuring its packets’ validity. The core does not check that a
packet is correctly formed and this can result in transferring a malformed TLP. The exact

fields of a given TLP vary depending on the type of packet being transmitted.

The core allows the user application to add an extra level of error checking by using the
optional TLP Digest field in the TLP header. The presence of a TLP Digest or ECRC is
indicated by the value of TD field in the TLP Header section. When TD=1, a correctly
computed CRC32 remainder DWORD is expected to be presented as the last DWORD of
the packet. The CRC32 remainder DWORD is not included in the length field of the TLP
header. The user application must calculate and present the TLP Digest as part of the
packet when transmitting packets. Upon receiving packets with a TLP Digest present, the
user application must check the validity of the CRC32 based on the contents of the packet.
The core does not check the TLP Digest for incoming packets.

The PCI Express Base Specification requires Advanced Error Reporting (AER) capability
when implementing ECRC. Although the integrated Endpoint block does not support
AER, users can still implement ECRC for custom solutions that do not require PCI Express
Base Specification Compliance.

72

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Transmitting Outbound Packets

Basic TLP Transmit Operation

The Endpoint for PCle automatically transmits the following types of packets:

¢ Completions to a remote device in response to Configuration Space requests.
¢ Error-message responses to inbound requests malformed or unrecognized by the core.

Note: Certain unrecognized requests, for example, unexpected completions, can only be
detected by the user application, which is responsible for generating the appropriate response.

The user application is responsible for constructing these types of outbound packets:

* Memory and I/O Requests to remote devices.

¢ Completions in response to requests to the user application, for example, a Memory
Read Request.

* Completions in response to user-implemented Configuration Space requests when
enabled. These requests include PCI Legacy capability registers beyond address BFh
and PCI Express extended capability registers beyond address 1FFh.

Note: Forimportant information about accessing user-implemented Configuration Space while
in a low-power state, see Power Management, page 106.

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core notifies the user
application of pending internally generated TLPs that will arbitrate for the transmit
datapath by asserting tx_cfg_req (1b). The user application can choose to give priority to
core-generated TLPs by driving tx_cfg_gnt asserted (1b) permanently, without regard to
tx_cfg_req . Doing so prevents user-application-generated TLPs from being transmitted
when a core-generated TLP is pending. Alternatively, the user application can reserve
priority for a user-application-generated TLP over core-generated TLPs, by holding
tx_cfg_gnt deasserted (Ob) until the user transaction is complete. Whenthe user transaction
is complete, the user application can assert tx_cfg_gnt (1b) for at least one clock cycle to
allow the pending core-generated TLP to be transmitted. Users must not delay asserting
tx_cfg_gnt indefinitely, as this might cause a completion time-out in the Requester. See the
PCI Express Base Specification for more information on the Completion Timeout Mechanism.

Table 2-9, page 32 defines the transmit-direction AXI-Stream interface signals. To transmit
a TLP, the user application must perform the following sequence of events on the transmit
AXI-Stream interface:

1. The user application logic asserts s_axis_tx_tvalid and presents the first TLP DWORD
on s_axis_tx_tdata[31:0].

2. The user application asserts s_axis_tx_tvalid and presents the remainder of the TLP
DWORDs on s_axis_tx_tdata[31:0] for subsequent clock cycles (for which the core
asserts s_axis_tx_tready).

3. The user application asserts s_axis_tx_tvalid and s_axis_tx_tlast together with the last
DWORD of data.

4. Atthenext clock cycle, the user application deasserts s_axis_tx_tvalid to signal the end
of valid transfers on s_axis_tx_tdata[31:0].

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 73
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Figure 6-2 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit
addressable Memory Read request.

I
I
s_axis_tx_tdata[31:0] :- Ho X H, X H, .

S_axis_tx_tready

I

|

|

)]
s_axis_tx_tvalid | | ,

I

|

s_axis_tx_tlast |

I

I

I I

(terr_fwd) s_axis_tx_tuser[1] : :
I T

(str) s_axis_tx_tuser[2] : :
[

I

|

I

I

|
(src_dsc) s_axis_tx_tuser[3] !

tx_terr_drop

|
|
|
I
tx_buf_av[5:0] |

UG672_c6_02_083110

Figure 6-2: TLP 3-DW Header without Payload

Figure 6-3 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit

addressable Memory Read request.
o e L

user_clk_out

S_axis_tx_tdata[31:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast |

|

(terr_fwd) s_axis_tx_tuser[1] :
(str) s_axis_tx_tuser[2] i
(src_dsc) s_axis_tx_tuser[3] :

-IHO
=

tx_buf_av[5:0]

L
a

]
1
|
1,
|
tx_terr_drop |

T T
UG672_c6_03_083110

Figure 6-3: TLP 4-DW Header without Payload

74 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Figure 6-4 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request.

I
user_clock_out: |
| RO D

s_axis_tx_tdata[31:0]

s_axis_tx_tready

s_axis_tx_tvalid

s_axis_tx_tlast

(terr_fwd) s_axis_tx_tuser[1] :
|
(str) s_axis_tx_tuser[2] :

(src_dsc) s_axis_tx_tuser[3]

I

|

|

tx_buf_av[5:0] :
|

tx_terr_drop |

}
UG672_c6_04_083110

Figure 6-4: TLP with 3-DW Header with Payload

Figure 6-5 illustrates a 4-DW TLP header with a data payload; an example is a 32-bit
addressable Memory Write request.

| |
S nligigigigiitpigigt
s_axis_tx_tdata[31:0] - Ho X H, X H, X Hy X D,

s_axis_tx_tready

s_axis_tx_tvalid | ,

s_axis_tx_tlast |
|

|
|
|
(terr_fwd) s_axis_tx_tuser[1] : :
| T
|
|
|
|
l

(str) s_axis_tx_tuser[2] :
|
(src_dsc) s_axis_tx_tuser[3] !

tx_buf_av[5:0]

— C_CN_~_ L~~~/
Sl S | S N S i R i il |

tx_terr_drop

T
UG672_c6_05_083110

Figure 6-5: TLP with 4-DW Header with Payload

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com
UG672 (v1.0) October 5, 2010

75

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Presenting Back-to-Back Transactions on the Transmit Interface

The user application can present back-to-back TLPs on the transmit AXI-Stream interface
to maximize bandwidth utilization. Figure 6-6 illustrates back-to-back TLPs presented on
the transmit interface. The user application keeps s_axis_tx_tvalid asserted and presents a
new TLP on the next clock cycle after asserting s_axis_tx_tlast for the previous TLP.

user_clk_out|||||||||||||||||
Cr e o N Jw v E

s_axis_tx_tdata[31:0]

s_axis_tx_tready

s_axis_tx_tvalid

S_axis_tx_tlast

I
|
|
[
|
|
|
|
|
Y

-
I
|
|
|
|/
|
[
I\
|
|
|

TLP1
|
UG672_c6_06_083110

Figure 6-6: Back-to-Back Transaction on Transmit Interface

Source Throttling on the Transmit Datapath

The AXI-Stream interface lets the user application throttle back if it has no data present on
s_axis_tx_tdata[31:0]. When this condition occurs, the user application deasserts
s_axis_tx_tvalid, which instructs the core AXI-ST interface to disregard data presented on
s_axis_tx_tdata[31:0]. Figure 6-7 illustrates the source throttling mechanism, where the
user application does not have data to present every clock cycle, and for this reason must
deassert s_axis_tx_tvalid during these cycles. The user application should not deassert
s_axis_tx_tvalid during the middle of a transfer if str is asserted.

D, IX Dal.
L

|
UG672_c6_07_083110

s_axis_tx_tvalid

I
I
I
I
s_axis_tx_tdata[31:0] :- H, X H, X H, X
I
I
I
I
I
I

s_axis_tx_tlast : |
| |

=]
.

Figure 6-7: Source Throttling on the Transmit Datapath

76 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

user_clk_out !
|

s_axis_tx_tdata[31:0]

s_axis_tx_tready

Destination Throttling of the Transmit Datapath

The core AXI-Stream interface throttles the user application if there is no space left for a
new TLP in its transmit buffer pool. This can occur if the link partner is not processing
incoming packets at a rate equal to or greater than the rate at which the user application is
presenting TLPs. Figure 6-8 illustrates the deassertion of s_axis_tx_tready to throttle the
user application when the core’s internal transmit buffers are full. If the core needs to
throttle the User Application, it does so after the current packet has completed. If another
packet starts immediately after the current packet, the throttle occurs immediately after
tlast.

T
Y

[y

T
J,
t
|
1
|
|

|
|
|
|
|
|
|
|
s_axis_tx_tvalid |
I
|

s_axis_tx_tlast |

—))

P
|
|
t
|
|
|
|

1

)

|
tx_buf_av[5:0] :
|

1
- 00000b X 00001b X 00000b
| |
|

— N/

\ 00000b X 00001 X 00000b
| | | | | | | | [| |

| : | | | | | | : | |
| New#&uffersz%llabIe | | | | | | New#&uﬁersz%llabIe | |

UG672_c6_08_083110

Figure 6-8: Destination Throttling of the Endpoint Transmit AXI-Stream Interface

If the core transmit AXI-Stream interface accepts the start of a TLP by asserting
s_axis_tx_tready, it is guaranteed to accept the complete TLP with a size up to the value
contained in the Max_Payload_Size field of the PCI Express Device Capability Register
(offset 04H). To stay compliant to the PCI Express Base Specification, users should not violate
the Max_Payload_Size field of the PCI Express Device Control Register (offset 08H). The
core transmit AXI-Stream interface deasserts s_axis_tx_tready only under these
conditions:

¢ After it has accepted the TLP completely and has no buffer space available for a new
TLP.

e When the core is transmitting an internally generated TLP (Completion TLP due to a
Configuration Read or Write, error Message TLP or error response as requested by the
user application on the cfg_err interface), after it has been granted use of the transmit
datapath by the user application, by assertion of tx_cfg_gnt. The core subsequently
asserts s_axis_tx_tready after transmitting the internally generated TLP.

e When the Power State field in Power Management Control/Status Register (offset
0x4) of the PCI Power Management Capability Structure is changed to a non-DO0 state.
When this occurs, any ongoing TLP is accepted completely and s_axis_tx_tready is
subsequently deasserted, disallowing the User Application from initiating any new
transactions for the duration that the core is in the non-D0 power state.

On deassertion of s_axis_tx_tready by the core, the user application needs to hold all
control and data signals until the core asserts s_axis_tx_tready.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 77
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Discontinuing Transmission of Transaction by Source

The core AXI-Stream interface lets the user application terminate transmission of a TLP by
asserting src_dsc. Both s_axis_tx_tvalid and s_axis_tx_tready must be asserted together
with src_dsc for the TLP to be discontinued. The signal src_dsc must not be asserted at the
beginning of a new packet. It can be asserted on any cycle after the first beat of a new
packet has been accepted by the core up to and including the assertion of s_axis_tx_tlast.
Asserting src_dsc has no effect if no TLP transaction is in progress on the transmit
interface. Figure 6-9 illustrates the user application discontinuing a packet using src_dsc.
Asserting src_dsc with s_axis_tx_tlast is optional.

If streaming mode is not used (str = Ob) and the packet is discontinued, the packet is
discarded before being transmitted on the serial link. If streaming mode is used (str = 1b),
the packet is terminated with the EDB symbol on the serial link.

I
user_clk_out: | | | | | | | | | | | | | | | | |
D DOOODNDS

T
UG672_c6_09_083110

S_axis_tx_tdata[31:0]

s_axis_tx_tready

s_axis_tx_tvalid

S_axis_tx_tlast :

|

(src_dsc) s_axis_tx_tuser[3] :
|

Figure 6-9: Source Driven Transaction Discontinue on Transmit Interface

78

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Discarding of Transaction by Destination

The core transmit AXI-Stream interface discards a TLP for three reasons:

¢ The PCI Express link goes down.

¢ Presented TLP violates the Max_Payload_Size field of the PCI Express Device

Capability Register (offset 04H) (it is left to the user to not violate the
Max_Payload_Size field of the Device Control Register (offset 08H)).

* strisasserted and data is not presented on consecutive clock cycles; that is,

s_axis_tx_tvalid is deasserted in the middle of a TLP transfer.

When any of these occurs, the transmit AXI-Stream interface continues to accept the
remainder of the presented TLP and asserts tx_terr_drop no later than the third clock cycle
following the EOF of the discarded TLP. Figure 6-10 illustrates the core signaling that a

packet was discarded using tx_terr_drop due to a length violation.

user_clk_out

s_axis_tx_tdata[31:0] - Ho X H, X H, X D, \ \ D, - Hy X H, X H, X D, X D,

J| I\

J

| |
4
Droppéd TLP Valid TLP

I
|
|
[
|
|
|
|
|
) |
S_axis_tx_tready |
|
|

s_axis_tx_tvalid | | ,
I

s_axis_tx_tlast :

|

—

| |
| |
T T
(src_dsc) s_axis_tx_tuser[3] : : :
[[
| |
l l

tx_terr_drop :

Figure 6-10: Destination Driven Transaction Discontinue on Transmit Interface

\
UG672_c6_10_083110

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com
UG672 (v1.0) October 5, 2010

79

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Packet Data Poisoning on the Transmit AXI-Stream Interface

The user application uses either of these two mechanisms to mark the data payload of a
transmitted TLP as poisoned:

¢ Set EP =1 in the TLP header. This mechanism can be used if the payload is known to
be poisoned when the first DWORD of the header is presented to the core on the
AXI-Stream interface.

* Assert terr_fwd for at least 1 valid data transfer cycle any time during the packet
transmission, as shown in Figure 6-11. This causes the core to set EP = 1 in the TLP
header when it transmits the packet onto the PCI Express fabric. This mechanism can
be used if the user application does not know whether a packet can be poisoned at the
start of packet transmission. Use of terr_fwd is not supported for packets when str is
asserted (streamed transmit packets).

user_clk_out i | I | I | I | : ((| | I | I |
;-(0 ¢ 1T
i -

1 J|
|
|
T
s_axis_tx_tvalid | ’ |
|
|
|
I
|
|

s_axis_tx_tdata[31:0]

s_axis_tx_tlast : :
I
|

I
(terr_fwd) s_axis_tx_tuser[1] : | , : \
| |
|
|

(str) s_axis_tx_tuser[2] :

1
UG672_c6_11_090110

Figure 6-11: Packet Data Poisoning on the Transmit AXI-Stream Interface

80 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Streaming Mode for Transactions on the Transmit Interface

|
user_clk_out
|

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core allows the user
application to enable Streaming (cut-through) mode for transmission of a TLP, when
possible, to reduce latency of operation. To enable this feature, the user application must
hold str asserted for the entire duration of the transmitted TLP. In addition, the user
application must present valid frames on every clock cycle until the final cycle of the TLP.
In other words, the user application must not deassert s_axis_tx_tvalid for the duration of
the presented TLP. Source throttling of the transaction while in streaming mode of
operation causes the transaction to be dropped (tx_terr_drop is asserted) and a nullified
TLP to be signaled on the PCI Express link. Figure 6-12 illustrates the streaming mode of
operation, where the first TLP is streamed and the second TLP is dropped due to source
throttling.

s_axis_tx_tdata[Sl:OI

s_axis_tx_tread;}

s_axis_tx_tlast |

(str) s_axis_tx_tuser[2] : ! ,
I

tx_terr_d rop: |

— M
e S A el L ol | =l

'
UG672_c6_12_083110

Figure 6-12: Streaming Mode on the Transmit Interface

Appending ECRC to Protect TLPs

If the user application needs to send a TLP Digest associated with a TLP, it must construct
the TLP header such that the TD bit is set and the user application must properly compute
and append the 1-DWORD TLP Digest after the last valid TLP payload section (if
applicable). TLPs originating within the core, for example Completions, Error Messages,
and Interrupts, do not have a TLP Digest appended.

Maximum Payload Size

TLP size is restricted by the capabilities of both link partners. After the link is trained, the
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This
value is equal to or less than the value advertised by the core's Device Capability register.
The advertised value in the Device Capability register of the integrated Endpoint block
core is either 128, 256, or 512 bytes, depending on the setting in the CORE Generator
software GUI For more information about these registers, see section 7.8 of the PCI Express
Base Specification. The value of the core's Device Control register is provided to the user
application on the cfg_dcommand[15:0] output. See Design with Configuration Space
Registers and Configuration Interface, page 92 for information about this output.

Transmit Buffers

The Endpoint for PCle transmit AXI-Stream interface provides tx_buf_av, an
instantaneous indication of the number of Max_Payload_Size buffers available for use in
the transmit buffer pool. Table 6-1 defines the number of transmit buffers available and
maximum supported payload size for a specific core.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 81
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Table 6-1: Transmit Buffers Available

Capability Max Performance Level®)
Payload Size
(Bytes) Good (Minimize Block RAM Usage) High (Maximize Performance)
128 13 27
256 14 29
512 15 30

Notes:
1. Performance level is set through a CORE Generator software GUI selection.

Each buffer can hold one maximum sized TLP. A maximum sized TLP is a TLP with a
4-DWORD header plus a data payload equal to the MAX_PAYLOAD_SIZE of the core (as
defined in the Device Capability register) plus a TLP Digest. After the link is trained, the
root complex sets the MAX_PAYLOAD_SIZE value in the Device Control register. This
value is equal to or less than the value advertised by the core's Device Capability register.
For more information about these registers, see section 7.8 of the PCI Express Base
Specification. A TLP is held in the core's transmit buffer until the link partner
acknowledges receipt of the packet, at which time the buffer is released and a new TLP can
be loaded into it by the user application.

For example, if the Capability Max Payload Size selected for the Endpoint core is 256 bytes,
and the performance level selected is high, there are 29 total transmit buffers. Each of these
buffers can hold at a maximum one 64-bit Memory Write Request (4 DWORD header) plus
256 bytes of data (64 DWORDs) plus TLP Digest (1 DWORD) for a total of 69 DWORD:s.
This example assumes the root complex set the MAX_PAYLOAD_SIZE register of the
Device Control register to 256 bytes, which is the maximum capability advertised by this
core. For this reason, at any given time, this core could have 29 of these 69 DWORD TLPs
awaiting transmittal. There is no sharing of buffers among multiple TLPs, so even if user is
sending smaller TLPs such as 32-bit Memory Read request with no TLP Digest totaling

3 DWORD:s only per TLP, each transmit buffer still holds only one TLP at any time.

The internal transmit buffers are shared between the user application and the core’s
configuration management module (CMM). Because of this, the tx_buf_av bus can
fluctuate even if the user application is not transmitting packets. The CMM generates
completion TLPs in response to configuration reads or writes, interrupt TLPs at the request
of the user application, and message TLPs when needed.

The Transmit Buffers Available indication enables the user application to completely
utilize the PCI transaction ordering feature of the core transmitter. The transaction
ordering rules allow for Posted and Completion TLPs to bypass Non-Posted TLPs. See
section 2.4 of the PCI Express Base Specification for more information about ordering rules.

The core supports the transaction ordering rules and promotes Posted and Completion
packets ahead of blocked Non-Posted TLPs. Non-Posted TLPs can become blocked if the
link partner is in a state where it momentarily has no Non-Posted receive buffers available,
which it advertises through Flow Control updates. In this case, the core promotes
Completion and Posted TLPs ahead of these blocked Non-Posted TLPs. However, this can
only occur if the Completion or Posted TLP has been loaded into the core by the user
application. By monitoring the tx_buf_av bus, the user application can ensure there is at
least one free buffer available for any Completion or Posted TLP. Promotion of Completion
and Posted TLPs only occurs when Non-Posted TLPs are blocked; otherwise packets are
sent on the link in the order they are received from the user application.

82

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Receiving Inbound Packets

Basic TLP Receive Operation

Table 2-7, page 27 defines the receive AXI-Stream interface signals. This sequence of events

must occur on the receive Transaction interface for the core to present a TLP to the user

application logic:

1. When the user application is ready to receive data, it asserts m_axis_rx_tready.

2. When the core is ready to transfer data, the core asserts m_axis_rx_tvalid and presents

the first complete TLP DWORD on m_axis_rx_tdata[31:0].
3. The core then keeps m_axis_rx_tvalid asserted, and presents TLP DWORDs on

m_axis_rx_tdata[31:0] on subsequent clock cycles, for which the user application logic

asserts m_axis_rx_tready.

4. The core then asserts m_axis_rx_tlast and presents either the last DWORD on

s_axis_tx_tdata[31:0].

5. If no further TLPs are available, at the next clock cycle, the core deasserts
m_axis_rx_tvalid to signal the end of valid transfers on m_axis_rx_tdata[31:0].

Figure 6-13 illustrates a 3-DW TLP header without a data payload; an example is a 32-bit

addressable Memory Read request.

I
user_clk_out !

%

m_axis_rx_tready

I
m_axis_rx_tdata[31:0] :- Ho X H, X H, _

m_axis_rx_tvalid

m_axis_rx_tlast

I
(rerr_fwd) m_axis_rx_tuser[1] :
)

(bar_hit) m_axis_rx_tuser[9:2] :

—
]

rx_np_ok :

UG672_c6_13_090110

Figure 6-13: TLP 3-DW Header without Payload

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com
UG672 (v1.0) October 5, 2010

83

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Figure 6-14 illustrates a 4-DW TLP header without a data payload; an example is a 64-bit
addressable Memory Read request.

I
I
m_axis_rx_tdata[31:0] :- H, X H, X H, X Hy .
I
I
I
I
I
I

-

m_axis_rx_tready

m_axis_rx_tvalid | ’

m_axis_rx_tlast : :

| I

(rerr_fwd) m_axis_rx_tuser[1] : :
| Il

(bar_hit) m_axis_rx_tuser[9:2] :

——

rX_np_o k! | | | | |
- | | | | | |
UG672_c6_14_090110

Figure 6-14: TLP 4-DW Header without Payload

Figure 6-15 illustrates a 3-DW TLP header with a data payload; an example is a 32-bit

addressable Memory Write request.
ENENES

-

user_clk_out

m_axis_rx_tdata[31:0]

m_axis_rx_tready

|
|
|
I
|
|
I
|
|
. L
m_axis_rx_tvalid |
I
m_axis_rx_tlast :

|

(rerr_fwd) m_axis_rx_tuser[1] :
1

-Ho
—

(bar_hit) m_axis_rx_tuser[9:2] | |

rX_np_o k! | | | | |
- = | | | | | |
' ' ' ' ' UG672_c6_15_090110

Figure 6-15: TLP 3-DW Header with Payload

84

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Figure 6-16 illustrates a 4-DW TLP header with a data payload; an example is a 64-bit
addressable Memory Write request.

I

I
m_axis_rx_tdata[31:0] :- Hy X H, X H, X Hy X Dy .
|
m_axis_rx_tready |
|
| \
|
I

I

|

|

.) T
m_axis_rx_tvalid | , |
|

|

|

I

|

|

1

I

|

|

T

|

|

. | | , | \
m_axis_rx_tlast | | |
I T |
| |
| |
1 1
|
|

(rerr_fwd) m_axis_rx_tuser[1] :
|

(bar_hit) m_axis_rx_tuser[9:2] : X

rx_np_o k! | | | | |
- |
UG672_c6_16_090110

Figure 6-16: TLP 4-DW Header with Payload

Throttling the Datapath on the Receive AXI-Stream Interface

The user application can stall the transfer of data from the core at any time by deasserting
m_axis_rx_tready. If the user deasserts m_axis_rx_tready while no transfer is in progress
and if a TLP becomes available, the core asserts m_axis_rx_tvalid and presents the first
TLP DWORD on m_axis_rx_tdata[31:0]. The core remains in this state until the user asserts
m_axis_rx_tready to signal the acceptance of the data presented on m_axis_rx_tdata[31:0].
At that point, the core presents subsequent TLP DWORD:s as long as m_axis_rx_tready
remains asserted. If the user deasserts m_axis_rx_tready during the middle of a transfer,
the core stalls the transfer of data until the user asserts m_axis_rx_tready again. There is no
limit to the number of cycles the user can keep m_axis_rx_tready deasserted. The core
pauses until the user is again ready to receive TLPs.

Figure 6-17 illustrates the core asserting m_axis_rx_tvalid along with presenting data on
m_axis_rx_tdata[31:0]. The user application logic inserts wait states by deasserting
m_axis_rx_tready. The core does not present the next TLP DWORD until it detects
m_axis_rx_tready assertion. The user application logic can assert or deassert
m_axis_rx_tready as required to balance receipt of new TLP transfers with the rate of TLP
data processing inside the application logic.

%

user_clk_out :

m_axis_rx_tdata[31:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

(bar_hit)
m_axis_rx_tuser[9:2]

g

T
UG672_c6_17_090110

Figure 6-17: User Application Throttling Receive TLP

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 85
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Receiving Back-to-Back Transactions on the Receive AXI-Stream Interface

The user application logic must be designed to handle presentation of back-to-back TLPs
on the receive interface AXI-Stream interface by the core. The core can assert
m_axis_rx_tvalid for a new TLP at the clock cycle after m_axis_rx_tlast assertion for the
previous TLP. Figure 6-18 illustrates back-to-back TLPs presented on the receive interface.

user_clk_out

m_axis_rx_tdata[31:0]

m_axis_rx_tready

m_axis_rx_tvalid

m_axis_rx_tlast

bLL

UG672_c6_18_090110
Figure 6-18: Receive Back-to-Back Transactions

If the user application cannot accept back-to-back packets, it can stall the transfer of the
TLP by deasserting m_axis_rx_tready as discussed in the previous section. Figure 6-19
shows an example of using m_axis_rx_tready to pause the acceptance of the second TLP.

user_clk_out

m_s_occaszo N) N .

I\

-

TLP1 TLP2

m_axis_rx_tready

m_axis_rx_tvalid |
|

m_axis_rx_tlast :

I I

UG672_c6_19_090110

Figure 6-19: User Application Throttling of Back-to-Back TLPs

Packet Re-ordering on Receive AXI-Stream Interface

Transaction processing in the core receiver is fully compliant with the PCI transaction
ordering rules, described in Chapter 2 of the PCI Express Base Specification. The transaction
ordering rules allow for Posted and Completion TLPs to bypass blocked Non-Posted TLPs.

The user application can deassert rx_np_ok if it is not ready to accept Non-Posted
Transactions from the core, (as shown in Figure 6-20) but can receive Posted and
Completion Transactions. The user application must deassert rx_np_ok at least two clock
cycles before m_axis_rx_tlast of the second-to-last Non-Posted packet the user can accept.
While rx_np_ok is deasserted, received Posted and Completion Transactions pass Non-
Posted Transactions. After the user application is ready to accept Non-Posted Transactions,
it must reassert rx_np_ok. Previously bypassed Non-Posted Transactions are presented to
the user application before other received TLPs. There is no limit as to how long rx_np_ok
can be deasserted, however users must take care to not deassert rx_np_ok for extended

86

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

periods, because this can cause a completion time-out in the Requester. See the PCI Express
Base Specification for more information on the Completion Timeout Mechanism.

user_clk_out

m_axis_rx_tdata[31:0]- Hy X H, X H, X Hy X/l/x—H_'X Ho X H, X H, X D, .

Il I Il I
NonLPosted 'I"LPl : NoV{osted TLP2: :
:
T
|

7

Posted/¢pl TLP3

Il
|
|
m_axis_rx_tready | ' |

.]
m_axis_rx_tvalid | | /
I

m_axis_rx_tlast :

__/I/

rx_np_ok : :
| T

I

G672_c6_20_090110

Figure 6-20: Packet Re-ordering on Receive AXI-Stream Interface

Packet re-ordering allows the user application to optimize the rate at which Non-Posted
TLPs are processed, while continuing to receive and process Posted and Completion TLPs
in a non-blocking fashion. The rx_np_ok signaling restrictions require that the user
application be able to receive and buffer at least three Non-Posted TLPs. The following
algorithm describes the process of managing the Non-Posted TLP buffers.

Consider that Non-Posted_Buffers_Available denotes the size of Non-Posted buffer space
available to user application. The size of the Non-Posted buffer space is greater than three
Non-Posted TLPs. Non-Posted_Buffers_Available is decremented when a Non-Posted TLP
is accepted for processing from the core, and is incremented when Non-Posted TLP is
drained for processing by the user application.

For every clock cycle, do {
if (Valid transaction Start-COf -Franme accepted by user application) {
Extract TLP Format and Type fromthe 1st TLP DW
if (TLP type == Non Posted) {
i f (Non-Posted_Buffers_Avail abl e <= 2) /1 Accounts for the
current and possibly the next NP TLP
Deassert rx_np_ok on the follow ng clock cycle.
else if (OGther optional wuser policies to stall Non-Posted
transactions)
Deassert rx_np_ok on the follow ng clock cycle.
el se // (Non-Posted_Buffers_Available > 2)
Assert rx_np_ok on the follow ng clock cycle.
Decrenment Non- Posted_Buffers_Available in User Application
} else { // Posted and Conpletion TLPs
Process the received TLPs

}

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 87
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Packet Data Poisoning and TLP Digest on Receive AXI-Stream Interface

To simplify logic within the user application, the core performs automatic pre-processing
based on values of TLP Digest (TD) and Data Poisoning (EP) header bit fields on the
received TLP.

All received TLPs with the Data Poisoning bit in the header set (EP=1) are presented to the
user. The core asserts the rerr_fwd signal for the duration of each poisoned TLP, as
illustrated in Figure 6-21.

If the TLP Digest bit field in the TLP header is set (TD = 1), the TLP contains an End-to-End
CRC (ECRC). The core performs the following operations based on how the user
configured the core during core generation:

¢ If the Trim TLP Digest option is on, the core removes and discards the ECRC field
from the received TLP and clears the TLP Digest bit in the TLP header.

¢ If the Trim TLP Digest option is off, the core does not remove the ECRC field from the
received TLP and presents the entire TLP including TLP Digest to the user application
receiver interface.

See Chapter 5, Generating and Customizing the Core, for more information about how to
enable the Trim TLP Digest option during core generation.

I |
user_clk_out: | I | I | ! S S: | I | I | I |
m_axis_rx_tdata[31:0] - X

m_axis_rx_tready

m_axis_rx_tvalid | ,

m_axis_rx_tlast |

|

(rerr_fwd) m_axis_rx_tuser[1] :
I

|
|
T
|
|
T
UG672_c6_21_090110

Figure 6-21: Receive Transaction Data Poisoning

Packet Base Address Register Hit on Receive AXI-Stream Interface

The core decodes incoming Memory and I/O TLP request addresses to determine which
Base Address Register (BAR) in the core's Type0 configuration space is being targeted, and
indicates the decoded base address on bar_hit[6:0]. For each received Memory or I/O TLP,
a minimum of one and a maximum of two (adjacent) bit(s) are set to 1b. If the received TLP
targets a 32-bit Memory or I/O BAR, only one bit is asserted. If the received TLP targets a
64-bit Memory BAR, two adjacent bits are asserted. If the core receives a TLP that is not
decoded by one of the BARs, then the core drops it without presenting it to the user and an
Unsupported Request message is automatically generated. Even if the core is configured
for a 64-bit BAR, the system might not always allocate a 64-bit address, in which case only
one bar_hit[6:0] signal is asserted.

88

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table 6-2 illustrates mapping between bar_hit[6:0] and the BARs, and the corresponding
byte offsets in the core Type0 configuration header.

Table 6-2: bar_hit to Base Address Register Mapping

bar_hit[x] m_axis_rx_tuser[x] BAR Byte Offset
0 2 0 10h
1 3 1 14h
2 4 2 18h
3 5 3 1Ch
4 6 4 20h
5 7 5 24h
6 8 Expansion ROM BAR 30h

For a Memory or I/O TLP Transaction on the receive interface, bar_hit[6:0] is valid for the
entire TLP, starting with the assertion of m_axis_rx_tvalid, as shown in Figure 6-22. When
receiving non-Memory and non-I/O transactions, the signal bar_hit[6:0] is undefined.

user_clk_out :

) D T T B O S O N

I\

|

m_axis_rx_tdata[31:0]

TLP 1 TLP 2

LY

| |
| |
| |
/ | \ | |
| | |

b ht | 1 L 1 1 1 L
) (bar_hit) '- 0000010b X 0001100b _

m_axis_rx_tuser[9:2] |
1 1

1 1 1 1 1 1 1 1 1 1 1 1
UG672_c6_22_090110

m_axis_rx_tready

m_axis_rx_tvalid ,
I

I
|
I
I
I
m_axis_rx_tlast : :

Figure 6-22: BAR Target Determination Using bar_hit

The signal bar_hit[6:0] enables received Memory and I/O transactions to be directed to the
appropriate destination apertures within the user application. By utilizing bar_hit[6:0],
application logic can inspect only the lower order Memory and I/O address bits within the
address aperture to simplify decoding logic.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 89
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Packet Transfer During Link-Down Event on Receive AXI-Stream Interface

The loss of communication with the link partner is signaled by deassertion of user_Ink_up.
When user_Ink_up is deasserted, it effectively acts as a Hot Reset to the entire core. For this
reason, all TLPs stored inside the core or being presented to the receive interface are
irrecoverably lost. A TLP in progress on the Receive AXI-Stream interface will be
presented to its correct length, according to the Length field in the TLP header. However,
the TLP is corrupt and should be discarded by the user application. Figure 6-23 illustrates
packet transfer discontinue scenario.

user_clk_out

user_Ink_up

.

T

|

| A4
I ERESENETNETY

———

original TLP data was lost
| |

-
[

1
UG672_c6_23_090110

m_axis_rx_tdata[31:0]

m_axis_rx_tready '

|
|
l
m_axis_rx_tvalid :

m_axis_rx_tlast

Figure 6-23: Receive Transaction Discontinue

90 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Receiver Flow Control Credits Available

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express provides the user
application information about the state of the receiver buffer pool queues. This
information represents the current space available for the Posted, Non-Posted, and
Completion queues.

One Header Credit is equal to either a 3 or 4 DWORD TLP Header and one Data Credit is
equal to 16 bytes of payload data. Table 6-3 provides values on credits available
immediately after user_Ink_up assertion but before the reception of any TLP. If space
available for any of the above categories is exhausted, the corresponding credit available

signals indicate a value of zero. Credits available return to initial values after the receiver
has drained all TLPs.

Table 6-3: Transaction Receiver Credits Available Initial Values

Credit Category Performance 128_ pyte 256_ _byte 512_ pyte

Level Capability MPS| Capability MPS | Capability MPS

Non-Posted Header Good
High °

Posted Header Good 16 24 32
High 30 32 32

Posted Data Good 41 96 211
High 89 211 467

Completion Header Good 16 24 40
High 30 40 40

Completion Data Good 41 96 211
High 89 211 467

The user application can use the fc_ph[7:0], fc_pd[11:0], fc_nph[7:0], fc_npd[11:0],
fc_cplh[7:0], fc_cpld[11:0], and fc_sel[2:0] signals to efficiently utilize and manage receiver
buffer space available in the core and the core application. For additional information, see
Flow Control Credit Information, page 103.

Endpoint cores for PCI Express have a unique requirement where the user application
must use advanced methods to prevent buffer overflows while requesting Non-Posted
Read Requests from an upstream component. According to the specification, a PCI Express
Endpoint is required to advertise infinite storage credits for Completion Transactions in its
receivers. This means that endpoints must internally manage Memory Read Requests
transmitted upstream and not overflow the receiver when the corresponding Completions
are received. The user application transmit logic must use Completion credit information
presented to modulate the rate and size of Memory Read requests, to stay within the
instantaneous Completion space available in the core receiver. For additional information,
see Appendix D, Managing Receive-Buffer Space for Inbound Completions.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 91
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Design with Configuration Space Registers and Configuration
Interface

This section describes the use of the Configuration Interface for accessing the PCI Express
Configuration Space Type 0 registers that are part of the integrated Endpoint block core.
The Configuration Interface includes a read Configuration Port for accessing the registers.
In addition, some commonly used registers are mapped directly on the Configuration
Interface for convenience.

Registers Mapped Directly onto the Configuration Interface

The integrated Endpoint block core provides direct access to select command and status
registers in its Configuration Space. Values in these registers are modified by
Configuration Writes received from the Root Complex and cannot be modified by the user
application. Table 6-4 defines the command and status registers mapped to the
configuration port.

Table 6-4: Command and Status Registers Mapped to the Configuration Port

Port Name Direction Description

cfg_bus_number[7:0] Output | Bus Number: Default value after reset is
00h. Refreshed whenever a Type 0
Configuration Write packet is received.

cfg_device_number[4:0] Output | Device Number: Default value after reset is
00000b. Refreshed whenever a Type 0
Configuration Write packet is received.

cfg_function_number[2:0] Output | Function Number: Function number of the
core, hard wired to 000b.

cfg_status[15:0] Output | Status Register: Status register from the
Configuration Space Header.

cfg_command[15:0] Output | Command Register: Command register
from the Configuration Space Header.

cfg_dstatus[15:0] Output | Device Status Register: Device status
register from the PCI Express Extended
Capability Structure.

cfg_dcommand[15:0] Output | Device Command Register: Device control
register from the PCI Express Extended
Capability Structure.

cfg_lstatus[15:0] Output | Link Status Register: Link status register
from the PCI Express Extended Capability
Structure.

cfg_lcommand[15:0] Output | Link Command Register: Link control
register from the PCI Express Extended
Capability Structure.

92 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Design with Configuration Space Registers and Configuration Interface

Device Control and Status Register Definitions

cfg_bus_number[7:0], cfg_device_number[4:0], cfg_function_number[2:0]

Together, these three values comprise the core ID, which the core captures from the

corresponding fields of inbound Type 0 Configuration Write accesses. The user application
is responsible for using this core ID as the Requestor ID on any requests it originates, and
using it as the Completer ID on any Completion response it sends. This core supports only
one function; for this reason, the function number is hardwired to 000b.

cfg_status[15:0]

This bus allows the user application to read the Status register in the PCI Configuration

Space Header. Table 6-5 defines these bits. See the PCI Express Base Specification for detailed

information.

Table 6-5: Bit Mapping on Header Status Register

Bit Name
cfg_status[15] Detected Parity Error
cfg_status[14] Signaled System Error
cfg_status[13] Received Master Abort
cfg_status[12] Received Target Abort
cfg_status[11] Signaled Target Abort

cfg_status[10:9]

DEVSEL Timing (hardwired to 00b)

cfg_status[8]

Master Data Parity Error

cfg_status[7]

Fast Back-to-Back Transactions Capable (hardwired to 0)

cfg_status[6]

Reserved

cfg_status[5]

66 MHz Capable (hardwired to 0)

cfg_status[4]

Capabilities List Present (hardwired to 1)

cfg_status[3]

Interrupt Status

cfg_status[2:0]

Reserved

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

93

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

cfg_command[15:0]

This bus reflects the value stored in the Command register in the PCI Configuration Space
Header. Table 6-6 provides the definitions for each bit in this bus. See the PCI Express Base
Specification for detailed information.

Table 6-6: Bit Mapping on Header Command Register

Bit Name
cfg_command[15:11] Reserved
cfg_command[10] Interrupt Disable
cfg_command[9] Fast Back-to-Back Transactions Enable (hardwired to 0)
cfg_command][8] SERR Enable
cfg_command[7] IDSEL Stepping/Wait Cycle Control (hardwired to 0)
cfg_command[6] Parity Error Enable
cfg_command[5] VGA Palette Snoop (hardwired to 0)
cfg_command[4] Memory Write and Invalidate (hardwired to 0)
cfg_command|[3] Special Cycle Enable (hardwired to 0)
cfg_command|2] Bus Master Enable
cfg_command[1] Memory Address Space Decoder Enable
cfg_command[0] I/0O Address Space Decoder Enable

The user application must monitor the Bus Master Enable bit (cfg_command[2]) and
refrain from transmitting requests while this bit is not set. This requirement applies only to
requests; completions can be transmitted regardless of this bit.

cfg_dstatus[15:0]

This bus reflects the value stored in the Device Status register of the PCI Express Extended
Capabilities Structure. Table 6-7 defines each bit in the cfg_dstatus bus. See the PCI Express
Base Specification for detailed information.

Table 6-7: Bit Mapping on PCI Express Device Status Register

Bit Name
cfg_dstatus[15:6] Reserved
cfg_dstatus[5] Transaction Pending
cfg_dstatus[4] AUX Power Detected
cfg_dstatus[3] Unsupported Request Detected
cfg_dstatus[2] Fatal Error Detected
cfg_dstatus[1] Non-Fatal Error Detected
cfg_dstatus[0] Correctable Error Detected

94

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Design with Configuration Space Registers and Configuration Interface

cfg_dcommand[15:0]

This bus reflects the value stored in the Device Control register of the PCI Express
Extended Capabilities Structure. Table 6-8 defines each bit in the cfg_dcommand bus. See
the PCI Express Base Specification for detailed information.

Table 6-8: Bit Mapping of PCl Express Device Control Register

Bit Name
cfg_dcommand[15] Reserved
cfg_dcommand[14:12] Max_Read_Request_Size
cfg_dcommand|[11] Enable No Snoop
cfg_dcommand[10] Auxiliary Power PM Enable
cfg_dcommand[9] Phantom Functions Enable
cfg_dcommand[8] Extended Tag Field Enable
cfg_dcommand|[7:5] Max_Payload_Size
cfg_dcommand[4] Enable Relaxed Ordering
cfg_dcommand[3] Unsupported Request Reporting Enable
cfg_dcommand|[2] Fatal Error Reporting Enable
cfg_dcommand[1] Non-Fatal Error Reporting Enable
cfg_dcommand[0] Correctable Error Reporting Enable

cfg_lstatus[15:0]

This bus reflects the value stored in the Link Status register in the PCI Express Extended
Capabilities Structure. Table 6-9 defines each bit in the cfg_Istatus bus. See the PCI Express
Base Specification for details.

Table 6-9: Bit Mapping of PCI Express Link Status Register

Bit Name
cfg_lstatus[15:13] Reserved
cfg_lstatus[12] Slot Clock Configuration
cfg_lstatus[11] Reserved
cfg_lstatus[10] Reserved
cfg_lstatus[9:4] Negotiated Link Width
cfg_lstatus[3:0] Link Speed
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 95

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

cfg_lcommand[15:0]

This bus reflects the value stored in the Link Control register of the PCI Express Extended
Capabilities Structure. Table 6-10 provides the definition of each bit in cfg_lcommand bus.
See the PCI Express Base Specification for more details.

Table 6-10: Bit Mapping of PCI Express Link Control Register

Bit Name
cfg_lcommand[15:8] Reserved
cfg_lcommand [7] Extended Synch
cfg_lcommand [6] Common Clock Configuration
cfg_lcommand [5] Retrain Link (Reserved for an endpoint device)
cfg_lcommand [4] Link Disable
cfg_lcommand [3] Read Completion Boundary
cfg_lcommand[2] Reserved
cfg_lcommand [1:0] Active State Link PM Control

Accessing Additional Registers through the Configuration Port

Configuration registers that are not directly mapped to the user interface can be accessed
by configuration-space address using the ports shown in Table 2-9, page 32.

The user application must supply the read address as a DWORD address, not a byte
address. To calculate the DWORD address for a register, divide the byte address by four. For
example:

¢ The DWORD address of the Command/Status Register in the PCI Configuration Space
Header is 01h. (The byte address is 04h.)

e The DWORD address for BARO is 04h. (The byte address is 10h.)

To read any register in the configuration space shown in Table 2-2, page 23, the user
application drives the register DWORD address onto cfg_dwaddr[9:0]. The core drives the
content of the addressed register onto cfg_do[31:0]. The value on cfg_do[31:0] is qualified
by signal assertion on cfg_rd_wr_done. Figure 6-24 illustrates an example with two
consecutive reads from the Configuration Space.

I
I
o e 190]
| |
cfg_rd_en |, | \ |, \
|

|
| | | |

I | | |

|

i [>)
cfg_rd_wr_done : : : ’ : \ : : ’ : \

| | | | |

T
UG672_c6_24_090110

Figure 6-24: Example Configuration Space Access

96

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Design with Configuration Space Registers and Configuration Interface

User Implemented Configuration Space

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express enables users to optionally
implement registers in the PCI Configuration Space, the PCI Express Extended
Configuration Space, or both, in the user application. The user application is required to
return Config Completions for all address within this space. For more information about
enabling and customizing this feature, see Chapter 5, Generating and Customizing the
Core.

PCI Configuration Space

If the user chooses to implement registers within 0x6C to OXFF in the PCI Configuration
Space, the start address of the address region they wish to implement can be defined
during the core generation process.

The user application is responsible for generating all Completions to Configuration Reads
and Writes from the user-defined start address to the end of PCI Configuration Space
(OxFF). Configuration Reads to unimplemented registers within this range should be
responded to with a Completion with 0x00000000 as the data, and configuration writes
should be responded to with a successful Completion.

For example, to implement address range 0x CO to Ox CF, there are several address ranges
defined that should be treated differently depending on the access. Table 6-11 shows more
details on this example.

Table 6-11: Example: User Implemented Space 0xCO0 to OXCF

Configuration Writes Configuration Reads
0x00 to OxBF | Core responds automatically Core responds automatically
0xC0 to OXCF | User application responds with User application responds with

Successful Completion register contents
0xD0 to OXFF | User application responds with User application responds with
Successful Completion 0x00000000

PCI Express Extended Configuration Space

The starting address of the region in the PCI Express Extended Configuration Space that is
optionally available for users to implement depends on the PCI Express Extended
Capabilities the user has enabled in the Spartan-6 FPGA Integrated Endpoint Block for
PCI Express, as shown in Table 6-12.

Table 6-12: Min Start Addresses of the User Implemented Extended Capabilities

No Capabilities Selected DSN

Starting byte address available 100h 10Ch

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express allows the user to select
the start address of the user implemented PCI Express Extended Configuration Space. This
space must be implemented in the user application. The user application is required to
generate a CplD with 0x00000000 for Configuration Read and successful Cpl for
Configuration Write to addresses in this selected range not implemented in the user
application. The user can choose to implement a Configuration Space with a start address
other than that allowed by the integrated Endpoint block for PCI Express. In such a case,
the core returns a completion with 0x00000000 for configuration accesses to the region
that the user has chosen to not implement. Table 6-13 illustrates this scenario.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 97
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Table 6-13: Example: User Defined Start Address for Configuration Space

Configuration Space Byte Address
DSN Capability 100h - 108h
Reserved Extended Configuration Space 10Ch - 164h

(Core Returns Successful Completion with 0x00000000)

User Implemented PCI Express Extended Configuration Space 168h - 47Ch

User Implemented Reserved PCI Express Extended Configuration Space 480h - FFFh
(User application Returns Successful Completion with 0x00000000)

Table 6-13 illustrates an example Configuration of the PCI Express Extended
Configuration Space, with these settings:

¢ DSN Capability Enabled
* User Implemented PCI Express Extended Configuration Space Enabled
e User Implemented PCI Express Extended Configuration Space Start Address 168h

In this configuration, the DSN Capability occupies the registers at 100h-108h. The
remaining PCI Express Extended Configuration Space, starting at address 10Ch is
available to the user to implement. For this example, the user has chosen to implement
registers in the address region starting 168h.

In this scenario, the core returns successful Completions with 0x00000000 for
Configuration accesses to registers 10Ch-164h. Table 6-13 also illustrates a case where the
user only implements the registers from 168h to 47Ch. In this case, the user is responsible
for returning successful Completions with 0x00000000 for configuration accesses to
480h-FFFh.

Additional Packet Handling Requirements

The user application must manage the following mechanisms to ensure protocol
compliance, because the core does not manage them automatically.

Generation of Completions

The integrated Endpoint block core does not generate Completions for Memory Reads or
I/0 requests made by a remote device. The user is expected to service these completions
according to the rules specified in the PCI Express Base Specification.

Tracking Non-Posted Requests and Inbound Completions

The Integrated Endpoint Block for PCle does not track transmitted 1/O requests or
Memory Reads that have yet to be serviced with inbound Completions. The user
application is required to keep track of such requests using the Tag ID or other information.

Keep in mind that one Memory Read request can be answered by several Completion
packets. The user application must accept all inbound Completions associated with the
original Memory Read until all requested data has been received.

The PCI Express Base Specification requires that an endpoint advertise infinite Completion
Flow Control credits as a receiver; the endpoint can only transmit Memory Reads and I/O
requests if it has enough space to receive subsequent Completions.

98

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Reporting User Error Conditions

The integrated Endpoint block core does not keep track of receive-buffer space for
Completion. Rather, it sets aside a fixed amount of buffer space for inbound Completions.
The user application must keep track of this buffer space to know if it can transmit requests
requiring a Completion response. See Appendix D, Managing Receive-Buffer Space for
Inbound Completions for more information.

Reporting User Error Conditions

The user application must report errors that occur during Completion handling using
dedicated error signals on the core interface, and must observe the Device Power State
before signaling an error to the core. If the user application detects an error (for example, a
Completion Timeout) while the device has been programmed to a non-DO state, the user
application is responsible to signal the error after the device is programmed back to the DO
state.

After the user application signals an error, the core reports the error on the PCI Express
Link and also sets the appropriate status bit(s) in the Configuration Space. Because status
bits must be set in the appropriate Configuration Space register, the user application
cannot generate error reporting packets on the transmit interface. The type of error-
reporting packets transmitted depends on whether or not the error resulted from a Posted
or Non-Posted Request. User-reported Posted errors cause Message packets to be sent to
the Root Complex if enabled to do so through the Device Control Error Reporting bits
and/or the Status SERR Enable bit. User-reported non-Posted errors cause Completion
packets with non-successful status to be sent to the Root Complex unless the error is
regarded as an Advisory Non-Fatal Error. For more information about Advisory Non-Fatal
Errors, see Chapter 6 of the PCI Express Base Specification. Errors on Non-Posted Requests
can result in either Messages to the Root Complex or Completion packets with non-
Successful status sent to the original Requester.

Error Types

The user application triggers six types of errors using the signals defined in Table 2-9,
page 32.

¢ End-to-end CRC ECRC Error

e Unsupported Request Error

e Completion Timeout Error

® Unexpected Completion Error

¢ Completer Abort Error

e Correctable Error

Multiple errors can be detected in the same received packet; for example, the same packet
can be an Unsupported Request and have an ECRC error. If this happens, only one error
should be reported. Because all user-reported errors have the same severity, the user
application design can determine which error to report. The cfg_err_posted signal,
combined with the appropriate error reporting signal, indicates what type of error-
reporting packets are transmitted. The user can signal only one error per clock cycle. See
Figure 6-25, Figure 6-26, and Figure 6-27, and Table 6-14 and Table 6-15.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 99
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Table 6-14: User-Indicated Error Signaling

Reported Error cfg_err_posted Action
None Don’t care No Action Taken
cfg_err_ur Oorl 0: If enabled, a Non-Fatal Error

Message is sent.

1: A Completion with a
“status=unsupported request” is sent.

cfg_err_cpl_abort Oor1l 0: If enabled, a Non-Fatal Error
message is sent.

1: A Completion with a
“status=unsupported request” is sent.

cfg_err_cpl_timeout Don’t care If enabled, a Non-Fatal Error Message
is sent.

cfg_err_ecrc Don’t care If enabled, a Non-Fatal Error Message
is sent.

cfg_err_cor Don’t care If enabled, a Correctable Error

Message is sent.

Table 6-15: Possible Error Conditions for TLPs Received by the User Application
Possible Error Condition Error Qualifying Signal Status
Completion . .
3 Unsupported Abort Correctable Error ECRC Error Value to Drive on Drive Data on
e Request (cfg_err_cpl (cfg_err_cor) (cfg_err_ecrc) (cfg_err_ (cfg_err_tip_cpl_
a (cfg_err_ur) - == - - - - posted) header[47:0])
- abort)
k5 Memory Write v X N/A v 0 No
=
g Memory Read v v/ N/A v/ 1 Yes
[d
lfe} v v N/A v 1 Yes
Completion X X N/A v 0 No

Notes:

1. A checkmark indicates a possible error condition for a given TLP type. For example, users can signal Unsullzported Request or ECRC Error

for a Memory Write TLP, if these errors are detected. An X indicates not a valid error condition for a given

LP type. For example, users

should never signal Completion Abort in response to a Memory Write TLP.

Whenever an error is detected in a Non-Posted Request, the user application deasserts
cfg_err_posted and provides header information on cfg_err_tlp_cpl_header[47:0] during
the same clock cycle the error is reported, as illustrated in Figure 6-25. The additional
header information is necessary to construct the required Completion with non-Successful
status. Additional information about when to assert or deassert cfg_err_posted is provided
in the following sections.

If an error is detected on a Posted Request, the user application instead asserts
cfg_err_posted, but otherwise follows the same signaling protocol. This results in a
Non-Fatal Message to be sent, if enabled.

The core's ability to generate error messages can be disabled by the Root Complex issuing
a configuration write to the Endpoint core's Device Control register and the PCI Command
register setting the appropriate bits to 0. For more information about these registers, see
Chapter 7 of the PCI Express Base Specification. However, error-reporting status bits are
always set in the Configuration Space whether or not their Messages are disabled.

100

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Reporting User Error Conditions

If several non-Posted errors are signaled on cfg_err_ur or cfg_err_cpl_abort in a short
amount of time, it is possible for the core to be unable to buffer them all. If that occurs, then
cfg_err_cpl_rdy is deasserted, and the user must cease signaling those types of errors on
the same cycle. In addition, the user must not resume signaling those types of errors until
cfg_err_cpl_rdy is reasserted.

|

user_clk_out: | | | | | | | | | | | | | | |
| t t t t t
cfg_err_cpl_rdy :_:j : : : : :
| | | | |
cfg_err_ur M\J\I |
cfg_err_posted | \ N :
| t t
| |
| |
I I
|
|
1

|

|
cfg_err_locked :
I

— 1
T
| I | | y

: Unsupéorted Re({]ues?Me%sage seni on link

|
|
|
|
|
|
|
|
|
cfg_dcommand[3] :
!
|
I
|
|
|
| |
| * Internallsignal not appearing on User Interfacel
| | | |

" UG672_c6_25 090110

Figure 6-25: Signaling Unsupported Request for Non-Posted TLP

user_clk_out : | | | | | | |

cfg_err_ur | |
I I

cfg_err_posted

cfg_err_tlp_cpl_header[47:0]

cfg_dcommand[1] : : % \¥ : :

|

|

|

[

[

I

| |
| |
! Yy
|

|

|

|

|

|

| | | | | Nl

| | Npn-Fatal Erjor Messagg sent on lipk

| | | | | |

: *:Internal siglhal not app:aaring on Ulser Interfadle
UG672_c6_26_083110

Figure 6-26: Signaling Unsupported Request for Posted TLP

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 101
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

user_clk_out

cfg_err_cpl_rdy

:

cfg_err_ur

cfg_err_posted

I
|
|
|
|
I
|
|
I
|
|
| t
cfg_err_locked : : | , :
| N
| | |
|
|
|
I
|
|
|
|
|
|

cfg_dcommand[3]
| I | | |
Urisupporte%i Requesﬂ Messagq! sent on Ilnk
| | | | |

*Internal signal notl appearing on UserlInterface|
| | | | |

tx_data[31:0]*
| |
| |
| |
| |
| |
! ! !

UG672_c6_27_090110

Figure 6-27: Signaling Locked Unsupported Request for Locked Non-Posted TLP

Completion Timeouts

The integrated Endpoint block core does not implement Completion timers; for this
reason, the user application must track how long its pending Non-Posted Requests have
each been waiting for a Completion and trigger timeouts on them accordingly. The core
has no method of knowing when such a timeout has occurred, and for this reason does not
filter out inbound Completions for expired requests.

If a request times out, the user application must assert cfg_err_cpl_timeout, which causes
an error message to be sent to the Root Complex. If a Completion is later received after a
request times out, the user application must treat it as an Unexpected Completion.

Unexpected Completions

The integrated Endpoint block core automatically reports Unexpected Completions in
response to inbound Completions whose Requestor ID is different than the Endpoint ID
programmed in the Configuration Space. These completions are not passed to the user
application. The current version of the core regards an Unexpected Completion to be an
Advisory Non-Fatal Error (ANFE), and no message is sent. Other types of unexpected
completions are passed to the user application, and the user determines how to handle
these.

Completer Abort

If the user application is unable to transmit a normal Completion in response to a
Non-Posted Request it receives, it must signal cfg_err_cpl_abort. The cfg_err_posted
signal can also be set to 1 simultaneously to indicate Non-Posted and the appropriate
request information placed on cfg_err_tlp_cpl_header[47:0]. This sends a Completion with
non-Successful status to the original Requester, but does not send an Error Message. When
in Legacy mode if the cfg_err_locked signal is set to O (to indicate the transaction causing
the error was a locked transaction), a Completion Locked with Non-Successful status is
sent. If the cfg_err_posted signal is set to 1b (to indicate a Posted transaction), no
Completion is sent, but a Non-Fatal Error Message is sent (if enabled).

102

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

8 X||_|NX Flow Control Credit Information

Unsupported Request

If the user application receives an inbound Request it does not support or recognize, it
must assert cfg_err_ur to signal an Unsupported Request. The cfg_err_posted signal must
also be asserted or deasserted depending on whether the packet in question is a Posted or
Non-Posted Request. If the packet is Posted, a Non-Fatal Error Message is sent out (if
enabled); if the packet is Non-Posted, a Completion with a non-Successful status is sent to
the original Requester. When in Legacy mode if the cfg_err_locked signal is set to 1b (to
indicate the transaction causing the error was a locked transaction), a Completion Locked
with Unsupported Request status is sent.

The Unsupported Request condition can occur for several reasons, including;:

* Aninbound Memory Write packet violates the user application's programming
model, for example, if the user application has been allotted a 4 KB address space but
only uses 3 KB, and the inbound packet addresses the unused portion. (Note: If this
occurs on a Non-Posted Request, the user application should use cfg_err_cpl_abort to
flag the error.)

¢ Aninbound packet uses a packet Type not supported by the user application, for
example, an I/O request to a memory-only device.

ECRC Error

The integrated Endpoint block core does not check the ECRC field for validity. If the user
application chooses to check this field, and finds the CRC is in error, it can assert
cfg_err_ecrc, causing a Non-Fatal Error Message to be sent.

Flow Control Credit Information

Using the Flow Control Credit Signals

The integrated Endpoint block provides the user application with information about the
state of the Transaction Layer transmit and receive buffer credit pools. This information
represents the current space available, as well as the credit “limit” and “consumed”
information for the Posted, Non-Posted, and Completion pools.

Table 2-8, page 29 defines the Flow Control Credit signals. Credit status information is
presented on these signals:

e fc_ph[7:0]

e fc_pd[11:0]

e fc_nph([7:0]

e fc_npd[11:0]

e fc_cplh[7:0]

e fc_cpld[11:0]

Collectively, these signals are referred to as fc_*.

The fc_* signals provide information about each of the six credit pools defined in the PCI
Express Base Specification: Header and Data Credits for Each of Posted, Non-Posted, and
Completion.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 103
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Six different types of flow control information can be read by the user application. The
fc_sel[2:0] input selects the type of flow control information represented by the fc_*
outputs. The Flow Control Information Types are shown in Table 6-16.

Table 6-16: Flow Control Information Types

fc_sel[2:0] Flow Control Information Type
000 Receive Credits Available Space
001 Receive Credits Limit
010 Receive Credits Consumed
011 Reserved
100 Transmit Credits Available Space
101 Transmit Credit Limit
110 Transmit Credits Consumed
111 Reserved

The fc_sel[2:0] signals can be changed on every clock cycle to indicate a different Flow
Control Information Type. There is a two clock-cycle delay between the value of fc_sel[2:0]
changing and the corresponding Flow Control Information Type being presented on the
fc_* outputs. Figure 6-28 illustrates the timing of the Flow Control Credits signals.

user_clk_out : | | | | | | |

[
fc_sel[2:0] |- 000b X 001b X 110b

|

| | | | |

| | | | | | |

| | | | | |
[
fc_* |_ RX Avail X RX Limit X TX Consumed
| T T T

UG672_c6_28_090110

Figure 6-28: Flow Control Credits

The output values of the fc_* signals represent credit values as defined in the PCI Express
Base Specification. One Header Credit is equal to either a 3 or 4 DWORD TLP Header and
one Data Credit is equal to 16 bytes of payload data. Initial credit information is available
immediately after user_Ink_up assertion, but before the reception of any TLP. Table 6-17
defines the possible values presented on the fc_* signals. Initial credit information varies
depending on the size of the receive buffers within the integrated Endpoint block and the
Link Partner.

Table 6-17: fc_* Value Definition

Header Credit Value Data Credit Value Meaning
00-7F 000 — 7FF User credits
FF- 80 FFF- 800 Negative credits available(?)
7F 7FF Infinite credits available(!)
Notes:

1. Only Transmit Credits Available Space indicate Negative or Infinite credits available.

104

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

8 X||_|NX Flow Control Credit Information

Receive Credit Flow Control Information

Receive Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 000b,
001b, or 010b. The Receive Credit Flow Control information indicates the current status of
the receive buffers within the integrated Endpoint block.

Receive Credits Available Space: fc_sel[2:0] = 000b

Receive Credits Available space shows the credit space available in the integrated
Endpoint block's Transaction Layer local receive buffers for each credit pool. If space
available for any of the credit pools is exhausted, the corresponding fc_* signal indicates a
value of zero. Receive Credits Available Space returns to its initial values after the user
application has drained all TLPs from the integrated Endpoint block.

In the case where infinite credits have been advertised to the Link Partner for a specific
Credit pool, such as Completion Credits for Endpoints, the user application should use this
value along with the methods described in Appendix D, Managing Receive-Buffer Space
for Inbound Completions to avoid completion buffer overflow.

Receive Credits Limit: fc_sel[2:0] = 001b

Receive Credits Limit show the credits granted to the link partner. The fc_* values are
initialized with the values advertised by the integrated Endpoint block during Flow
Control initialization and are updated as a cumulative count as TLPs are read out of the
Transaction Layer's receive buffers via the AXI-Stream interface. This value is referred to as
CREDITS_ALLOCATED within the PCI Express Base Specification.

In the case where infinite credits have been advertised for a specific credit pool, the Receive
Buffer Credits Limit for that pool will always indicate zero credits.

Receive Credits Consumed: fc_sel[2:0] = 010b

Receive Buffer Credits Consumed show the credits consumed by the link partner (and
received by the integrated Endpoint block). The initial f c_* values are always zero and are
updated as a cumulative count, as packets are received by the Transaction Layers receive
buffers. This value is referred to as CREDITS_RECEIVED in the PCI Express Base
Specification.

Transmit Credit Flow Control Information

Transmit Credit Flow Control Information can be obtained by setting fc_sel[2:0] to 100b,
101b, or 110b. The Transmit Credit Flow Control information indicates the current status
of the receive buffers within the Link Partner.

Transmit Credits Available Space: fc_sel[2:0] = 100b

Transmit Credits Available Space indicates the available credit space within the receive
buffers of the Link Partner for each credit pool. If space available for any of the credit pools
is exhausted, the corresponding fc_* signal indicates a value of zero or negative. Transmit
Credits Available Space returns to its initial values after the integrated Endpoint block has
successfully sent all TLPs to the Link Partner.

If the value is negative, more header or data has been written into the integrated Endpoint
block's local transmit buffers than the Link Partner can currently consume. Because the
block does not allow posted packets to pass completions, a posted packet that is written is
not transmitted if there is a completion ahead of it waiting for credits (as indicated by a
zero or negative value). Similarly, a completion that is written is not transmitted if a posted
packet is ahead of it waiting for credits. The user application can monitor the Transmit

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 105
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Credits Available Space to ensure that these temporary blocking conditions do not occur,
and that the bandwidth of the PCI Express Link is fully utilized by only writing packets to
the integrated Endpoint block that have sufficient space within the Link Partner's Receive
buffer. Non-Posted packets can always be bypassed within the integrated Endpoint block;
so, any Posted or Completion packet written will pass Non-Posted packets waiting for
credits.

The Link Partner can advertise infinite credits for one or more of the three traffic types.
Infinite credits are indicated to the user by setting the Header and Data credit outputs to
their maximum value as indicated in Table 6-17.

Transmit Credits Limit: fc_sel[2:0] = 101b

Transmit Credits Limit shows the receive buffer limits of the Link Partner for each credit
pool. The fc_* values are initialized with the values advertised by the Link Partner during
Flow Control initialization and are updated as a cumulative count as Flow Control updates
are received from the Link Partner. This value is referred to as CREDITS_LIMIT in the PCI
Express Base Specification.

In the case where infinite credits have been advertised for a specific Credit pool, the
Transmit Buffer Credits Limit always indicates zero credits for that pool.

Transmit Credits Consumed: fc_sel[2:0] = 110b

Transmit Credits Consumed show the credits consumed of the Receive Buffer of the Link
Partner by the integrated Endpoint block. The initial value is always zero and is updated as
a cumulative count, as packets are transmitted to the Link Partner. This value is referred to
as CREDITS_CONSUMED in the PCI Express Base Specification.

Power Management

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express core supports these power
management modes:

e Active State Power Management (ASPM)

¢ Programmed Power Management (PPM)

Implementing these power management functions as part of the PCI Express design
enables the PCI Express hierarchy to seamlessly exchange power-management messages
to save system power. All power management message identification functions are
implemented. The sections below describe the user logic definition to support the ASPM
and PPM modes of power management.

For additional information on ASPM and PPM implementation, see the PCI Express Base
Specification.

Active State Power Management

The Active State Power Management (ASPM) functionality is autonomous and
transparent from a user-logic function perspective. The core supports the conditions
required for ASPM.

Programmed Power Management

To achieve considerable power savings on the PCI Express hierarchy tree, the core
supports these link states of Programmed Power Management (PPM):

106

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Power Management

LO: Active State (data exchange state)
L1: Higher Latency, lower power standby state
L3: Link Off State

All PPM messages are always initiated by an upstream link partner. Programming the core
to a non-DO state, results in PPM messages being exchanged with the upstream link-
partner. The PCI Express Link transitions to a lower power state after completing a
successful exchange.

PPM LO State

The LO state represents normal operation and is transparent to the user logic. The core
reaches the L0 (active state) after a successful initialization and training of the PCI Express
Link(s) as per the protocol.

PPM L1 State

These steps outline the transition of the core to the PPM L1 state:

1.

The transition to a lower power PPM L1 state is always initiated by an upstream
device, by programming the PCI Express device power state to D3-hot (or to D1 or D2
if they are supported).

The core then throttles/stalls the user logic from initiating any new transactions on the
user interface by deasserting s_axis_tx_tready. Any pending transactions on the user
interface are however accepted fully and can be completed later.

The core exchanges appropriate power management messages with its link partner to
successfully transition the link to a lower power PPM L1 state. This action is
transparent to the user logic.

All user transactions are stalled for the duration of time when the device power state is
non-DO.

The device power state is communicated to the user logic through the user
configuration port interface. The user logic is responsible for performing a successful
read operation to identify the device power state.

The user logic, after identifying the device power state as non-D0, can initiate a request
through cfg_pm_wake to the upstream link partner to configure the device back to the
DO power state.

The user logic must poll the PME_Status bit of the PMCSR (via the Configuration
Interface). If a PME message is not acknowledged by the host within 100 ms
(+50%/-5%) by the host clearing the PME_Status bit, the Endpoint is required to
retransmit. This functionality is not provided by the Spartan-6 FPGA Integrated
Endpoint Block for PCI Express. For more information, see section 5.3.3.3.1 of the PCI
Express Base Specification v1.1.

Note: If the upstream link partner has not configured the device to allow the generation of

PM_PME messages (PME_En bit of PMCSR = 0), the assertion of cfg_pm_wake is ignored by
the core.

PPM L3 State

These steps outline the transition of the Integrated Endpoint Block for PCle core to the
PPM L3 state:

1.

The core negotiates a transition to the L23 Ready Link State upon receiving a
PME_Turn_Off message from the upstream link partner.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 107

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

user_clk_out !
rx_data[31:0]*

cfg_to_turnoff

2. Upon receiving a PME_Turn_Off message, the Endpoint core initiates a handshake
with the user logic through cfg_to_turnoff (see Table 2-8, page 29) and expects a
cfg_turnoff_ok back from the user logic.

3. A successful handshake results in a transmission of the Power Management Turn-off
Acknowledge (PME-turnoff_ack) Message by the Endpoint core to its upstream link
partner.

4. The Endpoint core closes all its interfaces, disables the Physical /Data-
Link/Transaction layers and is ready for removal of power to the core.

Power-down negotiation follows these steps:

1. Before power and clock are turned off, the Root Complex or the Hot-Plug controller in
a downstream switch issues a PME_Turn_Off broadcast message.

2. When the Endpoint PIPE for PCle core receives this TLP, it asserts cfg_to_turnoff to the
user application and starts polling the cfg_turnoff_ok input.

3. When the user application detects the assertion of cfg_to_turnoff, it must complete any
packet in progress and stop generating any new packets. After the user application is
ready to be turned off, it asserts cfg_turnoff_ok to the core. After assertion or of
cfg_turnoff_ok, the user application has committed to being turned off.

4. The Endpoint core sends a PME_TO_Ack when it detects assertion of cfg_turnoff_ok.

|
cfg_turnoff_ok |

tx_data[31:0]* |

\ \ | X PME_TO_ACK X

I I
* Int%rnal sign%ﬂ not applearing on:User Inte"face

UG672_c6_29_090110

Figure 6-29: Power Management Handshaking

Generating Interrupt Requests

The integrated Endpoint block supports sending interrupt requests as either legacy
interrupts or Message Signaled Interrupts (MSI). The mode is programmed using the MSI
Enable bit in the Message Control Register of the MSI Capability Structure. For more
information on the MSI capability structure, refer to section 6.8 of the PCI Local Base
Specification v3.0. The state of the MSI Enable bit is reflected by the
cfg_interrupt_msienable output:

e cfg_interrupt_msienable = 0: Legacy Interrupt (INTx) mode
¢ cfg_interrupt_msienable = 1: MSI mode

If the MSI Enable bit is set to a 1, the core generates MSI requests by sending Memory Write
TLPs. If the MSI Enable bit is set to 0, the core generates legacy interrupt messages as long
as the Interrupt Disable bit in the PCI Command Register is set to 0:

¢ cfg_command[10] = 0: interrupts enabled

e cfg_command[10] = 1: interrupts disabled (request are blocked by the core)

108

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Generating Interrupt Requests

The user application requests interrupt service in one of two ways, each of which are
described below. The user application must determine which method to use based on the
value of the cfg_interrupt_msienable output. When 0, the Legacy Interrupt method must
be used; when 1, the MSI method.

The MSI Enable bit in the MSI control register and the Interrupt Disable bit in the PCI
Command register are programmed by the Root Complex. The user application has no
direct control over these bits. Regardless of the interrupt type used, the user initiates
interrupt requests through the use of cfg_interrupt and cfg_interrupt_rdy as shown in
Table 6-18.

Table 6-18: Interrupt Signalling

Port Name Direction Description

cfg_interrupt Input Assert to request an interrupt. Leave asserted until the
interrupt is serviced.

cfg_interrupt_rdy Output | Asserted when the core accepts the signaled interrupt
request.

The user application requests interrupt service in one of two ways, each of which are
described below.

MSI Mode

¢ Asshown in Figure 6-30, the user application first asserts cfg_interrupt. Additionally
the user application supplies a value on cfg_interrupt_di[7:0] if Multi-Vector MSI is
enabled (see below).

* The core asserts cfg_interrupt_rdy to signal that the interrupt has been accepted and
the core sends a MSI Memory Write TLP. On the following clock cycle, the user
application deasserts cfg_interrupt if no further interrupts are to be sent.

The MSI request is either a 32-bit addressable Memory Write TLP or a 64-bit addressable
Memory Write TLP. The address is taken from the Message Address and Message Upper
Address fields of the MSI Capability Structure, while the payload is taken from the
Message Data field. These values are programmed by system software through
configuration writes to the MSI Capability structure. When the core is configured for
Multi-Vector MSI, system software can permit Multi-Vector MSI messages by
programming a non-zero value to the Multiple Message Enable field.

The type of MSI TLP sent (32-bit addressable or 64-bit addressable) depends on the value
of the Upper Address field in the MSI capability structure. By default, MSI messages are
sent as 32-bit addressable Memory Write TLPs. MSI messages use 64-bit addressable
Memory Write TLPs only if the system software programs a non-zero value into the Upper
Address register.

When Multi-Vector MSI messages are enabled, the user application can override one or
more of the lower-order bits in the Message Data field of each transmitted MSI TLP to
differentiate between the various MSI messages sent upstream. The number of lower-order
bits in the Message Data field available to the user application is determined by the lesser
of the value of the Multiple Message Capable field, as set in the CORE Generator software,
and the Multiple Message Enable field, as set by system software and available as the
cfg_interrupt_mmenable[2:0] core output. The core masks any bits in cfg_interrupt_di[7:0]
which are not configured by system software via Multiple Message Enable.

This pseudo-code shows the processing required:

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 109
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

/1 Value MSI _Vector_Num nmust be in range: 0 <MSl_Vector_Num <
(2”~cfg_interrupt_nmenable)-1

if (cfg_interrupt_nsienable) { /1 MBIl Enabl ed
if (cfg_interrupt_nmenable > 0) { // Milti-Vector MSI Enabl ed
cfg_interrupt _di[7:0] = {Paddi ng_0s, MsI_Vector_Nuni;
} else { /1 Single-Vector MSI Enabled
cfg_interrupt_di[7:0] = Padding_0Os;

} else {
/'l Legacy Interrupts Enabl ed

}

For example:

1. If cfg_interrupt_mmenable[2:0] == 000b, i.e., 1 MSI Vector Enabled,
then cfg_interrupt_di[7:0] = 00h;

2. if cfg_interrupt_mmenable[2:0] == 101b, i.e., 32 MSI Vectors Enabled,
then cfg_interrupt_di[7:0] = {{000b}, {MSI_Vector#}};

where MSI_Vector# is a 5-bit value and is allowed to be 00000b <MSI_Vector#<11111b

110 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Generating Interrupt Requests

Legacy Interrupt Mode

As shown in Figure 6-30, the user application first asserts cfg_interrupt and
cfg_interrupt_assert to assert the interrupt. The user application should select a
specific interrupt (INTA, INTB, INTC, or INTD) using cfg_interrupt_di[7:0] as shown
in Table 6-19.

The core then asserts cfg_interrupt_rdy to indicate the interrupt has been accepted.
On the following clock cycle, the user application deasserts cfg_interrupt and, if the
Interrupt Disable bit in the PCI Command register is set to 0, the core sends an assert
interrupt message (Assert_INTA, Assert_INTB, and so forth).

After the user application has determined that the interrupt has been serviced, it
asserts cfg_interrupt while deasserting cfg_interrupt_assert to deassert the interrupt.
The appropriate interrupt must be indicated via cfg_interrupt_di[7:0].

The core then asserts cfg_interrupt_rdy to indicate the interrupt deassertion has been
accepted. On the following clock cycle, the user application deasserts cfg_interrupt
and the core sends a deassert interrupt message (Deassert_INTA, Deassert_INTB, and
so forth).

fg_interrupt_msienable | !
cfg_interrupt |
cfg_interrupt_di
cfg_interrupt_assert

cfg_interrupt_rdy

\

V|
\ X INTA
)

{

INTA

\

=4

_|

>

—
——— C—~_C~N~ /A~
T T)

:

fg_interrupt_msienable !

cfg_interrupt |

|
cfg_interrupt_di |-

cfg_interrupt_rdy | |

|

——— C—N_—
)
S) O R RN
g e B e |

;

UG672_c6_30_09011

Figure 6-30: Requesting Interrupt Service: MSI and Legacy Mode

Table 6-19: Legacy Interrupt Mapping
cfg_interrupt_di[7:0] value Legacy Interrupt
00h INTA
01h INTB
02h INTC
03h INTD

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com 111

http://www.xilinx.com

Chapter 6: Designing with the Core & XILINX.

Clocking and Reset of the Integrated Endpoint Block Core

Reset

Clocking

The Integrated Endpoint Block for PCI Express core uses sys_reset to reset the system. This
is an asynchronous reset signal asserted during the PCI Express Fundamental Reset.
Asserting this signal causes a hard reset of the entire core, including the transceivers. After
the reset is released, the core attempts to link train and resume normal operation. In a
typical endpoint application, for example, an add-in card, a sideband reset signal is
normally present and should be connected to sys_reset. For endpoint applications that do
not have a sideband system reset signal, the initial hardware reset should be generated
locally. Three reset events can occur in PCI Express:

¢ Cold Reset. A Fundamental Reset that occurs at the application of power. The signal
sys_reset is asserted to cause the cold reset of the core.

¢ Warm Reset. A Fundamental Reset triggered by hardware without the removal and
re-application of power. The sys_reset signal is asserted to cause the warm reset to the
core.

¢ Hot Reset: In-band propagation of a reset across the PCI Express Link through the
protocol. In this case, sys_reset is not used. In the case of Hot Reset, the
received_hot_reset signal is asserted to indicate the source of the reset.

The user application interface of the core has an output signal called user_reset_out. This
signal is deasserted synchronously with respect to user_clk_out. user_reset_out is asserted
as a result of any of these conditions:

¢ Fundamental Reset: Occurs (cold or warm) due to assertion of sys_reset.

e PLL within the core: Loses lock, indicating an issue with the stability of the clock
input.

* Loss of Transceiver PLL Lock: The Lane 0 transceiver loses lock, indicating an issue
with the PCI Express link.

The user_reset_out signal deasserts synchronously with user_clk_out after all of the above
reasons are resolved, allowing the core to attempt to train and resume normal operation.

Important Note: Systems designed to the PCI Express electro-mechanical specification
provide a sideband reset signal, which uses 3.3V signaling levels—see the FPGA device
data sheet to understand the requirements for interfacing to such signals.

The integrated Endpoint block core input system clock signal is called sys_clk. The core
accepts a 100 or 125 MHz clock input. The clock frequency used must match the clock
frequency selection in the CORE Generator software GUI. For more information, see
Answer Record 18329.

In a typical PCI Express solution, the PCI Express reference clock is a spread spectrum
clock (SSC), provided at 100 MHz. In most commercial PCI Express systems, SSC cannot be
disabled. For more information regarding SSC and PCI Express, see section 4.3.1.1.1 of the
PCI Express Base Specification.

112

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/answers/18329.htm

& XILINX. Clocking and Reset of the Integrated Endpoint Block Core

Synchronous and Non-Synchronous Clocking

There are two ways to clock the PCI Express system:
* Using synchronous clocking, where a shared clock source is used for all devices.
* Using non-synchronous clocking, where each device has its own clock source.

Important Note: Xilinx recommends that designers use synchronous clocking when
using the core. All add-in card designs must use synchronous clocking due to the
characteristics of the provided reference clock. See the Spartan-6 FPGA GTP
Transceivers User Guide and device data sheet for additional information regarding
reference clock requirements.

For synchronous clocked systems, each link partner device shares the same clock source.
When using the 125 MHz reference clock option, an external PLL must be used to do a
multiply of 5/4 to convert the 100 MHz clock to 125 MHz, as illustrated in Figure 6-32 and
Figure 6-33. See Answer Record 18329 for more information about clocking requirements.

Further, even if the device is part of an embedded system, if the system uses commercial
PCI Express root complexes or switches along with typical mother board clocking
schemes, synchronous clocking should still be used as shown in Figure 6-32.

Figure 6-31, Figure 6-32, and Figure 6-33 illustrate high-level representations of the board
layouts. Designers must ensure that proper coupling, termination, and so forth are used
when laying out the board.

(PCI Express Gen 1 Add-In Card)

Spartan-6 FPGA

PCI Express
_> .
Endpoint
Device
100 MHz with SSC —
GTP

PCI Express Clock
Transceivers

AN

[
PCle Link
Mur a10d

g

A4

PCI Express Connector

+
|
PCle Link

UG672_c6_31_083110

Figure 6-31: Spartan-6 FPGA PCIl Express Gen 1 Using 100 MHz Reference Clock

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 113
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/answers/18329.htm

& XILINX.

Chapter 6: Designing with the Core

N
Embedded System Board
N 4
PCI Express < PCle Link 2
Switch or Root a § Spartan-6 FPGA
Complex _ = Endpoint
Device PCle Link > g
J -
A A A A
100 MHz 125 MHz
100 MHz
PCI Express >
Clock Oscillator - External PLL
J

UG672_c6_32_083110

Figure 6-32: Embedded System Using 125 MHz Reference Clock

114

~
PCI Express Add-In Card
4)
+
- Spartan-6 FPGA
External PLL 125 MHz Endpoint
A GTP
_ Transceivers J
1L /\
100 MHz with SSC x e,
PCI Express Clock 3 g
2 C _J
) i
o ~
PCI Express Connector
X
S
-
+ — |@
)
o
UG672_c6_33_083110
Figure 6-33: Open System Add-In Card Using 125 MHz Reference Clock
www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Chapter 7

Core Constraints

The Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® solution requires the
specification of timing and other physical implementation constraints to meet specified
performance requirements for PCI Express. These constraints are provided with the
Endpoint Solution in a User Constraints File (UCF). Pinouts and hierarchy names in the
generated UCF correspond to the provided example design.

To achieve consistent implementation results, a UCF containing these original, unmodified
constraints must be used when a design is run through the Xilinx tools. For additional
details on the definition and use of a UCF or specific constraints, see the Xilinx Libraries
Guide and/or Development System Reference Guide.

Constraints provided with the integrated Endpoint block solution have been tested in
hardware and provide consistent results. Constraints can be modified, but modifications
should only be made with a thorough understanding of the effect of each constraint.
Additionally, support is not provided for designs that deviate from the provided
constraints.

Contents of the User Constraints File

Although the UCF delivered with each core shares the same overall structure and sequence
of information, the content of each core’s UCF varies. The sections that follow define the
structure and sequence of information in a generic UCF file.

Part Selection Constraints: Device, Package, and Speed Grade

The first section of the UCF specifies the exact device for the implementation tools to
target, including the specific part, package, and speed grade. In some cases, device-specific
options can be included. The device in the UCF reflects the device chosen in the

CORE Generator software project.

User Timing Constraints

The User Timing constraints section is not populated; it is a placeholder for the designer to
provide timing constraints on user-implemented logic.

User Physical Constraints

The User Physical constraints section is not populated; it is a placeholder for the designer
to provide physical constraints on user-implemented logic.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 115
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 7: Core Constraints & XILINX.

Core Pinout and I/O Constraints

The Core Pinout and I/O constraints section contains constraints for I/Os belonging to the
core's System (SYS) and PCI Express (PCI_EXP) interfaces. It includes location constraints
for pins and I/0 logic as well as I/O standard constraints.

Core Physical Constraints

Physical constraints are used to limit the core to a specific area of the device and to specify
locations for clock buffering and other logic instantiated by the core.

Core Timing Constraints

This Core Timing constraints section defines clock frequency requirements for the core and
specifies which nets the timing analysis tool should ignore.

Required Modifications

Some constraints provided in the UCF utilize hierarchical paths to elements within the
integrated Endpoint block core. These constraints assume an instance name of core for the
core. If a different instance name is used, replace core with the actual instance name in all
hierarchical constraints.

For example:
Using xilinx_pcie_ep as the instance name, the physical constraint

INST core/GT_i/tileO_gtpal_dual _w apper_i/gtpal_dual _i
LOC = GTPA1_DUAL_X0YO

becomes

INST xilinx_pcie_ep/GTI_i/tileO_gtpal_dual wapper_i/gtpal_dual _i
LOC = GIPA1_DUAL_X0YO

The provided UCF includes a line specifying attributes for the sys_reset pin, but it is up to
the user to un-comment that line and provide a pin location. In addition, the UCF includes
blank sections for constraining user-implemented logic. While the constraints provided
adequately constrain the integrated Endpoint block core itself, they cannot adequately
constrain user-implemented logic interfaced to the core. Additional constraints must be
implemented by the designer.

Device Selection

The device selection portion of the UCF informs the implementation tools which part,
package, and speed grade to target for the design. Because integrated Endpoint block cores
are designed for specific part and package combinations, this section should not be
modified by the designer.

The device selection section always contains a part selection line, but can also contain part
or package-specific options. An example part selection line:

CONFI G PART = xc6sl x45t - f gg484- 2;

116 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Core I/O Assignments

Core I/0O Assignments

This section controls the placement and options for I/Os belonging to the core's System
(SYS) interface and PCI Express (PCI_EXP) interface. NET constraints in this section
control the pin location and I/O options for signals in the SYS group. Locations and
options vary depending on which derivative of the core is used and should not be changed
without fully understanding the system requirements.

For example:

Y4;
Y3;

NET sys_clk_p LOC
NET sys_clk_n LOC

See Clocking and Reset of the Integrated Endpoint Block Core, page 112 for detailed
information about reset and clock requirements.

Each GTPA1_DUAL tile contains two transceivers. Any GTPA1_DUAL tile along the top
edge of the device can be used with the integrated Endpoint block for PCle. Either of the
two transceivers in the GTPA1_DUAL tile can be used. For GTPA1_DUAL pinout
information, see the Spartan-6 FPGA GTP Transceivers User Guide.

INST constraints are used to control placement of signals that belong to the PCI_EXP
group. These constraints control the location of the transceiver(s) used, which implicitly
controls pin locations for the transmit and receive differential pair. The provided
transceiver wrapper file consumes both transceivers in a tile even though only one is used.

For example:

I NST core/GI_i/tile0_gtpal_dual _wapper_i/gtpal_dual i LOC =
GTPA1_DUAL_X0YO;

Core Physical Constraints

Physical constraints can be included in the constraints file to control the location of
clocking and memory elements. Specific physical constraints are chosen to match each
supported device and package combination—itis very important to leave these constraints
unmodified except for changing the hierarchical name, as described above.

Core Timing Constraints

Timing constraints are provided for all integrated Endpoint block solutions, although they
differ based on core configuration. In all cases they are crucial and must not be modified,
except to specify the top-level hierarchical name. Timing constraints are divided into two
categories:

* TIG constraints. Used on paths where specific delays are unimportant, to instruct the
timing analysis tools to refrain from issuing Unconstrained Path warnings.

¢ Frequency constraints. Group clock nets into time groups and assign properties and
requirements to those groups.

TIG constraints example:

NET sys_reset TIG

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 117
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 7: Core Constraints

& XILINX.

Clock constraints example:

First, the input reference clock period is specified, which can be either 100 or 125 MHz
(selected in the CORE Generator™ software GUI).

NET sys_clk_c PERI OD = 8ns;

Next, the internally generated clock net and period is specified, which can be 100 or
125 MHz. (Both clock constraints must be specified as having the same period.)

NET core/gt_refclk_out(0) TNM NET = GI_REFCLK _QUT ;
TI MESPEC TS_GT_REFCLK _OUT = PERI OD GI_REFCLK _QUT 8ns HI GH 50 % ;

Relocating the Integrated Endpoint Block

While Xilinx does not provide technical support for designs whose system clock input,
GTP transceivers, or block RAM locations are different from the provided examples, it is
possible to relocate the core within the FPGA. The locations selected in the provided
examples are the recommended pinouts. These locations have been chosen based on the
proximity to the Endpoint Block, which enables meeting timing, and because they are
conducive to layout requirements for add-in card design. If the core is moved, the relative
location of all transceivers and clocking resources should be maintained to ensure timing
closure.

Supported Core Pinouts

Table 7-1 defines the supported core pinouts for the available LXT part and package
combinations. The CORE Generator software provides a UCF for the selected part and
package that matches the content of this table.

Table 7-1: Spartan-6 FPGA LXT Pinout

c o c o
— < o X X x X
Q ' ! 7 7 7 7
= = = o o o o
Package Part GTPA1 DUAL = o o X x x x
s o o) o) o
5 < < Cl _l Tl _l
[%2] (%2] (% o (&) (8]
o o o o
XC6SLX25T
0 A8 B8 A4 B4 C5 D5
XC6SLX45T
X0YO0
XC6SLX25T
CSG324 1 9 D9 A6 B6 c7 D7
XC6SLX45T
XC6SLX45T 0 Al10 B10 Al2 B12 C11 D11
X1Y0
XC6SLX45T 1 E10 F10 Al4 B14 C13 D13
XC6SLX45T 0 Al0 B10 A6 B6 c7 D7
X0YO0
XC6SLX45T 1 c1 D11 A8 B8 9 D9
CSG484
XC6SLX45T 0 A12 B12 Al4 B14 C13 D13
X1Y0
XC6SLX45T 1 E14 F14 Al6 B16 C15 D15
118 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Supported Core Pinouts

Table 7-1: Spartan-6 FPGA LXT Pinout (Cont'd)

C o < o
— c o X X X X
e ~ ~ | | | |
Package Part GTPAL_DUAL| £ 5 el =3 =3 =3 3
c » » () (] () (]
(@) > > ._| | | __|
w " [&] o (8] Q
o o o o
XC6SLX75T
XC6SLX100T 0 A10 B10 A6 B6 c7 D7
XC6SLX150T
X0Y1
XC6SLX75T
XC6SLX100T 1 c1 D11 A8 B8 C9 D9
XC6SLX150T
CSG484
XC6SLX75T
XC6SLX100T 0 Al2 B12 Ald B14 C13 D13
XC6SLX150T
X1Y1
XC6SLX75T
XC6SLX100T 1 El4 Fl4 Al6 Bl6 C15 D15
XC6SLX150T
XC6SLX25T
0 B10 A10 A6 B6 c7 D7
XC6SLX45T
X0Y0
XC6SLX25T
FGG484 1 D11 c11 A8 BS C9 D9
XC6SLX45T
XC6SLX45T 0 B12 A12 Ald B14 C13 D13
X1Y0
XC6SLX45T 1 F12 E12 A16 Bl16 C15 D15
XC6SLX75T
XC6SLX100T 0 B10 A10 A6 B6 C7 D7
XC6SLX150T
X0Y1
XC6SLX75T
XC6SLX100T 1 D11 c1l A8 BS Q9 D9
XC6SLX150T
FGG484
XC6SLX75T
XC6SLX100T 0 B12 Al2 Al4 B14 C13 D13
XC6SLX150T
X1Y1
XC6SLX75T
XC6SLX100T 1 F12 E12 Al6 B16 C15 D15
XC6SLX150T

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

119

http://www.xilinx.com

Chapter 7: Core Constraints

& XILINX.

Table 7-1: Spartan-6 FPGA LXT Pinout (Cont'd)

c Q. c o
— ey o X X x x
:E | x| x o ! 2 o
Package Part GTPA1_DUAL g © © x x x x
c » » Cl.)| GJl [$) ()
O 8 8 — — ._| ._|
]] o (% [&] (8]
Q. Q. Q. Q.
XC6SLX75T
XC6SLX100T 0 Al10 B10 A6 B6 Cc7 D7
XC6SLX150T
X0Y1
XC6SLX75T
XC6SLX100T 1 C11 D11 A8 B8 9 D9
XC6SLX150T
FGG676
XC6SLX75T
XC6SLX100T 0 C15 D15 A18 B18 Cc17 D17
XC6SLX150T
X1Y1
XC6SLX75T
XC6SLX100T 1 Al6 B16 A20 B20 C19 D19
XC6SLX150T
XC6SLX100T
0 A13 B13 A9 B9 C10 D10
XC6SLX150T
X0Y1
XC6SLX100T
1 C14 D14 All B11 C12 D12
XC6SLX150T
FGG900
XC6SLX100T
0 C18 D18 A21 B21 C20 D20
XC6SLX150T
X1Y1
XC6SLX100T
1 A19 B19 A23 B23 Cc22 D22
XC6SLX150T
120 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 8

FPGA Configuration

This chapter discusses how to configure the Spartan®-6 FPGA so that the device can link
up and be recognized by the system. This information is provided so the user can choose
the correct FPGA configuration method for the system and verify that it works as expected.

This chapter discusses how specific requirements of the PCI Express Base Specification and
PCI Express Card Electromechanical Specification apply to FPGA configuration. Where
appropriate, Xilinx recommends that the user read the actual specifications for detailed
information. This chapter is divided into four sections:

¢ Configuration Terminology. Defines terms used in this chapter.

e Configuration Access Time. Several specification items govern when an Endpoint
device needs to be ready to receive configuration accesses from the host (Root
Complex).

* Board Power in Real-World Systems. Understanding real-world system constraints
related to board power and how they affect the specification requirements.

* Recommendations. Describes methods for FPGA configuration and includes sample
problem analysis for FPGA configuration timing issues.

Configuration Terminology

In this chapter, these terms are used to differentiate between FPGA configuration and
configuration of the PCI Express device:

e Configuration of the FPGA. FPGA configuration is used.

e Configuration of the PCI Express device. After the link is active, configuration is used.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 121
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 8: FPGA Configuration & XILINX.

Configuration Access Time

In standard systems for PCI Express, when the system is powered up, configuration
software running on the processor starts scanning the PCI Express bus to discover the
machine topology.

The process of scanning the PCI Express hierarchy to determine its topology is referred to
as the enumeration process. The root complex accomplishes this by initiating configuration
transactions to devices as it traverses and determines the topology.

All PCI Express devices are expected to have established the link with their link partner
and be ready to accept configuration requests during the enumeration process. As a result,
there are requirements as to when a device needs to be ready to accept configuration
requests after power up; if the requirements are not met, the following occurs:

e If a device is not ready and does not respond to configuration requests, the root
complex does not discover it and treats it as non-existent.

¢ The operating system does not report the device's existence and the user's application
is not able to communicate with the device.

Choosing the appropriate FPGA configuration method is key to ensuring the device is able
to communicate with the system in time to achieve link up and respond to the
configuration accesses.

Configuration Access Specification Requirements

Two PCI Express specification items are relevant to configuration access:

1. Section 6.6 of PCI Express Base Specification, rev 1.1 states “A system must guarantee
that all components intended to be software visible at boot time are ready to receive
Configuration Requests within 100 ms of the end of Fundamental Reset at the Root
Complex.” For detailed information about how this is accomplished, see the
specification; it is beyond the scope of this discussion.

Xilinx compliance to this specification is validated by the PCI Express-CV tests. The PCI
Special Interest Group (PCI-SIG) provides the PCI Express Configuration Test Software to
verify the device meets the requirement of being able to receive configuration accesses
within 100 ms of the end of the fundamental reset. The software, available to any member
of the PCI-SIG, generates several resets using the in-band reset mechanism and PERST#
toggling to validate robustness and compliance to the specification.

2. Section 6.6 of PCI Express Base Specification, rev 1.1 defines three parameters necessary
“where power and PERST# are supplied.” The parameter Tpypggy, applies to FPGA
configuration timing and is defined as:

Tpyperr, - PERST# must remain active at least this long after power becomes valid.

122

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.pcisig.com
http://www.pcisig.com

& XILINX.

Configuration Access Time

The PCI Express Base Specification does not give a specific value for Tpypggy, — only its
meaning is defined. The most common form factor used by designers with the integrated
Endpoint block core is an ATX-based form factor. The PCI Express Card Electromechanical
Specification focuses on requirements for ATX-based form factors. This applies to most
designs targeted to standard desktop or server type motherboards. Figure 8-1 shows the
relationship between Power Stable and PERST#. (This figure is based on Figure 2-10 from
section 2.1 of PCI Express Card Electromechanical Specification, rev 1.1.)

K_ Power Stable I
(r | :
3.3 Vaux jj
[| |
|
3.3V/12V
I I
|
PERST#

|
A0 nhnne
ML

PCI Express Link Inactive | | | Active
|

100 ms I

T } I
PVPERL

UG672_c8_01_083110
Figure 8-1: Power Up

Section 2.6.2 of the PCI Express Card Electromechanical Specification defines Tpyprgr, as a
minimum of 100 ms, indicating that from the time power is stable the system reset is
asserted for at least 100 ms (as shown in Table 8-1).

Table 8-1: TpyperL Specification

Symbol Parameter Min Max Units
TpyvpPERL Power stable to 100 ms
PERST# inactive

From Figure 8-1 and Table 8-1, it is possible to obtain a simple equation to define the FPGA
configuration time as follows:

FPGA Configuration Time < Tpywrvip + TpvPERL Equation 8-1
Given that Tpypgg,, is defined as 100 ms minimum, this becomes:

FPGA Configuration Time < Tpyryp + 100 ms Equation 8-2

Note: Although TpywryLp is included in Equation 8-2, it has yet to be defined in this discussion
because it depends on the type of system in use. The Board Power in Real-World Systems section
defines TpyryLp for both ATX-based and non ATX-based systems.

FPGA configuration time is only relevant at cold boot; subsequent warm or hot resets do

not cause reconfiguration of the FPGA. If the design appears to be having problems due to
FPGA configuration, the user should issue a warm reset as a simple test, which resets the
system, including the PCI Express link, but keeps the board powered. If the problem does
not appear, the issue could be FPGA configuration time related.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 123
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 8: FPGA Configuration & XILINX.

Board Power in Real-World Systems

Several boards are used in PCI Express systems. The ATX Power Supply Design
specification, endorsed by Intel, is used as a guideline and for this reason followed in the
majority of mother boards and 100% of the time if it is an Intel-based motherboard. The
relationship between power rails and power valid signaling is described in the ATX 12V
Power Supply Design Guide. Figure 8-2, redrawn here and simplified to show the
information relevant to FPGA configuration, is based on the information and diagram
found in section 3.3 of the ATX 12V Power Supply Design Guide. For the entire diagram and
definition of all parameters, see the ATX 12V Power Supply Design Guide.

Figure 8-2 shows that power stable indication from Figure 8-1 for the PCI Express system is
indicated by the assertion of PWR_OK. PWR_OK is asserted High after some delay once
the power supply has reached 95% of nominal.

> T |<—
‘ |
VAC |

. |

|

PS_ON# |

|
+12VDC 95%

+5VDC o/P's
+3.3VDC

10%

PWR_OK

T1 =Power OnTime (T1 < 500 ms)

T2 =Risetime (0.1 ms <=T2 <=20 ms)

T3 =PWR_OK Delay (100 ms < T3 < 500 ms)
T4 = PWR_OKrisetime (T4 <= 10 ms)

UG672_c8_02_083110
Figure 8-2: ATX Power Supply

Figure 8-2 shows that power is actually valid before PWR_OK is asserted High. This is
represented by T3 and is the PWR_OK delay. The ATX 12V Power Supply Design Guide
defines PWR_OK as 100 ms < T3 < 500 ms, indicating the following: From the point at
which the power level reaches 95% of nominal, there is a minimum of at least 100 ms but
no more than 500 ms of delay before PWR_OK is asserted. Remember, according to the PCI
Express Card Electromechanical Specification, the PERST# is guaranteed to be asserted a
minimum of 100 ms from when power is stable indicated in an ATX system by the
assertion of PWR_OK.

Again, the FPGA configuration time equation is:
FPGA Configuration Time < Tpywryp + 100 ms Equation 8-3

TpwryLD is defined as PWR_OK delay period, that is, Tpywgry p represents the amount of
time that power is valid in the system before PWR_OK is asserted. This time can be added
to the amount of time the FPGA has to configure. The minimum values of T2 and T4 are
negligible and considered zero for purposes of these calculations. For ATX-based

124

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf
http://www.formfactors.org/developer/specs/ATX12V_PSDG_2_2_public_br2.pdf

8 X||_|NX Recommendations

motherboards, which represent the majority of real-world motherboards in use, Tpywryr D
can be defined as:

100 ms STPWRVLD <500 ms

This provides the following requirement for FPGA configuration time in both ATX and
non-ATX-based motherboards:

¢ FPGA Configuration Time <200 ms (for ATX based motherboard)
e FPGA Configuration Time <100 ms (for non-ATX based motherboard)

The second equation for the non-ATX based motherboards assumes a Tpygryrp value of
0 ms because it is not defined in this context. Designers with non-ATX based motherboards
should evaluate their own power supply design to obtain a value for TpygryiD-

This chapter assumes that the FPGA power (V) is stable before or at the same time as
PWR_OK is asserted. If this is not the case, additional time must be subtracted from the
available time for FPGA configuration. Xilinx recommends to avoid designing add-in
cards that have staggered voltage regulators with long delays.

Hot-Plug Systems

Hot-plug systems generally employ the use of a hot-plug power controller located on the
system motherboard. Many discrete hot-plug power controllers extend Tpypgr;, beyond
the minimum 100 ms. Add-in card designers should consult the hot-plug power controller
data sheet to determine the value of Tpypggy - If the hot-plug power controller is unknown,
a Tpypgry, value of 100 ms should be assumed.

Recommendations

Xilinx recommends using a Quad-SPI Flash device in Master Serial/SPI mode with a
CCLK frequency of 33 MHz, which allows time for the FPGA configuration of the
Spartan-6 FPGA in ATX-based motherboards. Configuration options are shown as green
cells in Table 8-2 and Table 8-3 depending on the type of system in use. This section
discusses these recommendations and includes sample analysis of potential problems that
might arise during FPGA configuration.

FPGA Configuration Times for Spartan-6 Devices
During power up, the FPGA configuration sequence is performed in four steps:

1. Wait for POR (Power on Reset) for all voltages (Vccl nt, Vccaux, and VccO) in the
FPGA to trip, referred to as POR Trip Time

2. Wait for completion (deassertion) of | NI T to allow the FPGA to initialize before
accepting a bitstream transfer.

Note: As a general rule, steps 1 and 2 require <50ms

3. Wait for assertion of DONE, the actual time required for a bitstream to transfer, and
depends on:

* Bitstream size

¢ Clock frequency

e Transfer mode used in the Flash Device
- SPI = Serial Peripheral Interface
- BPI = Byte Peripheral Interface

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 125
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 8: FPGA Configuration & XILINX.

- PFP = Platform Flash PROMs

For detailed information about the configuration process, see the Spartan-6 FPGA
Configuration User Guide.

Table 8-2 and Table 8-3 show the comparative data for all Spartan-6 FPGA LXT devices
with respect to a variety of flash devices and programming modes. The default clock rate
for configuring the device is always 2 MHz. Any reference to a different clock rate implies
a change in the settings of the device being used to program the FPGA. The configuration
clock (CCLK), when driven by the FPGA, has variation and is not exact. See UG380,
Spartan-6 FPGA Configuration Guide, for more information on CCLK tolerances.

Configuration Time Matrix: ATX Motherboards

Table 8-2 shows the configuration methods that allow the device to be configured before
the end of the fundamental reset in ATX-based systems. The table values represent the
bitstream transfer time only. The matrix is color-coded to show which configuration
methods allow the device to configure within 200 ms once the FPGA initialization time is
included. Choose a configuration method shaded in green when using ATX-based systems
to ensure that the device is recognized.

Table 8-2: Configuration Time Matrix (ATX Motherboards): Spartan-6 FPGA
Bitstream Transfer Time in Milliseconds

: : XCF32P(2)
- @

Spartan-6 FPGA Bitstream (Bits) SPIx4 (Slave-SMAPXS)
XC6SLX25T 6,411,440 36 25
XC6SLX45T 11,875,104 66 45
XC6SLX75T 19,624,608 110 75
XC6SLX100T 26,543,136 148 101
XC6SLX150T 33,761,568 188 128
GREEN: Bitstream Transfer Time + FPGA INIT Time (50 ms) <= 200 ms
YELLOW: Bitstream Transfer Time + FPGA INIT Time (50 ms) > 200 ms
RED: Bitstream Transfer Time > 200 ms

Notes:
1. CCLK assumptions: 45 MHz
2. CCLK assumptions: 33 MHz
126 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

8 X||_|NX Recommendations

Configuration Time Matrix: Non-ATX-Based Motherboards

Table 8-3 shows the configuration methods that allow the device to be configured before
the end of the fundamental reset in non-ATX-based systems. This assumes Tpyryrp is
zero. The table values represent the bitstream transfer time only. The matrix is color-coded
to show which configuration methods allow the device to configure within 100 ms once the
FPGA initialization time is included. Choose a configuration method shaded in green
when using non-ATX-based systems to ensure that the device is recognized.

For some of the larger FPGAs, it might not be possible to configure within the 100 ms
window. In these cases, the user system needs to be evaluated to see if any margin is
available that can be assigned to TpygryLD-

Table 8-3: Configuration Time Matrix (Generic Platforms: Non-ATX Motherboards):
Spartan-6 FPGA Bitstream Transfer Time in Milliseconds

, , XCF32P()
- @

Spartan-6 FPGA Bitstream (Bits) SPIx4 (Slave-SMAPx8)
XC6SLX25T 6,411,440 36 25
XC6SLX45T 11,875,104 66 45
XC6SLX75T 19,624,608 110 75
XC6SLX100T 26,543,136 148 101
XC6SLX150T 33,761,568 188 128

GREEN: Bitstream Transfer Time + FPGA INIT Time (50 ms) <= 100 ms
YELLOW: Bitstream Transfer Time + FPGA INIT Time (50 ms) > 100 ms
RED: Bitstream Transfer Time > 100 ms

Notes:

1. CCLK assumptions: 45 MHz
2. CCLK assumptions: 33 MHz

Sample Problem Analysis

This section presents data from an ASUS PL5 system to demonstrate the relationships
between Power Valid, FPGA Configuration, and PERST#. Figure 8-3 shows a case where
the endpoint failed to be recognized due to a FPGA configuration time issue. Figure 8-4
shows a successful FPGA configuration with the endpoint being recognized by the system.

Failed FPGA Recognition

Figure 8-3 illustrates a failed cold boot test using the default configuration time on an
LX50T FPGA. In this example, the host failed to recognize the Xilinx FPGA. Although a
second PERST# pulse assists in allowing more time for the FPGA to configure, the
slowness of the FPGA configuration clock (2 MHz) causes configuration to complete well
after this second deassertion. During this time, the system enumerated the bus and did not
recognize the FPGA.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 127
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 8: FPGA Configuration & XILINX.

(ﬁnalgzer‘](Haveform MACHINE 1](ﬁcq. Enntrnlj (Eance]] (Run]
ERicE
Hex o - 1 Screen

seElf-IZ)iv l Delay J l Markers J l ¥oto 0 J lTrig to HJ lTrig to DJ

200 ms -11.65 s Time 264.0 ms -11.57 s -11.31 s

PHE_OK E E

FERST

INIT J E

DONE E : [

LINK ; |

UG672_c8_03_083110

Figure 8-3: Default Configuration Time on LX50T Device (2 MHz Clock)

Successful FPGA Recognition

Figure 8-4 illustrates a successful cold boot test on the same system. In this test, the CCLK
was running at 50 MHz, allowing the FPGA to configure in time to be enumerated and
recognized. The figure shows that the FPGA began initialization approximately 250 ns
before PWR_OK. DONE going High shows that the FPGA was configured even before
PWR_OK was asserted.

(ﬁnalgzer‘](Haveform MACHINE 1](ﬁcq. Enntrnlj (Eance]] (Run]
off I:l - 1 Screen

Delay Harkers % to 0 Trig to X Trig to O
0 = Time B60.0 ms —276.0 ms 364.0 ms

e -
sec/Div
200 ms

FHR_OK : [:

PERST : : [

INIT F : |

DONE : |

CLK |TII § E

UG672_c8_04_083110

Figure 8-4: Fast Configuration Time on LX50T Device (50 MHz Clock)

128

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

8 X||_|NX Recommendations

Workarounds for Closed Systems

For failing FPGA configuration combinations, as represented by pink cells and yellow cells
in Table 8-2 and Table 8-3, designers might be able to work around the problem in closed
systems or systems where they can guarantee behavior. These options are not
recommended for products where the targeted end system is unknown.

1. Check if the motherboard and BIOS generate multiple PERST# pulses at start-up. This
can be determined by capturing the signal on the board using an oscilloscope. (This is
similar to what is shown in Figure 8-3. If multiple PERST#s are generated, this
typically adds extra time for FPGA configuration.

Define TpgrsrpERIOD a8 the total sum of the pulse width of PERST# and deassertion
period before the next PERST# pulse arrives. Because the FPGA is not power cycled or
reconfigured with additional PERST# assertions, the TpgrgrpERIOD NUMber can be
added to the FPGA configuration equation.

FPGA Configuration Time <Tpygryip + Tpersrreriop + 100 ms

2. Inclosed systems, it might be possible to create scripts to force the system to perform
a warm reset after the FPGA is configured, after the initial power up sequence. This
resets the system along with the PCI Express sub-system allowing the device to be
recognized by the system.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 129
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 8: FPGA Configuration & XILINX.

130 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Chapter 9

Known Restrictions

This chapter describes restrictions or issues where the integrated Endpoint block deviates
from the PCI Express Base Specification, Rev.1.1, or in cases where the specification is
ambiguous. All issues listed in this chapter are considered low impact and are not a
concern for most applications. The Comments sections describe where the associated
problem might occur so that designers can decide quickly if further investigation is
needed.

Master Data Parity Error Bit Set Incorrectly

The Master Data Parity Error bit of the Status Register is erroneously set when the Error
Poisoned status bit is set in Completion with Data TLPs.

Area of Impact

Configuration Space

Detailed Description

Transmitting a Completion with Data TLP (CplD) with the Error Poisoned (EP) bit set to 1b
causes the Master Data Parity Error bit (bit 8) in the Status Register (PCI Configuration
Space Header address 0x006) to be set. This is not allowed for Endpoints.

Comments
There are no hardware-related side effects to setting the Master Data Parity Error bit.

System software effects are system dependent; however, it is unlikely that software will
react to this bit being set in an Endpoint.

Non-Posted UpdateFC During PPM Transition

A Non-Posted UpdateFC DLLP is not sent immediately after the link transitions from
power state L1 to LO (due to PPM non-D0).

Area of Impact
Programmed Power Management (PPM)

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 131
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Chapter 9: Known Restrictions & XILINX.

Detailed Description

When the link partner has used up all of the integrated Endpoint block’s Non-Posted
credits, and then places the integrated Endpoint block into a non-D0 PPM state, the
integrated Endpoint block must immediately send a Non-Posted UpdateFC DLLP
following an exit from state L1 to LO because of a PPM change from the non-DO0 state. The
integrated Endpoint block does not send the Non-Posted UpdateFC immediately upon
entry to DO. It waits for an internal timer to time-out, which leads to temporary reduced
performance.

Comments

The probability of this error occurring is extremely low. The link partner would have to
deplete all non-posted credits in the integrated Endpoint block, and then immediately put
the integrated Endpoint block into a non-D0 PPM state. It is unlikely that users would
want to change to a non-D0 PPM state while there are outstanding non-posted requests.

To avoid this temporary condition of reduced performance, users should ensure there are
no outstanding non-posted requests before moving to a non-D0 PPM state.

132

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix A

Programmed Input/Output Example
Design

Programmed Input/Output (PIO) transactions are generally used by a PCI Express®
system host CPU to access Memory Mapped Input/Output (MMIO) and Configuration
Mapped Input/Output (CMIO) locations in the PCI Express fabric. Endpoints for

PCI Express accept Memory and 1/O Write transactions and respond to Memory and I/O
Read transactions with Completion with Data transactions.

The PIO example design (PIO design) is included with the Endpoint for PCI Express
generated by the CORE Generator™ software, which allows users to easily bring up their
system board with a known established working design to verify the link and functionality
of the board.

Note: The PIO design Port Model is shared by the Spartan®-6 FPGA Integrated Endpoint Block for
PCI Express, Endpoint Block Plus for PCI Express, and Endpoint PIPE for PCI Express solutions.
This appendix represents all the solutions generically using the name Endpoint for PCI Express (or
Endpoint for PCle®).

System Overview

The PIO design is a simple target-only application that interfaces with the Endpoint for
PCle core’s Transaction (AXI) interface and is provided as a starting point for customers to
build their own designs. The following features are included:

¢ Four transaction-specific 2 KB target regions using the internal Xilinx FPGA block
RAMs, providing a total target space of 8192 bytes

® Supports single DWORD payload Read and Write PCI Express transactions to
32-/64-bit address memory spaces and I/O space with support for completion TLPs

e Utilizes the core’s bar_hit[6:0] signals to differentiate between TLP destination Base
Address Registers

* Provides separate implementations optimized for 32-bit, 64-bit, and 128-bit AXI-
Stream interfaces

Figure A-1 illustrates the PCI Express system architecture components, consisting of a
Root Complex, a PCI Express switch device, and an Endpoint for PCle. PIO operations
move data downstream from the Root Complex (CPU register) to the Endpoint, and/or
upstream from the Endpoint to the Root Complex (CPU register). In either case, the
PCI Express protocol request to move the data is initiated by the host CPU.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 133
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

P1O Hardware

PCle
Root Complex

CPU

Main Memory
Controller
Memory Device

1; PCI_BUS_0

PCle
Port

PCI_BUS_1

PCle
Switch

PCI_BUS_X

PCle
Endpoint

UG672_cA_01_083110

Figure A-1: System Overview

Data is moved downstream when the CPU issues a store register to a MMIO address
command. The Root Complex typically generates a Memory Write TLP with the
appropriate MMIO location address, byte enables and the register contents. The
transaction terminates when the Endpoint receives the Memory Write TLP and updates the
corresponding local register.

Data is moved upstream when the CPU issues a load register from a MMIO address
command. The Root Complex typically generates a Memory Read TLP with the
appropriate MMIO location address and byte enables. The Endpoint generates a
Completion with Data TLP once it receives the Memory Read TLP. The Completion is
steered to the Root Complex and payload is loaded into the target register, completing the
transaction.

The PIO design implements a 8192 byte target space in FPGA block RAM, behind the
Endpoint for PCle. This 32-bit target space is accessible through single DWORD I/O Read,
I/0 Write, Memory Read 64, Memory Write 64, Memory Read 32, and Memory Write 32
TLPs.

The PIO design generates a completion with 1 DWORD of payload in response to a valid
Memory Read 32 TLP, Memory Read 64 TLP, or I/O Read TLP request presented to it by
the core. In addition, the PIO design returns a completion without data with successful
status for I/O Write TLP request.

The PIO design processes a Memory or I/O Write TLP with 1 DWORD payload by
updating the payload into the target address in the FPGA block RAM space.

134

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. P1O Hardware

Base Address Register Support

The PIO design supports four discrete target spaces, each consisting of a 2 KB block of
memory represented by a separate Base Address Register (BAR). Using the default
parameters, the CORE Generator software produces a core configured to work with the
PIO design defined in this section, consisting of:

® One 64-bit addressable Memory Space BAR
¢ One 32-bit Addressable Memory Space BAR

Users can change the default parameters used by the PIO design; however, in some cases
they might need to change the back-end user application depending on their system. See
Changing CORE Generator Software Default BAR Settings for information about changing
the default CORE Generator software parameters and the effect on the PIO design.

Each of the four 2 KB address spaces represented by the BARs corresponds to one of four
2 KB address regions in the PIO design. Each 2 KB region is implemented using a 2 KB
dual-port block RAM. As transactions are received by the core, the core decodes the
address and determines which of the four regions is being targeted. The core presents the
TLP to the PIO design and asserts the appropriate bits of bar_hit[6:0], as defined in

Table A-1.
Table A-1: TLP Traffic Types
Block RAM TLP Transaction Type Default BAR bar_hit[6:0]
ep_io_mem I/0O TLP transactions Disabled Disabled
ep_mem_32 32-bit address Memory 2 111_1011b
TLP transactions
ep_memo64 64-bit address Memory 0-1 111_1100b
TLP transactions
ep_mem_erom | 32-bit address Memory Exp. ROM 011_1111b
TLP transactions destined
for EROM

Changing CORE Generator Software Default BAR Settings

Users can change the CORE Generator software parameters and continue to use the PIO
design to create customized Verilog or VHDL source to match the selected BAR settings.
However, because the PIO design parameters are more limited than the core parameters,
consider these example design limitations when changing the default CORE Generator
software parameters:

* The example design supports one I/O space BAR, one 32-bit Memory space (that
cannot be the Expansion ROM space), and one 64-bit Memory space. If these limits are
exceeded, only the first space of a given type is active—accesses to the other spaces do
not result in completions.

e Each space is implemented with a 2 KB memory. If the corresponding BAR is
configured to a wider aperture, accesses beyond the 2 KB limit wrap around and
overlap the 2 KB memory space.

e The PIO design supports one I/O space BAR, which by default is disabled, but can be
changed if desired.

Although there are limitations to the PIO design, Verilog or VHDL source code is provided
so the user can tailor the example design to their specific needs.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 135
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

TLP Data Flow

This section defines the data flow of a TLP successfully processed by the PIO design. For
detailed information about the interface signals within the sub-blocks of the PIO design,
see Receive Path, page 140 and Transmit Path, page 142.

The PIO design successfully processes single DWORD payload Memory Read and Write
TLPs and I/O Read and Write TLPs. Memory Read or Memory Write TLPs of lengths
larger than one DWORD are not processed correctly by the PIO design; however, the core
does accept these TLPs and passes them along to the PIO design. If the PIO design receives
a TLP with a length of greater than 1 DWORD, the TLP is received completely from the
core and discarded. No corresponding completion is generated.

Memory and 1/0O Write TLP Processing

When the Endpoint for PCle receives a Memory or I/O Write TLP, the TLP destination
address and transaction type are compared with the values in the core BARs. If the TLP
passes this comparison check, the core passes the TLP to the Receive AXI-Stream interface
of the PIO design. The PIO design handles Memory writes and I/O TLP writes in different
ways: the PIO design responds to I/O writes by generating a Completion Without Data
(cpl), a requirement of the PCI Express specification.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive
AXI-Stream interface also asserts the appropriate bar_hit[6:0] signal to indicate to the PIO
design the specific destination BAR that matched the incoming TLP. On reception, the PIO
design’s RX State Machine processes the incoming Write TLP and extracts the TLPs data
and relevant address fields so that it can pass this along to the PIO design’s internal block
RAM write request controller.

Based on the specific bar_hit[6:0] signal asserted, the RX State Machine indicates to the
internal write controller the appropriate 2 KB block RAM to use prior to asserting the write
enable request. For example, if an I/O Write Request is received by the core targeting
BARQO, the core passes the TLP to the P1O design and asserts bar_hit[0]. The RX State
machine extracts the lower address bits and the data field from the I/O Write TLP and
instructs the internal Memory Write controller to begin a write to the block RAM.

In this example, the assertion of bar_hit[0] instructed the PIO memory write controller to
access ep_mem0 (which by default represents 2 KB of I/O space). While the write is being
carried out to the FPGA block RAM, the P1O design RX state machine deasserts the
m_axis_rx_tready, causing the Receive AXI-Stream interface to stall receiving any further
TLPs until the internal Memory Write controller completes the write to the block RAM.
Deasserting m_axis_rx_tready in this way is not required for all designs using the core—
the PIO design uses this method to simplify the control logic of the RX state machine.

Memory and I/O Read TLP Processing

When the Endpoint for PCle receives a Memory or I/O Read TLP, the TLP destination
address and transaction type are compared with the values programmed in the core BARs.
If the TLP passes this comparison check, the core passes the TLP to the Receive AXI-Stream
interface of the PIO design.

Along with the start of packet, end of packet, and ready handshaking signals, the Receive
AXI-Stream interface also asserts the appropriate bar_hit[6:0] signal to indicate to the PIO
design the specific destination BAR that matched the incoming TLP. On reception, the PIO
design’s state machine processes the incoming Read TLP and extracts the relevant TLP
information and passes it along to the PIO design's internal block RAM read request
controller.

136

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

PIO Hardware

Based on the specific bar_hit[6:0] signal asserted, the RX state machine indicates to the
internal read request controller the appropriate 2 KB block RAM to use before asserting the
read enable request. For example, if a Memory Read 32 Request TLP is received by the core
targeting the default MEM32 BAR2, the core passes the TLP to the PIO design and asserts
bar_hit[2]. The RX State machine extracts the lower address bits from the Memory 32 Read
TLP and instructs the internal Memory Read Request controller to start a read operation.

In this example, the assertion of bar_hit[2] instructs the PIO memory read controller to
access the Mem32 space, which by default represents 2 KB of memory space. A notable
difference in handling of memory write and read TLPs is the requirement of the receiving
device to return a Completion with Data TLP in the case of memory or I/O read request.

While the read is being processed, the PIO design RX state machine deasserts
m_axis_rx_tready, causing the Receive AXI-Stream interface to stall receiving any further
TLPs until the internal Memory Read controller completes the read access from the block
RAM and generates the completion. Deasserting m_axis_rx_tready in this way is not
required for all designs using the core. The PIO design uses this method to simplify the
control logic of the RX state machine.

PIO File Structure

Table A-2 defines the PIO design file structure. Based on the specific core targeted, not all
files delivered by CORE Generator software are necessary, and some files might not be
delivered. The major difference is that some of the Endpoint for PCle solutions use a 32-bit
user datapath, others use a 64-bit datapath, and the PIO design works with both. The
width of the datapath depends on the specific core being targeted.

Table A-2: PIO Design File Structure

File Description

PIO.[v | vhd]

Top-level design wrapper

PIO_EP.[v | vhd]

PIO application module

PIO_TO_CTRL.[v |vhd]

PIO turn-off controller module

PIO_32.v

32b interface macro define

PIO_64.v

64b macro define

PIO_32_RX_ENGINE.[v | vhd]

32b Receive engine

PIO_32_TX_ENGINE.[v | vhd]

32b Transmit engine

PIO_64_RX_ENGINE.[v | vhd]

64b Receive engine

PIO_64_TX_ENGINE.[v | vhd]

64b Transmit engine

PIO_EP_MEM_ACCESS.[v|vhd] | Endpoint memory access module

PIO_EP_MEM.[v | vhd]

Endpoint memory

Two configurations of the PIO Design are provided: PIO_32 and PIO_64, with 32 and 64-bit
AXI-Stream interfaces, respectively. The PIO configuration generated depends on the
selected endpoint type (that is, Spartan-6 FPGA integrated Endpoint block, PIPE, PCI

Spartan-6 FPGA Integrated Endpoint Block

www.xilinx.com 137

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

Express, and Block Plus) as well as the number of PCI Express lanes selected by the user.
Table A-3 identifies the PIO configuration generated based on the user’s selection.

Table A-3: PIO Configuration

Core x1 X2 x4 X8
Endpoint for PIPE PIO_32 NA NA NA
Endpoint for PCI Express (Soft-IP) PIO_32 NA PIO_64 PIO_64
Endpoint for PCI Express Block Plus PIO_64 NA PIO_64 PIO_64
Spartan-6 FPGA Integrated Endpoint Block | PIO_32 NA NA NA
Virtex®-6 FPGA Integrated Block PIO_64 PIO_64 PIO_64 PIO_64

Figure A-2 shows the various components of the PIO design, which is separated into four
main parts: the TX Engine, RX Engine, Memory Access Controller, and Power
Management Turn-Off Controller.

Spartan-6 FPGA Integrated Endpoint Block for PCI Express
PIO_TO_CTRL
ep_memO0
ep_mem]
EP_TX EP_RX ep_mem?2
ep_mem3
EP_MEM
PIO_EP
PIO
UG672_cA_02_083110
Figure A-2: PIO Design Components

138 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

PIO Hardware

P10 Application

Figure A-3 and Figure A-4 depict 64-bit and 32-bit PIO application top-level connectivity,
respectively. The datapath width, either 32 bits or 64 bits, depends on which Endpoint for
PCle core is used The PIO_EP module contains the PIO FPGA block RAM memory
modules and the transmit and receive engines. The PIO_TO_CTRL module is the Endpoint
Turn-Off controller unit, which responds to power turn-off message from the host CPU

with an acknowledgement.

The PIO_EP module connects to the Endpoint AXI-Stream and Configuration (cfg)

interfaces.
[tm_tdst_rdv_n
[tm_clk
[tm_rzef_n
tm_tsrc_dsc_n
[tm_tdst_dzc_n FIO EP tm_tzre_rdy_n
L o - tm_teof_n
] tm_td=t_zz_n tm_tzof_n tm_t=of_n
pio_reset_n tm_tdst_dy_n tm_teaf_n 1
tm_rzaf 1 tm_tsre_dse_n ——— PIO_TO_TRL
|tm_reof_n tm_reaf 1 trmi_tsrc_ndy_n L ik
[tm_rere_ndy _n tm_rere_dy_n tm_rdst_rdy_n Et_n
[tm_rsre_dsc_n tm_rane_1zz_n req_compl_o eq_compl_i cfg_tumoff_ok_n ofg_tumoff_okn
[efg_aus_mstr_enable cfg_busz mstr_snable compl_done_o ——H wmpl_done_j
N B — e R L) tm_10[63:0] 1 Hfate tumett_n
T E e LS tm_mrem n[7:0] tm_trem_n[7:0] _ﬁ PIO_TO
[cFa_cimpleter Td[15:0] == A g _comulater_id[15:0]
1
PIO_EP
[rfa_te_tumeff_n
UG672_cA_03_083110
Figure A-3: PIO 64-bit Application
[tn_tdst_rdy_n
[tm_clkc
[tm_td=t_dsc_n tm_tsre_rdrn
FIO EF tm_terc_d=n
ey
o T
="="r] L= tm_t=t_dsc_n tn_tzof_n tm_tzof_n
pio_reset 1 tm_tst_rdy_n tr_teof_n
—— tm_r2f_n tm_tse_dze_n P_TC_CTRL
[tm_reaf ni tm_raf_n tm_tsc_rdy_n - clk
[tm_rsre_rdy_n tm_rsc_rdy_n tm_rdt_rdy_n L——rst_n
[tm_rere_dse_n tm_reo_dse_n raq_xompl_o raq_compl_i efg_tumoff_okn cfg_tumof ak_n
[z bus_mstr_anabla cfg_bis_mstr_nable comp_done_o compl_done_i
BT s tm_rd31:0] tmid[E1 0] | EESESTIE
o sompleter_jd[15.0] : ofg_ompleterid[15:0] PIO_TO
[tm_rsof_n
PIC_EF Blbm tdED o=
cfg_to_tumoff_n
UG672_cA_04_083110
Figure A-4: PIO 32-bit Application

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

139

http://www.xilinx.com

& XILINX.

Appendix A: Programmed Input/Output Example Design

Receive Path

Figure A-5 illustrates the PIO_32_RX_ENGINE and PIO_64_RX_ENGINE modules. The
datapath of the module must match the datapath of the core being used. These modules

connect with Endpoint for PCle Receive interface.

PIO_32_Rx_Engine

m_axis_rx_tready

PlO_64_Rx_Engine

m_axis_rx_tready

req_compl_o req_compl_o

req_td_o req_td_o

clk req_ep_o clk requ_ep_o
rst_n wr_en_o rst_n wr_en_o
m_axis_rx_tdata req_tc_o[2:0] m_axis_rx_tdata req_tc_o[2:0]

m_axis_rx_tstrb

m_axis_rx_tlast

req_attr_o[1:0]

req_len_o[9:0]

m_axis_rx_tstrb

m_axis_rx_tlast

req_attr_o[1:0]

req_len_o[9:0]

m_axis_rx_tvalid req_rid_o[15:0] m_axis_rx_tvalid req_rid_o[15:0]
m_axis_rx_tuser req_tag_o[7:0] m_axis_rx_tuser req_tag_ol[7:0]
req_be_o[7:0] req_be_o[7:0]

compl_done_i

wr_busy_i

EP_Rx

req_addr_o[31:0]
wr_addr_o[10:0]
wr_be_o[7:0]

wr_data_o[31:0]

compl_done_i

wr_busy_i

EP_Rx

req_addr_o[31:0]
wr_addr_o[10:0]
wr_be_o[7:0]

wr_data_o[31:0]

Figure A-5: Rx Engines

UG671_aA_05_091410

The PIO_32_RX_ENGINE and PIO_64_RX_ENGINE modules receive and parse incoming
read and write TLPs.

The RX engine parses 1 DWORD 32 and 64-bit addressable memory and I/O read requests.
The RX state machine extracts needed information from the TLP and passes it to the
memory controller, as defined in Table A-4.

Table A-4: Rx Engine: Read Outputs

Port Description

req_compl_o Completion request (active High)

req_td_o Request TLP Digest bit
req_ep_o Request Error Poisoning bit
req_tc_o[2:0] Request Traffic Class
req_attr_o[1:0] Request Attributes
140 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

PIO Hardware

Table A-4: Rx Engine: Read Outputs (Cont'd)

Description

req_len_o[9:0]

Request Length

req_rid_o[15:0]

Request Requester Identifier

req_tag_o[7:0] Request Tag
req_be_o[7:0] Request Byte Enable
req_addr_o[10:0] Request Address

The RX Engine parses 1 DWORD 32- and 64-bit addressable memory and I/O write
requests. The RX state machine extracts needed information from the TLP and passes it to
the memory controller, as defined in Table A-5.

Table A-5: Rx Engine: Write Outputs

Description
wr_en_o Write received
wr_addr_o[10:0] Write address
wr_be_o[7:0] Write byte enable
wr_data_o[31:0] Write data

The read datapath stops accepting new transactions from the core while the application is
processing the current TLP. This is accomplished by m_axis_rx_tready deassertion. For an
ongoing Memory or I/O Read transaction, the module waits for compl_done_i input to be
asserted before it accepts the next TLP, while an ongoing Memory or I/O Write transaction
is deemed complete after wr_busy_i is deasserted.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

141

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

Transmit Path

Figure A-6 shows the PIO_32_TX_ENGINE and PIO_64_TX_ENGINE modules. The
datapath of the module must match the datapath of the core being used. These modules
connect with the core Transaction interface.

PIO_32_Tx_Engine

clk

rst_n

s_axis_rx_tready
requ_compl_i

req_td_i

req_ep_i
cfg_bus_mstr_enable_i
req_tc_i[2:0]

req_attr_i[1:0]

s_axis_tx_tdata
s_axis_tx_tstrb
s_axis_tx_tlast
s_axis_tx_tvalid

tx_src_dsc

PIO_64_Tx_Engine

clk

rst_n

s_axis_rx_tready
requ_compl_i

req_td_i

req_ep_i
cfg_bus_mstr_enable_i
req_tc_i[2:0]

req_attr_i[1:0]

s_axis_tx_tdata —
s_axis_tx_tstrb —

s_axis_tx_tlast —

req_len_i[9:0] compl_done_o |— req_len_i[9:0] s_axis_tx_tvalid —
req_rid_i[15:0] rd_addr_o[10:0] j== req_rid_i[15:0] tx_src_dsc [—
req_tag_i[7:0] rd_be 0[3:0] j=— req_tag_i[7:0] compl_done_o |—
req_be_i[7:0] req_be_i[7:0] rd_addr_o[10:0] =
req_addr_i[31:0] req_addr_i[31:0] rd_be_o[3:0] p=—
rd_data_i[31:0] rd_data_i[31:0]

completer_id_i[15:0] completer_id_i[15:0]

EP_Tx EP_Tx

UG672_aA_06_091410

Figure A-6: Tx Engines

The PIO_32_TX_ENGINE and PIO_64_TX_ENGINE modules generate completions for
received memory and I/O read TLPs. The PIO design does not generate outbound read or
write requests. However, users can add this functionality to further customize the design.

The PIO_32_TX_ENGINE and PIO_64_TX_ENGINE modules generate completions in
response to 1 DWORD 32 and 64-bit addressable memory and I/O read requests.
Information necessary to generate the completion is passed to the TX Engine, as defined in
Table A-6.

Table A-6: Tx Engine Inputs

Port Description

req_compl_i Completion request (active High)

req_td_i Request TLP Digest bit

req_ep_i Request Error Poisoning bit

142

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. P1O Hardware

Table A-6: Tx Engine Inputs (Cont'd)

Port Description
req_tc_i[2:0] Request Traffic Class
req_attr_i[1:0] Request Attributes
req_len_i[9:0] Request Length
req_rid_i[15:0] Request Requester Identifier
req_tag_i[7:0] Request Tag
req_be_i[7:0] Request Byte Enable
req_addr_i[10:0] Request Address

After the completion is sent, the TX engine asserts the compl_done_i output indicating to
the RX engine that it can assert m_axis_rx_tready and continue receiving TLPs.

Endpoint Memory

Figure A-7 displays the PIO_EP_MEM_ACCESS module. This module contains the
Endpoint memory space.

PIO_EP_MEM_ACCESS

— clk
—1 rst_n
— wr_en_i

—1 rd_addr_i[10:0]

| rd_be_i[3:0] wr_busy_o |—
_| wr_addr_i[10:0] rd_data_o[31:0] [—
_| wr_be_i[7:0]

wr_data_i[31:0]

EP_MEM

UG672_cA_07_083110

Figure A-7: EP Memory Access

The PIO_EP_MEM_ACCESS module processes data written to the memory from incoming
Memory and I/O Write TLPs and provides data read from the memory in response to
Memory and I/O Read TLPs.

The EP_MEM module processes 1 DWORD 32- and 64-bit addressable Memory and 1/O
Write requests based on the information received from the RX Engine, as defined in
Table A-7. While the memory controller is processing the write, it asserts the wr_busy_o
output indicating it is busy.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 143
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

Table A-7: EP Memory: Write Inputs

Port Description
wr_en_i Write received
wr_addr_i[10:0] Write address
wr_be_i[7:0] Write byte enable
wr_data_i[31:0] Write data

Both 32 and 64-bit Memory and I/ O Read requests of one DWORD are processed based on
the inputs defined in Table A-8. After the read request is processed, the data is returned on

rd_data_o[31:0].
Table A-8: EP Memory: Read Inputs

Port Description
req_be_i[7:0] Request Byte Enable
req_addr_i[31:0] Request Address

144

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

P10 Operation

P1O Operation

PIO Read Transaction

Figure A-8 depicts a Back-To-Back Memory Read request to the PIO design. The receive
engine deasserts m_axis_rx_tready as soon as the first TLP is completely received. The next
Read transaction is accepted only after conpl _done_o is asserted by the transmit engine,
indicating that Completion for the first request was successfully transmitted.

1 1 1
s I R I R
I I I

|:|||—

trn_rd[63:0] 0 X HDR1-+HDR2 X HDR3+NULL X HDR1-+HDR2 X HDR3+NULL
| | | | | | | | | | |

trn_rrem_n[7:0] 00 X o X oo X o X o
I I I I I I I I I I I

I + + I I I I I
trn_rsof_n 1 | 1 I 1 1 | 1 1 1 1 1 I 1 1
I I I T T T T T I I
I I I I I I I I I I I
I T T T T T T | I I_l_
trn—re0f—n : : | | I I I I I I I | I
I] I I I I I I
trn_rsrc_rdy_n : I ! ! I : I ! ! ! ! ! ! I :
]]]]]]]]]]]
trn_rsrc_dsc_n ! ! ! ! ! ! ! ! ! ! !
I I I I I I I I I I I
1 1 1 1 1 1 1 1 1 1

trn_rdst_rdy_n I I I I I I I I I I I I I
I I I I I T T I
| | | | | | | | | | |

trn_rbar_hit_n[6:0] 7F X 7D X 7 X 7D X 7F
I I I I I I I_!-I I I I I
Comp|_d0ne_0 | | | | | | I]]]]

trn_td_[63:0] 00

X HDR1+HDR2.X HDR3+DATA.X 00
1 1 1

trn_trem_n[7:0] 00
L L 1 n
trn_tsof_n 1 1 | | | \
| | I
trn_teof_n : : | ! |
T T
I I

trn_tsrc_rdy_n

trn_tsrc_dsc_n

trn_tdst_dsc_n

trn_tdst_rdy_n

~— T —

Figure A-8:

Back-to-Back Read Transactions

TLP2

UG672_cA_08_083110

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

145

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

PIO Write Transaction

Figure A-9 depicts a back-to-back Memory Write to the PIO design. The next Write
transaction is accepted only after wr _busy_o is deasserted by the memory access unit,
indicating that data associated with the first request was successfully written to the
memory aperture.

Baselins = 123%.%7En
Curser-EBaseline = -3%.%8%ns
Hame ~ i

=8l o1k o |
B JIE tRN_Rx

ﬁ trn_rd[63:0]
ﬁ trn_rrem n[7:0]
ﬁﬁ tra_r=of_n
ﬁﬁ trn_reocf n k
E{ﬁ trn_rsrc_rdy_n
=3 tra_rsrc_dsc_n

B tra_rdst_rdy n
B EE Transaction Status

ED wr_busy_o

ED coupl deone o
B JIE ten_Tx

o crn_tdrez:ng
ﬁ:{} trn_trem n[7:0]
|ED tra_tzof_n
|ED tra_teof n
ED tran_terc_rdy n

E) tran_terc_dsc_n

L,
ﬁﬁ tran_tdst_d=sc_n

E{ﬁ trn_tdst_rdy_n

UG672_cA_09_083110

Figure A-9: Back-to-Back Write Transactions

Device Utilization
Table A-9 shows the PIO design FPGA resource utilization.

Summary

Table A-9: PIO Design FPGA Resources

Resources Utilization
LUTs 300
Flip-Flops 500
Block RAMs 4

The PIO design demonstrates the Endpoint for PCle and its interface capabilities. In
addition, it enables rapid bring-up and basic validation of end user Endpoint add-in card
FPGA hardware on PCI Express platforms. Users can leverage standard operating system
utilities that enable generation of read and write transactions to the target space in the
reference design.

146

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Root Port Model Test Bench for Endpoint

Root Port Model Test Bench for Endpoint

The PCI Express Root Port Model is a robust test bench environment that provides a test
program interface that can be used with the provided PIO design or with the user’s design.
The purpose of the Root Port Model is to provide a source mechanism for generating
downstream PCI Express TLP traffic to stimulate the customer design, and a destination
mechanism for receiving upstream PCI Express TLP traffic from the customer design in a
simulation environment.

Note: The Root Port Model is shared by the Spartan-6 FPGA Integrated Block and Endpoint Block
Plus for PCI Express solutions. This appendix represents these solutions.

Source code for the Root Port Model is included to provide the model for a starting point
for the user test bench. All the significant work for initializing the core’s configuration
space, creating TLP transactions, generating TLP logs, and providing an interface for
creating and verifying tests are complete, allowing the user to dedicate efforts to verifying
the correct functionality of the design rather than spending time developing an Endpoint
core test bench infrastructure.

The Root Port Model consists of:

e Test Programming Interface (TPI), which allows the user to stimulate the Endpoint
device for the PCI Express

e Example tests that illustrate how to use the test program TPI

* Verilog or VHDL source code for all Root Port Model components, which allow the
user to customize the test bench

Figure A-10 illustrates the illustrates the Root Port Model coupled with the PIO design.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 147
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

Outout Root Port
P < usrapp_com Model TPI for

Logs PCI Express
I J

Test
— t < D
usrapp_rx usrapp_tx Program
\ *

dsport

< > PCI Express Fabric

Y

Endpoint Core for
PCI Express

PIO
Design

Endpoint DUT for PCI Express
UG671_aA_05_081710

Figure A-10: Root Port Model and Top-Level Endpoint

Architecture
The Root Port Model consists of these blocks, illustrated in Figure A-10:
e dsport (Root Port)

* usrapp_tx
® usrapp_rx
e usrapp_com (Verilog only)

The usrapp_tx and usrapp_rx blocks interface with the dsport block for transmission and
reception of TLPs to/from the Endpoint Design Under Test (DUT). The Endpoint DUT
consists of the Endpoint for PCle and the PIO design (displayed) or customer design.

The usrapp_tx block sends TLPs to the dsport block for transmission across the PCI
Express Link to the Endpoint DUT. In turn, the Endpoint DUT device transmits TLPs
across the PCI Express Link to the dsport block, which are subsequently passed to the

148 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Root Port Model Test Bench for Endpoint

usrapp_rx block. The dsport and core are responsible for the data link layer and physical
link layer processing when communicating across the PCI Express fabric. Both usrapp_tx
and usrapp_rx utilize the usrapp_com block for shared functions, for example, TLP
processing and log file outputting. Transaction sequences or test programs are initiated by
the usrapp_tx block to stimulate the endpoint device's fabric interface. TLP responses from
the endpoint device are received by the usrapp_rx block. Communication between the
usrapp_tx and usrapp_rx blocks allow the usrapp_tx block to verify correct behavior and
act accordingly when the usrapp_rx block has received TLPs from the endpoint device.

Simulating the Design

Four simulation script files are provided with the model to facilitate simulation with
Synopsys VCS and VCS MX, Cadence INCISIV, Mentor Graphics ModelSim, and Xilinx
ISE Simulator (ISim):

e sinmul ate_vcs. sh (Verilog Only)

e simul ate_ncsi m sh (Verilog Only)

e simulate nti.do

e sinulate_ isimbat/simulate_isimsh

The example simulation script files are located in the following directory:
<proj ect _di r >/ <conponent _nane>/ si nul ati on/ f uncti onal

Instructions for simulating the PIO design using the Root Port Model are provided in
Chapter 4, Getting Started Example Design.

Note: For Cadence INCISIV users, the work construct must be manually inserted into the cds.lib
file: DEFI NE WORK WORK.

Scaled Simulation Timeouts

The simulation model of the Virtex-6 FPGA Integrated Block for PCI Express uses scaled
down times during link training to allow for the link to train in a reasonable amount of
time during simulation. According to the PCI Express Specification, rev. 2.0, there are various
timeouts associated with the link training and status state machine (LTSSM) states. The
Virtex-6 FPGA Integrated Block for PCI Express scales these timeouts by a factor of 256 in
simulation, except in the Recovery Speed_1 LTSSM state, where the timeouts are not
scaled.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 149
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

Test Selection

Table A-10 describes the tests provided with the Root Port Model, followed by specific
sections for VHDL and Verilog test selection.

Table A-10: Root Port Model Provided Tests

Test in _—
Test Name VHDL Verilog Description
sample_smoke_test0 Verilog and Issues a PCI Type 0 Configuration Read TLP and waits for the
VHDL completion TLP; then compares the value returned with the

expected Device/Vendor ID value.

sample_smoke_testl

Verilog Performs the same operation as sample_smoke_test0 but makes
use of expectation tasks. This test uses two separate test program
threads: one thread issues the PCI Type 0 Configuration Read TLP
and the second thread issues the Completion with Data TLP
expectation task. This test illustrates the form for a parallel test that
uses expectation tasks. This test form allows for confirming
reception of any TLPs from the customer’s design. Additionally,
this method can be used to confirm reception of TLPs when
ordering is unimportant.

VHDL Test Selection

Test selection is implemented in the VHDL Downstream Port Model by means of
overriding the test_selector generic within the tests entity. The test_selector generic is a
string with a one-to-one correspondence to each test within the tests entity.

The user can modify the generic mapping of the instantiation of the tests entity within the
pci_exp_usrapp_tx entity. Currently, there is one test defined inside the tests entity,
sampl e_snoke_t est 0. Additional customer-defined tests should be added inside

t est s. vhd. Currently, specific tests cannot be selected from the VHDL simulation scripts.

Verilog Test Selection

The Verilog test model used for the Root Port Model lets the user specify the name of the
test to be run as a command line parameter to the simulator. For example, the

si mul at e_ncsi m sh script file, used to start the Cadence INCISIV simulator, explicitly
specifies the test sanpl e_snoke_t est O to be run using this command line syntax:

ncsi m wor k. boar dx01 +TESTNAME=sanpl e_snoke_testO

To change the test to be run, change the value provided to TESTNAME defined in the test
files sanpl e_t est s1. v and pi o_t est s. v. The same mechanism is used for VCS and
ModelSim. Isim uses the -testplusarg options to specify TESTNAME, for example:
deno_tb.exe -gui -view wave.wfg -wdb wave_isim-tcl batch
isimcnd.tcl -testplusarg TESTNAME=sanpl e_snoke_t estO.

VHDL and Verilog Root Port Model Differences

The following subsections identify differences between the VHDL and Verilog Root Port
Model.

Verilog Expectation Tasks

The most significant difference between the Verilog and the VHDL test bench is that the
Verilog test bench has Expectation Tasks. Expectation tasks are API calls used in

150

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Root Port Model Test Bench for Endpoint

conjunction with a bus mastering customer design. The test program issues a series of
expectation task calls, that is, the task calls expect a memory write TLP and a memory read
TLP. If the customer design does not respond with the expected TLPs, the test program
fails. This functionality was implemented using the fork-join construct in Verilog, which is
not available in VHDL and subsequently not implemented.

Verilog Command Line versus VHDL tests.vhd Module

The Verilog test bench allows test programs to be specified at the command line, while the
VHDL test bench specifies test programs within the t est s. vhd module.

Generating Wave Files

e The Verilog test bench uses recordvars and dumpfile commands within the code to
generate wave files.

e The VHDL test bench leaves the generating wave file functionality up to the
simulator.

Speed Differences

The VHDL test bench is slower than the Verilog test bench, especially when testing the x8
core. For initial design simulation and speed enhancement, the user might want to use the
x1 core, identify basic functionality issues, and then move to x4 or x8 simulation when
testing design performance.

Waveform Dumping

Table A-11 describes the available simulator waveform dump file formats, each of which is
provided in the simulator’s native file format. The same mechanism is used for VCS and
ModelSim.

Table A-11: Simulator Dump File Format

Simulator Dump File Format
Synopsys VCS .vpd
ModelSim .ved
Cadence INCISIV .trn
ISim . wdb

VHDL Flow

Waveform dumping in the VHDL flow does not use the +dump_all mechanism described
in the Verilog Flow section. Because the VHDL language itself does not provide a common
interface for dumping waveforms, each VHDL simulator has its own interface for
supporting waveform dumping. For both the supported ModelSim and IUS flows,
dumping is supported by invoking the VHDL simulator command line with a command
line option that specifies the respective waveform command file, wave. do (ModelSim),
wave. sv (IUS), and wave.wcfg (ISim). This command line can be found in the respective
simulation script files si nmul ate_nt i . do, si mul at e_ncsi m sh, and
simulate_isim.bat[.sh].

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 151
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

ModelSim

This command line initiates waveform dumping for the ModelSim flow using the VHDL
test bench:

>vsi m +not i m ngchecks —do wave. do —L uni sim—-L work work. board

IUS

This command line initiates waveform dumping for the IUS flow using the VHDL test
bench:

>ncsi m —gui wor k. board -input @ sinvision —i nput wave. sv”

Verilog Flow

The Root Port Model provides a mechanism for outputting the simulation waveform to file
by specifying the +dump_all command line parameter to the simulator.

For example, the script file si mul at e_ncsi m sh (used to start the Cadence INCISIV
simulator) can indicate to the Root Port Model that the waveform should be saved to a file
using this command line:

ncsi m wor k. boar dx01 +TESTNAME=sanpl e_snoke_t est0 +dunp_al |

Output Logging

When a test fails on the example or customer design, the test programmer debugs the
offending test case. Typically, the test programmer inspects the wave file for the simulation
and cross-reference this to the messages displayed on the standard output. Because this
approach can be very time consuming, the Root Port Model offers an output logging
mechanism to assist the tester with debugging failing test cases to speed the process.

The Root Port Model creates three output files (t x. dat ,r x. dat ,and er r or . dat) during
each simulation run. Log files r x. dat and t x. dat each contain a detailed record of every
TLP that was received and transmitted, respectively, by the Root Port Model. With an
understanding of the expected TLP transmission during a specific test case, the test
programmer can more easily isolate the failure.

The log file er r or . dat is used in conjunction with the expectation tasks. Test programs
that utilize the expectation tasks will generate a general error message to standard output.
Detailed information about the specific comparison failures that have occurred due to the
expectation error is located within error.dat.

Parallel Test Programs

There are two classes of tests are supported by the Root Port Model:

® Sequential tests. Tests that exist within one process and behave similarly to sequential
programs. The test depicted in Test Program: pio_writeReadBack_test0, page 154 is an
example of a sequential test. Sequential tests are very useful when verifying behavior
that have events with a known order.

e Parallel tests. Tests involving more than one process thread. The test
sanpl e_snoke_t est 1 is an example of a parallel test with two process threads.
Parallel tests are very useful when verifying that a specific set of events have
occurred, however the order of these events are not known.

152

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Root Port Model Test Bench for Endpoint

A typical parallel test uses the form of one command thread and one or more expectation
threads. These threads work together to verify a device's functionality. The role of the
command thread is to create the necessary TLP transactions that cause the device to receive
and generate TLPs. The role of the expectation threads is to verify the reception of an
expected TLP. The Root Port Model TPI has a complete set of expectation tasks to be used
in conjunction with parallel tests.

Because the example design is a target-only device, only Completion TLPs can be expected
by parallel test programs while using the PIO design. However, the full library of
expectation tasks can be used for expecting any TLP type when used in conjunction with
the customer's design (which can include bus-mastering functionality). Currently, the
VHDL version of the Root Port Model Test Bench does not support Parallel tests.

Test Description

The Root Port Model provides a Test Program Interface (TPI). The TPI provides the means
to create tests by simply invoking a series of Verilog tasks. All Root Port Model tests should
follow the same six steps:

1. Perform conditional comparison of a unique test name

2. Set up master timeout in case simulation hangs
3. Wait for Reset and link-up
4. Initialize the configuration space of the endpoint
5. Transmit and receive TLPs between the Root Port Model and the Endpoint DUT
6. Verify that the test succeeded
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 153

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

Test Program: pio_writeReadBack_testO

1. else if(testname == “pio_writeReadBack_testl"

2. begin

3. // This test performs a 32 bit write to a 32 bit Memory space and performs a read back

4. TSK_SIMULATION_TIMEOUT (10050) ;

5. TSK_SYSTEM_INITIALIZATION;

6. TSK_BAR_INIT;

7. for (ii = 0; ii <= 6; ii = ii + 1) begin

8. if (BAR_INIT_P_BAR_ENABLED[ii] > 2"b00) // bar is enabled

9. case(BAR_INIT_P_BAR_ENABLED[ii])

10. 2"b01 : // 10 SPACE

11. begin

12. $display(""[%t] : NOTHING: to 10 32 Space BAR %x", $realtime, ii);

13. end

14. 2"b10 : // MEM 32 SPACE

15. begin

16. $display(""[%t] : Transmitting TLPs to Memory 32 Space BAR %x',

17. $realtime, ii);

18 [

19 // Event Memory Write 32 bit TLP

20 Yt e e T e e

21. DATA_STORE[0] = 8"h04;

22. DATA_STORE[1] = 8"h03;

23. DATA_STORE[2] = 8"h02;

24. DATA_STORE[3] = 8"h01;

25. P_READ_DATA = 32°"hffff_ffff; // make sure P_READ_DATA has known initial value

26. TSK_TX_MEMORY_WRITE_32(DEFAULT_TAG, DEFAULT_TC, 10"d1l, BAR_INIT_P_BAR[ii][31:0] , 4~hF,
4*hF, 17b0);

27. TSK_TX_CLK_EAT(10);

28. DEFAULT_TAG = DEFAULT_TAG + 1;

29 /)~

30 // Event : Memory Read 32 bit TLP

31 [

32. TSK_TX_MEMORY_READ_32(DEFAULT_TAG, DEFAULT_TC, 10"d1, BAR_INIT_P_BAR[ii][31:0], 4"hF,
4*hF);

33. TSK_WAIT_FOR_READ_DATA;

34. if (P_READ_DATA != {DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[O] })

35. begin

36. $display(""[%t] : Test FAILED --- Data Error Mismatch, Write Data %x != Read Data %x",

$realtime,{DATA_STORE[3], DATA_STORE[2], DATA_STORE[1], DATA_STORE[O]}, P_READ_DATA);
37. end

38. else

39. begin

40. $display("[%t] : Test PASSED --- Write Data: %x successfully received”, $realtime,
P_READ_DATA);

41. end

Expanding the Root Port Model

The Root Port Model was created to work with the PIO design, and for this reason is
tailored to make specific checks and warnings based on the limitations of the PIO design.
These checks and warnings are enabled by default when the Root Port Model is generated
by the CORE Generator software. However, these limitations can easily be disabled so that
they do not affect the customer's design.

Because the PIO design was created to support at most one I/O BAR, one Mem64 BAR,
and two Mem32 BARs (one of which must be the EROM space), the Root Port Model by
default makes a check during device configuration that verifies that the core has been
configured to meet this requirement. A violation of this check causes a warning message to
be displayed as well as for the offending BAR to be gracefully disabled in the test bench.
This check can be disabled by setting the pi o_check_desi gn variable to zero in the

pci _exp_usrapp_t x. v file.

154 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Root Port Model Test Bench for Endpoint

Root Port Model TPI Task List

The Root Port Model TPI tasks include the following, which are further defined in
Tables A-12 through A-16.

e Test Setup Tasks

e TLP Tasks

e BAR Initialization Tasks
¢ Example PIO Design Tasks

* Expectation Tasks

Table A-12: Test Setup Tasks

Name

Input(s)

Description

TSK_SYSTEM_INITIALIZATION

None

Waits for transaction interface reset and
link-up between the Root Port Model and
the Endpoint DUT.

This task must be invoked prior to the
Endpoint core initialization.

TSK_USR_DATA_SETUP_SEQ

None

Initializes global 4096 byte DATA_STORE
array entries to sequential values from
zero to 4095.

TSK_TX_CLK_EAT clock count 31:30 | Waits clock_count transaction interface
clocks.

TSK_SIMULATION_TIMEOUT timeout 31:0 Sets master simulation timeout value in
units of transaction interface clocks. This
task should be used to ensure that all DUT
tests complete.

Table A-13: TLP Tasks
Name Input(s) Description
TSK_TX_TYPEO_CONFIGURATION_READ | tag_ 7:0 | Waits for transaction interface reset and link-
reg_addr 11:0 | up between the Root Port Model and the
o Endpoint DUT.

first. dw_be_ | 3:0
This task must be invoked prior to Endpoint
core initialization.

TSK_TX_TYPE1_CONFIGURATION_READ tag_ 7:0 Sends a Type 1 PCI Express Config Read TLP

reg_addr_ 11:0 | from Root Port Model to reg_addr_ of
first dw be_ | 3:0 Endpoint DUT with tag_ and first_dw_be_

inputs.
CpID returned from the Endpoint DUT will

use the contents of global
COMPLETE_ID_CFG as the completion ID.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

155

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description
TSK_TX_TYPEO_CONFIGURATION_WRITE | tag_ 7:0 | Sends a Type 0 PCI Express Config Write TLP
reg_addr 11:0 | from Root Port Model to reg_addr_ of
o Endpoint DUT with tag_ and first_dw_be_
reg_data_ 31:0 inputs
first_dw_be_ | 3:0 Cpl returned from the Endpoint DUT will use
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_TYPE1_CONFIGURATION_WRITE | tag_ 7:0 | Sends a Type 1 PCI Express Config Write TLP
reg_addr 11:0 | from Root Port Model to reg_addr_ of
o Endpoint DUT with tag_ and first_dw_be_
reg_data_ 31:0 |.
) inputs.
first_dw_be_ |30 Cpl returned from the Endpoint DUT will use
the contents of global COMPLETE_ID_CFG as
the completion ID.
TSK_TX_MEMORY_READ_32 tag_ 7:0 | Sends a PCI Express Memory Read TLP from
tc_ 2:0 Root Port to 32-bit memory address addr_ of
len_ 9:0 Enclipomt DUT.f) . .
addr_ 31:0 CplD returned from the Endpoint DUT wi
use the contents of global
last_dw_be_ |3:0 | COMPLETE_ID_CFG as the completion ID.
first_dw_be_ | 3:0
TSK_TX_MEMORY_READ_64 tag_ 7:0 | Sends a PCI Express Memory Read TLP from
te 2.0 | Root Port Model to 64-bit memory address
R addr_ of Endpoint DUT.
fen- 70 CplD d f he Endpoint DUT will
addr_ 63:0 plD returned from the Endpoint DUT wi
use the contents of global
last_ dw_be_ |3:0 | COMPLETE_ID_CFG as the completion ID.
first_dw_be_ | 3:0
TSK_TX_MEMORY_WRITE_32 tag_ 7:0 | Sends a PCI Express Memory Write TLP from
tc 2.0 | Root Port Model to 32-bit memory address
R addr_ of Endpoint DUT.
fen- - Cpl d f he Endpoi ill
addr_ 310 | ©P D returned from the Endpoint DUT wi
use the contents of global
last dw_be_ |3:0 | COMPLETE_ID_CFG as the completion ID.
first dw_be_ | 3:0 | The global DATA_STORE byte array is used to
ep_ - pass write data to task.
TSK_TX_MEMORY_WRITE_64 tag_ 7:0 Sends a PCI Express Memory Write TLP from
te 2.0 | Root Port Model to 64-bit memory address
R addr_ of Endpoint DUT.
fen 70 1 df he Endpoi ill
addr_ 63:0 CpID returned from the Endpoint DUT wi
use the contents of global
last_dw_be_ 3:0 COMPLETE_ID_CFG as the completion ID.
first dw_be_ | 3:0 | The global DATA_STORE byte array is used to
ep_ - pass write data to task.

156

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Root Port Model Test Bench for Endpoint

Table A-13: TLP Tasks (Cont’d)

Name Input(s) Description
TSK_TX_COMPLETION tag_ 7:0 Sends a PCI Express Completion TLP from
te 2.0 | Root Port Model to the Endpoint DUT using
1 B 9:0 global COMPLETE_ID_CFG as the completion
- v .
comp_status_ | 2:0
TSK_TX_COMPLETION_DATA tag_ 7:0 | Sends a PCI Express Completion with Data
te 2.0 | TLP from Root Port Model to the Endpoint
1 B 9:0 DUT using global COMPLETE_ID_CFG as the
- ' completion ID.
byte_count 110 The global DATA_STORE byte array is used to
lower_addr 6:0 | pass completion data to task.
comp_status | 2:0
ep_ -
TSK_TX_MESSAGE tag_ 7:0 | Sends a PCI Express Message TLP from Root
tc_ 2.0 | Port Model to Endpoint DUT.
len 9.0 | Completion returned from the Endpoint DUT
d t_ 63:0 will use the contents of global
an | COMPLETE_ID_CFG as the completion ID.
message_rtg | 2:0
message_code | 7:0
TSK_TX_MESSAGE_DATA tag_ 7:0 Sends a PCI Express Message with Data TLP
tc_ 2.0 | from Root Port Model to Endpoint DUT.
len 9.0 | The global DATA_STORE byte array is used to
da t; (3.0 | Pass message data to task.
" 9. 0 Completion returned from the Endpoint DUT
message_rtg ' will use the contents of global
message_code | 7:0 | COMPLETE_ID_CFG as the completion ID.
TSK_TX_IO_READ tag_ 7:0 Sends a PCI Express I/O Read TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first_dw_be_ | 3:0 Endpoint DUT.
CplD returned from the Endpoint DUT will
use the contents of global
COMPLETE_ID_CFG as the completion ID.
TSK_TX_IO_WRITE tag_ 7:0 Sends a PCI Express I/O Write TLP from Root
addr_ 31:0 | Port Model to I/O address addr_[31:2] of the
first_dw_be_ | 3:0 Endpoint DUT.
data 31:0 CplD returned from the Endpoint DUT will

use the contents of global
COMPLETE_ID_CFG as the completion ID.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

157

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

Table A-13: TLP Tasks (Cont’d)

Name

Input(s)

Description

TSK_TX_BAR_READ

bar_index
byte_offset
tag_

tc_

2:0
31:0
7:0
2:0

Sends a PCI Express 1 DWORD Memory 32,
Memory 64, or I/O Read TLP from the Root
Port Model to the target address
corresponding to offset byte_offset from BAR
bar_index of the Endpoint DUT. This task
sends the appropriate Read TLP based on how
BAR bar_index has been configured during
initialization. This task can only be called after
TSK_BAR_INIT has successfully completed.

CplID returned from the Endpoint DUT will
use the contents of global
COMPLETE_ID_CFG as the completion ID.

TSK_TX_BAR_WRITE

bar_index
byte_offset
tag_

tc_

data_

2:0
31:0
7:0
2:0
31:0

Sends a PCI Express 1 DWORD Memory 32,
Memory 64, or I/O Write TLP from the Root
Port to the target address corresponding to
offset byte_offset from BAR bar_index of the
Endpoint DUT.

This task sends the appropriate Write TLP
based on how BAR bar_index has been
configured during initialization. This task can
only be called after TSK_BAR_INIT has
successfully completed.

TSK_WAIT_FOR_READ_DATA

None

Waits for the next completion with data TLP
that was sent by the Endpoint DUT. On
successful completion, the first DWORD of
data from the CplD will be stored in the global
P_READ_DATA. This task should be called
immediately following any of the read tasks in
the TPI that request Completion with Data
TLPs to avoid any race conditions.

By default this task will locally time out and
terminate the simulation after 1000 transaction
interface clocks. The global cpld_to_finish can
be set to zero so that local time out returns
execution to the calling test and does not result
in simulation timeout. For this case test
programs should check the global cpld_to,
which when set to one indicates that this task
has timed out and that the contents of
P_READ_DATA are invalid.

158

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Root Port Model Test Bench for Endpoint

Table A-14: BAR Initialization Tasks

Name Input(s) Description

TSK_BAR_INIT None Performs a standard sequence of Base Address Register
initialization tasks to the Endpoint device using the PCI
Express fabric. Performs a scan of the Endpoint's PCI BAR
range requirements, performs the necessary memory and I/0
space mapping calculations, and finally programs the
Endpoint so that it is ready to be accessed.

On completion, the user test program can begin memory and
I/0 transactions to the device. This function displays to
standard output a memory and I/O table that details how the
Endpoint has been initialized. This task also initializes global
variables within the Root Port Model that are available for test
program usage. This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_BAR_SCAN None Performs a sequence of PCI Type 0 Configuration Writes and
Configuration Reads using the PCI Express fabric in order to
determine the memory and I/O requirements for the
Endpoint.

The task stores this information in the global array

BAR_INIT_P_BAR_RANGHE]]. This task should only be called
after TSK_SYSTEM_INITIALIZATION.

TSK_BUILD_PCIE_MAP None Performs memory and I/O mapping algorithm and allocates
Memory 32, Memory 64, and I/O space based on the Endpoint
requirements.

This task has been customized to work in conjunction with the
limitations of the PIO design and should only be called after
completion of TSK_BAR_SCAN.

TSK_DISPLAY_PCIE_MAP None Displays the memory mapping information of the Endpoint
core’s PCI Base Address Registers. For each BAR, the BAR
value, the BAR range, and BAR type is given. This task should
only be called after completion of TSK_BUILD_PCIE_MAP.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 159
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design & XILINX.

Table A-15: Example PIO Design Tasks

Name

Input(s)

Description

TSK_TX_READBACK_CONFIG

None

Performs a sequence of PCI Type 0 Configuration Reads to
the Endpoint device's Base Address Registers, PCI
Command Register, and PCle Device Control Register
using the PCI Express fabric.

This task should only be called after
TSK_SYSTEM_INITIALIZATION.

TSK_MEM_TEST_DATA_BUS

bar_index 2:0

Tests whether the PIO design FPGA block RAM data bus
interface is correctly connected by performing a 32-bit
walking ones data test to the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.

TSK_MEM_TEST_ADDR_BUS

bar_index 2:0
nBytes 31:0

Tests whether the PIO design FPGA block RAM address bus
interface is accurately connected by performing a walking
ones address test starting at the I/O or memory address
pointed to by the input bar_index.

For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire size
of the individual block RAM.

TSK_MEM_TEST_DEVICE

bar_index 2:0
nBytes 31:0

Tests the integrity of each bit of the PIO design FPGA block
RAM by performing an increment/decrement test on all
bits starting at the block RAM pointed to by the input
bar_index with the range specified by input nBytes.

For an exhaustive test, this task should be called four times,
once for each block RAM used in the PIO design.
Additionally, the nBytes input should specify the entire size
of the individual block RAM.

160

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Root Port Model Test Bench for Endpoint

Table A-16: Expectation Tasks

Name Input(s) Output Description
TSK_EXPECT_CPLD traffic_class 2:0 Expect status | Waits for a Completion with Data
td _ TLP that matches traffic_class, td,
ep) ep, attr, length, and payload.
Returns a 1 on successful
attr 1:0 . .
completion; 0 otherwise.
length 9:0
completer_id 15:0
completer_status 2:0
bem -
byte_count 11:0
requester_id 15:0
tag 7:0
address_low 6:0
TSK_EXPECT_CPL traffic_class 2:0 Expect Waits for a Completion without
td - status Data TLP that matches
traffic_class, td, ep, attr, and
ep - 1
ength.
attr . 10 Returns a 1 on successful
completer_id 150 completion; 0 otherwise.
completer_status 2:0
bcm -
byte_count 11:0
requester_id 15:0
tag 7:0
address_low 6:0
TSK_EXPECT_MEMRD traffic_class 2:0 Expect status | Waits for a 32-bit Address
td _ Memory Read TLP with matching
header fields.
ep -
Hr 1:0 Returns a 1 on successful
a ’ completion; 0 otherwise. This task
length 9:0 can only be used in conjunction
requester_id 15:0 with Bus Master designs.
tag 7:0
last_dw_be 3:0
first_dw_be 3:0
address 29:0

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

161

http://www.xilinx.com

Appendix A: Programmed Input/Output Example Design

& XILINX.

Table A-16: Expectation Tasks (Cont'd)

Name Input(s) Output Description
TSK_EXPECT_MEMRD64 traffic_class 2:0 Expect status | Waits for a 64-bit Address
td - Memory Read TLP with matching
) header fields. Returns a 1 on
€p successful completion; 0
attr 10 otherwise.
length 9:0 This task can only be used in
requester_id 15:0 conjunction with Bus Master
tag 7:0 designs.
last_dw_be 3:0
first_dw_be 3:0
address 61:0
TSK_EXPECT_MEMWR traffic_class 2:0 Expect Waits for a 32-bit Address
td - status Memory Write TLP with matching
) header fields. Returns a 1 on
€p successful completion; 0
attr 1:0 otherwise.
length 9:0 This task can only be used in
requester_id 15:0 conjunction with Bus Master
tag 7:0 designs.
last_dw_be 3:0
first_dw_be 3:0
address 29:0
TSK_EXPECT_MEMWRG64 traffic_class 2:0 Expect Waits for a 64-bit Address
td - status Memory Write TLP with matching
) header fields. Returns a 1 on
€p successful completion; 0
attr 1:0 otherwise.
length 9:0 This task can only be used in
requester_id 15:0 conjunction with Bus Master
tag 7:0 designs.
last_dw_be 3:0
first_dw_be 3:0
address 61:0
TSK_EXPECT_IOWR td - Expect Waits for an I/O Write TLP with
ep . status matching header fields. Returns a
. 1 on successful completion; 0
requester_id 15:0 .
otherwise.
t;.ag 70 This task can only be used in
first_dw_be 3:0 conjunction with Bus Master
address 31:0 designs.
data 31:0

162

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix B

Migration Considerations

Migrating a design from a LogiCORE™ Endpoint PIPE for PCI Express to a

Spartan®-6 FPGA Integrated Endpoint Block for PCI Express is a simple process. This
appendix describes the changes in the interfaces and signals that are necessary when
migrating from the Spartan-3 FPGA Endpoint PIPE core to a Spartan-6 FPGA integrated
Endpoint block core for revisions 1.x and earlier. Starting with revision 2.0, the Spartan-6
FPGA Integrated Endpoint Block has changed from the TRN interface to the AXI-Stream
interface, please see Appendix I, TRN to AXI Interface Migration Considerations for
additional migration considerations.

Integrated PHY

The first and most notable change between the Spartan-3 FPGA Endpoint PIPE core and
the Spartan-6 FPGA integrated Endpoint block core is that the external SerDes PHY device
that previously resided outside of the device has been integrated into the Spartan-6
architecture. This means that all of the PXPIPE signals (33 ports) are replaced with the
serial interface (4 ports).

System Clocking and Reset

For the Spartan-6 FPGA integrated Endpoint block, the sys_clk signal was added.

In the Spartan-3 FPGA design, the system clock was provided by the external PHY on the
port, RXCLK. For more information about sys_clk and how to set it up, see Clocking in
Chapter 6.

Interface Changes

Streaming Signal Added

The trn_tstr_n signal was added to the integrated Endpoint block to allow packets to be
streamed in the transmit direction. For more information on trn_tstr_n, see Table 2-6,
page 26.

TRN Transmit Destination Discontinue Removed

The trn_tdst_dsc_n signal has been replaced with trn_tx_terr_drop_n. The signal serves
the same purpose to signal when a packet has been dropped. However, the signal now is
asserted 1 to 2 clock cycles after end of the packet that was dropped. The User Application
is not required to do anything in response to trn_terr_drop_n; it is intended for diagnosing
problems when bringing up new designs. This makes timing significantly easier to meet.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 163
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix B: Migration Considerations & XILINX.

TRN Buffer Available Size Change

The Spartan-3 FPGA Endpoint PIPE signal trn_tbuf_av[4:0] is one bit wider. The signal is
now trn_tbuf_av[5:0]. This change reflects the increased number of transmit buffers
supported by the Spartan-6 FPGA core.

CMM Arbitration

The Spartan-6 FPGA integrated Endpoint block design has two signals that allow for the
user to control the arbitration between the CMM and the TRN interfaces for transmitted
packets. These signals are trn_tcfg_req_n and trn_tcfg_gnt n.

To maintain the same behavior as the Spartan-3 FPGA Endpoint PIPE, assign the signal
trn_tcfg_gnt_n asserted (1' b0).

TRN Credit Buses Additional Functionality

The TRN credit buses have different names in the Spartan-6 FPGA integrated Endpoint
block design. The letter “r” has been removed from the signal names. Table B-1 shows the
old and new names.

Table B-1: Credit Bus Name Change from Spartan-3 to Spartan-6 Devices

Spartan-3 FPGAs Spartan-6 FPGAs
trn_rfc_nph trn_fc_nph
trn_rfc_npd trn_fc_npd
trn_rfc_ph trn_fc_ph
trn_rfc_pd trn_fc_pd
trn_rfc_cplh trn_fc_cplh
trn_rfc_cpld trn_fc_cpld

There is also a signal named trn_fc_sel[2:0] that controls what values are placed on the
trn_* bus.

To maintain the same behavior as the Spartan-3 FPGA Endpoint PIPE, set the
trn_fc_sel[2:0] signal to 3' b00O. For more information, see Flow Control Credit
Information in Chapter 6.

Configuration Error Completion Ready

A signal named cfg_err_cpl_rdy_n has been added for the Spartan-6 FPGA integrated
Endpoint block. For more information, see Table 2-9, page 32.

Configuration Error Locked

A signal named cfg_err_locked_n has been added for the Spartan-6 FPGA integrated
Endpoint block. For more information, see Table 2-9, page 32.

164 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Block RAM Settings

Removed Configuration Signals

These signals were removed because they were either unused or not needed:

o cfg di

e cfg wrenn

cfg byte_en_n

e cfg_err_cpl_unexpected_n

Hot Reset

A signal named received_hot_reset has been added for the Spartan-6 FPGA integrated
Endpoint block. For more information, see Table 2-3, page 24.

Block RAM Settings

The block RAM settings can now be customized. See the CORE Generator™ software GUI

for supported settings.

Signhal Change Summary

These signals have been added for the Spartan-6 FPGA integrated Endpoint block:

e sys_clk

® trn_tstr n

* trn_tcfg req_n

* trn_tcfg gnt n

e cfg err cpl rdy_n
e cfg err locked_n

e received_hot_reset
e trn_fc_sel[2:0]

These signals have been removed from the Spartan-6 FPGA integrated Endpoint block:

o cfg di
e cfg wrenn
e cfg byte_en_n

e cfg err_cpl_unexpected_n

Table B-2 shows the signal name changes.

Table B-2: Signal Name Change from Spartan-3 to Spartan-6 Devices

Spartan-3 FPGAs

Spartan-6 FPGAs

trn_rfc_nph trn_fc_nph
trn_rfc_npd trn_fc_npd
trn_rfc_ph trn_fc_ph
trn_rfc_pd trn_fc_pd
trn_rfc_cplh trn_fc_cplh

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

165

http://www.xilinx.com

Appendix B: Migration Considerations & XILINX.

Table B-2: Signal Name Change from Spartan-3 to Spartan-6 Devices (Cont'd)

Spartan-3 FPGAs Spartan-6 FPGAs
trn_rfc_cpld trn_fc_cpld
trn_tbuf_av[4:0] trn_tbuf_av[5:0]
trn_tdst_dsn_n trn_tx_terr_drop_n
166 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix C

Debugging Designs

This appendix provides information on using resources available on the Xilinx Support
website, available debug tools, and a step-by-step process for debugging designs that use
the Spartan®-6 Integrated Endpoint Block for PCI Express®. This appendix uses flow
diagrams to guide the user through the debug process.

The following information is found in this appendix:
¢ Finding Help on Xilinx.com

¢ Contacting Xilinx Technical Support

* Debug Tools

* Hardware Debug

e Simulation Debug

Finding Help on Xilinx.com

To help in the design and debug process when using the Integrated Endpoint Block for PCI
Express, the Xilinx Support webpage (www.xilinx.com/support) contains key resources
such as Product documentation, Release Notes, Answer Records, and links to opening a
Technical Support case.

Documentation
The Data Sheet and User Guide are the main documents associated with the
Spartan-6 FPGA integrated Endpoint block, as shown in Table C-1.

Table C-1: Spartan-6 FPGA Integrated Endpoint Block for PCI Express
Documentation

Designation Description

Data Sheet: provides a high-level description of the integrated Endpoint
block and key features. It includes information on which ISE software

bs version is supported by the current LogiCORE™ IP version used to
instantiate the integrated Endpoint block.
User Guide: provides information on generating an integrated Endpoint
UG block design, detailed descriptions of the interface and how to use the

product. The User Guide contains waveforms to show interactions with the
block and other important information needed to design with the product.

These Integrated Endpoint Block for PCI Express documents along with documentation
related to all products that aid in the design process can be found on the Xilinx Support

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 167
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support

Appendix C: Debugging Designs & XILINX.

webpage. Documentation is sorted by product family at the main support page or by
solution at the Documentation Center.

To see the available documentation by device family:

* Navigate to www.xilinx.com/support.

* Select Spartan-6 from the Device List drop-down menu.

¢ This will sort all available Spartan-6 FPGA documentation by Hardware
Documentation, Configuration Solutions Documentation, Related Software
Documentation, Tools, IP, and Data Files.

To see the available documentation by solution:

* Navigate to www.xilinx.com/support.

® Select the Documentation tab located at the top of the webpage.

e This is the Documentation Center where Xilinx documentation is sorted by Devices,
Boards, IP, Design Tools, Doc Type, and Topic.

Release Notes and Known Issues

Known issues for all cores, including the Spartan-6 FPGA Integrated Endpoint Block for
PCI Express, are described in the IP Release Notes Guide.

Answer Records

Answer Records include information on commonly encountered problems, helpful
information on how to resolve these problems, and any known issues with a product.
Answer Records are created and maintained daily ensuring users have access to the most
up-to-date information on Xilinx products. Answer Records can be found by searching the
Answers Database.

To use the Answers Database Search:

¢ Navigate to www.xilinx.com/support. The Answers Database Search is located at the
top of this webpage.

¢ Enter keywords in the provided search field and select Search.

e Examples of searchable keywords are product names, error messages, or a generic
summary of the issue encountered.

¢ To see all answer records directly related to the Spartan-6 FPGA Integrated
Endpoint Block for PCI Express, search for the phrase Spartan-6 Integrated
Endpoint Block for PCI Express.

168 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support
http://www.xilinx.com/support/documentation/ip_documentation/xtp025.pdf

& XILINX.

Contacting Xilinx Technical Support

Contacting Xilinx Technical Support

Debug Tools

Xilinx provides premier technical support for customers encountering issues that require
additional assistance.

To contact Technical Support:

* Navigate to www.xilinx.com/support.

* Open a WebCase by selecting the WebCase link located under Support Quick Links.
When opening a WebCase, include:
e Target FPGA including package and speed grade
e All applicable software versions of the ISE tool, synthesis (if not XST), and simulator
® The xco file created during generation of the LogiCORE IP wrapper
e This file is located in the directory targeted for the CORE Generator™ software
project

Additional files might be required based on the specific issue. See the relevant sections in
this debug guide for further information on specific files to include with the WebCase.

There are many tools available to debug PCI Express design issues. Itisimportant to know
which tools would be useful for debugging for the various situations encountered. This
chapter references these tools:

Example Design

Xilinx Endpoint for PCI Express products come with a synthesizable back-end application
called the PIO design that has been tested and is proven to be interoperable in available
systems. The design appropriately handles all incoming 1 DWORD read and write
transactions. It returns completions for non-posted transactions and updates the target
memory space for writes. For more information, see Appendix A, Programmed
Input/Output Example Design.

ChipScope Pro Tool

The ChipScope™ Pro tool inserts logic analyzer, bus analyzer, and virtual I/O software
cores directly into the user design. The ChipScope Pro tool allows the user to set trigger
conditions to capture application and integrated Endpoint block port signals in hardware.
Captured signals can then be analyzed through the ChipScope Pro Logic Analyzer tool.
For detailed information on the ChipScope Pro tool, visit www.xilinx.com /chipscope.

Link Analyzers

Third-party link analyzers show link traffic in a graphical or text format. Lecroy, Agilent,
and Vmetro are companies that make common analyzers available today. These tools
greatly assist in debugging link issues and allow users to capture data which Xilinx
support representatives can view to assist in interpreting link behavior.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 169
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/chipscope
http://www.xilinx.com/support

Appendix C: Debugging Designs & XILINX.

Third-Party Software Tools

This section describes third-party software tools that can be useful in debugging.

LSPCI (Linux)

LSPCl is available on Linux platforms and allows users to view the PCI Express device
configuration space. LSPCl is usually found in the / sbi n directory. LSPCI displays a list of
devices on the PCI buses in the system. See the LSPCI manual for all command options.
Some useful commands for debugging include:

[spci -x -d [<vendor>]: [<devi ce>]

This displays the first 64 bytes of configuration space in hexadecimal form for the
device with vendor and device ID specified (omit the - d option to display information
for all devices). The default Vendor/Device ID for Xilinx cores is 10EE:6012. Here is a
sample of a read of the configuration space of a Xilinx device:

> | spci -x -d 10EE: 6012

81:00.0 Menory controller: Xilinx Corporation: Unknown device 6012
00: ee 10 12 60 07 00 10 00 00 00 80 05 10 00 00 00

10: 00 00 80 fa 00O OO OO OO OO OO OO OO 00 00 00 00

20: 00 00 00 00 00 OO0 OO OO OO OO OO OO ee 10 6f 50

30: 00 00 00 00 40 00 00 OO OO OO OO OO 05 01 0O OO

Included in this section of the configuration space are the Device ID, Vendor ID, Class
Code, Status and Command registers, and Base Address Registers.

[spci -xxxx -d [<vendor>]: [<device>]

This displays the extended configuration space of the device. It might be useful to read
the extended configuration space on the root and look for the Advanced Error
Reporting (AER) registers. These registers provide more information on why the
device has flagged an error (for example, it might show that a correctable error was
issued because of a replay timer time-out).

| spci -k

Shows kernel drivers handling each device and kernel modules capable of handling it
(works with kernel 2.6 or later).

PCltree (Windows)

PCltree can be downloaded at www.pcitree.de and allows the user to view the PCI Express
device configuration space and perform 1 DWORD memory writes and reads to the
aperture.

170

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.pcitree.de

& XILINX. Debug Tools

The configuration space is displayed by default in the lower right corner when the device
is selected, as shown in Figure C-1.

4 PciTree

—direct select: 1 show INT routing | highest
bus: dew: func: ﬁ
j 1 il 0 jo show Mem Map
i1.0.0
B-Rest CEM Other; Memory Controller
9,080 Bost/PCL; Bridge D e
E-Eatiag 0->1 (1) PCIL/PCI: Brilll prp. yongF no device name found no o
Other; Memory Co SubVID: x10EE X¥ilinx
0.02.0 VGA:; PC Compatible SubID: xS06F no-name
0.26.0 Universal Host Con rev.: x00 ¥B<—-INTL#
0.26.1 Universal Host Con'| _4iv confReg: o P Or GonrRegs:
0.26.7 0. serial bus Devii
0.27.0 0. Multimedia 808 || | Ihex _ @ 16 C 64
0.28.0 0->4 (4] PCI/PCI; Bri | [use BIOS int
= 0.28.4 0->3 (3) PCI/PCI; Bri 7
3.00.0 0. Mass Storage SIS ey ‘ refresh @
= 0.28.5 0-»>2 {2) PCI/PCI; Brii| | refr after wr. S IDE
z.00.0 Ethernet; Networ| .
0.29.0 Universal Host Con contig apaceebung Sitygent xo)
0:29.1 Universal Host Con| | S06F 10EE <00 : DID VID
0.29.2 Universal Host Con||| D010 0007 <04 : Stat Cmd
0.29.7 5. BEEUAL BiiE DEvii 0580 0000 <08 : BaseClass SubClass F
& 0.30.0 T R — DO0O0 0008 <0C : EIST Header L@:Timer
. 5 FF4F FB800 <10 : BAR 0O mem 32bit
5.01.0 openicT: IEEE 13Wl 000 000D <14 - BAR 1
0310 PCI/ISL:; Bridge Der 0000 0000 <18 : BAR 2
0932 0. Mass Storage Co: 0000 0000 <1C : BAR 3
0.31.3 SMBus; Serial Bus 1 0000 DODO <20 : BAR 4
0.31.5 o. Mass Storage Co:/|| 0000 000D <Z4 : BAR 5
0000 000D <28 : Cardbus CIS Ptr
SO6F 10EE <2C : SubID SubVendorID
FF30 0000 <30 : Exp ROM BAR
D000 0040 <34 : reserved
0000 000D <38 : reserved
¢ | > 0000 D10B <3C : maxlat minGnt IntPir

iy | o | rescan |urite to| reset |; < | 5
PCIbus fil i = —=

UG672_aC_01_083110

Figure C-1: PCltree with Read of Configuration Space

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 171
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix C: Debugging Designs

& XILINX.

HWDIRECT (Windows)

HWDIRECT can be purchased at www.eprotek.com and allows the user to view the PCI

Express device configuration space as well as the extended configuration space (including
the AER registers on the root).

HWDirect - [PCIDirect] 1Ol =l
Eile View Help o [l |
|HE =R [(?0O

B XCDD'%‘I"I::EBD [e-Rroessons] Mem. Mapped Base Addr. PCI Config Address Reqister List
- CPUID Infa I.ﬂuto j IBUUUUUUU Offset | Walue (Hex) | Description | A
| X oo 27h08036 DevicelD YendarID
= :T,El 2 ::j::::: sl e e 004 20900006 StatusRedgister CommandRegister
e o [oo =] foo =] Joo =] |oos 06000003 BaseClass Sub-class Prog.IjF RevID
Il poaess 0oc 00000000 Bist HeaderType LatencyTimer Cach, .,
- Giroup /0 Access ¥ Show both PCT and PCI Express devices 010 00000000 BARD
- M3R Read/ it ™ Show orly PCI devices 014 00000000 BARL
- CMOS Read/wiite ; 015 Qooo0ooo BARZ
. Memeny Dump ™ Show only PCI Expres-s devices e 0000000 BARS
. Hex Viewer/E ditar PCI and PCI Express Devices J ggg gggggggg g::;
Haost bridge (WendorID=8086 {Intel Corpor: ¥
SMBus Access i (. 028 00000000 Cardbus CIS Pointer
s Refresh | nzc 0101028 SubsystemID SubsystemvendorD
030 00000000 Expansion ROM Base Address
Register Value (Hex) | 034 000000ED Reserved Capabilities Pointer
l— 038 00000000 Reserved
03C Q0o0oa0on Max_Lat Min_Gnt InkerruptPin Interr...
wWrite | 040 F4005001 PCI device specific
044 F4000001 PCI device specific =
043 FOO0O00S PCI device specific
DID/YID: I Find Mext | 04 Fa004001 PCI device specific
as0 00020000 PCI device specific
054 Q0000003 PCI device specific
058 00000000 PCI device specific
asC 00000000 PCI device specific
a0 Q0000000 PCI device specific
064 00000000 PCI device specific
063 00000000 PCI device specific
0&C Q0000000 PCI device specific
070 00000000 PCI device specific
074 00000000 PCI device specific
078 Q0000000 PCI device specific
07C 00000000 PCI device specific
030 00000000 PCI device specific
04 00000000 PCI device specific
4 I I _bl nae ANCNNNNN 0T Aavica crarific LI
Faor Help, press F1 [[mom =

Figure C-2: HWDIRECT with Read of Configuration Space

PCI-SIG Software Suites

PCI-SIG® software suites such as PCIE-CV can be used to test compliance with the

specification. This software can be downloaded at www.pcisig.com.

UG672_aC_02_083110

172

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.eprotek.com
http://www.pcisig.com

& XILINX.

Debug Ports

Debug Ports

The Spartan-6 FPGA Integrated Endpoint Block for PCI Express has debug ports described
in Table C-3 providing insight to why the different error conditions occur. The receiver

might detect different problems that result in either a Fatal, Non-fatal, or correctable error.
Also, the receiver might detect an unsupported request. Four of the debug signals shown
in Table C-2 mirror the lower four bits of the PCI Express device status register. When one
of these conditions occurs, another signal is asserted for one clock cycle to show the reason

causing the error.

Table C-2: Device Status Register Debug Ports

Name

Device Status Bit

dbg_reg_detected_correctable

Bit O - correctable

dbg_reg detected_non_fatal

Bit 1 - Non-Fatal

dbg_reg detected_fatal

Bit 2 - Fatal

dbg_reg_detected_unsupported

Bit 3 - Unsupported Request

Table C-3 defines the debug port signals.
Table C-3: Spartan-6 FPGA Integrated Block for PCI Express Debug Ports

Port Direction

Clock Domain

Description

dbg_bad_dllp_status Output

USERCLK

This signal pulses High for one USERCLK cycle when a
DLLP CRC error is detected.

dbg_bad_tlp_lcre Output

USERCLK

This signal pulses High for one USERCLK cycle when a
TLP with an LCRC error is detected.

dbg_bad_tlp_seq_num Output

USERCLK

This signal pulses High for one USERCLK cycle when a
TLP with an invalid sequence number is detected.

dbg_bad_tlp_status Output

USERCLK

This signal pulses High for one USERCLK cycle when a
bad TLP is detected, for reasons other than a bad LCRC
or a bad sequence number.

dbg_dl_protocol_status Output

USERCLK

This signal pulses High for one USERCLK cycle if an out-
of-range ACK or NAK is received.

dbg_fc_protocol_err_status Output

USERCLK

This signal pulses High for one USERCLK cycle if there
is a protocol error with the received flow control updates.

dbg_mlfrmd_length Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a received TLP had a length that did not
match what was in the TLP header.

dbg_mlfrmd_mps Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a received TLP had a length in violation of
the negotiated MPS.

dbg_mlfrmd_tcvc Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a received TLP had an invalid TC or VC
value.

dbg_mlfrmd_tlp_status Output

USERCLK

This signal pulses High for one USERCLK cycle when a
malformed TLP is received. See the other
DBGMLFRMD* signals for further clarification.

Note: There is skew between DBGMLFRMD* and
DBGMLFRMDTLPSTATUS.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 173

http://www.xilinx.com

Appendix C: Debugging Designs

& XILINX.

Table C-3: Spartan-6 FPGA Integrated Block for PCI Express Debug Ports (Cont'd)

Port

Direction

Clock Domain

Description

dbg_mlfrmd_unrec_type

Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a received TLP had an
invalid /unrecognized type field value.

dbg_poistlpstatus

Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a TLP was received with the EP (poisoned)
status bit set.

dbg_rcvr_overflow_status

Output

USERCLK

This signal pulses High for one USERCLK cycle if a
received TLP violates the advertised credit.

dbg_reg_detected_correctable

Output

USERCLK

This signal is a mirror of the internal signal used to
indicate a correctable error is detected. The error is
cleared upon a read by the Root Complex (RC).

dbg_reg detected_fatal

Output

USERCLK

This signal is a mirror of the internal signal used to
indicate that a fatal error has been detected. The error is
cleared upon a read by the RC.

dbg_reg_detected_non_fatal

Output

USERCLK

This signal is a mirror of the internal signal used to
indicate that a non-fatal error has been detected. The
error is cleared upon a read by the RC.

dbg_reg_detected_unsupported

Output

USERCLK

This signal is a mirror of the internal signal used to
indicate that an unsupported request has been detected.
The error is cleared upon a read by the RC.

dbg_rply_rollover_status

Output

USERCLK

This signal pulses High for one USERCLK cycle when
the rollover counter expires.

dbg_rply_timeout_status

Output

USERCLK

This signal pulses High for one USERCLK cycle when
the replay time-out counter expires.

dbg_ur_no_bar_hit

Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a received read or write request did not
match any configured BAR.

dbg_ur_pois_cfg_wr

Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that a CfgWr TLP with the Error/Poisoned bit
(EP) = 1 was received.

dbg_ur_status

Output

USERCLK

This signal pulses High for one USERCLK cycle when an
unsupported request is received. See the DBGUR*
signals for further clarification.

Note: There is skew between DBGUR* and
DBGURSTATUS.

dbg_ur_unsup_msg

Output

USERCLK

This signal pulses High for one USERCLK cycle to
indicate that an Msg or MsgD TLP with an unsupported
type was received.

Using the Debug Ports

The debug ports are outputs on the integrated Endpoint block and users can access them
by opening the wrapper source file in the source directory. This file is named

<cor enane>. v[hd] where <corename> represents core name entered in the

CORE Generator tool. Signals are defined for each of these ports as either wires in the
Verilog version or signals in the VHDL version.

174

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Hardware Debug

y
4
W
4
4
4
p
.4
4
4
y
o
4
4
p

The debug ports can be used in both simulation and in hardware to debug problems. In
simulation, these signals can easily be added to the waveform viewer without any changes
to the code because they are already defined in the wrapper file. In hardware, users might
want to use the ChipScope Pro tool to monitor these signals or probe them to external ports
or add additional logic such as counters to enable more in depth analysis. Users might
need to bring these signals to upper layers in the design and this can be done by modifying
the port description and instantiations of the files.

Figure C-3 shows a common problem faced by many users. This illustrates the behavior of
the debug ports when a non-fatal error condition occurs. The scenario is a memory write is
sent from the downstream port to the Spartan-6 FPGA Endpoint. This memory write does
not correctly target any of the available BARs in the design. This results in a non-fatal error
condition. However, there are other reasons that cause a non-fatal error, so monitoring the
cfg_dev_status_nonfatal_err_detected output of the core might not be sufficient to debug
the problem. By using the debug ports, the user can see that the non-fatal error was caused
by a BAR miss due to dbg_ur_no_bar_hit asserted for one cycle.

Memaory Write to
Incorrect BAR
address

dbg_ur_no_bar_hit
indicates why packet

UG672_aC_03_083110

Figure C-3: Debug Wave Screenshot

In the ChipScope tool, the user needs to decide how best to trigger the ChipScope tool to
capture these problems. There are various ways to do this, but one suggestion would be to
use the signals in Table C-3 as triggers. At least one of these signals is asserted. When the
ChipScope tool triggers, the rest of the signals can be analyzed to find out exactly what
caused the error condition.

Hardware Debug

Hardware issues can range from device recognition issues to problems seen after hours of
testing. This section provides debug flow diagrams for some of the most common issues
experienced by users. Endpoints that are shaded gray indicate that more information can
be found in sections after Figure C-4.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 175
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix C: Debugging Designs & XILINX.

Design Fails in Hardware

lNo

Using probes, an LED, ChipScope
or some other method, determine if
user_Ink_up is asserted. When
user_Ink_up is High, it indicates
the core has achieved link up
meaning the LTSSM is in LO state
and the data link layer is in the
DL_Active state.

Is user_Ink_up asserted?

See “Link is Training Debug” sectiorD
(user_Ink_up = 1)

To eliminate FPGA configuration
as a root cause, perform a soft
restart of the system. Performing a
soft reset on the system will keep
power applied and forces
re-enumeration of the device.

Does a soft reset fix the problem?
(user_Ink_up = 1)

Yes ‘/ See "FPGA Configuration Time)

'\ Debug" section.

One reason trn_reset_n stays }

asserted other than the system No /

reset being asserted, is due to a Is trn_reset_n deasserted? > See "Clock Debug" section.

faulty clock. This may keep the (user_reset = 0) \

PLL from locking which holds -

trn_reset_n asserted.

Multi-lane links are susceptible to Yes

crosstalk and noise when all lanes

are switching during training.

A quick test for this is forcing one

lane operation. This can be done Yes }

by using an interposer or adapter Is it a multi-lane link? > Force x1 Operation

to isolate the upper lanes or use

a tape such as Scotch tape and

tape off the upper lanes on the

connector. If its a embedded board,

remove the AC capacitors if

possible to isolate the lanes.

Does user_Ink_up = 1 when using
as x1 only?
No
Do you have a link analyzer?
There are potentially problems
with the board layout causing
interference when all lanes are
No Yes switching. See board debug
suggestions.
Y Y
The ChipScope tool can be used to try and Use the link analyzer to monitor the training
determine the point of failure. sequence and to determine the point of failure.

Have the analyzer trigger on the first TS1 that it
recognizes and then compare the output to the
LTSSM state machine sequences outlined in
Chapter 4 of the PCI Express Base Specification.

UG672_aC_04_092010

Figure C-4: Design Fails in Hardware Debug Flow Diagram

176 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Hardware Debug

FPGA Configuration Time Debug

Device initialization and configuration issues can be caused by not having the FPGA
configured fast enough to enter link training and be recognized by the system. Section 6.6
of PCI Express Base Specification, v1.1 states two rules that might be impacted by FPGA
Configuration Time:

e A component must enter the LTSSM Detect state within 20 ms of the end of the
Fundamental reset.

¢ A system must guarantee that all components intended to be software visible at boot
time are ready to receive Configuration Requests within 100 ms of the end of
Conventional Reset at the Root Complex.

These statements basically mean there is a finite time in which the FPGA must be
configured by, and not meeting these requirements could cause problems with link
training and device recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG.
When using JTAG to configure the device, configuration typically occurs after the Chipset
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to
restart enumeration and configuration of the device. A soft reset on a Windows based PC
is performed by going to Start -> Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, perform a soft restart of the system.
Performing a soft reset on the system keeps power applied and forces re-enumeration of
the device. If the device links up and is recognized after a soft reset is performed, then
FPGA configuration is most likely the problem. Most typical systems use ATX power
supplies which provides some margin on this 100 ms window as the power supply is
normally valid before the 100 ms window starts. For more information on FPGA
configuration, see Chapter 8, FPGA Configuration.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 177
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix C: Debugging Designs

& XILINX.

Link is Training Debug

Link is Training
(user_Ink_up =1)

PCITREE and Ispci will scan the
the system and display devices
recognized during startup. These
tools show the PCI configuration
space and its settings within

the device.

Is the device recognized by the system?
Can it be seen by PCITREE (Windows) or
Ispci (Linux)?

To eliminate FGPA configuration
as a root cause, perform a soft
restart of the system. Performing a
soft reset on the system will keep
power applied and forces
re-enumeration of the device.

If this fixes the problem, then it is
likely the FPGA is not configured in
time for the host to access the card.

Does a soft reset fix the problem?
(user_Ink_up =1)

The PIO design is known to work.
Often, the PIO design will work when
a user design will not. This usually
indicates some parameter or resource
conflict due to settings used for the
user design configuration.

It is recommended to mirror the PIO
CORE Generator GUI settings into
the user design. Even though the
design may not function, it should
still be recognized by the system.

Does using the PIO example
design fix the problem?

Do you have a link analyzer?

Yes

With no link analyzer, it is possible to use
ChipScope to gather the same information.

Itis likely, the problem is due to the device
not responding properly to some type of access. A
link analyzer allows you to view the link traffic
and determine if something is incorrect. See
the "Using a Link Analyzer to Debug
Device Recognition Issues” section.

See “Data Transfer Failing Debug”
section.

See "FPGA Configuration Time
Debug" section.

Does mirroring the PIO
CORE Generator GUI settings for
the user design fix the problem?

A\

Check for configuration settings
conflict. See the "Debugging
No PCI Configuration Space Parameters"
section.

If the PIO design works, but mirroring the
configuration parameters does not fix the
problem, then attention should be focused on
the user application design. See the "Application
Requirements" section.

UG672_aC_05_092010

Figure C-5: Link Trained Debug Flow Diagram

178 www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Hardware Debug

FPGA Configuration Time Debug

Device initialization and configuration issues can be caused by not having the FPGA
configured fast enough to enter link training and be recognized by the system. Section 6.6
of PCI Express Base Specification, v2.0 states two rules that might be impacted by FPGA
Configuration Time:

¢ A component must enter the LTSSM Detect state within 20 ms of the end of the
Fundamental reset.

¢ A system must guarantee that all components intended to be software visible at boot
time are ready to receive Configuration Requests within 100 ms of the end of
Conventional Reset at the Root Complex.

These statements basically mean there is a finite time in which the FPGA must be
configured by, and not meeting these requirements could cause problems with link
training and device recognition.

Configuration can be accomplished using an onboard PROM or dynamically using JTAG.
When using JTAG to configure the device, configuration typically occurs after the Chipset
has enumerated each peripheral. After configuring the FPGA, a soft reset is required to
restart enumeration and configuration of the device. A soft reset on a Windows based PC
is performed by going to Start -> Shut Down and then selecting Restart.

To eliminate FPGA configuration as a root cause, perform a soft restart of the system.
Performing a soft reset on the system keeps power applied and forces re-enumeration of
the device. If the device links up and is recognized after a soft reset is performed, then
FPGA configuration is most likely the problem. Most typical systems use ATX power
supplies which provides some margin on this 100 ms window as the power supply is
normally valid before the 100 ms window starts. For more information on FPGA
configuration, see Chapter 8, FPGA Configuration.

Debugging PCI Configuration Space Parameters

Often, a user application fails to be recognized by the system, but the Xilinx PIO Example
design works. In these cases, the user application is often using a PCI configuration space
setting that is interfering with the system systems ability to recognize and allocate
resources to the card.

Xilinx PCI Express solutions handle all configuration transactions internally and generate
the correct responses to incoming configuration requests. Chipsets have limits as to the
amount of system resources they can allocate, and the core must be configured to adhere to
these limitations.

The resources requested by the endpoint are identified by the BAR settings within the
Endpoint configuration space. Verify that the resources requested in each BAR can be
allocated by the chipset. I/O BARs are especially limited so configuring a large I/O BAR
typically prevents the chipset from configuring the device. Generate a core that
implements a small amount of Memory (approximately 2 KB) to identify if this is the root
cause.

The Class Code setting selected in the CORE Generator software GUI can also affect
configuration. The Class Code informs the Chipset as to what type of device the Endpoint
is. Chipsets might expect a certain type of device to be plugged into the PCI Express slot
and configuration might fail if it reads an unexpected Class Code. The BIOS could be
configurable to workaround this issue.

Use the PIO design with default settings to rule out any device allocation issues. The PIO
design default settings have proven to work in all systems encountered when debugging

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 179
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix C: Debugging Designs & XILINX.

problems. If the default settings allow the device to be recognized, then change the P1IO
design settings to match the intended user application by changing the PIO configuration
the CORE Generator software GUI. Trial and error might be required to pinpoint the
problem if a link analyzer is not available.

Using a link analyzer, it is possible to monitor the link traffic and possibly determine when
during the enumeration and configuration process problems occur.

Application Requirements

During enumeration, it is possible for the chipset to issue TLP traffic that is passed from the
core to the backend application. A common oversight when designing custom backend
applications is to not have logic which handles every type incoming request. As a result, no
response is created and problems arise. The PIO design has the necessary backend
functions to respond correctly to any incoming request. It is the responsibility of the
application to generate the correct response. These packet types are presented to the
application:

* Requests targeting the Expansion ROM (if enabled)
¢ Message TLPs

¢ Memory or I/O requests targeting a BAR

¢ All completion packets

The PIO design, can be used to rule out any of these types of concerns, as the PIO design
responds to all incoming transactions to the user application in some way to ensure the
host receives the proper response allowing the system to progress. If the PIO design works,
but the custom application does not, this means that some transaction is not being handled

properly.
The ChipScope analyzer should be implemented on the wrapper AXI-Stream Receive
interface to identify if requests targeting the backend application are drained and

completed successfully. The AXI-Stream interface signals that should be probed in the
ChipScope analyzer are defined in Table D-4, page 191.

Using a Link Analyzer to Debug Device Recognition Issues

In cases where the link is up (user_Ink_up = 1), but the device is not recognized by the
system, a link analyzer can help solve the problem. It is likely the FPGA is not responding
properly to some type of access. Use the link view to analyze the traffic and see if anything
looks out of place.

To focus on the problem, it might be necessary to try different triggers. Here are some
trigger examples:

e Trigger on the first | Nl T_FC1 and/or UPDATE_FCin either direction. This allows the
analyzer to begin capture after link up.

¢ The first TLP normally transmitted to an endpoint is the Set Slot Power Limit
Message. This usually occurs before Configuration traffic begins. This might be a
good trigger point.

e Trigger on Configuration TLPs.
¢ Trigger on Memory Read or Memory Write TLPs.

180

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Hardware Debug

Data Transfer Failing Debug

Link is Up (user_Ink_up = 1)
Device is recognized by system.
Data Transfers failing.

The most often cause of a system !
freeze or hang is due to a
completion timeout occurring
on the host. This happens, when

the host issues a non-posted ’
transaction (usually a memory

read) to the Endpoint and the
Endpoint's user application does

not properly respond. i

If user_Ink_up is toggling, it usually
means the physical link is marginal.

In these cases, the link may be
established but may then fail once
traffic begins to flow. Use ChipScope
Pro or probe user_Ink_up to a logic
analyzer and determine if it is toggling.

Errors are reported to the user
interface on the output cfg_dstatus[3:0].
This is a copy of the device status
register. Using ChipScope monitor

this bus for errors.

Receive

Is the system freezing or hanging?

Is user_Ink_up toggling?

Fatal Error? Blue screen?
Other errors?

Is the problem with receiving

Ensure that completions are returned
for all incoming Non-Posted traffic.

Link could be marginal and packets
are failing to pass LCRC check.

Errors flagged by the core are due
to problems on the receive data path.
Use a link analyzer if possible to
check incoming packets. See the
"Identifying Errors" section.

Transmit

or transmitting TLPs?
Do incoming packets appear Do outgoing packets arrive
on AXl receive interface? gtd gt'p tion?
at destination?
If read or write transactions do not
appear on the trn interface, it means
thgt mosl.hkely the incoming papket If completion packets fail to reach their
did not hit a BAR.Venfy incoming destination, ensure the packet
e addrelsl.ses gga|nst BAR contained the correct requester ID as
allocation. captured from the original
. . Non-Posted TLP.
A memory write that misses a BAR
results in a Non-Fatal error message. If other packets fail, ensure the address
A non-posted transaction that misses a targeted is valid
BAR results in a Completion with '
UR status.
UG672_aC_06_092010
Figure C-6: Data Transfer Debug Flow Diagram

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 181

http://www.xilinx.com

Appendix C: Debugging Designs & XILINX.

Identifying Errors

Hardware symptoms of system lock up issues are indicated when the system hangs or a
blue screen appears (PC systems). The PCI Express Base Specification v2.0 requires that error
detection be implemented at the receiver. A system lock up or hang is commonly the result
of a Fatal Error and is reported in bit 2 of the receivers Device Status register. Using the
ChipScope tool, monitor the core’s device status register to see if a fatal error is being
reported.

A fatal error reported at the Root complex implies an issue on the transmit side of the EP.
The Root Complex Device Status register can often times be seen using PCITree (Windows)
or LSPCI (Linux). If a fatal error is detected, refer to the Transmit section. A Root Complex
can often implement Advanced Error Reporting (AER) which further distinguishes the
type of error reported. AER provides valuable information as to why a certain error was
flagged and is provided as an extended capability within a devices configuration space.
Section 7.10 of the PCI Express Base Specification v2.0 provides more information on AER
registers.

Transmit

Fatal Error Detected on Root or Link Partner

Check to make sure the TLP is correctly formed and that the payload (if one is attached)
matches what is stated in the header length field. The Endpoints device status register does
not report errors created by traffic on the transmit channel.

The following signals should be monitored on the Transmit interface to verify all traffic
being initiated is correct. Refer to Table 2-6 for signal descriptions.

user_Ink_up

e s_axis_tx_tlast
e s_axis_tx_tdata
e s_axis_tx_trb

e s_axis_tx_tvalid

® s_axis_tx_tready

Fatal Error Not Detected

Ensure that the address provided in the TLP header is valid. The kernel mode driver
attached to the device is responsible for obtaining the system resources allocated to the
device. In a Bus Mastering design, the driver is also responsible for providing the
application with a valid address range. System hangs or blue screens might occur if a TLP
contains an address which does not target the designated address range for that device.

182 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Hardware Debug

Receive

Xilinx solutions for PCI Express provide the Device Status register to the application on
CFG_DSTATUS[3:0]. Debug ports are available to help users determine the exact cause of
errors on the Endpoint's receiver. See Debug Ports, page 173 for information on these ports.

Table C-4: Description of CFG_DSTATUS[3:0]

CFG_DSTATUSI[3:0] Description
CFG_DSTATUS|0] Correctable Error Detected
CFG_DSTATUS[1] Non-Fatal Error Detected
CFG_DSTATUS|2] Fatal Error Detected
CFG_DSTATUSJ[3] UR Detected

System lock up conditions due to issues on the receive channel of the PCI Express core are
often result of an error message being sent upstream to the root. Error messages are only
sent when error reporting is enabled in the Device Control register.

A fatal condition is reported if any of these occur:

¢ Training Error

e DLL Protocol Error

e Flow Control Protocol Error
e Malformed TLP

e Receiver Overflow

The first four bullets are not common in hardware because both Xilinx PCI Express
solutions and connected components have been thoroughly tested in simulation and
hardware. However, a receiver overflow is a possibility. Users must ensure they follow
requirements discussed in Receiver Flow Control Credits Available in Chapter 6 when
issuing memory reads.

Debug ports are available to help users determine the exact cause of errors on the
endpoint’s receiver. See Debug Ports, page 173 for information on these ports.

Non-Fatal Errors

This section lists conditions that are reported as Non-Fatal errors. See the PCI Express Base
Specification for more details.

If the error is being reported by the root, the Advanced Error Reporting (AER) registers can
be read to determine the condition that led to the error. Use a tool such as HWDIRECT,
discussed in Third-Party Software Tools, page 170, to read the root's AER registers.
Chapter 7 of the PCI Express Base Specification defines the AER registers. If the error is
signaled by the endpoint, debug ports are available to help determine the specific cause of
the error.

Correctable Non-Fatal errors are:
e Receiver Error

e BadTLP

e Bad DLLP

¢ Replay Timeout

¢ Replay NUM Rollover

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 183
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix C: Debugging Designs & XILINX.

The first three errors listed above are detected by the receiver and are not common in
hardware systems. The replay error conditions are signaled by the transmitter. If an ACKis
not received for a packet within the allowed time, it is replayed by the transmitter.
Throughput can be reduced if many packets are being replayed, and the source can usually
be determined by examining the link analyzer or ChipScope tool captures.

Uncorrectable Non-Fatal errors are:

e Poisoned TLP

® Received ECRC Check Failed
* Unsupported Request (UR)

e Completion Timeout

e Completer Abort

¢ Unexpected Completion

¢ ACS Violation

An unsupported request usually indicates that the address in the TLP did not fall within
the address space allocated to the BAR. This often points to a problem with the address
translation performed by the driver. Ensure also that the BAR has been assigned correctly
by the root at start-up. LSPCI or PCltree discussed in Third-Party Software Tools, page 170
can be used to read the BAR values for each device.

A completion timeout indicates that no completion was returned for a transmitted TLP
and is reported by the requester. This can cause the system to hang (could include a blue
screen on Windows) and is usually caused when one of the devices locks up and stops
responding to incoming TLPs. If the root is reporting the completion timeout, the
ChipScope analyzer can be used to investigate why the User Application did not respond
toa TLP (for example, the User Application is busy, there are no transmit buffers available,
orts_axi s_tx_tready is deasserted). If the endpoint is reporting the Completion
timeout, a link analyzer would show the traffic patterns during the time of failure and
would be useful in determining the root cause.

Next Steps

If the debug suggestions listed above do not resolve the issue, open a support case to have
the appropriate Xilinx expert assist with the issue.

To create a technical support case in Webcase, see the Xilinx website at:

www.xilinx.com /support/clearexpress/websupport.htm

Items to include when opening a case:

¢ Detailed description of the issue and results of the steps listed above.

¢ Attach ChipScope analyzer VCD captures taken in the steps above.
To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com /xInx/

Simulation Debug

This section provides simulation debug flow diagrams for some of the most common
issues experienced by users. Endpoints that are shaded gray indicate that more
information can be found in sections below the figure.

184 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/

& XILINX.

Simulation Debug

ModelSim Debug

SecurelP models are used to
simulate the integrated block

for PCI Express and the MGTs.
To use these models, a Verilog
LRM-IEEE 1364-2005 encryption-
compliant simulator is required.

A Verilog license is required to
simulate with the SecurelP models.
If the user design uses VHDL, a
mixed-mode simulation license is

ModelSim
Simulation Debug

Are you using ModelSim version 6.4a
or later?

If using VHDL, do you have a
mixed-mode simulation license?

Update ModelSim to
version 6.4a or later.

Obtain a mixed-mode
simulation license.

required.

The PIO Example design should
allow the user to quickly determine
if the simulator is set up correctly. See "PIO Simulator Expected
The default test will achieve link up

Does simulating the PIO Example !
Output” section.

(user_Ink_up = 0) and issue a Design give the expected output?

Configuration Read to the core's
Device and VendorID.

If the libraries are not compiled and

mapped correctly, it will cause errors

such as:

** Error: (vopt-19) Failed to access
library 'secureip’ at "secureip”.

No such file or directory.
(errno = ENOENT)

** Error: ../..Jlexample_design/
xilinx_pcie_2_0_ep_v6.v(820):
Library secureip not found.

Need to compile and map the
proper libraries. See "Compiling
Simulation Libraries Section.”

Do you get errors referring to
failing to access library?

To model the Integrated block for
PCI Express and the MGTs, the
SecurelP models are used. These
models must be referenced during
the vsim call. Also, it is necessary to
reference the unisims library and
possibly xilinxcorelib depending

on the design.

Add the "-L" switch with the appropriate
library reference to the vsim command
line. For example: -L secureip or

-L unisims_ver.

Do you get errors indicating
"PCIE_2_0" or other elements like
"BUFG" not defined?

If problem is more design specific, open

a case with Xilinx Technical Support
and include a wif file dump of the simulation.
For the best results, dump the entire design
hierarchy.

Are you able to receive packets
on the Receive interface and transmit
packets on the Transmit interface?

One of the most common mistakes in
simulation of an Endpoint is forgetting
to set the Memory, 10, and Bus Master
Enable bits to a 1 in the PCI Command
register in the configuration space.

In the DSPORT test bench application,
issue a Configuration Write to the PCI
Command register at DWORD address
offset 0x04 and set bits [2:0] to 111b.

UG672_aC_07_092210

Figure C-7: ModelSim Debug FLow Diagram

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 185

http://www.xilinx.com

Appendix C: Debugging Designs & XILINX.

P10 Simulator Expected Output

The PIO design simulation should give the output as follows:

Loadi ng wor k. board(fast)
Loadi ng uni si ns_ver. | BUFDS_GTXEL(fast)
Loadi ng wor k. pci e_cl ocki ng_v6(fast)
Loadi ng uni sins_ver.PClE_2_0(fast)
Loadi ng wor k. pci e_gtx_v6(fast)
Loadi ng uni si ns_ver. GTXEL(f ast)
Loadi ng uni si ns_ver. RAMB36(f ast)
Loadi ng uni si ns_ver. RAMB16_S36_S36(f ast)
Loadi ng unisins_ver.PCIE_2_0O(fast__1)
Loadi ng work. gl bl (fast)
[0] board. EP.core.pcie_2_0_i.pcie_brami ROAM5 TX 1 COLS TX 2
[0] board. EP.core.pcie_2 0 i.pcie_brami ROAM5 RX 1 COLS RX 2
[0] board.EP.core.pcie_2 0_i.pcie_bram.i.pcie_brans_tx NUM BRAMS 2
DOB_REG 1 WDTH 36 RAM WRI TE_LATENCY 0 RAM RADDR LATENCY 0 RAM RDATA LATENCY 2
[0] board. EP.core.pcie_2_0_i.pcie_bram.i.pcie_brams_rx NUM BRAMS 2
DOB_REG 1 W DTH 36 RAM WRI TE_LATENCY 0 RAM RADDR LATENCY 0 RAM RDATA LATENCY 2
[0] board.RP.rport.pcie_2 0 i.pcie_brami ROA5 TX 1 COLS TX 2
[0] board.RP.rport.pcie_ 2 0 i.pcie_brami ROAMS RX 1 COLS RX 2
[0] board.RP.rport.pcie_2 0 _i.pcie_bram.i.pcie_brans_tx NUM BRAMS 2
DOB_REG 1 WDTH 36 RAM WRI TE_LATENCY 0 RAM RADDR LATENCY 0 RAM RDATA LATENCY 2
[0] board.RP.rport.pcie_2_0_i.pcie_bram.i.pcie_brams_rx NUM BRAMS 2
DOB_REG 1 W DTH 36 RAM WRI TE_LATENCY 0 RAM RADDR LATENCY 0 RAM RDATA LATENCY 2
Running test {sanple_snmoke testO0}......
[0] : System Reset Asserted...
[4995000] : System Reset De-asserted...
[64069100] : Transaction Reset |s De-asserted...
[73661100] : Transaction Link Is Up...
[73661100] : Expected Device/ Vendor | D = 000710ee
[73661100] : Reading from PCl/PCl - Express Configuration Register 0x00
[73673000] : TSK PARSE_FRAME on Transmt
[74941000] : TSK PARSE _FRAME on Receive
[75273000] : TEST PASSED --- Device/ Vendor |D 000710ee successfully received
** Note: $finish : ../tests/sanple_testsl.v(29)
Time: 75273 ns Iteration: 3 Instance: /board/ RP/tx_usrapp
Compiling Simulation Libraries
Use the compxlib command to compile simulation libraries. This tool is delivered as part of
the Xilinx software. For more information see the ISE Software Manuals and specifically
the Development System Reference Guide under the section titled compxlib.
Assuming the Xilinx and ModelSim environments are set up correctly, this is an example of
compiling the SecurelP and UniSims libraries for Verilog into the current directory
conpxlib -s nti_se -arch spartan6 -1 verilog -1ib secureip -lib unisins
-dir ./
There are many other options available for compxlib described in the Development System
Reference Guide.
Compxlib produces a model si m i ni file containing the library mappings. In ModelSim,
to see the current library mappings type vimap at the prompt. The mappings can be
updated in the INI file or to map a library at the ModelSim prompt type:
vmap [<l ogi cal _nane>] [<path>]
For example:
Vmap unisinms_ver C\nmy_unisimlib
186 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Simulation Debug

Next Step

If the debug suggestions listed above do not resolve the issue, a support case should be
opened to have the appropriate Xilinx expert assist with the issue.

To create a technical support case in Webcase, see the Xilinx website at:

www.xilinx.com/support/clearexpress/websupport.htm

Items to include when opening a case:

e Detailed description of the issue and results of the steps listed above.
¢ Attach a VCD or WLF dump of the simulation.

To discuss possible solutions, use the Xilinx User Community:

forums.xilinx.com /xInx/

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com

187
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/clearexpress/websupport.htm
http://forums.xilinx.com/xlnx/

Appendix C: Debugging Designs & XILINX.

188 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Managing Receive-Buffer Space for

Inbound Completions

Appendix D

The PCI Express Base Specification requires all Endpoints to advertise infinite Flow
Control credits for received Completions to their link partners. This means that an
Endpoint must only transmit Non-Posted Requests for which it has space to accept
Completion responses. This appendix describes how a User Application can manage the
receive-buffer space in the PCI Express Endpoint core to fulfill this requirement.

General Considerations and Concepts

Completion Space

Table D-1 defines the completion space reserved in the receive buffer by the core. The
values differ for different versions of the core, and also differ based on whether the
designer chooses to have TLP Digests (ECRC) removed from the incoming packet stream.
Values are credits, expressed in decimal.

Table D-1: Receiver-Buffer Completion Space
Performance Level : Good Performance Level : High
Capability Max Payload
Size (bytes) Cpl. Hdr. Cpl. Data Cpl. Hdr. Cpl. Data
(Total_CplIH) | (Total_CplID) | (Total_CplIH) | (Total_CplD)
128 8 64 16 128
256 16 128 32 256
512 32 256 32 256
Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 189

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix D: Managing Receive-Buffer Space for Inbound Completions

& XILINX.

Maximum Request Size

A Memory Read cannot request more than the value stated in Max_Request_Size, which is
given by Configuration bits cfg_dcommand[14:12] as defined in Table D-2. If the User
Application chooses not to read the Max_Request_Size value, it must use the default value

of 128 bytes.
Table D-2: Max Request Size Settings
Max_Request_Size
cfg_dcommand[14:12]
Bytes DW QW Credits
000b 128 32 16 8
001b 256 64 32 16
010b 512 128 64 32
011b 1024 256 128 64
100b 2048 512 256 128
101b 4096 1024 512 256
110b-111b Reserved

Read Completion Boundary

A Memory Read can be answered with multiple Completions, which when put together
return all requested data. To make room for packet-header overhead, the User Application
must allocate enough space for the maximum number of Completions that might be

returned.

To make this process easier, the Base Specification quantizes the length of all Completion
packets such that each must start and end on a naturally aligned Read Completion
Boundary (RCB), unless it services the starting or ending address of the original request.
The value of RCB is determined by Configuration bit cfg_lcommand|[3] as defined in
Table D-3. If the User Application chooses not to read the RCB value, it must use the

default value of 64 bytes.

Table D-3: Read Completion Boundary Settings

cfg_Icommand[3]

Read Completion Boundary

Bytes DW QW Credits
0 64 16 8 4
1 128 32 16 8

When calculating the number of Completion credits a Non-Posted Request requires, the
user must determine how many RCB-bounded blocks the Completion response might
require; this is the same as the number of Completion Header credits required.

190

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Methods of Managing Completion Space

Methods of Managing Completion Space

A User Application can choose one of four methods to manage receive-buffer Completion
space, as listed in Table D-4. For convenience, this discussion refers to these methods as
LIMIT_FC, PACKET_FC, RCB_FC, and DATA_FC. Each has advantages and
disadvantages that the designer needs to consider when developing the user application.

Table D-4: Managing Receive Completion Space Methods

Method

Description

Advantage

Disadvantage

LIMIT_FC

Limit the total number of
outstanding NP Requests

Simplest method to
implement in user
logic

Much Completion
capacity goes
unused

PACKET_FC

Track the number of
outstanding CplH and CplD
credits; allocate and
deallocate on a per-packet
basis

Relatively simple
user logic; finer
allocation
granularity means
less wasted capacity
than LIMIT_FC

As with LIMIT_FC,
credits for an NP are
still tied up until the
Request is
completely satisfied

RCB_FC

Track the number of
outstanding CplH and CplD
credits; allocate and
deallocate on a per-RCB basis

Ties up credits for
less time than
PACKET_FC

More complex user
logic than LIMIT_FC
or PACKET_FC

DATA_FC

Track the number of
outstanding CplH and CplD
credits; allocate and
deallocate on a per-RCB basis

Lowest amount of
wasted capacity

Most complex user
logic

The LIMIT_FC Method

The LIMIT_FC method is the simplest to implement. The User Application assesses the
maximum number of outstanding Non-Posted Requests allowed at one time, MAX_NP. To
calculate this value, perform these steps:

1. Determine the number of CplH credits required by a Max_Request_Size packet:
Max_Header_Count = ceiling(Max_Request_Size / RCB)

2. Determine the greatest number of maximum-sized Completions supported by the
CplD credit pool:

Max_Packet_Count_CplD = floor(CplD / Max_Request_Size)

3. Determine the greatest number of maximum-sized Completions supported by the
CplH credit pool:

Max_Packet_Count_CplH = floor(CplH / Max_Header_Count)

4. Use the smaller of the two quantities from steps 2 and 3 to obtain the maximum number
of outstanding Non-Posted requests:

MAX_NP = min(Max_Packet_Count_CplH, Max_Packet_Count_CplD)

With knowledge of MAX_NP, the User Application can load a register NP_PENDING with
zero at reset and make sure it always stays with the range 0 to MAX_NP. When a Non-
Posted Request is transmitted, NP_PENDING decrements by one. When all Completions
for an outstanding NP Request are received, NP_PENDING increments by one.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

191

http://www.xilinx.com

Appendix D: Managing Receive-Buffer Space for Inbound Completions & XILINX.

Although this method is the simplest to implement, it potentially wastes the most receiver
space because an entire Max_Request_Size block of Completion credit is allocated for each
Non-Posted Request, regardless of actual request size. The amount of waste becomes
greater when the User Application issues a larger proportion of short Memory Reads (on
the order of a single DWORD), I/O Reads and 1/O Writes.

The PACKET_FC Method

The PACKET_FC method allocates blocks of credit in finer granularities than LIMIT_FC,
using the receive Completion space more efficiently with a small increase in user logic.

Start with two registers, CPLH_PENDING and CPLD_PENDING, (loaded with zero at
reset), and then perform these steps:

1. When the User Application needs to send an NP request determine the potential
number of CplH and CplD credits, it might require:
NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) /16 bytes]
(except I/O Write, which returns zero data)

The modulo and ceiling functions ensure that any fractional RCB or credit blocks are
rounded up. For example, if a Memory Read requests 8 bytes of data from address
7Ch, the returned data can potentially be returned over two Completion packets (7Ch-
7Fh, followed by 80h-83h). This would require two RCB blocks and two data credits.

2. Check the following:
CPLH_PENDING + NP_CplH < Total_CplH (from Table D-1)
CPLD_PENDING + NP_CplD < Total_CplD (from Table D-1)

3. If both inequalities are true, transmit the Non-Posted Request, increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplD. For each NP
Request transmitted, keep NP_CplH and NP_CplD for later use.

4. When all Completion data is returned for an NP Request, decrement
CPLH_PENDING and CPLD_PENDING accordingly.

This method is less wasteful than LIMIT_FC but still ties up all of an NP Request’s
Completion space until the entire request is satisfied. RCB_FC and DATA_FC provide finer
de-allocation granularity at the expense of more logic.

The RCB_FC Method

The RCB_FC method allocates and de-allocates blocks of credit in RCB granularity. Credit
is freed on a per-RCB basis.

As with PACKET_FC, start with two registers, CPLH_PENDING and CPLD_PENDING
(loaded with zero at reset).

1. Calculate the number of data credits per RCB:
CplD_PER_RCB = RCB / 16 bytes

2. When the User Application needs to send an NP request, determine the potential
number of CplH credits it might require. Use this to allocate CplD credits with RCB
granularity:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]
NP_CplD = NP_CplH x CplD_PER_RCB

192

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Methods of Managing Completion Space

Check the following;:
CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CpID < Total_CplD

If both inequalities are true, transmit the Non-Posted Request, increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplID.

At the start of each incoming Completion, or when that Completion begins at or
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1 and
CPLD_PENDING by CplD_PER_RCB. Any Completion can cross more than one RCB.
The number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header.
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the
start of each incoming Completion, increment per DW or QW as appropriate, then
count an RCB whenever CUR_ADDR rolls over.

This method is less wasteful than PACKET_FC but still gives us an RCB granularity. If a
User Application transmits I/O requests, the User Application could adopt a policy of only
allocating one CplD credit for each I/O Read and zero CplD credits for each I/O Write. The
User Application would have to match each incoming Completion’s Tag with the Type
(Memory Write, I/O Read, I/O Write) of the original NP Request.

The DATA_FC Method

The DATA_FC method provides the finest allocation granularity at the expense of logic.

As with PACKET_FC and RCB_FC, start with two registers, C’LH_PENDING and
CPLD_PENDING (loaded with zero at reset).

1.

When the User Application needs to send an NP request, determine the potential
number of CplH and CplD credits it might require:

NP_CplH = ceiling[((Start_Address mod RCB) + Request_Size) / RCB]

NP_CplD = ceiling[((Start_Address mod 16 bytes) + Request_Size) / 16 bytes]
(except I/O Write, which returns zero data)

Check the following;:
CPLH_PENDING + NP_CplH < Total_CplH

CPLD_PENDING + NP_CpID < Total_CplD

If both inequalities are true, transmit the Non-Posted Request, increase
CPLH_PENDING by NP_CplH and CPLD_PENDING by NP_CplID.

At the start of each incoming Completion, or when that Completion begins at or
crosses an RCB without ending at that RCB, decrement CPLH_PENDING by 1. The
number of RCB crossings can be calculated by:

RCB_CROSSED = ceiling[((Lower_Address mod RCB) + Length) / RCB]

Lower_Address and Length are fields that can be parsed from the Completion header.
Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the
start of each incoming Completion, increment per DW or QW as appropriate, then
count an RCB whenever CUR_ADDR rolls over.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 193

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix D: Managing Receive-Buffer Space for Inbound Completions & XILINX.

5. At the start of each incoming Completion, or when that Completion begins at or
crosses at a naturally aligned credit boundary, decrement CPLD_PENDING by 1. The
number of credit-boundary crossings is given by:

DATA_CROSSED = ceiling[((Lower_Address mod 16 B) + Length) / 16 B]

Alternatively, a designer can load a register CUR_ADDR with Lower_Address at the
start of each incoming Completion, increment per DW or QW as appropriate, then
count an RCB whenever CUR_ADDR rolls over each 16-byte address boundary.

This method is the least wasteful but requires the greatest amount of user logic. If even
finer granularity is desired, the user can scale the Total _CplD value by 2 or 4 to get the
number of Completion QWORDs or DWORDs, respectively, and adjust the data
calculations accordingly.

194 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix E

Board Design Guidelines

Overview

This appendix discusses topics related to implementing a PCI Express® design that uses
the Spartan®-6 FPGA on a printed circuit board (PCB). Optimal performance requires an
understanding of the functionality of the device pins and needs to address issues such as
device interfacing, protocol specifications, and signal integrity.

Recommendations made in this chapter are guidelines and do not guarantee a working
design.

The information presented here discusses PCB considerations specific to the PCI Express
specifications. This chapter should be used in conjuction with these documents for a
comprehensive understanding of PCB design with Xilinx FPGAs.

o UG386, Spartan-6 FPGA GTP Transceivers User Guide - Specifically, see the “Board
Design Guidelines” chapter.

e UG393, Spartan-6 FPGA PCB Design Guide.

The PCI-SIG maintains multiple specifications that can apply depending on the form factor
of the design. This document only considers the subset of these specifications focused on
chip-to-chip and add-in card implementations. Table E-1 shows the specifications that
correlate to the applicable form factors.

Table E-1: PCI-SIG Specifications and Form Factor

Specification Name Form-factor

PCI Express Base Specification Revision 1.1 | Chip-to-chip on a single PCB

PCI Express Card Electromechanical ATX: desktop/server consisting of System
Specification (CEM) Revision 1.1 card and Add-in card

Example PCB Reference

Xilinx delivers the SP605 board with an x1 PCI Express add-in card connection. This
chapter uses this board as an example for certain recommendations.

For documentation such as schematics, gerbers, and a bill-of-material for the SP605 board,
see the Spartan-6 FPGA SP605 Evaluation Kit product page:

www.xilinx.com /sp605

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 195
UG672 (v1.0) October 5, 2010

http://www.xilinx.com/support/documentation/user_guides/ug386.pdf
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf
http://www.xilinx.com/sp605
http://www.xilinx.com

Appendix E: Board Design Guidelines & XILINX.

Board Stackup

Board stackup design is dependent on many variables, including design, manufacturing,
and cost constraints. See the information onboard stackup design in UG393 and UG386.

Generally speaking, signal layers for high-speed signals such as PCI Express data signals
should be sandwiched between ground planes. It is also preferable to use the layers closest
to the top or bottom of the device so that via stubs are minimized.

SP605 Example

Figure E-1 shows the stackup that the SP605 Add-in Card reference board employs. All
internal signal layers are sandwiched between (uninterrupted) ground and power planes.

TOP SIDE

| LAYER 1TOP [~— Spartan-6 FPGA

I PRE-PREG |
| LAYER 2 PWR1

| CORE |
| LAYER 3 SIG1

| PRE-PREG |
| LAYER 4 GND1

| CORE |
| LAYER 5 SIG2

I PRE-PREG |
| LAYER 6 GND2

I CORE]
| LAYER 7 PWR2

f
f
f
I
|
] PRE-PREG] I‘
I
f
f
f
f
f

and
PCI Express Edge Connector Side B(RX)
located on top

| LAYER 8 PWR3

| CORE |
| LAYER 9 GND3

] PRE-PREG]
| LAYER 10 SIG3

] CORE]
| LAYER 11 GND4

| PRE-PREG |
| LAYER 12 SIG4

I CORE]
| LAYER 13 GND5 ,

T PRE-PREG T PCI Express Edge Connector Side A

]
| LAYER 14 BOT { located on bottom

BOTTOM SIDE
UG672_aF_01_083110

Figure E-1: SP605 Board Stackup

Transmit (TX) data lines initiate from the FPGA on the top layer, immediately drop to SIG3
(Layer 10) for routing across the PCB, and then terminate at the PCI Express edge
connector side A on the bottom layer.

196 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf

& XILINX. Data Routing Guidelines

Receive (RX) data lines initiate from the FPGA on the top layer, immediately drop to SIG3
(Layer 10) for routing across the PCB, and then terminate at the PCI Express edge
connector side B on the top layer.

Edge
Connector
FPGA Side B

Edge
Connector
Side A

TX capacitors

UG672_aE_02_083110

Figure E-2: Transmit and Receive Data Lines

Power Supply Design

UG393 discusses general Power Distribution System (PDS) design for the FPGA, including
the required decoupling capacitors for the VCCINT, VCCO, and VCCAUX supplies.

It is also imperative to ensure a clean power supply on MGTAVCC and MGTAVTT power
supplies. Consult UG386 for more details on GTP transceiver power supply layout and
other requirements for filtering and design.

Data Routing Guidelines

Breakout from FPGA BGA

UG386 discusses how to break out the high-speed GTP transceiver signals from the BGA
and provides examples of such. Design constraints might require microstrips for the BGA
exit path or from via to the PCI Express edge connector launch or SMT pads. In such cases,
the microstrip trace must be kept as short as possible.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 197
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf

Appendix E: Board Design Guidelines & XILINX.

An example Receive and Transmit breakout pattern from the SP605 board are shown in
Figure E-3. Transmit lines are shown in green, and receive lines are shown in red.

Via
Breakout Trace
BGA Pin

Microstrip Trace

UG672_aE_03_083110

Figure E-3: Receive Breakout Pattern

Microstrip vs. Stripline

Striplines are to be used whenever possible, as are the uppermost and lowermost stripline
layers to minimize via stubs. When the stackup is being planned, these layers should be
placed as close to the top and bottom layers whenever possible.

Plane Reference and Splits

Ground planes should be used as reference planes for signals, as opposed to noisier power
planes. Each reference plane should be contiguous for the length of the trace, because
routing over plane-splits creates an impedance discontinuity. In this case, the impedance of
the trace changes because its coupling to the reference plane is changed abruptly at the
plane split.

Bends

Follow the recommendations in UG393 regarding microstrip and stripline bends. Tight
bends (such as 90 degrees) should be avoided; only mitered, 45-degree or less, bends are
recommended.

198 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf

& XILINX. Data Routing Guidelines

Propagation Delay

PCI Express generally does not specify a maximum propagation delay for data signals,
with the exception of add-in cards. Add-in card designs should meet the propagation
delay specification in the CEM specification for data traces. The delay from the edge finger
to the GTP transceiver must not exceed 750 ps.

Intrapair Skew

Intrapair skew refers to the skew between a P and N leg of a differential pair. Skew can
introduce common-mode effects which lead to increased EMI, crosstalk and other DC
effects. It is important to match the skew for differential pairs as close as possible.

Xilinx recommends intrapair trace length-matching to within 5 mils to minimize these
effects.

Symmetrical Routing

Always use symmetrical routing. This prevents common-mode effects, such as EMI, from
being introduced into the system.

Figure E-4 illustrates two examples of non-symmetrical routing, which should be avoided.

N s
E /N _/__f

UG672_aE_04_083110

Figure E-4: Non-Symmetrical Routing Examples

Vias

Users should follow the recommendations in UG393 for differential vias. Specifically,
wherever high-speed signals must transition signal layers, a Ground-Signal-Signal-
Ground (GSSG) type via should be used if possible. This provides a low inductance return
current path.

All vias for a differential pair should employ symmetrical routing rules.

Trace Impedance

Differential data-line trace impedance was not specified in the Rev 1.0, 1.0a, or 1.1 (1.x) of
the PCI Express Base and PCI Express CEM Specifications. The transmitters and receivers
were specified to have 100 nominal differential impedance; therefore, most 1.x designs
opt for a default 100Q2 differential trace impedance for all PCI Express differential
connections.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 199
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug393.pdf

Appendix E: Board Design Guidelines & XILINX.

Xilinx recommends using simulation techniques to determine the optimum trace
impedance. Simulation using HSPICE or Hyperlinx can help determine the optimum trace
impedance to reduce signal loss.

PCB dielectric material, board stack up, microstrip, and strip line traces affect signal
impedence. It is important that all of these factors are taken into consideration together.

If a simulator is not available, Xilinx recommends these basic guidelines for differential
data-line trace impedance targets:

¢ 100Q+10% for 2.5 Gb/s only links

Trace Separation

Generally, simulation or post-layout analysis tools should be used to determine the
optimum spacing required to reduce crosstalk from nearby aggressor signals. In the
absence of these tools, Xilinx suggests that spacing between differential pairs and other
non-PCI Express signals should be at least three times the dielectric height above the
reference planes to minimize crosstalk. Exceptions to this are allowed in the break-out area
of the FPGA; however, these sections should be kept as short as possible.

Lane Polarity Inversion

The PCI Express Base Specification (1.x) requires that all PCI Express receivers support
polarity inversion. This gives the PCB designer flexibility to avoid having to cross P and N
lines within a given differential pair.

GTP receivers support lane polarity inversion on a per transceiver basis.

AC Coupling

System and Add-in Cards

AC coupling capacitors should be placed on the TX pairs. Place the capacitors either near
the edge connector or the FPGA—not in the middle of the interconnect.

Chip-to-Chip
AC coupling capacitors can be placed anywhere on the interconnect, except in the very
middle.

General Guidelines

Capacitors for coupled traces should always be located at the same relative place as its
partner, that is, symmetrical routing guidelines apply for differential pairs.

Use 0.1 uF ceramic chip capacitors in the smallest package possible.

Data Signal Termination

No external resistor terminators are required with the exception of a precision 50Qresistor
connected to the RCAL circuitry for the GTP transceiver column. Make sure the trace
length and geometry to both legs of the resistor are equal. See UG386 for more information.

200 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf

& XILINX.

Reference Clock Considerations

Additional Considerations for Add-In Card Designs

Board thickness for add-in cards should not to exceed 0.062 inches.

2. Care must be taken when connecting the RX and TX data lines to the edge connector.
The edge connector pin names for the TX and RX data lines as defined in the CEM
specification are named from the view of the system board. That is, the RX (PERxx)
lines are connected to the receiver on the system board and the transmitter on the
add-in card. Similarly the TX (PETxx) lines are connected to the transmitter on the
system board and the receiver on the add-in card. That means the add-in card should
route the edge connector PERxx pins to the transmitter and the PETxx pins to the
receiver on an Endpoint configured FPGA. Figure E-5 illustrates how to connect the
data lines for an add-in card design.

System Edge _
Motherboard Connector Add-in Card

———— PETplL ———>

TX
————» petn1 ——— *X
- PERpl |«
R l@—— | PERN1 || TX
S = —
PETp2 X

«——| PERp2 la— 1y

R le—— | PERN? |

UG672_aE_05_083110

Figure E-5: Add-In Card Design Connections

Reference Clock Considerations

Jitter

Reference clock jitter has the potential to close both the TX and RX eyes, depending of the
frequency content of the phase jitter. Therefore, it is very important to maintain as clean a
reference clock as possible.

Reduce crosstalk on the REFCLK signal by isolating the clock signal from nearby high-
speed traces. Maintain a separation of at least 25 mils from the nearest aggressor signals.

Ensure a clean power supply on MGTAVCC power supply. See UG386 for more details on
GTP transceiver power supply layout and design.

In some cases where the designer has no control over the clock source, it might be desirable
to add a jitter attenuator device.

If an external PLL or jitter attenuator device is used, ensure that it meets the specifications
for PLL bandwidth as defined in the PCI Express Base Specification. The PLL bandwidth
specification is different for 1.x and 2.0 versions of the specification.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 201
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf

Appendix E: Board Design Guidelines & XILINX.

Trace Impedance

The reference clock should use a 100Q differential trace impedance.

Termination

The REFCLK signal should be routed to the dedicated reference clock input pins on the
GTP transceiver, and the user design should instantiate an IBUFDS primitive in the user
design. An internal 100Qdifferential termination biased to 2/3 MGTAVCC is automatically
included on these input pins when the IBUFDS is used, and no external termination is
required or needed for Spartan-6 devices. This is true for both HSCL and LVDS clocks.

See UG386 for more information on GTP transceiver reference clock termination.

AC Coupling

Fanout

The REFCLK signal should be AC coupled at the input to the FPGA. Xilinx recommends
0.1 pF ceramic-chip capacitors for this purpose. See UG386 for more information

If the reference clock needs to be routed to more than one location, then a dedicated clock
fanout device should be used. Make sure to follow the specifications for the fanout device.
For instance, 100Q termination might be required on the input to the fanout device.

Figure E-6 shows an example of a clock fanout device used to route the reference clock to
multiple locations. The Spartan-6 FPGA requires no external resistive termination (just AC
coupling capacitors). The fanout device is shown with a single resistor terminator at its

clock input pins.
I Spartan-6
— FPGA

— > Other
—— | ocation

REFCLK+ Clock
>

REFCLK- 3| (F:";‘]r_‘;“t
|

J10198UU0) 8bp38|1Dd

UG672_aE_06_083110

Figure E-6: Fanout Block Diagram

Sideband PCI Express Signals

PERST#

The PERST# signal must be routed to the FPGA for add-in cards. This 3.3V signal should
be routed to an 3.3 V I/O bank (that is, V¢ connected to 3.3V). If a non-3.3V I/O bank is
used, an external circuit is necessary to interface with the Spartan-6 FPGA inputs. This

external circuit could consist of a level translator such as the ST Micro ST2378E, a resistor
network, or other transistor-based circuit. There is no termination required for this signal,

202

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf

& XILINX.

Reference Clock Considerations

although the integrated Endpoint Block core implements a pull-up on the input from
within the example UCF file.

PRSNT#

The PRSNT# pins should be connected as recommended in the CEM specification. Also see
the SP605 board for an example

Summary Checklist

Table
Table

E-2 provides a checklist which summarizes the items discussed in this chapter.
E-2: Board Design Checklist

Item

Board Stackup

‘ Follow guidelines in UG393 and UG386.

Power Supply Design

‘ Follow guidelines in UG393 and UG386.

High-Speed Data Signal Routing

Use stripline routing when possible.

Avoid routing over reference plane splits or voids.

Bends < 45 degrees.

Add-in cards must not exceed 750 ps propagation delay.

Length match intrapair skew to within 3 ps.

Use Ground-Signal-Signal-Ground (GSSG) type vias when possible.

Limit the number of vias.

100Q differential trace impedance for 2.5 Gb/s data signals.

20 mil trace separation between differential pairs (exception in breakout area).

AC coupling 0.1 uF ceramic chip capacitors on all TX lines.

50Q precision resistor connected to the RCAL circuit for GTP transceivers (see UG386).

Add-in cards must not exceed 0.062 inches in thickness.

Reference Clock (REFCLK)

100Q differential trace impedance.

Maintain separation of at least 25 mils from nearby aggressor signals.

Ensure clean power supply on MGTAVCC.

No external termination required at input to FPGA (however, user must instantiate
IBUFDS primitive).

AC coupling 0.1 uF ceramic chip capacitors.

Sideband Signals for Add-In Cards

PERST# routes directly to 3.3V I/O bank. Use external circuitry if routing to non-3.3V
I/0 bank.

PRSNT# connects as recommended in CEM specification.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 203

UG672 (v1.0) October 5, 2010

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf

Appendix E: Board Design Guidelines & XILINX.

204 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Appendix F

PCIE_A1 Port Descriptions

This appendix describes the physical interfaces visible on the Spartan®-6 FPGA integrated
Endpoint block’s software primitive, PCIE_A1.

This appendix contains these sections:

Clock and Reset Interface

Transaction Layer Interface
Block RAM Interface

GTP Transceiver Interface

Configuration Management Interface

Debug Interface Ports

Clock and Reset Interface

Table F-1 defines the ports in the Clock and Reset interface.

Table F-1: Clock and Reset Interface Port Descriptions

Port Direction | Clock Domain Description

CLOCKLOCKED Input USERCLK LOCKED signal from the PLL.

MGTCLK Input MGTCLK PIPE interface clock.

RECEIVEDHOTRST Output MGTCLK Received hot reset. When asserted, this output indicates
when an in-band hot reset has been received.

SYSRESETN Input NONE Asynchronous system reset (active Low). When this input
is asserted, the integrated Endpoint block is held in reset
until PLL LOCK; thus it can be used to reset the integrated
Endpoint block.

USERCLK Input USERCLK | User interface clock.

USERRSTN Output USERCLK User interface reset (active Low). This output should be
used to reset the user design logic (it is asserted when the
integrated Endpoint block is reset).

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 205

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions

& XILINX.

Transaction Layer Interface

Packets are presented to and received from the integrated Endpoint block’s Transaction
Layer through the Transaction Layer interface. Table F-2 defines the ports in the

Transaction Layer interface.

Table F-2: Transaction Layer Interface Port Descriptions

Port

Direction

Clock Domain

Description

TRNFCCPLDI[11:0]

Output

USERCLK

Completion Data Flow Control Credits. This output contains the
number of Completion Data FC credits for the selected flow
control type.

TRNFCCPLH][7:0]

Output

USERCLK

Completion Header Flow Control Credits. This output contains
the number of Completion Header FC credits for the selected
flow control type.

TRNFCNPD[11:0]

Output

USERCLK

Non-Posted Data Flow Control Credits. This output contains the
number of Non-Posted Data FC credits for the selected flow
control type.

TRNFCNPH][7:0]

Output

USERCLK

Non-Posted Header Flow Control Credits. This output contains
the number of Non-Posted Header FC credits for the selected
flow control type.

TRNFCPDJ[11:0]

Output

USERCLK

Posted Data Flow Control Credits. This output contains the
number of Posted Data FC credits for the selected flow control

type.

TRNFCPH][7:0]

Output

USERCLK

Posted Header Flow Control Credits. This output contains the
number of Posted Header FC credits for the selected flow control

type.

TRNFCSEL[2:0]

Input

USERCLK

Flow Control Informational Select. This input selects the type of
flow control information presented on the TRNFC* signals. Valid
values are:

000b: Receive buffer available space

001b: Receive credits granted to the link partner
010b: Receive credits consumed

100b: Transmit user credits available

101b: Transmit credit limit

110b: Transmit credits consumed

TRNLNKUPN

Output

USERCLK

Transaction Link Up (active Low). This output is asserted when
the core and the connected upstream link partner port are ready
and able to exchange data packets. It is deasserted when the core
and link partner are attempting to establish communication, and
when communication with the link partner is lost due to errors
on the transmission channel. When the core is driven to the Hot
Reset and Link Disable states by the link partner, TRNLNKUPN
is deasserted and all TLPs stored in the core are lost.

206

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Transaction Layer Interface

Table F-2: Transaction Layer Interface Port Descriptions (Cont’d)

Port

Direction

Clock Domain

Description

TRNRBARHITN[6:0]

Output

USERCLK

Receive BAR Hit (active Low). This output indicates the BAR(s)
targeted by the current receive transaction:

TRNRBARHITNI0]: BARO
TRNRBARHITNI[1]: BAR1
TRNRBARHITN[2]: BAR2
TRNRBARHITNI[3]: BAR3
TRNRBARHITN[4]: BAR4

TRNRBARHITNI5]: BARS

TRNRBARHITN][6]: Expansion ROM Address

If two BARs are configured into a single 64-bit address, both
corresponding TRNRBARHITN bits are asserted.

TRNRD[31:0]

Output

USERCLK

Receive Data. This bus contains the packet data being received.

TRNRDSTRDYN

Input

USERCLK

Receive Destination Ready (active Low). This input is asserted to
indicate that the user application is ready to accept data on
TRNRD. Simultaneous assertion of TRNRSRCRDYN and
TRNRDSTRDYN marks the successful transfer of data on
TRNRD.

TRNREOFN

Output

USERCLK

Receive End-of-Frame (active Low). When asserted, this output
indicates the end of a packet.

TRNRERRFWDN

Output

USERCLK

Receive Error Forward (active Low). This output marks the
current packet in progress as error-poisoned. It is asserted by the
integrated Endpoint block for the entire length of the packet.

TRNRNPOKN

Input

USERCLK

Receive Non-Posted OK (active Low). The user application
asserts this input whenever it is ready to accept a Non-Posted
Request packet. This allows Posted and Completion packets to
bypass Non-Posted packets in the inbound queue if necessitated
by the user application. When the user application approaches a
state where it is unable to service Non-Posted Requests, it must
deassert TRNRNPOKN one clock cycle before the integrated
Endpoint block presents TRNREOEN of the last Non-Posted TLP
the user application can accept.

TRNRSOFN

Output

USERCLK

Receive Start-of-Frame (active Low). When asserted, this output
indicates the start of a packet.

TRNRSRCDSCN

Output

USERCLK

Receive Source Discontinue (active Low). When asserted, this
output indicates that the integrated Endpoint block is aborting
the current packet transfer. It is asserted when the physical link
is going into reset.

TRNRSRCRDYN

Output

USERCLK

Receive Source Ready (active Low). When asserted, this output
indicates that the integrated Endpoint block is presenting valid
data on TRNRD.

TRNTBUFAV[5:0]

Output

USERCLK

Transmit Buffers Available. This output provides the number of
transmit buffers available in the integrated Endpoint block. The
maximum number is 32. Each transmit buffer can accommodate
one TLP up to the supported Maximum Payload Size.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

207

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions

& XILINX.

Table F-2: Transaction Layer Interface Port Descriptions (Cont’d)

Port

Direction

Clock Domain

Description

TRNTCFGGNTN

Input

USERCLK

Transmit Configuration Grant (active Low). The user application
asserts this input in response to TRNTCFGREQN, to allow the
integrated Endpoint block to transmit an internally generated
TLP. If the user does not need to postpone internally generated
TLPs, this signal can be continuously asserted.

TRNTCFGREQN

Output

USERCLK

Transmit Configuration Request (active Low). This output is
asserted when the integrated Endpoint block is ready to transmit
a Configuration Completion or other internally generated TLP.

TRNTD[31:0]

Input

USERCLK

Transmit Data. This bus contains the packet data to be
transmitted.

TRNTDSTRDYN

Output

USERCLK

Transmit Destination Ready (active Low). When asserted, this
output indicates that the integrated Endpoint block is ready to
accept data on TRNTD. Simultaneous assertion of
TRNTSRCRDYN and TRNTDSTRDYN marks a successful
transfer of data on TRNTD.

TRNTEOFN

Input

USERCLK

Transmit End-of-Frame (active Low). This input signals the end
of a packet.

TRNTERRDROPN

Output

USERCLK

Transmit Error Drop (active Low). When asserted, this output
indicates that the integrated Endpoint block discarded a packet
because of a length violation or, when streaming, data was not
presented on consecutive clock cycles. Length violations only
include packets longer than the supported maximum payload
size and do not include packets whose payload does not match
the payload advertised in the TLP header length field.

TRNTERRFWDN

Input

USERCLK

Transmit Error Forward (active Low). This input marks the
current packet in progress as error-poisoned. If TRNTSTRN is
deasserted, TRNTERRFWDN can be asserted any time between
start of frame (SOF) and end of frame (EOF), inclusive. If
TRNTSTRN is asserted, TRNTERRFWDN can only be asserted at
SOEF.

TRNTSOFN

Input

USERCLK

Transmit Start-of-Frame (active Low). When asserted, this input
indicates the start of a packet.

TRNTSRCRDYN

Input

USERCLK

Transmit Source Ready (active Low). When asserted, this input
indicates that the user application is presenting valid data on
TRNTD.

TRNTSTRN

Input

USERCLK

Transmit Streamed (active Low). When asserted, this input
indicates a packet is presented on consecutive clock cycles and
transmission on the link can begin before the entire packet has
been written to the integrated Endpoint block.

208

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Block RAM Interface

Block RAM Interface

The Transmit (TX) and Receive (RX) buffers are implemented with block RAM. Table F-3
defines the TX buffer and RX buffer ports for the Block RAM interface.

Table F-3: Block RAM Interface Port Descriptions

Port Direction | Clock Domain Description
MIMRXRADDR[11:0] Output USERCLK RX buffer read address
MIMRXRDATA[34:0] Input USERCLK RX buffer read data
MIMRXREN Output USERCLK RX buffer read enable
MIMRXWADDR[11:0] Output USERCLK RX buffer write address
MIMRXWDATA[34:0] Output USERCLK RX buffer write data
MIMRXWEN Output USERCLK RX buffer write enable
MIMTXRADDR[11:0] Output USERCLK TX buffer read address
MIMTXRDATA[35:0] Input USERCLK TX buffer read data
MIMTXREN Output USERCLK TX buffer read enable
MIMTXWADDR[11:0] Output USERCLK TX buffer write address
MIMTXWDATA[35:0] Output USERCLK TX buffer write data
MIMTXWEN Output USERCLK TX buffer write enable

GTP Transceiver Interface

Table F-4 defines the PIPE per Lane ports within the GTP Transceiver interface. There are
two copies of the PIPE per Lane ports, one for each port (n = A or B). Depending on which
GTP transceiver is used, the LogiCORE IP core for PCI Express selects the correct port to

use for the design.

Table F-4: PIPE per Lane Port Descriptions for the GTP Transceiver Interface

Port

Direction

Clock Domain

Description

PIPEGTRESETDONE#n

Input

MGTCLK

When asserted, this input indicates that the GTP
transceiver has finished reset and is ready for use.

PIPEPHYSTATUSn

Input

MGTCLK

PIPEPHYSTATUSH is asserted for a single cycle to
indicate completion of GTP transceiver functions such
as Power Management state transitions and receiver
detection on lane n.

PIPERXCHARISK#[1:0]

Input

MGTCLK

This output defines the control bit(s) for received data:
Ob: Data byte
1b: Control byte

The lower bit corresponds to the lower byte of
PIPERXDATA#[7:0] while the upper bit describes of
PIPERXDATA#n[15:8].

PIPERXDATAn[15:0]

Input

MGTCLK

This input contains the received data.

PIPERXENTERELECIDLE#n

Input

MGTCLK

This input indicates an electrical idle on the Receiver.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

209

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

Table F-4: PIPE per Lane Port Descriptions for the GTP Transceiver Interface (Cont’d)

Port Direction |Clock Domain Description

PIPERXPOLARITY#n Output MGTCLK | When High, this output instructs the GTP transceiver to
invert polarity (on the RX differential pair).

PIPERXRESETn Output MGTCLK | When asserted, this output resets the receive portion of
the GTP transceiver.

PIPERXSTATUSH[2:0] Input MGTCLK | This input encodes the receiver status and error codes
for the received data stream and receiver detection on
lane n:

000b: Data received OK

001b: Reserved

010b: Reserved

011b: Receiver Detected

100b: 8B/10B decode error
101b: Elastic Buffer overflow
110b: Elastic Buffer underflow
111b: Receive disparity error

PIPETXCHARDISPMODE#[1:0] | Output MGTCLK | PIPETXCHARDISPMODE and
PIPETXCHARDISPVAL allow the 8B/10B disparity of
outgoing data to be controlled when 8B/10B encoding
is enabled.

PIPETXCHARDISPMODE][1] corresponds to
TXDATA[15:8] and PIPETXCHARDISPMODE][0]
corresponds to PIPETXDATA[7:0].

For PCI Express operation, PIPETXCHARDISPMODE
maps to the PIPE signal TXCOMPLIANCE given that
PIPETXCHARDISPVAL is Low. When
PIPETXCHARDISPMODE is High and
PIPETXCHARDISPVAL is Low, the running disparity
is set to negative. This functionality is used when
transmitting the compliance pattern.

PIPETXCHARDISPVAL#[1:0] Output MGTCLK | PIPETXCHARDISPMODE and
PIPETXCHARDISPVAL allow the 8B/10B disparity of
outgoing data to be controlled when 8B/10B encoding
is enabled.

TXCHARDISPVAL[1] corresponds to TXDATA[15:8]
and TXCHARDISPVAL][0] corresponds to
TXDATA[7:0].

For PCI Express operation, PIPETXCHARDISPVAL
should always be Low.

PIPETXCHARISK#[1:0] Output MGTCLK | This output determines the control bit(s) for received
data:

0b: Data byte
1b: Control byte

The lower bit corresponds to the lower byte of
PIPETXDATA#[7:0] while the upper bit describes
PIPETXDATAn[15:8].

210 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

8 X||_|NX GTP Transceiver Interface

Table F-4: PIPE per Lane Port Descriptions for the GTP Transceiver Interface (Cont’d)

Port Direction |Clock Domain Description
PIPETXDATAn[15:0] Output MGTCLK | This output contains the transmit data.
PIPETXELECIDLEn Output MGTCLK | This output forces the transmit output to electrical idle

in all power states.
PIPETXPOWERDOWNH#[1:0] Output MGTCLK | This output is the Power Management signal for the

transmitter for lane n:
00b: PO (Normal operation)
01b: POs (Low recovery time power-saving state)
10b: P1 (Longer recovery time power state)
11b: Reserved

PIPETXRCVRDETn Output MGTCLK When asserted, this output enables the GTP transceiver
to begin either a receiver detection operation or
loopback.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 211

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

Configuration Management Interface

The Configuration Management Interface contains these signal groupings:
* Management Interface Ports

¢ Error Reporting Ports

¢ Interrupt Generation and Status Ports

¢ Power Management Ports

e Configuration Specific Register Ports

¢ Miscellaneous Configuration Management Ports

Management Interface Ports

Table F-5 defines the Management Interface ports within the Configuration Management
interface. These ports are used when reading and writing the Configuration Space
Registers.

Table F-5: Management Interface Port Descriptions

Port Direction | Clock Domain Description

CFGDO[31:0] Output USERCLK | Management Data Out. This 32-bit data output obtains
read data from the configuration space inside the
integrated Endpoint block.

CFGDWADDR[9:0] Input USERCLK | Management DWORD Address. This 10-bit address
input provides a configuration register DWORD
address during configuration register accesses.

CFGRDENN Input USERCLK | Management Read Enable (active Low). This input is
the read-enable for configuration register accesses.
CFGRDWRDONEN Output USERCLK Management Read or Write Done (active Low). The

read-write done signal indicates successful completion
of the user configuration register access operation. For a
user configuration register read operation, this signal
validates the value of the CFGDO[31:0] data bus. The
integrated Endpoint block does not support write
operations.

Error Reporting Ports

Table F-6 defines the Error Reporting ports within the Configuration Management
interface.

Table F-6: Error Reporting Port Descriptions

Port Direction | Clock Domain Description

CFGERRCORN Input USERCLK | Configuration Error Correctable Error (active Low).
The user asserts this signal to report a Correctable
Error.

CFGERRCPLABORTN Input USERCLK | Configuration Error Completion Aborted (active
Low). The user asserts this signal to report a

completion was aborted. This signal is ignored if
CFGERRCPLRDYN is deasserted.

212 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Management Interface

Table F-6: Error Reporting Port Descriptions (Cont’d)

Port

Direction

Clock Domain

Description

CFGERRCPLRDYN

Output

USERCLK

Configuration Error Completion Ready (active Low).
When asserted, this signal indicates that the core can
accept assertions on CFGERRURN and
CFGERRCPLABORTN for Non-Posted Transactions.
Assertions on CFGERRURN and
CFGERRCPLABORTN are ignored when
CFGERRCPLRDYN is deasserted.

CFGERRCPLTIMEOUTN

Input

USERCLK

Configuration Error Completion Time-out (active
Low). The user asserts this signal to report a
completion timed out.

CFGERRECRCN

Input

USERCLK

ECRC Error Report (active Low). The user asserts this
signal to report an end-to-end CRC (ECRC) error.

CFGERRLOCKEDN

Input

USERCLK

Configuration Error Locked (active Low). This inputis
used to further qualify the CFGERRURN or
CFGERRCPLABORTN input signal. When this input
is asserted concurrently with one of those two signals,
it indicates that the transaction that caused the error
was an MRdLk transaction and not an MRd. The
integrated Endpoint block generates a CplLk instead
of a Cpl if the appropriate response is to send a
Completion.

CFGERRPOSTEDN

Input

USERCLK

Configuration Error Posted (active Low). This input is
used to further qualify any of the CFGERR* input
signals. When this input is asserted concurrently with
one of the other signals, it indicates that the
transaction that caused the error was a posted
transaction.

CFGERRTLPCPLHEADER[47:0]

Input

USERCLK

Configuration Error TLP Completion Header. This
48-bit input accepts the header information from the
user when an error is signaled. This information is
required so that the integrated Endpoint block can
issue a correct completion, if required.

This information should be extracted from the
received error TLP and presented in the listed format:

[47:41] Lower Address
[40:29] Byte Count
[28:26] TC

[25:24] Attr

[23:8] Requester ID
[7:0] Tag

CFGERRURN

Input

USERCLK

Configuration Error Unsupported Request (active
Low). The user asserts this signal to report that an
Unsupported Request (UR) was received. This signal
is ignored if CFGERRCPLRDYN is deasserted.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com 213

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

Interrupt Generation and Status Ports

Table F-7 defines the Interrupt Generation and Status ports within the Configuration
Management interface.

Table F-7: Interrupt Generation and Status Port Descriptions

Port Direction | Clock Domain Description

CFGINTERRUPTASSERTN Input USERCLK | Configuration Legacy Interrupt
Assert/Deassert Select. This input selects
between Assert and Deassert messages for
Legacy interrupts when CFGINTERRUPTN is
asserted. It is not used for MSI interrupts.

Value Message Type:
Ob: Assert
1b: Deassert

CFGINTERRUPTDI[7:0] Input USERCLK | Configuration Interrupt Data In. For Message
Signaling Interrupts (MSI), this input provides
the portion of the Message Data that the
Endpoint must drive to indicate MSI vector
number, if Multi-Vector Interrupts are enabled.
The value indicated by
CFGINTERRUPTMMENABLE[2:0] determines
the number of lower-order bits of Message Data
that the Endpoint provides; the remaining upper
bits of CFGINTERRUPTDI[7:0] are not used.

For Single-Vector Interrupts,
CFGINTERRUPTDI[7:0] is not used.

For Legacy Interrupt Messages (ASSERTINTX,
DEASSERTINTX), this input indicates which
message type is sent, where Value Legacy
Interrupt is:

00h: INTA
01h: INTB
02h: INTC
03h: INTD

CFGINTERRUPTDO]7:0] Output USERCLK | Configuration Interrupt Data Out. This output s
the value of the lowest eight bits of the Message
Data field in the Endpoint’s MSI capability
structure. This value is used in conjunction with
CFGINTERRUPTMMENABLE][2:0] to drive
CFGINTERRUPTDI[7:0].

CFGINTERRUPTMMENABLE[2:0] Output USERCLK Configuration Interrupt Multiple Message
Enabled. This output has the value of the
Multiple Message Enable field, where values
range from 000b to 101b. A value of 000b
indicates that single vector MSI is enabled.
Other values indicate the number of bits that can
be used for multi-vector MSL

214 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Management Interface

Table F-7:

Interrupt Generation and Status Port Descriptions (Cont’'d)

Port

Direction

Clock Domain

Description

CFGINTERRUPTMSIENABLE

Output

USERCLK

Configuration Interrupt MSI Enabled.
0: Only Legacy (INTx) interrupts can be sent

1: The Message Signaling Interrupt (MSI)
messaging is enabled

CFGINTERRUPTN

Input

USERCLK

Configuration Interrupt Request (active Low).
When asserted, this input causes the selected
interrupt message type to be transmitted by the
integrated Endpoint block. The signal should be
asserted until CFGINTERRUPTRDYN is
asserted.

CFGINTERRUPTRDYN

Output

USERCLK

Configuration Interrupt Ready (active Low).
This output is the interrupt grant signal. The
simultaneous assertion of
CFGINTERRUPTRDYN and
CFGINTERRUPTN indicates that the integrated
Endpoint block has successfully transmitted the
requested interrupt message.

Power Management Ports

Table F-8 defines the Power Management ports within the Configuration Management

interface.

Table F-8: Power Management Port Descriptions

Port

Direction

Clock Domain

Description

CFGPMWAKEN

Input

USERCLK

Send PMPME Message (active Low). A one-clock
cycle assertion of this input signals the integrated
Endpoint block to send a Power Management
Wake Event (PMPME) Message TLP to the
upstream link partner.

CFGTOTURNOEFFN

Output

USERCLK

Configuration To Turnoff: This output signal
notifies the user that a PME_TURN_Off message
has been received, and the Configuration and
Capabilities Module (CCM) starts polling the
CFGTURNOFFOKN input coming in from the
user. When CFGTURNOFFOKN is asserted, the
CMM sends a PME_To_Ack message to the
upstream device.

CFGTURNOFFOKN

Input

USERCLK

Configuration Turnoff OK (active Low). This input
is the power turn-off ready signal. The user
application can assert this input to notify the
Endpoint that it is safe for power to be turned off.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

215

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

Configuration Specific Register Ports

Table F-9 defines the Configuration Specific Register ports within the Configuration
Management interface. These ports directly mirror the contents of commonly used
registers located within the PCI Express Configuration Space.

Table F-9: Configuration Specific Register Port Descriptions

Port Direction|Clock Domain Description

CFGCOMMANDBUSMASTERENABLE Output | USERCLK | Configuration Command, Bus Master
Enable, Command|2]. The integrated

Endpoint block takes no action based

on this setting; the user logic must.

When this output is asserted, the user
logicis allowed to issue Memory or I/O
Requests (including MSI interrupts);
otherwise, the user logic must not issue
those requests.

CFGCOMMANDINTERRUPTDISABLE Output | USERCLK | Configuration Command, Interrupt
Disable, Command[10]. When this
output is asserted, the integrated
Endpoint block is prevented from
asserting INTx interrupts.

CFGCOMMANDIOENABLE Output | USERCLK | Configuration Command, I/O Space
Enable, Command][0].
0: The integrated Endpoint block
filters these accesses and responds
with a UR.
1: Allows the device to receive I/O
Space accesses.

CFGCOMMANDMEMENABLE Output | USERCLK | Configuration Command, Memory
Space Enable, Command][1].

0: The integrated Endpoint block
filters these accesses and responds
with a UR.

1: Allows the device to receive
Memory Space accesses.

CFGCOMMANDSERREN Output | USERCLK | Configuration Command, SERR Enable
(active Low), Command[8].

When this output is asserted, reporting
of Non-fatal and Fatal errors is enabled.
If enabled, errors are reported either
through this bit or through the PCI
Express specific bits in the Device
Control Register.

CFGDEVCONTROLAUXPOWEREN Output | USERCLK | Not used.

CFGDEVCONTROLCORRERRREPORTINGEN Output | USERCLK | Configuration Device Control,
Correctable Error Reporting Enable,
DEVICECTRLJO0]. This bit, in
conjunction with other bits, controls
sending ERRCOR messages.

216 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Management Interface

Table F-9: Configuration Specific Register Port Descriptions (Cont'd)

Port

Direction

Clock Domain

Description

CFGDEVCONTROLENABLERO

Output

USERCLK

Configuration Device Control, Enable
Relaxed Ordering, DEVICECTRLI[4].
When this output is asserted, the user
logic is permitted to set the Relaxed
Ordering bit in the Attributes field of
transactions it initiates that do not
require strong write ordering.

CFGDEVCONTROLEXTTAGEN

Output

USERCLK

Configuration Device Control, Tag
Field Enable, DEVICECTRLI[8]. When
this output is asserted, the user logic
can use an 8-bit Tag field as a Requester.
When this outputis deasserted, the user
logic is restricted to a 5-bit Tag field. The
integrated Endpoint block does not
enforce the number of Tag bits used,
either in outgoing request TLPs or
incoming Completions.

CFGDEVCONTROLFATALERRREPORTINGEN

Output

USERCLK

Configuration Device Control, Fatal
Error Reporting Enable,
DEVICECTRLYI2]. This bit, in
conjunction with other bits, controls
sending ERRFATAL messages.

CFGDEVCONTROLMAXPAYLOADI2:0]

Output

USERCLK

Configuration Device Control,
MAXPAYLOADSIZE,
DEVICECTRL([7:5]. This field sets the
maximum TLP payload size. As a
Receiver, the user logic must handle
TLPs as large as the set value. As a
Transmitter, the user logic must not
generate TLPs exceeding the set value.

000b: 128-byte maximum payload
size
001b: 256-byte maximum payload
size
010b: 512-byte maximum payload
size

CFGDEVCONTROLMAXREADREQI2:0]

Output

USERCLK

Configuration Device Control,
MAXREADREQUESTSIZE,
DEVICECTRL][14:12]. This field sets the
maximum Read Request size for the
user logic as a Requester. The user logic
must not generate Read Requests with
size exceeding the set value.

000b: 128-byte maximum Read
Request size
001b: 256-byte maximum Read
Request size

010b: 512-byte maximum Read
Request size

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

217

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

Table F-9: Configuration Specific Register Port Descriptions (Cont'd)

Port Direction|Clock Domain Description

CFGDEVCONTROLNONFATALREPORTINGEN | Output | USERCLK | Configuration Device Control, Non-
Fatal Error Reporting Enable,
DEVICECTRL[1]. This bit, in
conjunction with other bits, controls
sending ERRNONFATAL messages.

CFGDEVCONTROLNOSNOOPEN Output | USERCLK | Configuration Device Control, Enable
No Snoop, DEVICECTRL[11]. When
this output is asserted, the user logic is
permitted to set the No Snoop bit in
TLPs it initiates that do not require
hardware-enforced cache coherency.

CFGDEVCONTROLPHANTOMEN Output | USERCLK | Configuration Device Control,
Phantom Functions Enable,
DEVICECTRL[9]. When this output is
asserted, the user logic can use
unclaimed Functions as Phantom
Functions to extend the number of
outstanding transaction identifiers. If
this output is deasserted, the user logic
is not allowed to use Phantom
Functions.

CFGDEVCONTROLURERRREPORTINGEN Output | USERCLK | Configuration Device Control, UR
Reporting Enable, DEVICECTRL[3].
This bit, in conjunction with other bits,
controls the signaling of URs by
sending Error messages.

CFGDEVSTATUSCORRERRDETECTED Output | USERCLK | Configuration Device Status,
Correctable Error Detected,
DEVICESTATUSIO]. This output
indicates the status of correctable errors
detected. Errors are logged in this
register regardless of whether error
reporting is enabled or not in the Device
Control Register.

CFGDEVSTATUSFATALERRDETECTED Output | USERCLK | Configuration Device Status, Fatal
Error Detected, DEVICESTATUSJ2].
This output indicates the status of Fatal
errors detected. Errors are logged in this
register regardless of whether error
reporting is enabled or not in the Device
Control Register.

CFGDEVSTATUSNONFATALERRDETECTED Output | USERCLK | Configuration Device Status, Non-Fatal
Error Detected, DEVICESTATUSI[1].
This output indicates the status of Non-
fatal errors detected. Errors are logged
in this register regardless of whether
error reporting is enabled or not in the
Device Control Register.

218 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Configuration Management Interface

Table F-9: Configuration Specific Register Port Descriptions (Cont'd)

Port Direction|Clock Domain Description

CFGDEVSTATUSURDETECTED Output | USERCLK | Configuration Device Status,
Unsupported Request Detected,
DEVICESTATUSI3]. This output
indicates that the integrated Endpoint
block received a UR. Errors are logged
in this register regardless of whether
error reporting is enabled or not in the
Device Control Register.

CFGLINKCONTROLASPMCONTROLJ1:0] Output | USERCLK | Configuration Link Control, ASPM
Control, LINKCTRL][1:0]. This 2-bit
output indicates the level of ASPM
supported, where:

00b: Disabled
01b: LOs Entry Enabled
10b: Not used
11b: Not used

CFGLINKCONTROLCOMMONCLOCK Output | USERCLK | Configuration Link Control, Common
Clock Configuration, LINKCTRL[6].
When this output is asserted, this
component and the component at the
opposite end of this Link are operating
with a distributed common reference
clock. When this output is deasserted,
the components are operating with an
asynchronous reference clock.

CFGLINKCONTROLEXTENDEDSYNC Output USERCLK | Configuration Link Control, Extended
Synch, LINKCTRL[7]. When this
output is asserted, the transmission of
additional Ordered Sets is forced when
exiting the LOs state and when in the
Recovery state.

CFGLINKCONTROLRCB Output | USERCLK | Configuration Link Control, RCB,
LINKCTRL[3]. This output indicates
the Read Completion Boundary value,
where:

0: 64B
1:128B

CFGTRNPENDINGN Input USERCLK | User Transaction Pending (active Low).
When asserted, this input sets the
Transactions Pending bit in the Device
Status Register (DEVICESTATUS[5]).

Note: The user is required to assert this
input if the User Application has not
received a completion to a request.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 219
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions

& XILINX.

Miscellaneous Configuration Management Ports

Table F-10 defines the Miscellaneous ports within the Configuration Management
interface.

Table F-10: Miscellaneous Configuration Management Port Descriptions

Port

Direction

Clock Domain

Description

CFGBUSNUMBER[7:0]

Output

USERCLK

Configuration Bus Number. This 8-bit output provides the
assigned bus number for the device. The user application
must use this information in the Bus Number field of
outgoing TLP requests. The default value after reset is
00h. This output is refreshed whenever a Type 0
Configuration Write packet is received.

CFGDEVICENUMBER[4:0]

Output

USERCLK

Configuration Device Number: This 5-bit output provides
the assigned device number for the device. The user
application must use this information in the Device
Number field of outgoing TLP requests. The default value
after reset is 00000b. This output is refreshed whenever a
Type 0 Configuration Write packet is received.

CFGDEVID[15:0]

Input

USERCLK

Device ID value. This 16-bit input must be stable when
SYSRESETN is deasserted.

CFGDSN[63:0]

Input

USERCLK

Configuration Device Serial Number. This 64-bit input
indicates the value that should be transferred to the Device
Serial Number Capability.

CFGFUNCTIONNUMBER]2:0]

Output

USERCLK

Configuration Function Number. This 3-bit output
provides the function number for the device. The user
application must use this information in the Function
Number field of outgoing TLP requests. The function
number is hardwired to 000b.

220

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Configuration Management Interface

Table F-10: Miscellaneous Configuration Management Port Descriptions (Cont’d)

Port

Direction

Clock Domain

Description

CFGLTSSMSTATE[4:0]

Output

MGTCLK

This 5-bit output is a mirror of the LTSSM state machine

bits:
00000bh:
00001b:
00010h:
00011b:
00100bh:
00101b:
00110b:
00111b:
01000b:
01001b:
01010bh:
01011b:
01100bh:
01101b:
01110b:
01111b:
10000b:
10001b:
10010b:
10011b:
10100b:
10101b:
10110b:
10111b:
11000b:
11001b:
11010b:
11011b:

Detect.Quiet

Detect.Active

Polling.Active

Polling.Config

Polling Compliance
Configuration.Linkwidth.Start
Configuration.Linkwidth.Start
Configuration.Linkwidth.Accept
Configuration.Linkwidth.Accept
Configuration.Lanenum.Wait
Configuration.Lanenum.Accept
Configuration.Complete
Configuration.Idle

LO

L1.Entry

L1.Entry

L1.Entry

L1.Idle

L1.Exit-to-recovery
Recovery.RevrLock
Recovery.RevrCfg
Recoveryldle

Hot Reset

Disabled

Disabled

Disabled

Disabled

Detect.Quiet

CFGPCIELINKSTATEN][2:0]

Output

USERCLK

PCI Express Link State. This encoded bus reports the PCI

Express Link State Information to the user:
110b: LO state
101b: LOs state
011b: L1 state
111b: Under transition

CFGREVID[7:0]

Input

USERCLK

Revision ID Value. This input must be stable when

SYSRESETN is deasserted.

CFGSUBSYSID[15:0]

Input

USERCLK

Subsystem ID Value. This input must be stable when

SYSRESETN is deasserted.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com

221

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

Table F-10: Miscellaneous Configuration Management Port Descriptions (Cont’d)

Port Direction |Clock Domain Description
CFGSUBSYSVENIDI[15:0] Input USERCLK Subsystem Vendor ID Reset Value. This input must be
stable when SYSRESETN is deasserted.
CFGVENID[15:0] Input USERCLK Vendor ID Value. This input must be stable when
SYSRESETN is deasserted.

Debug Interface Ports
Table F-11 describes the Debug Interface ports.

Table F-11: Debug Interface Port Descriptions

Port Direction | Clock Domain Description

DBGBADDLLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle
when a DLLP CRC error is detected.

DBGBADTLPLCRC Output USERCLK This signal pulses High for one USERCLK cycle
when a TLP with an LCRC error is detected.

DBGBADTLPSEQNUM Output USERCLK This signal pulses High for one USERCLK cycle
when a TLP with an invalid sequence number
is detected.

DBGBADTLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle

when a bad TLP is detected, for reasons other
than a bad LCRC or a bad sequence number.

DBGDLPROTOCOLSTATUS Output USERCLK This signal pulses High for one USERCLK cycle
if an out-of-range ACK or NAK is received.
DBGFCPROTOCOLERRSTATUS Output USERCLK This signal pulses High for one USERCLK cycle

if there is a protocol error with the received
flow control updates.

DBGMLFRMDLENGTH Output USERCLK This signal pulses High for one USERCLK cycle
toindicate that a received TLP had a length that
did not match what was in the TLP header.

DBGMLFRMDMPS Output USERCLK This signal pulses High for one USERCLK cycle
to indicate that a received TLP had a length in
violation of the negotiated MPS.

DBGMLFRMDTCVC Output USERCLK This signal pulses High for one USERCLK cycle
to indicate that a received TLP had an invalid
TC or VC value.

DBGMLFRMDTLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle

when a malformed TLP is received. See the
other DBGMLFRMD* signals for further
clarification.

Note: There is skew between DBGMLFRMD*
and DBGMLFRMDTLPSTATUS.

DBGMLFRMDUNRECTYPE Output USERCLK This signal pulses High for one USERCLK cycle
to indicate that a received TLP had an
invalid /unrecognized type field value.

222 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Debug Interface Ports

Table F-11: Debug Interface Port Descriptions (Cont’d)

Port Direction | Clock Domain Description
DBGPOISTLPSTATUS Output USERCLK This signal pulses High for one USERCLK cycle
if a poisoned TLP is received.
DBGRCVROVERFLOWSTATUS Output USERCLK This signal pulses High for one USERCLK cycle

if a received TLP violates the advertised credit.

DBGREGDETECTEDCORRECTABLE | Output USERCLK This signal is a mirror of the internal signal
used to indicate a correctable error is detected.
The error is cleared upon a read by the Root
Complex (RC).

DBGREGDETECTEDFATAL Output USERCLK This signal is a mirror of the internal signal
used to indicate that a fatal error has been
detected. The error is cleared upon a read by
the RC.

DBGREGDETECTEDNONFATAL Output USERCLK This signal is a mirror of the internal signal
used to indicate that a non-fatal error has been
detected. The error is cleared upon a read by
the RC.

DBGREGDETECTEDUNSUPPORTED | Output USERCLK This signal is a mirror of the internal signal
used to indicate that an unsupported request
has been detected. The error is cleared upon a

read by the RC.
DBGRPLYROLLOVERSTATUS Output USERCLK This signal pulses High for one USERCLK cycle

when the rollover counter expires.
DBGRPLYTIMEOUTSTATUS Output USERCLK This signal pulses High for one USERCLK cycle

when the replay time-out counter expires.
DBGURNOBARHIT Output USERCLK This signal pulses High for one USERCLK cycle

to indicate that a received read or write request
did not match any configured BAR.

DBGURPOISCFGWR Output USERCLK This signal pulses High for one USERCLK cycle
to indicate that a CfgWr TLP with the
Error/Poisoned bit (EP) = 1 was received.

DBGURSTATUS Output USERCLK This signal pulses High for one USERCLK cycle
when an unsupported request is received. See
the DBGUR* signals for further clarification.
Note: There is skew between DBGUR* and
DBGURSTATUS.

DBGURUNSUPMSG Output USERCLK This signal pulses High for one USERCLK cycle
to indicate that an Msg or MsgD TLP with an
unsupported type was received.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 223
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix F: PCIE_A1 Port Descriptions & XILINX.

224 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix G

PCIE_A1 Attribute Descriptions

Table G-1 defines the attributes on the PCIE_A1 library primitive for the Spartan®-6 FPGA
Integrated Endpoint Block for PCI Express® designs. All attributes are set in the
LogiCORE™ IP; they are documented in this chapter for reference. Users should not
change the attribute settings as set in the CORE Generator™ software GUI for proper
operation of the design.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 225
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix G: PCIE_AL1 Attribute Descriptions & XILINX.

Table G-1: PCIE_A1 Attributes

Attribute Name Type Description

BARO 32-bit | This attribute specifies the mask/settings for Base
Hex Address Register (BAR) 0. If BAR is not to be
implemented, this attribute is set to 32' h00000000.
Bits are defined as follows:

¢ Memory Space BAR:
0: Mem Space Indicator (set to 0)
[2:1]: Type field (10 for 64-bit, 00 for 32-bit)
3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit
BAR, the uppermost 31:n bits are set to 1, where

2" = memory aperture size in bytes. For a 64-bit BAR,
the uppermost 63:1 bits of {BAR1, BARO} are set to 1.

¢ /O Space BAR:
0: I/O Space Indicator (set to 1)
1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 2" = I/O aperture size in
bytes

BAR1 32-bit | This attribute specifies the mask/settings for BARI if
Hex | BAROis a 32-bit BAR, or the upper bits of {BAR1, BARO}
if BARO is a 64-bit BAR. If BAR is not to be implemented,
this attribute is set to 32" h00000000. See the BARO
description if this attribute functions as the upper bits of
a 64-bit BAR. Bits are defined as follows:
* Memory Space BAR (not the upper bits of BARO):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit

BAR, the uppermost 31:n bits are set to 1, where

2" = memory aperture size in bytes. For a 64-bit BAR,
the uppermost 63:1 bits of {BAR2, BAR1} are set to 1.

¢ /0O Space BAR:
0: I/O Space Indicator (set to 1)
1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 2" = I/O aperture size in
bytes

226 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1:

PCIE_A1 Attributes (Cont’d)

Attribute Name

Type

Description

BAR2

32-bit
Hex

For an Endpoint, this attribute specifies the
mask/settings for BAR2 if BAR1 is a 32-bit BAR, or the
upper bits of {BAR2, BAR1} if BAR1 is the lower part of
a 64-bit BAR. If BAR is not to be implemented, this
attribute is set to 32' h00000000. See the BAR1
description if this attribute functions as the upper bits of
a 64-bit BAR.
For an Endpoint, bits are defined as follows:
* Memory Space BAR (not upper bits of BAR1):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit

BAR, the uppermost 31:n bits are set to 1, where

2" = memory aperture size in bytes. For a 64-bit BAR,

the uppermost 63:1 bits of {BAR3, BAR2} are set to 1.

¢ I/O Space BAR:
0: I/0O Space Indicator (set to 1)
1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 21" = I/O aperture size in
bytes

BAR3

32-bit
Hex

For an Endpoint, this attribute specifies the
mask/settings for BAR3 if BAR2 is a 32-bit BAR, or the
upper bits of {BAR3, BAR2} if BAR? is the lower part of
a 64-bit BAR. If BAR is not to be implemented, this
attribute is set to 32' h00000000. See the BAR2
description if this functions as the upper bits of a 64-bit
BAR.
For an Endpoint, bits are defined as follows:
* Memory Space BAR (not upper bits of BAR2):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (O or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit

BAR, the uppermost 31:1 bits are set to 1, where

2" = memory aperture size in bytes. For a 64-bit BAR,
the uppermost 63:1 bits of {BAR4, BAR3} are set to 1.

e 1/0O Space BAR:
0: I/0 Space Indicator (set to 1)
1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 2" = I/O aperture size in
bytes

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 227

http://www.xilinx.com

Appendix G: PCIE_A1 Attribute Descriptions

& XILINX.

Table G-1:

PCIE_A1 Attributes (Cont’d)

Attribute Name

Type

Description

BAR4

32-bit
Hex

For an Endpoint, this attribute specifies mask/settings
for Base Address Register (BAR) 4 if BAR3 is a 32-bit
BAR, or the upper bits of {BAR4, BAR3}, if BAR3 is the
lower part of a 64-bit BAR. If BAR is not to be
implemented, this attribute is set to 32' h00000000.
See the BAR3 description if this functions as the upper
bits of a 64-bit BAR.
For an Endpoint, bits are defined as follows:
* Memory Space BAR (not upper bits of BAR3):

0: Mem Space Indicator (set to 0)

[2:1]: Type field (10 for 64-bit, 00 for 32-bit)

3: Prefetchable (0 or 1)

[31:4]: Mask for writable bits of BAR. For a 32-bit

BAR, the uppermost 31:n bits are set to 1, where

2" = memory aperture size in bytes. For a 64-bit BAR,
the uppermost 63:n bits of {BAR5, BAR4} to 1.

¢ I/O Space BAR:
0: I/0O Space Indicator (set to 1)
1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 21" = I/O aperture size in
bytes

BARS5

32-bit
Hex

For an Endpoint, this attribute specifies mask/settings
for BARS5 if BAR4 is a 32-bit BAR or the upper bits of
{BARS5, BAR4} if BAR4 is the lower part of a 64-bit BAR.
If BAR is not to be implemented, this attribute is set to
32' h00000000. See the BAR4 description if this
functions as the upper bits of a 64-bit BAR.

For an Endpoint, bits are defined as follows:
* Memory Space BAR (not upper bits of BAR4):
0: Mem Space Indicator (set to 0)

[2:1]: Type field (00 for 32-bit; BAR5 cannot be the
lower part of a 64-bit BAR)

3: Prefetchable (0 or 1)
[31:4]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 2" = memory aperture
size in bytes

¢ 1/O Space BAR:
0: I/0 Space Indicator (set to 1)
1: Reserved (set to 0)

[31:2]: Mask for writable bits of BAR. The uppermost
31:n bits are set to 1, where 2" = I/O aperture size in
bytes

CARDBUS_CIS_POINTER

32-bit
Hex

Pointer to the Cardbus data structure. This value is
transferred to the Cardbus CIS Pointer Register. It is set
to 0 if the Cardbus pointer is not implemented.

228

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name Type Description

CLASS_CODE 24-bit | Code identifying basic function, subclass, and
Hex | applicable programming interface. This value is
transferred to the Class Code Register.

DEV_CAP_ENDPOINT_LOS_LATENCY 3-bit | Endpoint LOs Acceptable Latency. This attribute records
Binary | the latency that the Endpoint can withstand on
transitions from the LOs state to the L0 state. Valid
settings are:

000b: Less than 64 ns
001b: 64 ns to 128 ns
010b: 128 ns to 256 ns
011b: 256 ns to 512 ns
100b:512ns to 1 ps
101b: 1 psto 2 us
110b:2 psto 4 us
111b: More than 4 us

DEV_CAP_ENDPOINT _L1_LATENCY 3-bit Endpoint L1 Acceptable Latency. Records the latency
Binary | that the endpoint can withstand on transitions from the
L1 state to the LO state (if the L1 state is supported).
Valid settings are:

000b: Less than 1 us
001b:1psto2us
010b: 2 ps to 4 us
011b:4 psto 8 us
100b: 8 pus to 16 us
101b: 16 ps to 32 us
110b: 32 ps to 64 us
111b: More than 64 ps

DEV_CAP_EXT_TAG_SUPPORTED Boolean | Extended Tags support.
FALSE: 5-bit tag
TRUE: 8-bit tag

DEV_CAP_MAX_PAYLOAD_SUPPORTED 3-bit This attribute specifies the maximum payload
Binary | supported. Valid (supported) settings are:

000b: 128 bytes
001b: 256 bytes
010b: 512 bytes

This value is transferred to the Device Capabilities
Register.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 229
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix G: PCIE_A1 Attribute Descriptions

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

DEV_CAP_PHANTOM_FUNCTIONS_SUPPOR
T

2-bit
Binary

Phantom Function Support. This attribute indicates the
number of functions re-allocated as Tag bits. Valid
settings are:

00b: 0
0lb:1
10b: 2
11b:3

DEV_CAP_ROLE_BASED_ERROR

Boolean

When this attribute is set to TRUE, compliant error
reporting is supported.

DISABLE_BAR_FILTERING

Boolean

When this attribute is set to TRUE, BAR filtering is
disabled. This setting does not change the behavior of
the BAR hit outputs.

DISABLE_ID_CHECK

Boolean

When this attribute is set to TRUE, checking for
Requester ID of received completions is disabled.

DISABLE_SCRAMBLING

Boolean

When this attribute is TRUE, Scrambling of transmit
data is turned off.

ENABLE_RX_TD_ECRC_TRIM

Boolean

When this attribute is set to TRUE, received TLPs have
their td bit set to 0 and the ECRC is removed.

EXPANSION_ROM

22-bit
Hex

This attribute specifies the mask/settings for the
Expansion ROM BAR. If the BAR is not to be
implemented, this attribute is set to 22' h00000000.
Bits are defined as follows:

0: Expansion ROM implemented (set to 1 to
implement ROM)

[21:1]: Mask for writable bits of BAR. The uppermost
21:n bits are set to 1, where 2™ = ROM aperture size in
bytes

FAST_TRAIN

Boolean

When this attribute is set to TRUE, the timers in the
LTSSM state machine are shortened to reduce
simulation time. Specifically, the transition out of
Polling.Active requires sending 16 TS1s and receiving 8
TS1s. The LTSSM timer values of 1 ms, 2 ms, 12 ms,

24 ms, and 48 ms are reduced to 3.9 us, 7.81 us, 46.8 us,
93.75 ps, and 187.5 ps, respectively (reduced by a factor
of 256). This attribute must be set to FALSE for silicon
designs.

GTP_SEL

Boolean

This attribute indicates which port interface is used:
FALSE: Transceiver A port interface

TRUE: Transceiver B port interface

230

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name Type Description

LINK_CAP_ASPM_SUPPORT 2-bit Active State PM Support. This attribute indicates the
Binary | level of active state power management supported by
the selected PCI Express Link:

00b: Reserved
01b: LOs entry supported
10b: Reserved
11b: Reserved

LINK_CAP_LOS_EXIT_LATENCY 3-bit | This attribute sets the exit latency from the LOs state to
Binary | be applied (at 2.5 Gb/s) where a common clock is used.
This value is transferred to the Link Capabilities
Register.

Valid settings are:
000b: Less than 64 ns
001b: 64 ns to less than 128 ns
010b: 128 ns to less than 256 ns
011b: 256 ns to less than 512 ns
100b: 512 ns to less than 1 us
101b: 1 ps to less than 2 us
110b: 2 usto 4 us
111b: More than 4 us

LINK_CAP_L1_EXIT_LATENCY 3-bit This attribute sets the exit latency from the L1 state to be
Binary | applied (at 2.5 Gb/s) where a common clock is used.
This value is transferred to the Link Capabilities
Register.

Valid settings are:
000b: Less than 1 ps
001b: 1 ps to less than 2 ps
010b: 2 ps to less than 4 us
011b: 4 ps to less than 8 us
100b: 8 us to less than 16 us
101b: 16 ps to less than 32 us
110b: 32 ps to 64 us
111b: More than 64 ps

LINK_STATUS_SLOT_CLOCK_CONFIG Boolean | Slot Clock Configuration. This attribute indicates where
the component uses the same physical reference clock
that the platform provides on the connector. For a port
that connects to the slot, this attribute indicates that it
uses a clock with a common source to that used by the
slot. For an adaptor inserted in the slot, this attribute
indicates that it uses the same clock source as the slot,
not a locally derived clock source. This value is
transferred to the Link Status Register, bit 12.

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 231
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix G: PCIE_A1 Attribute Descriptions

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

LL_ACK_TIMEOUT

15-bit
Hex

This attribute sets an ACK time-out counter override
value. The value is in increments of USERCLK periods.
It should be set to 0 unless the user wishes to override
the default (internal) setting.

LL_ACK_TIMEOUT_EN

Boolean

When set to TRUE, the value specified by
LL_ACK_TIMEOUT is added to the internal value,
increasing the ACK Timeout delay.

When set to FALSE, the value provided on
LL_ACK_TIMEOUT is subtracted from the internal
value, decreasing the ACK Timeout delay

LL_REPLAY_TIMEOUT

15-bit
Hex

This attribute sets a replay timer override value. The
value is in increments of USERCLK periods. It should be
set to 0 unless the user wishes to override the default
(internal) setting.

LL_REPLAY_TIMEOUT_EN

Boolean

When set to TRUE, the value specified by
LL_REPLAY_TIMEOUT is added to the internal value,
increasing the Replay Timeout delay.

When set to FALSE, the value provided on
LL_REPLAY_TIMEOUT is subtracted from the internal
value, decreasing the Replay Timeout delay

MSI_CAP_MULTIMSG_EXTENSION

Boolean

Multiple Message Capable Extension. When set to
TRUE, this attribute allows 256 unique messages to be
sent by the user regardless of the setting of
MSI_CAP_MULTIMSGCAP).

Note: Enabling this feature (TRUE) violates the PCI
Express Base Specification and should only be used in
closed systems.

MSI_CAP_MULTIMSGCAP

3-bit
Binary

Multiple Message Capable. Each MSI function can
request up to 32 unique messages. System software can
read this field to determine the number of messages
requested. The number of messages requested are
encoded as follows:

000b: 1 vector

001b: 2 vectors

010b: 4 vectors

011b: 8 vectors

100b: 16 vectors
101b: 32 vectors

110b - 111b: Reserved

PCIE_CAP_CAPABILITY_VERSION

4-bit
Hex

This attribute indicates the version number of the
PCI-SIG defined PCI Express capability structure. It
must be set to 0001b.

232

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

PCIE_CAP_DEVICE_PORT_TYPE

4-bit
Hex

This attribute identifies the type of device/port. Valid
settings are (all other values are unsupported):

0000b: PCI Express Endpoint device
0001b: Legacy PCI Express Endpoint device

This value is transferred to the PCI Express Capabilities
Register.

PCIE_CAP_INT_MSG_NUM

5-bit
Hex

Interrupt Message Number. This value is transferred to
the PCI Express Cap Register [13:9]. It is not used
internally by the integrated Endpoint block.

PCIE_CAP_SLOT_IMPLEMENTED

Boolean

This attribute must be set to FALSE.

PCIE_GENERIC

12-bit
Hex

The 12 bits are assigned as follows:
11: This bit must be 0.
10:
e 0: Electrical idle is not received until an Electrical

Idle Ordered Set (EIOS) is received, if no EIOS core
enters the LTSSM RECOVERY state

e 1: An electrical idle can occur without an EIOS
(the EIOS is assumed). This is the default and
recommended setting.

[9:7]: These bits drive the Interrupt Pin Register in the

PCI Configuration Space. A value of 0 indicates no

Legacy interrupts are implemented. Values of 1, 2, 3,

and 4 indicate INTA, INTB, INTC, and INTD,

respectively. Other values are not permitted.

6:

¢ 0: The DSN Extended Capability is not
implemented

¢ 1: The DSN Extended Capability is implemented

e 0:8B/10B Not_in_table is not inferred

e 1:8B/10B Not_in_table from the GTP transceiver
is inferred from RXSTATUS. This is the default
and recommended setting.

¢ 0: Aread to an unimplemented config space
returns completion with data of zero. This is the
default and recommended setting.

¢ 1: Aread to an unimplemented config space
returns a UR (legacy behavior of PIPE)

[3:0]: These bits drive nFTS[7:4]. The lower bits of
nFTS are set to Fh. The default value is OxF.

PLM_AUTO_CONFIG

Boolean

This attribute must be set to FALSE.

Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

www.xilinx.com 233

http://www.xilinx.com

Appendix G: PCIE_A1 Attribute Descriptions

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

PM_CAP_AUXCURRENT

3-bit
Binary

AUX Current. Requested auxiliary current allocation.
This value is transferred to the PM Capabilities Register,
bits [24:22]. The integrated Endpoint block does not
support AUX power, so this field should be set to 000b.

PM_CAP_D1SUPPORT

Boolean

D1 Support. This value is transferred to the PM
Capabilities Register, bit 25.

PM_CAP_D2SUPPORT

Boolean

D2 Support. This value is transferred to the PM
Capabilities Register, bit 26.

PM_CAP_DSI

Boolean

Device Specific Initialization (DSI). This value is
transferred to the PM Capabilities Register, bit 21.

PM_CAP_PME_CLOCK

Boolean

When this attribute is set to TRUE, a PCI™ clock is
required for PME generation. This attribute must be set
to FALSE per the specification. The value is transferred
to the PM Capabilities Register, bit 19.

PM_CAP_PMESUPPORT

5-bit
Hex

PME Support. These five bits indicate support for
D3cold, D3hot, D2, D1, and DO, respectively. This value
is transferred to the PM Capabilities Register, bits
[31:27].

PM_CAP_VERSION

3-bit
Binary

The version of Power Management specification
followed. This value is transferred to the PM
Capabilities Register, bits [18:16].

This attribute must be set to 3.

PM_DATA_SCALEO

2-bit
Hex

Power Management Data Scale Register 0. This attribute
specifies the scale applied to PM_DATAOQ. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE1

2-bit
Hex

Power Management Data Scale Register 1. This attribute
specifies the scale applied to PM_DATAL1. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

234

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

PM_DATA_SCALE2

2-bit
Hex

Power Management Data Scale Register 2. This attribute
specifies the scale applied to PM_DATA2. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE3

2-bit
Hex

Power Management Data Scale Register 3. This attribute
specifies the scale applied to PM_DATA3. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x
01b:0.1x
10b: 0.01x
11b:0.001x

PM_DATA_SCALE4

2-bit
Hex

Power Management Data Scale Register 4. This attribute
specifies the scale applied to PM_DATA4. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x
01b: 0.1x
10b: 0.01x
11b: 0.001x

PM_DATA_SCALE5

2-bit
Hex

Power Management Data Scale Register 5. This attribute
specifies the scale applied to PM_DATAS5. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 235

http://www.xilinx.com

Appendix G: PCIE_AL1 Attribute Descriptions & XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)
Attribute Name Type Description

PM_DATA_SCALE6 2-bit Power Management Data Scale Register 6. This attribute
Hex | specifies the scale applied to PM_DATAG6. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATA_SCALE? 2-bit | Power Management Data Scale Register 7. This attribute
Hex | specifies the scale applied to PM_DATA?. The power
consumption of the device is determined by multiplying
the contents of the Base Power Data Register field with
the value corresponding to the encoding returned by
this field. Defined encodings are:

00b: 1.0x

01b: 0.1x

10b: 0.01x

11b: 0.001x

PM_DATAO 8-bit Power Management Data Register 0 (DO Power

Hex | Consumed). This value appears in the Data field of the
PM Status Register if the host has written the value
0000b to the Data Select field of the PM Control
Register.

PM_DATA1 8-bit | Power Management Data Register 1 (D1 Power

Hex | Consumed). This value appears in the Data field of the
PM Status Register if the host has written the value
0001b to the Data Select field of the PM Control
Register.

PM_DATA2 8-bit | Power Management Data Register 2 (D2 Power

Hex | Consumed). This value appears in the Data field of the
PM Status Register if the host has written the value
0010b the Data Select field of the PM Control Register.

PM_DATA3 8-bit | Power Management Data Register 3 (D3 Power

Hex | Consumed). This value appears in the Data field of the
PM Status Register if the host has written the value
0011b to the Data Select field of the PM Control
Register.

PM_DATA4 8-bit | Power Management Data Register 4 (DO Power

Hex | Dissipated). This value appears in the Data field of the
PM Status Register if the host has written the value
0100b to the Data Select field of the PM Control
Register.

236 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

PM_DATAS

8-bit
Hex

Power Management Data Register 5 (D1 Power
Dissipated). This value appears in the Data field of the
PM Status Register if the host has written the value
0101b to the Data Select field of the PM Control
Register.

PM_DATA6

8-bit
Hex

Power Management Data Register 6 (D2 Power
Dissipated). This value appears in the Data field of the
PM Status Register if the host has written the value
0110b to the Data Select field of the PM Control
Register.

PM_DATA7

8-bit
Hex

Power Management Data Register 7 (D3 Power
Dissipated). This value appears in the Data field of the
PM Status Register if the host has written the value
0111b to the Data Select field of the PM Control
Register.

SLOT_CAP_ATT_BUTTON_PRESENT

Boolean

Attention Button Present. When this attribute is TRUE,
an Attention Button is implemented on the chassis for
this slot. This value is transferred to the Slot Capabilities
Register.

This attribute must be set to FALSE for Endpoints.

SLOT_CAP_ATT_INDICATOR_PRESENT

Boolean

Attention Indicator Present. When this attribute is
TRUE, an Attention Indicator is implemented on the
chassis for this slot. This value is transferred to the Slot
Capabilities Register.

This attribute must be set to FALSE for Endpoints.

SLOT_CAP_POWER_INDICATOR_PRESENT

Boolean

Power Indicator Present. When this attribute is TRUE, a
Power Indicator is implemented on the chassis for this
slot. This value is transferred to the Slot Capabilities
Register.

This attribute must be set to FALSE for Endpoints.

TL_RX_RAM_RADDR_LATENCY

Boolean

This attribute specifies the read address latency for RX
RAM:s in terms of USER_CLK cycles.

FALSE: No fabric pipeline register is on the read
address and enable block RAM inputs

TRUE: A fabric pipeline register is on the read
address and enable block RAM inputs

TL_RX_RAM_RDATA_LATENCY

2-bit
Binary

This attribute specifies the read data latency for RX
RAMs in terms of USER_CLK cycles.

01Db: The block RAM output register is disabled
10b: The block RAM output register is enabled

11b: The block RAM output register is enabled and a
fabric pipeline register is added to the block RAM
data output

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 237

http://www.xilinx.com

Appendix G: PCIE_AL1 Attribute Descriptions & XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name Type Description

TL_RX_RAM_WRITE_LATENCY Boolean | This attribute specifies the write latency for RX RAMs in
terms of cycles of USER_CLK.

FALSE: No fabric pipeline register is on the write
address and enable block RAM inputs

TRUE: A fabric pipeline register is on the write
address and enable block RAM inputs

TL_TFC_DISABLE Boolean | When this attribute is set to TRUE, checking of flow
control values and transmit packets in the order they
were presented on the TRN TX interface is disabled.

TL_TX_CHECKS_DISABLE Boolean | When this attribute is set to TRUE, all TLM checks of
incoming data are disabled.
TL_TX_RAM_RADDR_LATENCY Boolean | This attribute specifies the read address latency for TX

RAMs in terms of USER_CLK cycles.

FALSE: No fabric pipeline register on the read
address and enable block RAM inputs

TRUE: A fabric pipeline register is on the read
address and enable block RAM inputs

TL_TX_RAM_RDATA_LATENCY 2-bit This attribute specifies the read data latency for TX
Binary | RAMs in terms of USER_CLK cycles.

01b: The block RAM output register is disabled
01b: The block RAM output register is enabled

11b: The block RAM output register is enabled and a
fabric pipeline register is added to the block RAM
data output

USR_CFG Boolean | When this attribute is set to TRUE, the user application
is permitted to add or implement PCI Legacy capability
registers beyond address BFh. This option should be
selected when the user application implements such a
legacy capability configuration space, starting at COh.

USR_EXT_CFG Boolean | When this attribute is set to TRUE, the user application
is permitted to add or implement PCI Express extended
capability registers beyond address 1FFh. This box
should be checked when the user application
implements such an extended capability configuration
space starting at 200h.

VCO_CPL_INFINITE Boolean | When this attribute is set to TRUE, the block advertises
infinite completions.

Note: For Endpoints, this attribute must be set to TRUE
for compliance.

VCO_RX_RAM_LIMIT 12-bit | This attribute must be set to RX buffer bytes/4.
Hex
238 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table G-1: PCIE_A1 Attributes (Cont'd)

Attribute Name

Type

Description

VCO_TOTAL_CREDITS_CD

11-bit
Hex

Number of credits that should be advertised for
Completion data received on Virtual Channel 0. The
bytes advertised must be less than or equal to the block
RAM bytes available.

The equation to calculate bytes advertised is:

(ph * (rx_td_ecrc_trim ? 16 : 20)) + (pd * 16) + (nph * 20)
+ (ch *16) + (cd * 16)

The equation to calculate block RAM bytes available is:
(veO_rx_ram_limit + 1) * 4

See Table G-2, page 240 for valid settings.

VCO0_TOTAL_CREDITS_CH

7-bit
Hex

Number of credits that should be advertised for
Completion headers received on Virtual Channel 0. The
sum of the Posted, Non-Posted, and Completion header
credits must be < 80.

See Table G-2, page 240 for valid settings.

VCO_TOTAL_CREDITS_NPH

7-bit
Hex

Number of credits that should be advertised for Non-
Posted headers received on Virtual Channel 0. The
number of Non-Posted data credits advertised by the
block is equal to the number of Non-Posted header
credits. The sum of the Posted, Non-Posted, and
Completion header credits must be < 80.

This attribute must be set to 8.

VCO0_TOTAL_CREDITS_PD

11-bit
Hex

Number of credits that should be advertised for Posted
datareceived on Virtual Channel 0. The bytes advertised
must be less than or equal to the block RAM bytes
available.

The equation to calculate bytes advertised is:

(ph * (rx_td_ecrc_trim ? 16 : 20)) + (pd * 16) + (nph * 20)
+(ch*16) + (cd * 16)

The equation to calculate block RAM bytes available is:
(veO_rx_ram_limit + 1) * 4

See Table G-2, page 240 for valid settings.

VCO_TOTAL_CREDITS_PH

7-bit
Hex

Number of credits that should be advertised for Posted
headers received on Virtual Channel 0. The sum of the
Posted, Non-Posted, and Completion header credits
must be < 80.

VCO0_TX_LASTPACKET

5-bit
Hex

Index of the last packet buffer used by TX TLM (that is,
the number of buffers — 1). This value is calculated from
the maximum payload size supported and the number
of block RAMs configured for transmit.

The equation is:
((TX bufter bytes) / (MPS_in_bytes + 20) - 1)
See Table G-2 for valid settings.

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com 239

http://www.xilinx.com

Appendix G: PCIE_AL1 Attribute Descriptions & XILINX.

Table G-2: Valid Data Credit Combinations

Parameter Name Valid Combinations
DEV_CAP_MAX_PAYLOAD_SUPPORTED 0 0 1 1 2 2
VCO0_TOTAL_CREDITS_PD 36 92 92 | 204 | 204 716
VCO0_TOTAL_CREDITS_CD 64 128 | 128 | 256 | 256 256
VCO0_TOTAL_CREDITS_CH 8 16 16 32 32 32
VCO_TX_LAST_PACKET 12 26 13 28 14 29
240 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix H

PCIE_A1 Timing Parameter
Descriptions

This appendix lists the timing parameter names and descriptions related to the
Spartan®-6 FPGA Integrated Endpoint Block for PCI Express® designs. This information
is useful for debugging timing issues. Values for these timing parameters can be obtained
by running the Speedprint tool. Usage of Speedprint is documented in the Development
System Reference Guide.

The timing parameters on the integrated Endpoint block consist of either Setup/Hold or
Clock-to-Out parameters. Table H-1 lists the timing parameter names, descriptions, signal
grouping, and related clock domain for a given parameter. In the table, parameter
Tpcicck_XXX is a setup time (before the clock edge), and parameter Tpcickc_XXXis a hold
time (after clock edge).

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com 241
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix H: PCIE_A1 Timing Parameter Descriptions

& XILINX.

Table H-1:

PCIE_A1 Timing Parameters

Name

Clock Domain

Signal Grouping

Sequential Setup and Hold Times

for Integrated Endpoint Block Inputs

Tpcicck_CFG /
Tpcickc_CFG

USERCLK

CFGDEVID[15:0]

CFGDSN][63:0]

CFGDWADDR[9:0]

CFGERRCORN

CFGERRCPLTIMEOUTN

CFGERRECRCN

CFGERRLOCKEDN

CFGERRPOSTEDN

CFGERRTLPCPLHEADER][47:0]

CFGERRURN

CFGINTERRUPTASSERTN

CFGINTERRUPTDI[7:0]

CFGINTERRUPTN

CFGRDENN

CFGREVID[7:0]

CFGSUBSYSID[15:0]

CFGSUBSYSVENID[15:0]

CFGTRNPENDINGN

CFGVENID[15:0]

TRNTCFGGNTN

Tpcicck_ERR /
Tpcickc_ERR

USERCLK

CFGERRCPLABORTN

242

www.xilinx.com

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table H-1: PCIE_AL Timing Parameters (Cont’d)

Name Clock Domain Signal Grouping
Tpcicck_MGT / MGTCLK PIPEGTRESETDONEA
Tpcicke_ MGT

peieke- PIPEGTRESETDONEB

PIPEPHYSTATUSA
PIPEPHYSTATUSB
PIPERXCHARISKA[1:0]
PIPERXCHARISKB[1:0]
PIPERXDATAA[15:0]
PIPERXDATAB[15:0]
PIPERXENTERELECIDLEA
PIPERXENTERELECIDLEB
PIPERXSTATUSA[2:0]
PIPERXSTATUSB|[2:0]

Tpcicck_PWR / USERCLK CFGPMWAKEN

Tpcickc_PWR

peieke- CFGTURNOFFOKN

Tpcicck_SCAN / USERCLK SCANEN

Tpcickc_SCAN
SCANINJ[4:0]
SCANRESETMASK

Tpcidck_LOCKED / USERCLK CLOCKLOCKED

Tpcickd_LOCKED

Tpcidck_RESET / USERCLK SYSRESETN

Tpcickd_RESET

Tpcidck_RXRAM / USERCLK MIMRXRDATA[34:0]

Tpcickd_RXRAM

Tpcidck_TRNFC / USERCLK TRNFCSEL[2:0]

Tpcickd_TRNFC

Tpcidck_TRNRD / USERCLK TRNRDSTRDYN

Tpcickd_TRNRD

Tpcidck_TRNRN / USERCLK TRNRNPOKN

Tpcickd_TRNRN

Tpcidck_TRNTD / USERCLK TRNTD[31:0]

Tpcickd_TRNTD

Tpcidck_TRNTE / USERCLK TRNTEOFN

Tpcickd_TRNTE
TRNTERRFWDN

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

243

http://www.xilinx.com

Appendix H: PCIE_A1 Timing Parameter Descriptions

& XILINX.

Table H-1: PCIE_AL Timing Parameters (Cont’d)

Name Clock Domain Signal Grouping

Tpcidck _TRNTS / USERCLK TRNTSOFN

Tpcickd_TRNTS TRNTSRCDSCN
TRNTSRCRDYN
TRNTSTRN

Tpcidck_TXRAM / USERCLK MIMTXRDATA[35:0]

Tpcickd_TXRAM

Sequential Clock to Output Times for Integrated Endpoint Block Outputs

Tpcicko_CFG USERCLK CFGCOMMANDINTERRUPTDISABLE
CFGDEVCONTROLMAXPAYLOAD[2:0]
CFGDEVCONTROLMAXREADREQ[2:0]

Tpcicko_CFGBUS USERCLK CFGBUSNUMBER][7:0]

Tpcicko_CFGCOMMAND USERCLK CFGCOMMANDSERREN

Tpcicko_CFGDEV USERCLK CFGDEVCONTROLCORRERRREPORTINGEN
CFGDEVCONTROLEXTTAGEN
CFGDEVCONTROLFATALERRREPORTINGEN
CFGDEVCONTROLNONFATALREPORTINGEN
CFGDEVCONTROLNOSNOOPEN
CFGDEVCONTROLPHANTOMEN
CFGDEVCONTROLURERRREPORTINGEN
CFGDEVICENUMBER[4:0]
CFGDEVSTATUSCORRERRDETECTED
CFGDEVSTATUSFATALERRDETECTED
CFGDEVSTATUSNONFATALERRDETECTED
CFGDEVSTATUSURDETECTED

Tpcicko_CFGDO USERCLK CFGDO[31:0]

Tpcicko_CFGDONE USERCLK CFGRDWRDONEN

Tpcicko_CFGERR USERCLK CFGERRCPLRDYN

Tpcicko_CFGFCN USERCLK CFGFUNCTIONNUMBER][2:0]

Tpcicko_CFGINT USERCLK CFGINTERRUPTDO([7:0]
CFGINTERRUPTRDYN

244 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table H-1: PCIE_AL Timing Parameters (Cont’d)

Name Clock Domain Signal Grouping

Tpcicko_CFGLINK USERCLK CFGLINKCONTOLRCB

CFGLINKCONTROLASPMCONTROL[1:0]

CFGLINKCONTROLCOMMONCLOCK

CFGLINKCONTROLEXTENDEDSYNC

Tpcicko_ CFGOFF USERCLK CFGTOTURNOFFN

Tpcicko_CFGSTATE MGTCLK CFGLTSSMSTATE[4:0]

USERCLK CFGPCIELINKSTATEN][2:0]

Tpcicko_DBG USERCLK DBGBADTLPLCRC

DBGBADTLPSEQNUM

DBGMLFRMDLENGTH

DBGMLFRMDMPS

DBGMLFRMDTCVC

DBGMLFRMDUNRECTYPE

DBGREGDETECTEDCORRECTABLE

DBGREGDETECTEDFATAL

DBGREGDETECTEDNONFATAL

DBGREGDETECTEDUNSUPPORTED

DBGURNOBARHIT

DBGURPOISCFGWR

DBGURUNSUPMSG

Tpcicko_ENA USERCLK CFGCOMMANDBUSMASTERENABLE

CFGCOMMANDIOENABLE

CFGCOMMANDMEMENABLE

CFGDEVCONTROLENABLERO

CFGINTERRUPTMMENABLE[2:0]

Tpcicko_MSG USERCLK CFGINTERRUPTMSIENABLE

Spartan-6 FPGA Integrated Endpoint Block www.xilinx.com
UG672 (v1.0) October 5, 2010

245

http://www.xilinx.com

Appendix H: PCIE_A1 Timing Parameter Descriptions

& XILINX.

Table H-1: PCIE_AL Timing Parameters (Cont’d)

Name

Clock Domain

Signal Grouping

Tpcicko_PIPE

MGTCLK

PIPEGTTXELECIDLEA

PIPEGTTXELECIDLEB

PIPERXPOLARITYA

PIPERXPOLARITYB

PIPERXRESETA

PIPERXRESETB

PIPETXCHARDISPMODEA[1:0]

PIPETXCHARDISPMODEB[1:0]

PIPETXCHARDISPVALA[1:0]

PIPETXCHARDISPVALBJ[1:0]

PIPETXCHARISKA[1:0]

PIPETXCHARISKBJ[1:0]

PIPETXDATAA[15:0]

PIPETXDATAB[15:0]

PIPETXRCVRDETA

PIPETXRCVRDETB

Tpcicko_PWR

MGTCLK

PIPEGTPOWERDOWNA[1:0]

PIPEGTPOWERDOWNB[1:0]

USERCLK

CFGDEVCONTROLAUXPOWEREN

Tpcicko_RXRAM

USERCLK

MIMRXRADDR[11:0]

MIMRXREN

MIMRXWADDR([11:0]

MIMRXWDATA[34:0]

MIMRXWEN

Tpcicko_SCANOUT

USERCLK

SCANOUTI4:0]

246

www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Table H-1: PCIE_AL Timing Parameters (Cont’d)

Name

Clock Domain

Signal Grouping

Tpcicko_STATUS

USERCLK

DBGBADDLLPSTATUS

DBGBADTLPSTATUS

DBGDLPROTOCOLSTATUS

DBGFCPROTOCOLERRSTATUS

DBGMLFRMDTLPSTATUS

DBGPOISTLPSTATUS

DBGRCVROVERFLOWSTATUS

DBGRPLYROLLOVERSTATUS

DBGRPLYTIMEOUTSTATUS

DBGURSTATUS

Tpcicko_TRN

USERCLK

TRNFCCPLD[11:0]

TRNFCCPLH][7:0]

TRNFCNPD[11:0]

TRNFCNPH]7:0]

TRNFCPD[11:0]

TRNFCPH][7:0]

TRNLNKUPN

TRNRBARHITN[6:0]

TRNRD[31:0]

TRNREOFN

TRNRERRFWDN

TRNRSOFN

TRNRSRCDSCN

TRNRSRCRDYN

TRNTBUFAV][5:0]

TRNTCFGREQN

TRNTDSTRDYN

TRNTERRDROPN

Tpcicko_TXRAM

USERCLK

MIMTXRADDR[11:0]

MIMTXREN

MIMTXWADDR[11:0]

MIMTXWDATA[35:0]

MIMTXWEN

Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

www.xilinx.com

247

http://www.xilinx.com

Appendix H: PCIE_A1 Timing Parameter Descriptions & XILINX.

248 www.xilinx.com Spartan-6 FPGA Integrated Endpoint Block
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.
Appendix |

TRN to AXI Interface Migration
Considerations

This appendix describes the differences in signal naming and behavior for users migrating
to the Spartan®-6 FPGA Integrated Block for PCI Express®, v2.x from the Spartan-6 FPGA
Integrated Block for PCI Express, v1.x.

High-Level Summary

The v2.x versions of the Virtex-6 FPGA Integrated Block for PCI Express update the main
user interface from TRN to the standard AXI4-Stream (AXI-ST Basic) signal naming and
behavior. In addition, all control signals that were active Low have been changed to active
High. This list summarizes the main changes to the core:

e Signal name changes

¢ Datapath DWORD ordering

¢ All control signals are active High

e Start-of-frame (SOF) signaling is implied

¢ Remainder signals are replaced with Strobe signals

Step-by-Step Migration Guide

This section describes the steps that a user should take to migrate an existing user
application based on TRN to the AXI-Stream interface.

1. For each signal in Table I-1 labeled “Name change only”, connect the appropriate user
application signal to the newly named core signal.

2. For each signal in Table I-1 labeled “Name change; Polarity”, add an inverter and
connect the appropriate user application signal to the newly named core signal.

3. Swap the DWORD ordering on the datapath signals as described in Data Path
DWORD Ordering.

Leave disconnected the user application signal originally connected to trn_tsof n.

5. Recreate trn_rsof_n as described in the Start-Of-Frame Signaling section and connect
to the user application as was originally connected.

Make the necessary changes as described in the Remainder/Strobe Signaling section.

If using the trn_rsrc_dsc_n signal in the original design, make the changes as described
in Packet Transfer Discontinue on Receive section, otherwise leave disconnected.

8. Make the changes as described in the Packet Reordering on Receive section.

Virtex-6 FPGA Integrated Block for PCI Express www.xilinx.com 249
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix I: TRN to AXI Interface Migration Considerations & XILINX.

Signal Changes

Table I-1 details the main differences in signaling between TRN Local-Link to AXI4-Stream
interface.

Table I-1: Interface Changes

TRN Name AXI Name Difference

Common Interface

sys_reset_n sys_reset Name change; Polarity
trn_clk user_clk_out Name change only

trn_reset_n user_reset_out Name change; Polarity

trn_Ink_up_n user_Ink_up Name change; Polarity
trn_fc_ph[7:0] fc_ph[7:0] Name change only
trn_fc_pd[11:0] fc_pd[11:0] Name change only
trn_fc_nph[7:0] fc_nph[7:0] Name change only
trn_fc_npd[11:0] fc_npd[11:0] Name change only
trn_fc_cplh[7:0] fc_cplh[7:0] Name change only
trn_fc_cpld[11:0] fc_cpld[11:0] Name change only
trn_fc_sel[2:0] fc_sel[2:0] Name change only

Transmit Interface
trn_tsof_n No equivalent for 32- and 64-bit version (see text)

trn_teof n s_axis_tx_tlast Name change only

trn_td[W-1:0]

s_axis_tx_tdata[W-1:0]
(W =32, 64, or 128)

Name change; DWORD Ordering (see text)

trn_trem_n

o s_axis_tx_tstrb[7:0]
(64-bit interface)

Name change; Functional differences (see text)

trn_trem_n[1:0]

o s_axis_tx_tstrb[15:0]
(128-bit interface)

Name change; Functional differences (see text)

trn_tsrc_rdy_n s_axis_tx_tvalid Name change; Polarity
trn_tdst_rdy_n s_axis_tx_tready Name change; Polarity
trn_tsrc_dsc_n s_axis_tx_tuser[3] Name change; Polarity
trn_tbuf_av[5:0] tx_buf_av[5:0] Name Change
trn_terr_drop_n tx_terr_drop Name change; Polarity

(64-bit interface only)

trn_tstr_n s_axis_tx_tuser[2] Name change; Polarity
trn_tcfg_req_n .
(64-bit int egr facg only) tx_cfg_req Name change; Polarity
trn_tcfg_gnt_n .
tx_cfg_gnt Name change; Polarity

250

www.xilinx.com

Virtex-6 FPGA Integrated Block for PCI Express
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Signal Changes

Table I-1: Interface Changes (Cont'd)

TRN Name

AXI Name

Difference

trn_terrfwd_n

s_axis_tx_tuser[1]

Name change; Polarity

Receive Interface

trn_rsof_n

No equivalent for 32 and 64-bit versions

trn_reof_n

m_axis_rx_tlast

Name change; Polarity

trn_rd[W-1:0]
(W =32, 64, or 128)

m_axis_rx_tdata[W-1:0]

Name change; DWORD Ordering

trn_rrem_n
(64-bit interface)

m_axis_rx_tstrb

Name change; Functional differences (see text)

trn_rrem_n[1:0]
(128-bit interface)

m_axis_rx_tuser[14:10],
m_axis_rx_tuser[21:17]

Name change; Functional differences (see text)

trn_rerrfwd_n

m_axis_rx_tuser[1]

Name change; Polarity

trn_rsrc_rdy_n

m_axis_rx_tvalid

Name change; Polarity

trn_rdst_rdy_n

m_axis_rx_tready

Name change; Polarity

trn_rsrc_dsc_n

No equivalent

trn_rnp_ok_n

rx_np_ok

Name change; Polarity; Extra delay (see text)

trn_rbar_hit_n[6:0]

m_axis_rx_tuser[9:2]

Name change; Polarity

Configuration Interface

cfg_rd_wr_done_n cfg_rd_wr_done Name change; Polarity
cfg_byte_en_n[3:0] cfg_byte_en[3:0] Name change; Polarity
cfg_wr_en_n cfg_wr_en Name change; Polarity
cfg rd_en_n cfg rd_en Name change; Polarity

cfg_pcie_link_state_n[2:0]

cfg_pcie_link_state[2:0]

Name change only

cfg_trn_pending n

cfg_trn_pending

Name change; Polarity

cfg_to_turnoff_n cfg_to_turnoff Name change; Polarity
cfg_turnoff_ok_n cfg_turnoff_ok Name change; Polarity
cfg_pm_wake_n cfg_pm_wake Name change; Polarity

cfg_wr_rwlc_as_rw_n

cfg_wr_rwlc_as_rw

Name change; Polarity

cfg_interrupt_n

cfg_interrupt

Name change; Polarity

cfg_interrupt_rdy_n

cfg_interrupt_rdy

Name change; Polarity

cfg_interrupt_assert_n

cfg_interrupt_assert

Name change; Polarity

cfg_err_ecrc_n

cfg_err_ecrc

Name change; Polarity

cfg_err_ur_n

cfg_err_ur

Name change; Polarity

cfg_err_cpl_timeout_n

cfg_err_cpl_timeout

Name change; Polarity

cfg_err_cpl_unexpect_n

cfg_err_cpl_unexpect

Name change; Polarity

Virtex-6 FPGA Integrated Block for PCI Express

UG672 (v1.0) October 5, 2010

www.xilinx.com

251

http://www.xilinx.com

Appendix I: TRN to AXI Interface Migration Considerations & XILINX.

Table I-1: Interface Changes (Cont'd)

TRN Name AXI Name Difference
cfg_err_cpl_abort_n cfg_err_cpl_abort Name change; Polarity
cfg_err_posted_n cfg_err_posted Name change; Polarity
cfg_err_cor_n cfg_err_cor Name change; Polarity
cfg_err_cpl rdy_n cfg_err_cpl_rdy Name change; Polarity
cfg_err_locked_n cfg_err_locked Name change; Polarity

Data Path DWORD Ordering

The AXI-Stream interface swaps the DWORD locations but preserves byte ordering within
an individual DWORD as compared to the TRN interface. This change only affects the
64-bit and 128-bit versions of the core. Figure I-1 and Figure I-2 illustrate the DWORD
swap ordering from TRN to AXI-Stream for both 64-bit and 128-bit versions.

trn_td[63:0]

trn_rd[63:0] X DWO><DWl X
s_axis_tx_tdata[63:0] X DW1 DWO X
m_axis_rx_rdata[63:0]

UG671_al_01_092010

Figure I-1: TRN vs. AXI DWORD Ordering on Data Bus (64-bit)

trn_td[127:0]
trn_rd[127:0] X DWO DW1 DW2 DW3 X

i

X DW3 DW2 Dw1 DWO X

s_axis_tx_tdata[127:0]
m_axis_rx_rdata[127:0]

UG671_al_02_092010

Figure I-2: TRN vs. AXI DWORD Ordering on Data Bus (128-bit)

Users migrating existing 64-bit and 128-bit TRN-based designs should swap DWORD
locations for the s_axis_tx_tdata[W-1:0] and s_axis_rx_rdata[W-1:0] buses as they enter
and exit the PCIe® core.

For example, existing user application pseudo-code:
usr_trn_rd[127:0] = trn_rd[127:0];
should be modified to:

usr_trn_rd[127:96] = s_axis_rx_rdata[31: 0]
usr_trn_rd[95: 64] s_axi s_rx_rdata[63: 32]
usr_trn_rd[63: 32] s_axi s_rx_rdata[95: 64]
usr _trn_rd[31:0] = s_axis_rx_rdata[127: 96]

252 www.xilinx.com Virtex-6 FPGA Integrated Block for PCI Express
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX. Start-Of-Frame Signaling

Start-Of-Frame Signaling

AXI-Stream does not have equivalent signals for start-of-frame (trn_tsof_n and trn_rsof_n)
in the 32-bit and 64-bit versions. On the transmit side, existing TRN designs can simply
leave the user trn_tsof_n connection unconnected. On the receive side, existing TRN
designs can recreate trn_rsof_n using simple logic, if necessary.

32- and 64-bit Interfaces

First the user creates a sequential (clocked) signal called in_packet_reg. A combinatorial
logic function using existing signals from the core can then be used to recreate trn_rsof_n
as illustrated in this pseudo-code:

For every clock cycle (user_clk_out) do {
if(reset)
in_packet_reg = 0
else if (maxis_rx_tvalid and m.axis_rx_tready)
in_packet _reg = I'maxis_rx_tlast

}

trn_rsof _n = !'(maxis_rx_tvalid & !in_packet_reg)

128-bit Interface

The 128-bit interface provides an SOF signal. The user can invert is_sof[4] to recreate
trn_rsof_n.

Remainder/Strobe Signaling

This section covers the changes to the remainder signals trn_trem_n[1:0] and
trn_rrem_n[1:0].

The AXI-Stream interface uses strobe signaling (byte enables) in place of remainder
signaling. There are three key differences between the strobe signals and the remainder
signals as detailed in Table I-2. There are also some differences between the 64-bit version
and 128-bit version of the core. The 128-bit RX version replaces trn_rrem[1:0] with is_sof
and is_eof, instead of a strobe signal. For simplicity, this section treats 64-bit and 128-bit
transmit and receive operations separately.

Table I-2: Remainder Signal Differences

TRN Remainders AXI-Stream Strobes
64-bit: trn_trem_n, trn_rrem_n 64-bit: s_axis_tx_tstrb[7:0], m_axis_rx_tstrb[7:0]
128-bit: trn_trem_n[1:0], trn_rrem_n[1:0] 128-bit: s_axis_tx_tstrb[15:0], is_sof[4:0], is_eof[4:0]
Active Low Active High
Acts on DWORDs Acts on Bytes
Only valid on end-of-frame (EOF) cycles Valid for every clock cycle that tvalid and tready are asserted
Virtex-6 FPGA Integrated Block for PCI Express www.xilinx.com 253

UG672 (v1.0) October 5, 2010

http://www.xilinx.com

Appendix I: TRN to AXI Interface Migration Considerations & XILINX.

64-bit Transmit

Existing TRN designs can do a simple conversion from the single trn_trem signal to
s_axis_tx_tstrobe[7:0]. Assuming the user currently has a signal named user_trn_trem that
drives the trn_trem input, the listed pseudo-code illustrates the conversion to
s_axis_tx_tstrobe[7:0]. The user must drive s_axis_tx_tstrobe[7:0] every clock cycle that
tvalid is asserted.

if s axis_tx_tlast == 1 //in a packet at EOF
s_axis_tx_tstrobe[7:0] = user_trn_tremn ? OFh : FFh
el se /1in a packet but not EOF, or not in a packet

s_axis_tx_tstrobe = FFh

64-bit Receive

Existing TRN designs can do a simple conversion on m_axis_rx_tstrobe[7:0] to recreate the
trn_rrem signal using combinatorial logic. The listed pseudo-code illustrates the
conversion.
if maxis_rx_tlast ==
trn_rremn = (maxis_rx_tstrb[7:4] == Fh) ? Ob : 1b
el se
trn_rremn = 1b

128-bhit Transmit

Existing TRN designs can do a simple conversion from the single trn_trem[1:0] signal to
s_axis_tx_tstrobe[15:0]. Assuming the user currently has a signal named
user_trn_trem[1:0] that drives the trn_trem[1:0] input, the listed pseudo-code illustrates
the conversion to s_axis_tx_tstrobe[15:0]. The user must drive s_axis_tx_tstrobe[15:0]
every clock cycle.

if s axis_tx_tlast == 1 //in a packet at ECF
if user _trn_tremn[1: 0] ==00b
s_axis_tx_tstrobe[15: 0] = FFFFh
else if user_trn_tremn[1l:0] = 0l1lb
s_axis_tx_tstrobe[15: 0] = OFFFh

else if user_trn_tremn[1l:0] = 10b
s_axis_tx_tstrobe[15: 0] = OOFFh
else if user_trn_tremn[1l:0] = 11b

s_axis_tx_tstrobe[15: 0] = 000Fh

el se /1in a packet but not EOF, or not in a packet
s_axi s_tx_tstrobe =FF FFh

128-bit Receive

The 128-bit receive remainder signal trn_rrem[1:0] does not have an equivalent strobe
signal for AXI-Stream. Instead, is_sof[4:0] (m_axis_rx_tuser[14:10]) and is_eof[4:0]
(m_axis_rx_tuser[21:17]) are used. Existing TRN designs can do a conversion on the is_sof
and is_eof signals to recreate the trn_rrem[1:0] signal using combinatorial logic. The listed
pseudo-code illustrates the conversion. This pseudo-code assumes that the user has
swapped the DWORD locations from the AXI-Stream interface (see the usr_trn_rd[127:0]
signal pseudo-code).

254

www.xilinx.com Virtex-6 FPGA Integrated Block for PCI Express
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

8 X||_|NX Packet Transfer Discontinue on Receive

trn_rremn[1l] = !is_ sof[4] & !is_eof[4] | is_eof[4] & is_sof[3] |
is_eof[4] & !is_eof[3]]

trn_rremn[0] ="!is_eof[2]

Note: is_eof[4] is equivalent to m_axis_rx_tlast.

Packet Transfer Discontinue on Receive

When the trn_rsrc_dsc_n signal in the TRN interface is asserted, it indicates to the user that
a received packet has been discontinued. The AXI-ST interface has no equivalent signal.
On both the TRN and AXI-Stream cores, however, a packet is only discontinued on the
receive interface if link connectivity is lost. Therefore, users can simply monitor the
user_Ink_up signal to determine a receive packet discontinue condition.

On the TRN interface, the packet transmission on the data interface (trn_rd) stops
immediately following assertion of trn_rsrc_dsc_n, and trn_reof_n might never be
asserted. On the AXI-Stream interface, the packet is padded out to the proper length of the
TLP, and m_axis_rx_tlast is asserted even though the data is corrupted. Figure I-3 and
Figure I-4 show the TRN and AXI signaling for packet discontinue. To recreate the
trn_rsrc_dsc_n signal, the user can simply invert and add one clock cycle delay to
user_Ink_up.

ok | | | | | | |
R .
:

trn_Ink_up_n

|
|
|
|
|
trn_rd[127:0 |-
rd[127:0] | B X
| T |
trn_sof n | | \ | /
| |
|
|
I
|
|
|
|
|

trn_eof_n

trn_rsrc_rdy_n

trn_rdst_rdy_n

trn_rrem_n[1]

L—1 1T

trn_rrem_n[0]

trn_rsrc_dsc_n

UG671_al_03_092010

Figure I-3: Receive Discontinue on the TRN Interface

Virtex-6 FPGA Integrated Block for PCI Express www.xilinx.com 255
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

& XILINX.

Appendix I: TRN to AXI Interface Migration Considerations

|
user_clk_out | | | | | |

| | |\—_:/’] | |

- DoH,H;H, X D,D,D,D, X DgD,DeDs X PAD X PAD

| | N 4
| | | original TLP gata was lost |
.

user_Ink_up

m_axis_rx_tdata[127:0]

)

m_axis_rx_tready

| | | |
| | | |
. ' | | | |
m_axis_rx_tvalid | | | |
))))

I

I

I

I

I
1

.

- 10000b X 00000b

00000b X 11111b
T T T T T
UG671_al_04_092010

(is_sof)m_axis_rx_tuser[14:10]

|
|
|
|
!
|
|
(is_eof)m_axis_rx_tuser[21:17] :
I

]

Figure I-4: Receive Discontinue on the AXI-Stream Interface

Packet Reordering on Receive

The TRN interface uses the trn_rnp_ok_n signal to reorder TLP traffic on the receive
interface. The AXI-Stream interface has an equivalent signal, rx_np_ok. Users need to
account for two differences in the AXI-Stream interface as shown in Table I-3. Users have to
account for these differences in their custom logic. If the user application does not use
packet reordering, the user can simply tie rx_np_ok to 1b.

Table [-3: AXI-Stream Interface Differences

TRN AXI-Stream
trn_rnp_ok_n rx_np_ok

Active Low Active High

Must be deasserted at least one clock cycle
before trn_reof_n of the next-to-last
Non-Posted TLP that the user can accept

Must be deasserted at least one clock cycle
before is_eof[4] of the second-to-last
Non-Posted TLP that the user can accept

System Reset

The system reset is usually provided by PERST#, which is an active Low signal. If the
incoming reset signal is active Low, the user must invert this signal before connecting to
the sys_reset signal on the core interface.

256 www.xilinx.com Virtex-6 FPGA Integrated Block for PCI Express
UG672 (v1.0) October 5, 2010

http://www.xilinx.com

	Spartan-6 FPGA Integrated Endpoint Block for PCI Express
	Revision History
	Table of Contents
	About This Guide
	Guide Contents
	Additional Documentation
	Additional Resources

	Introduction
	About the Core
	System Requirements
	Recommended Design Experience
	Additional Core Resources

	Core Overview
	Overview
	Protocol Layers
	Transaction Layer
	Data Link Layer
	Physical Layer
	Configuration Management

	PCI Configuration Space
	Core Interfaces
	System Interface
	PCI Express Interface

	Transaction Interface
	Common Interface
	Transmit Interface
	Receive Interface

	Configuration Interface
	Error Reporting Signals

	Licensing the Core
	Getting Started Example Design
	Overview
	Simulation Design Overview
	Implementation Design Overview
	Example Design Elements

	Generating the Core
	Simulating the Example Design
	Setting up for Simulation
	Running the Simulation

	Implementing the Example Design
	Using the ISE Project Navigator GUI Tool

	Directory Structure and File Contents
	Example Design
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example_design
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/dsport
	simulation/functional
	simulation/tests
	<component name>/source

	Generating and Customizing the Core
	Customizing the Core through the CORE Generator Software
	Basic Parameter Settings
	Base Address Registers
	PCI Registers
	Configuration Register Settings
	Interrupt Capabilities
	Power Management Registers
	PCI Express Extended Capabilities
	Advanced Settings

	Designing with the Core
	TLP Format on the AXI-Stream Interface
	Transmitting Outbound Packets
	Receiving Inbound Packets
	Design with Configuration Space Registers and Configuration Interface
	Registers Mapped Directly onto the Configuration Interface
	Device Control and Status Register Definitions
	Accessing Additional Registers through the Configuration Port
	User Implemented Configuration Space

	Additional Packet Handling Requirements
	Generation of Completions
	Tracking Non-Posted Requests and Inbound Completions

	Reporting User Error Conditions
	Error Types

	Flow Control Credit Information
	Using the Flow Control Credit Signals

	Power Management
	Active State Power Management
	Programmed Power Management

	Generating Interrupt Requests
	MSI Mode
	Legacy Interrupt Mode

	Clocking and Reset of the Integrated Endpoint Block Core
	Reset
	Clocking

	Core Constraints
	Contents of the User Constraints File
	Part Selection Constraints: Device, Package, and Speed Grade
	User Timing Constraints
	User Physical Constraints
	Core Pinout and I/O Constraints
	Core Physical Constraints
	Core Timing Constraints

	Required Modifications
	Device Selection
	Core I/O Assignments
	Core Physical Constraints
	Core Timing Constraints
	Relocating the Integrated Endpoint Block
	Supported Core Pinouts

	FPGA Configuration
	Configuration Terminology
	Configuration Access Time
	Configuration Access Specification Requirements

	Board Power in Real-World Systems
	Hot-Plug Systems

	Recommendations
	FPGA Configuration Times for Spartan-6 Devices
	Sample Problem Analysis
	Workarounds for Closed Systems

	Known Restrictions
	Master Data Parity Error Bit Set Incorrectly
	Area of Impact
	Detailed Description
	Comments

	Non-Posted UpdateFC During PPM Transition
	Area of Impact
	Detailed Description
	Comments

	Programmed Input/Output Example Design
	System Overview
	PIO Hardware
	Base Address Register Support
	TLP Data Flow
	PIO File Structure
	PIO Application
	Receive Path
	Transmit Path
	Endpoint Memory

	PIO Operation
	PIO Read Transaction
	PIO Write Transaction
	Device Utilization

	Summary
	Root Port Model Test Bench for Endpoint
	Architecture
	Simulating the Design
	Scaled Simulation Timeouts
	Test Selection
	Waveform Dumping
	Output Logging
	Parallel Test Programs
	Test Description
	Expanding the Root Port Model

	Migration Considerations
	Integrated PHY
	System Clocking and Reset
	Interface Changes
	Streaming Signal Added
	TRN Transmit Destination Discontinue Removed
	TRN Buffer Available Size Change
	CMM Arbitration
	TRN Credit Buses Additional Functionality
	Configuration Error Completion Ready
	Configuration Error Locked
	Removed Configuration Signals
	Hot Reset

	Block RAM Settings
	Signal Change Summary

	Debugging Designs
	Finding Help on Xilinx.com
	Documentation

	Contacting Xilinx Technical Support
	Debug Tools
	Example Design
	ChipScope Pro Tool
	Link Analyzers
	Third-Party Software Tools

	Debug Ports
	Using the Debug Ports

	Hardware Debug
	FPGA Configuration Time Debug
	Link is Training Debug
	Data Transfer Failing Debug
	Identifying Errors
	Non-Fatal Errors
	Next Steps

	Simulation Debug
	ModelSim Debug
	Next Step

	Managing Receive-Buffer Space for Inbound Completions
	General Considerations and Concepts
	Completion Space
	Maximum Request Size
	Read Completion Boundary

	Methods of Managing Completion Space
	The LIMIT_FC Method
	The PACKET_FC Method
	The RCB_FC Method
	The DATA_FC Method

	Board Design Guidelines
	Overview
	Example PCB Reference
	Board Stackup
	SP605 Example
	Power Supply Design

	Data Routing Guidelines
	Breakout from FPGA BGA
	Microstrip vs. Stripline
	Plane Reference and Splits
	Bends
	Propagation Delay
	Intrapair Skew
	Symmetrical Routing
	Vias
	Trace Impedance
	Trace Separation
	Lane Polarity Inversion
	AC Coupling
	Data Signal Termination
	Additional Considerations for Add-In Card Designs

	Reference Clock Considerations
	Jitter
	Trace Impedance
	Termination
	AC Coupling
	Fanout
	Sideband PCI Express Signals
	Summary Checklist

	PCIE_A1 Port Descriptions
	Clock and Reset Interface
	Transaction Layer Interface
	Block RAM Interface
	GTP Transceiver Interface
	Configuration Management Interface
	Management Interface Ports
	Error Reporting Ports
	Interrupt Generation and Status Ports
	Power Management Ports
	Configuration Specific Register Ports
	Miscellaneous Configuration Management Ports

	Debug Interface Ports

	PCIE_A1 Attribute Descriptions
	PCIE_A1 Timing Parameter Descriptions
	TRN to AXI Interface Migration Considerations
	High-Level Summary
	Step-by-Step Migration Guide
	Signal Changes
	Data Path DWORD Ordering
	Start-Of-Frame Signaling
	32- and 64-bit Interfaces
	128-bit Interface

	Remainder/Strobe Signaling
	64-bit Transmit
	64-bit Receive
	128-bit Transmit
	128-bit Receive

	Packet Transfer Discontinue on Receive
	Packet Reordering on Receive
	System Reset

