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Summary Spartan®-6 devices contain input SerDes (ISERDES) and output SerDes (OSERDES) blocks. 
These primitives simplify the design of serializing and deserializing circuits, while allowing 
higher operational speeds. This application note discusses how to efficiently use these 
primitives in conjunction with the input delay blocks and phase detector circuitry.

ISERDES and 
OSERDES 
Guidelines

Each Spartan-6 FPGA input/output block (IOB) contains a 4-bit input SerDes and a 4-bit output 
SerDes. The SerDes from two adjacent blocks (master and slave) can be cascaded to make an 
8-bit block. This gives the possibility of SerDes ratios from 2:1 to 8:1 on both output and input 
for both single and double data rate I/O clocks.

Cascading the ISERDES blocks is not an issue when a differential signaling standard is being 
used because these standards use the two IOBs (master and slave) associated with the two 
sets of SerDes registers. Thus, using two ISERDES effectively reduces design cost. However, 
when using a single-ended signaling standard, some care needs to be taken when the design 
requires either a SerDes ratio of five or more or the phase detector mode. Specifically, two data 
lines cannot enter the device in adjacent master and slave IOBs when using cascaded SerDes. 
This limitation is not necessary when the SerDes ratio is four or less and the phase detector 
mode is not being used because the SerDes is not cascaded. However, by not using the phase 
detector mode, data loss will occur during calibration and the application will need to account 
for this loss.

Introduction to 
Deserialization 
and Data 
Reception

A deserializer design and its associated clocking primitives are dependent on the format of the 
incoming receive data stream. This data tends to fall into three categories.

Case 1

The data stream is a multiple of the rate of the incoming clock, and the clock signal is used as 
a framing signal for the received data. Multiple changes in the state of the data lines occur 
during one clock period. A widely used example is the 7:1 interface used in cameras and flat 
panel TVs and monitors. Other ratios are obviously possible, and the Spartan-6 FPGA 
ISERDES can support ratios of 2, 3, and 4:1, and also 5, 6, 7, and 8:1 when cascaded. In this 
example, the received clock is multiplied in a PLL, and the resultant high-speed capture clock 
is passed to the input logic through the BUFPLL primitive. The BUFPLL capture clock is 
designed to always be used in single data rate (SDR) mode with respect to the input data. For 
example, a 150 MHz input clock with accompanying 7:1 data requires the PLL and BUFPLL to 
operate at 1050 MHz (equals 150 x 7). This high-speed capture clock is used to clock the 
receive data into the input deserializers and is capable of driving one whole edge of a device. 
Parallel data is then presented to the FPGA logic at the speed of the original incoming clock. 
Figure 1 shows this 7:1 data formatting example.
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Case 2

The data stream is a multiply by two of the incoming clock, commonly called Double Data Rate 
(DDR) reception. A DDR data stream is shown in Figure 2. Each transition of the clock 
indicates a change in the state of a data line. There are two ways of receiving this kind of data. 
The first is to use a PLL and a BUFPLL (see Case 1), where the PLL is being used to multiply 
the incoming clock by two and the BUFPLL allows use of the whole edge of a device. The other 
method is to use the BUFIO2 primitive, where two BUFIO2s are required to receive DDR data, 
and the BUFIO2s are only able to drive the same half edge of a device where the clock input is 
located. The deserialization factor (ratio) can be chosen by the designer (values of 2, 4, 6, and 
8:1). The necessary divided clock for the parallel data is generated through one of the BUFIO2 
primitives. Two BUFIO2s must be used to multiply the incoming DDR clock by two to generate 
an SDR capture clock.

Case 3

The data stream is at the same rate as the receiver clock (SDR). A drawing of an SDR data 
stream is shown in Figure 3. Each data bit changes every two clock transitions, normally on the 
rising edge of the clock. There are two ways of receiving this kind of data stream. The received 
clock is multiplied by one in a PLL and the BUFPLL is used to receive data on a whole edge of 
a device, or a single BUFIO2 or PLL is used to drive the inputs in the half edge of the device 
where the clock input is situated. The BUFIO2 is also used to divide down the received clock to 
be used with the deserialized parallel data. Using SDR, ratios of 2, 3, 4, 5, 6, 7, and 8:1 are 
possible.

X-Ref Target - Figure 1

Figure 1: Data Stream Using a Low-Speed Clock with a 7:1 SerDes Ratio

X-Ref Target - Figure 2

Figure 2: 8:1 Data Stream Using DDR

X-Ref Target - Figure 3

Figure 3: 8:1 Data Stream Using SDR
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Higher Deserialization Factors

Deserialization using factors greater than 8:1 is possible when receiving data. The PLL can be 
used to generate a third clock, which is intermediate to the high-speed I/O capture clock and 
the low-speed parallel data clock. Examples of designs using SerDes ratios of 10, 12, 14, and 
16:1 are included in the Reference Design Files. Essentially, the input SerDes primitives are 
still used in 5, 6, 7, and 8:1 modes, receiving data through a high-speed capture clock from the 
PLL through the BUFPLL. The received parallel data is transferred to the FPGA logic in the 
intermediate clock domain and then further transferred to the main clock domain using a 2:1 
gearbox, also in the FPGA logic. A drawing of the mechanism is shown in Figure 4. In any of 
these examples of higher deserialization factors where the PLL is used, the receiver clock can 
be SDR, DDR, or a divided clock.

Data Reception Using PLL and BUFPLL

The topology for data reception using PLL and BUFPLL is uncomplicated. The receiver clock is 
multiplied as required in the PLL to generate an internal single data-rate capture clock. The 
incoming clock signal needs to pass through an input delay block (to balance datapath delays) 
and a BUFIO2 to reach the PLL. In the 7:1 video example, the received pixel clock must be 
multiplied by seven. The clock signal is routed from the PLL to a BUFPLL primitive to drive one 
whole edge of the device. CLKOUT0 and CLKOUT1 are the only outputs of the PLL that are 
capable of driving high-speed capture clocks to the BUFPLL. The BUFPLL also requires a 
global clock signal equal to the original non-multiplied source clock, which can be driven from 
any of the PLL outputs through a global buffer (BUFG), and the LOCKED signal from the PLL, 
which is required for synchronization inside the BUFPLL. 

X-Ref Target - Figure 4

Figure 4: Receiving Data at Higher SerDes Factors
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The three input signals to the BUFPLL allow the BUFPLL to distribute the high-speed receiver 
clock to the input delay and SerDes primitives in the same edge of the device, along with the 
required SerDes strobe signal (appropriately aligned) that allows safe transfer of low-speed 
parallel data to the FPGA logic from the input SerDes. 

When using the PLL for data reception, PLL deskew is required. The feedback clock signal is 
routed from an I/O clock destination at the input SerDes primitive of the clock input pin back to 
the PLL using a BUFIO2FB primitive. This mechanism forces the multiplied clock to be in the 
same phase as the original received clock.

The mechanism for centering and capturing data reliably is based on the IODELAY2 primitive, 
used in input delay mode only. This mechanism is discussed in the Delaying Input Data and 
Clocks section. The block diagram of the receiver is shown in Figure 5.

DDR Data Reception Using Two BUFIO2s

The topology for DDR data reception using two BUFIO2s uses the incoming clock to directly 
capture data without the use of a PLL. The incoming clock signal is fed through a delay block to 
balance the data and clock delays. In the case of a differential signal, as shown in Figure 6, the 
true and complement signals are fed through master and slave input delays (both set to zero) 
and then to a pair of BUFIO2 primitives. The first BUFIO2 accepts both true and complement 
input clocks and uses these to generate the appropriate divided clock and SerDes strobe for 
the input SerDes primitives. For example, if the receiver clock is 311 MHz (622 Mb/s data) and 
the design requires an 8:1 SerDes reduction, the BUFIO2 being driven by true and complement 
receiver clocks with its divide parameter set to eight actually divides the input clock by 4 to 
77.75 MHz. The resultant I/O clock is routed to the input SerDes primitives along with the other 

X-Ref Target - Figure 5

Figure 5: Data Reception Using PLL and BUFPLL
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(inverted) I/O clock generated from the other BUFIO2. These two clocks are doubled in the 
input SerDes to give a 622 MHz sampling clock for the 622 Mb/s data.

The BUFIO2s need to be located in the same half edge as the clock input, and when using 
input delays, it is not possible to simultaneously use the alternate BUFIO2s in the other half 
edge. Reception of data buses when using input delays is therefore limited to the half edge 
where the clock input is located.

The mechanism for centering and capturing data reliably is based on the IODELAY2 primitive, 
used in input delay mode only. This mechanism is discussed in the Delaying Input Data and 
Clocks section. The block diagram of the receiver is shown in Figure 6.

SDR Data Reception Using BUFIO2

The topology for SDR data reception using BUFIO2 uses the incoming clock directly to capture 
data. The clock signal is fed through a delay block (set to 0) to a BUFIO2. The BUFIO2 uses this 
input clock to generate the appropriate divided clock and SerDes strobe for the input SerDes 
primitives. For example, if the receiver clock is 525 MHz (525 Mb/s data) and the design 
requires an 8:1 SerDes reduction, then the BUFIO2 with its divide parameter set to eight 
divides the input clock by 8 to 65.625 MHz. The resultant I/O clock is routed to the input SerDes 
primitives for data capture. The limiting factor in this case is the maximum clock frequency 
allowed through the clock input pin.

The BUFIO2 needs to be located in the same half edge as the clock input. When using input 
delays, it is not possible to simultaneously use the alternate BUFIO2 in the other half edge. 
Reception of data buses is therefore limited to the half edge, the location of the clock input 
when using input delays.

The mechanism for centering and capturing data reliably is based on the IODELAY2 primitive, 
used in input delay mode only. This mechanism is described in the Delaying Input Data and 
Clocks section. The block diagram of the receiver is shown in Figure 7.

X-Ref Target - Figure 6

Figure 6: DDR Data Reception Using Two BUFIO2s
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Delaying Input Data and Clocks

The Spartan-6 FPGA data capture mechanism is based on the input delay primitives 
(IODELAY2). The individual delay taps are not constant over PVT and therefore require regular 
calibration. Mechanisms to perform the regular calibration that allow continuous data capture 
are described in this section and shown in Figure 8. In this sort of data capture, it is important 
that the capture clock and input data delays are closely matched. To achieve this, the input 
clock must be routed through an input delay that is set to zero before being routed to either a 
BUFIO2 or a PLL through a BUFIO2. With this method, the insertion delay in the clock and data 
paths are equal, and the data delays can be varied to ensure data capture occurs in the middle 
of the data eye.

Assuming that the received clock and data arrive edge aligned, the data delay needs to be set 
to precisely half of the capture clock period so that the data is sampled in the middle of the eye. 
To achieve this, the built-in calibration function of the input delay primitive must be used. When 
a calibration command (CAL) is issued to the input delay (by asserting CAL High for one low-
speed clock cycle), the input delay internally determines how many delay tap elements are 
required to delay the data by half a bit period, and then sets the delay line to be equal to half of 
this value. The high-speed capture clock itself is used as the frequency reference. For example, 
the calibration circuit determines the incoming capture clock, and therefore the incoming bit 
period is equal to 24 delay taps at the current voltage and temperature. Setting the number of 
delay taps equal to 12 delays the data by one half of a bit period, allowing successful data 
capture. Some time later, the next calibration finds that the values have changed to 26 and 13 
respectively, and the input delay values are then updated automatically.

Received data is lost while the calibration process is occurring in the input delay. In some 
protocols, this is not a problem, but where the data is continuous, this causes issues. A further 
or phase-detector mode is included within the input delays to allow calibration to occur without 
data loss.

X-Ref Target - Figure 7

Figure 7: SDR Data Reception Using BUFIO2
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In phase-detector mode, an input data signal is supplied to two input delay primitives in parallel. 
These primitives are referred to as master and slave. When in this mode, the slave input delay 
is configured to control the behavior of both itself and the master input delay. Received data is 
taken from the master delay, and the output of the slave delay is usually ignored unless the 
deskew feature of the phase detector is required. The deskew feature is described further in 
Phase Detector and Board Deskew section.

Using the previous example, a calibration command is issued to the slave input delay, the block 
calculates the number of taps equal to one capture clock period, for instance 24, and then sets 
the master input delay to half of this value, in this instance, 12. The update of the master input 
delay value is synchronized to the input data stream, so no data loss occurs either during 
calibration or when the delay value is updated.

In DDR mode, the capture clock that is measured and used for calibration is actually the two I/O 
clock signals combined together. For example, an incoming 311 MHz clock used to capture 
DDR data is doubled in the input SerDes and in the input delay primitives, thus producing a 
622 MHz clock, which is therefore equal to the incoming bit rate.

Reset (RST) and CAL originate from a designer's state machine. Asserting CAL High for one 
clock period causes a calibration to occur, this determines how many delay taps at the current 
PVT are equal to one bit period. Asserting RST High for one clock period causes half the 
resulting value to be loaded into the delay line. In phase-detector mode, performing a CAL 
function does not affect data integrity. RST only needs to be asserted High following the initial 
CAL function, further CAL functions do not require an RST.

Phase Detector 
and Board 
Deskew

The Spartan-6 FPGA phase detector has dual definitions. Phase-detector mode is the mode 
where a slave input delay effectively controls a master input delay during calibration, allowing 
the master delay to pass data through without modification (apart from delay) and is used to 
avoid data loss.

The phase detector generally refers to the possibility of using dedicated logic inside the input 
SerDes primitives to allow reception of data that is skewed for some reason from its associated 
input clock. The function of the phase-detector logic, which requires control from an external 
state machine, is to adjust the input delay appropriately to ensure that the receiver sampling 
clock is in the center of the received data eye. This allows maximum performance of the 
sampling circuitry and higher error-free data reception bit rates.

X-Ref Target - Figure 8

Figure 8: Input Delay Primitives
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The effects of a phase-controller operation are shown in Figure 9. The I/O sampling clock is 
always SDR–whether coming from a BUFPLL, a BUFIO2, or when doubled by using two 
BUFIO2s. The initial offset of the input data is shown in the first pair of traces. Data coming 
through the master input delay, which is calibrated, is delayed by half a clock period, or as close 
to half a clock period as a discrete delay line can achieve. The data coming through the slave 
is initially delayed by zero, which is effectively the same as delaying it by one bit period as long 
as the results, VALID and INCDEC, are pipelined accordingly. For clarity, the data pipeline 
stage through the slave is not shown in the timing diagram.

As shown in the first pair of traces in Figure 9, the sampling point is not in the middle of the data 
eye. As well, the sample taken from the master delay (inside the master input SerDes) is the 
same as the one taken from the slave delay (inside the slave input SerDes). Following a change 
in state of the input data, the phase detector determines that both signals tested are the same 
value and indicates this by using a pair of output pins from the master input SerDes called 
VALID and INCDEC. VALID is asserted High whenever a valid transition is detected. INCDEC 
then indicates the direction to adjust the delays to move the sample clock closer to the center 
of the data eye. The designer's state machine acts on this data and commands the input delay 
primitives to increment or decrement appropriately, using the pins CE and INCDEC on the 
slave input delay. CE is asserted High for one system clock period, with INCDEC set 
appropriately for the required direction to adjust the delay.

The second pair of traces in Figure 9 shows the result of a decrement command issued to the 
slave input SerDes. The delay is reduced by one tap. The master delay becomes ½ MAX – 1 
(where MAX is the value found by calibration described in Delaying Input Data and Clocks, and 
MAX is not the maximum possible delay of 256 taps) and the slave input delay is now MAX – 1. 
The sampling circuitry finds that the two samples (master and slave) are the same and issues 
another decrement command to the slave input delay.

The result following this decrement is shown in the third set of traces in Figure 9, and since the 
two samples are still the same, another decrement command is issued to the slave input delay.

The fourth pair of traces in Figure 9 shows the master delay at ½ MAX – 3, the slave delay at 
MAX – 3, and that the two samples taken by the input SerDes primitives are now different. This 
indicates to the controlling state machine that an increment command to the slave input delay 
must be issued. This command moves the result back to the state shown by the third pair of 
traces in Figure 9.

The circuit moves around these two points because they correspond to the ideal situation 
where the sampling clock is in the middle of the data eye. In actual silicon, there is jitter on the 
incoming clock and data, but the principle of operation remains the same, and the sample point 
is maintained near the middle of the eye over time. All the design examples include a state 
machine based on a 32-bit filter to control the delays appropriately in the presence of jitter.

Periodically, the input delays need to be recalibrated to accommodate any changes in delay 
that occur over voltage and temperature. The calibration command does not affect the 
reception of data but does affect the current position of the sample point found by the phase 
detector. The value of MAX changes with recalibration, but the phase detector continues its 
operation transparently with the new value of MAX and, therefore, ½ MAX is loaded into both 
delay primitives.

http://www.xilinx.com
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Introduction to 
Serialization 
and Data 
Transmission

As with data reception, the design of the serializer and its associated clocking primitives 
depends on the desired format of the transmitted data stream and forwarded clock. The design 
depends upon whether the required output forwarded clock and data stream change state at 
the same time and can be generated from the same transmit clock, or if the required output 
forwarded clock is SDR and therefore changes state twice for each data bit transition.

Certain output standards, such as LVDS, are only available on the top and bottom edge of 
Spartan-6 devices.

Case 4

The required output forwarded clock and data stream change state at the same time and can 
be generated from the same transmit clock. Figure 10 shows a widely used example of this 
data stream. The forwarded clock is the 7:1 interface used in cameras and flat panel TVs and 
monitors. Other ratios are obviously possible, and the output SerDes supports ratios of 2, 3, 4:1 
and also when cascaded 5, 6, 7, 8:1. This case also includes the forwarding of a DDR clock, 
which is shown in Figure 11, with a 6:1 SerDes ratio. The SDR internal transmitter clock can be 
generated either through a PLL and BUFPLL, a single BUFIO2, or two BUFIO2s, depending on 
the frequency source for the internal transmitter clock.

X-Ref Target - Figure 9

Figure 9: Input Data Deskew Using the Phase Detector
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Case 5

The required output forwarded clock is SDR, where it changes state twice for each data bit 
transition. There are two methods to solve this case. The first method, shown in Figure 12, uses 
a single internal transmitter clock to generate an SDR forwarded clock by sending the pattern 
0101 etc., and transmit each data bit twice at the same rate. The data only appears to change 
once for every two clock transitions. This method can use a PLL plus BUFPLL, a BUFIO2, or 
two BUFIO2s, depending on the frequency source for the internal transmitter clock. The 
disadvantage of this method is that the effective output SerDes ratio is a maximum of four 
rather than eight when using cascaded SerDes. The advantage is that only one BUFPLL is 
used. The second method, shown in Figure 13, requires two transmitter clocks to be generated 
through a PLL and two BUFPLLs. One transmitter clock is used to generate an SDR forwarded 
clock, and the other (which is half the speed of the first) is used to generate the forwarded data. 
The advantage of this method is that the full cascaded output SerDes ratio of eight is available, 
but at the cost of using both BUFPLLs on a given edge of the device and an extra global buffer.

X-Ref Target - Figure 10

Figure 10: Output Data Stream Using a Forwarded Low-Speed Clock 
with a 7:1 SerDes Ratio

X-Ref Target - Figure 11

Figure 11: Output Data Stream Using a DDR Forwarded Clock
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X-Ref Target - Figure 12

Figure 12: Output Data Stream Using an SDR Forwarded Clock with One Transmitter Clock
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Higher Serialization Factors

Serialization using factors greater than 8:1 is possible when transmitting data, by using the PLL 
to generate a third clock, which is intermediate to the high-speed transmit clock and the 
low-speed parallel data clock. Examples of designs using SerDes ratios of 10, 12, 14, and 16:1 
are included in the Reference Design Files. Essentially, the output SerDes primitives are still 
used in 5, 6, 7, and 8:1 modes, transmitting data through a high-speed clock from the PLL and 
the BUFPLL. The parallel data for transmission is transferred from the FPGA logic to the output 
SerDes in the intermediate clock domain, having been transferred from the main clock domain 
to the intermediate clock domain using a 2:1 gearbox also in FPGA logic. A drawing of the 
mechanism is shown in Figure 14. The external transmitter clock can be SDR, DDR, or a 
divided clock in any case where the PLL is used.

X-Ref Target - Figure 13

Figure 13: Output Data Stream Using an SDR Forwarded Clock with Two Transmitter Clocks
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Data Transmission Using PLL and BUFPLL

The topology for data transmission using PLL and BUFPLL is uncomplicated. The transmitter 
source clock is multiplied as required in the PLL to generate an internal SDR transmitter clock. 
In the 7:1 video example, the internal pixel clock is multiplied by 7. This clock is routed from the 
PLL to a BUFPLL primitive to drive one whole edge of the device. LVDS transmission is only 
possible on the top and bottom edges. The only outputs of the PLL that are capable of driving 
high-speed clocks to the BUFPLL are CLKOUT0 and CLKOUT1. The BUFPLL also requires a 
global clock signal equal to the original non-multiplied source clock (which can be driven from 
any of the PLL outputs through a global buffer (BUFG)), and the LOCKED signal from the PLL 
(which is required for synchronization inside the BUFPLL). 

The three input signals allow the BUFPLL to distribute the high-speed transmission clock to the 
output SerDes primitives in the same edge of the device, along with the required SerDes strobe 
signal (appropriately aligned) that allows safe capture of low-speed parallel data from the 
FPGA logic into the output SerDes. This parallel data is then serialized for output using the 
high-speed transmission clock. The forwarded clock output is similarly generated by sending a 
constant value to the output SerDes associated with the clock line. For example, a forwarded 
DDR clock associated with 8:1 data requires the pattern 10101010. A forwarded clock for 
7:1 video applications requires 1110000 or 1111000. The necessary circuit and output 
waveforms are shown in Figure 15.

X-Ref Target - Figure 14

Figure 14: Transmitting Data at Higher SerDes Factors
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There is no need for any PLL deskew when only using the PLL for data transmission, thus, 
internal feedback is used by connecting the feedback OUT pin of the PLL directly back to the 
feedback IN pin.

X-Ref Target - Figure 15

Figure 15: Data Transmission Using PLL and BUFPLL
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When one FPGA is performing both data reception and data transmission of a similar standard, 
the PLL and BUFPLL can be shared between the transmitter and receiver. One PLL can drive 
one or two BUFPLLs with the same clock. These PLLs can be on different edges of the device; 
however, each PLL is associated with different edges of the device. Possible connections are 
shown in Figure 16. In devices with four or less PLLs, any PLL can feed the BUFPLLs on any 
edge. In devices with five PLLs, the middle PLL in the top half of the device cannot feed any of 
the BUFPLLs. The input clock to a PLL has to come from a clock input pin through a BUFIO2 
primitive to a PLL in the same vertical half (top or bottom) as the clock pin and BUFIO2. When 
designing with feedback where deskew is required, the feedback must come through a BUFIO2 
primitive adjacent to the BUFIO2 that is driving the clock towards the PLL. Feedback can only 
come from a BUFIO2FB in the same vertical half (top or bottom) of the device as the PLL.

X-Ref Target - Figure 16

Figure 16: PLL to BUFPLL Connections
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Data Transmission of an SDR Forwarded Clock Using a PLL and Two 
BUFPLLs

The topology for this mechanism is uncomplicated. The transmitter source clock is multiplied as 
required in the PLL to generate two internal SDR transmitter clocks, one of which is twice the 
frequency of the other. These two clocks are routed from the PLL to two BUFPLL primitives on 
the same edge of the device. Each can drive the entire edge. However, LVDS transmission is 
only possible on the top and bottom edges. The only outputs of the PLL capable of driving high-
speed clocks to the BUFPLL are CLKOUT0 and CLKOUT1. The BUFPLL for data transmission 
also requires a global clock signal equal to the original non-multiplied source clock, which can 
be driven from any of the PLL outputs through a global buffer (BUFG), and the LOCKED signal 
from the PLL, which is required for synchronization inside the BUFPLL. The BUFPLL for clock 
transmission requires a BUFG of twice the frequency of the original clock source, which again 
can be generated from any of the PLL outputs.

The three input signals to the BUFPLL allow distribution of the high-speed transmission clock to 
the output SerDes primitives on the same edge of the device, along with the required SerDes 
strobe signal (appropriately aligned) to allow safe capture of low-speed parallel data from the 
FPGA logic into the output SerDes. This parallel data is then serialized for output using the 
high-speed transmission clock. The forwarded clock output is generated in a similar manner but 
at twice the internal clock rate, by sending a constant value to the output SerDes associated 
with the clock line. For example, a forwarded SDR clock associated with 8:1 data requires the 
pattern 10101010. The necessary circuit and output waveforms are shown in Figure 17.

There is no need for PLL deskew when only using it for data transmission, so internal feedback 
can be used by connecting the feedback out pin of the PLL directly back to its feedback pin.

X-Ref Target - Figure 17

Figure 17: SDR Data Transmission through a PLL and BUFPLL
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Data Transmission Using Two BUFIO2s

Where a source transmitter clock is available that is half the required bit rate for transmission, 
two BUFIO2s can be used to generate the output data and forwarded clock. For example, a 
311 MHz input clock can generate data at 622 Mb/s and a forwarded clock that is also 
311 MHz.

Each Spartan-6 FPGA input clock pin is connected to the non-inverting input of one primary 
BUFIO2 and the inverting input of another primary BUFIO2 as long as the delay primitive is not 
used. Two clocks that are 180° apart in phase are therefore available. These two clocks are 
capable of being doubled inside each output SerDes configured for DDR operation when the 
output SerDes is in the same half side as the clock input.

In addition, the input clock can also feed the alternate BUFIO2 sites on the other half of the 
device, so it is possible to drive the whole side of a device by using four BUFIO2s, assuming the 
input delay primitive is not used, which is normally the case for data transmission.

One of the BUFIO2s is also used to generate a low-speed clock for the internal parallel data 
and the required SerDes strobe capture signal for the output SerDes primitives. The low-speed 
clock output is divided by the required SerDes factor and then distributed through a global 
buffer. For example, the incoming 311 MHz clock is divided by eight when 8:1 data transmission 
is required.

The circuit and waveforms for this example are shown in Figure 18.

X-Ref Target - Figure 18

Figure 18: Data Transmission through Two BUFIO2s
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Data Transmission Using a BUFIO2

Where a source transmitter clock is available that is equal to the required bit rate for 
transmission, a single BUFIO2 can be used to generate the output data and a DDR forwarded 
clock. For example, a 622 MHz input clock can generate data at 622 Mb/s and a forwarded 
clock that is 311 MHz.

The input clock pin is connected to its associated BUFIO2, which can drive all the associated 
output SerDes in the same half side of a device. In addition, the input clock can also feed an 
alternate BUFIO2 site in the other half side of the device. It is possible to drive the whole side 
of a device by using two BUFIO2s, assuming the input delay primitive is not used, which is 
normally the case for data transmission.

The BUFIO2 is also used to generate a low-speed clock for the internal parallel data and the 
required SerDes strobe capture signal for the output SerDes primitives. The low-speed clock 
output will be divided by the required SerDes factor and then distributed through a global buffer. 
For example, the incoming 622 MHz clock can be divided by eight for a 8:1 data transmission.

The circuit and waveforms for this example are shown in Figure 19.

X-Ref Target - Figure 19

Figure 19: Data Transmission through Two BUFIO2s
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Data Transmission of an SDR Forwarded Clock Using Two BUFIO2s

The topology for this mechanism combines the BUFIO2s used in single and double-rate modes 
for transmission of data together with an associated SDR forwarded clock.

The incoming local transmitter source clock is connected to two BUFIO2s, which can be used 
to generate a doubled clock inside the output SerDes associated with the forwarded clock, 
whereas the output SerDes associated with the output data lines uses one undoubled clock.

For example, if a 622 MHz clock is available, this can be distributed to the data output SerDes 
primitives to generate data at 622 Mb/s. It is also available by using both BUFIO2 clocks and 
DDR mode in the clock output SerDes to regenerate the 622 MHz clock through a constant 
10101010 pattern. The BUFIO2 is configured to provide a divided clock by setting its divide 
parameter equal to the SerDes ratio desired. For example, with the 622 MHz input clock, a 
division by eight enables 8:1 output SerDes operation, with an internal system clock of 
77.75 MHz.

The circuit and waveforms for this example are shown in Figure 20.

X-Ref Target - Figure 20

Figure 20: SDR Data Transmission through Two BUFIO2s
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Design 
Considerations

Transmitter Use with Single-Ended Data and Clocks

All of the transmitter examples used differential clock and data signals. When transmission 
requires a single-ended clock or data signal, then certain restrictions apply for SerDes factors 
greater than four. The design file (serdes_n_to_1_s8_se.v/vhd) contains the necessary 
serializer logic for a single-ended output (either forwarded clock or data) for SerDes factors 
from 2 to 8. When the SerDes factor is 4 or less, only one OSERDES2 is used, and device pins 
adjacent to each other can be used to form a data bus. When the SerDes factor is 5 to 8, then 
two OSERDES2s are used and the pin next to the active output (which must be a master or  
_p pin) is blocked from use as a synchronous output since the necessary logic is already 
occupied.

Receiver Use with Single-Ended Data and Clocks

All of the receiver examples used differential clocks and data signals. When the received clock 
and/or data is a single-ended signal, then certain restrictions apply.

Differential Data Signals with a Differential Clock

All of the design files and techniques given are valid.

Single-Ended Data Signals with a Differential Clock

The clock is received as in the previous examples. The data is received using the design file 
serdes_1_to_n_data_s8_se.v/vhd. When the SerDes factor is 4 or less and the phase-
detector option is not selected, then the receiver only uses one ISERDES2, and device pins 
adjacent to each other can form a data bus. When the SerDes factor is 5 to 8 or the phase 
detector function is selected, two ISERDES2s are required and the pin next to the active input 
(which must be a master or  _p pin) is blocked from use as a synchronous input since the 
necessary logic is already occupied.

Differential Data Signals with a Single-Ended Clock

The data is received as in the previous examples. When PLL clocking is required, the clock is 
received using the design file serdes_1_to_n_clk_pll_s8_se.v/vhd. When the SerDes 
factor is 4 or less (or not required at all), the clock receiver only uses one ISERDES2, and the 
adjacent clock pin can be used. When the SerDes factor is 5 to 8, two ISERDES2s are required 
and the clock pin next to the active clock input (which must be a master or  _p clock pin) cannot 
be used as a synchronous input since the necessary logic is already occupied. However, it can 
be used a clock input.

The file serdes_1_to_n_clk_sdr_s8_se.v/vhd is used when SDR BUFIO2 data 
reception is required. When the SerDes factor is 4 or less (or not required at all), the clock 
receiver only uses one ISERDES2, and the adjacent clock pin can be used. When the SerDes 
factor is 5 to 8, then two ISERDES2s are required and the clock pin next to the active clock 
input (which must be a master or  _p clock pin) cannot be used as a synchronous input since 
the necessary logic is already occupied. However, it can be used a clock input.

DDR BUFIO2 data reception adds complexity. A single-ended clock pin can only feed one 
BUFIO2 through an input delay, limiting access to the two BUFIO2s required for DDR reception. 
In this case, the solution is to feed the incoming single-ended clock simultaneously to two clock 
input pins. The master (_p) pin feeds one BUFIO2 directly through an input delay, and the slave 
(_n) pin inverts the clock inside the IOB and feeds the second BUFIO2 through a second input 
delay. The design file for this example is serdes_1_to_n_clk_ddr_s8_se.v/vhd.
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Single-Ended Data and Clock Signals

The data is received using the design file serdes_1_to_n_data_s8_se.v/vhd. When the 
SerDes factor is 4 or less and the phase detector option is not selected, the receiver uses only 
one ISERDES2, and device pins adjacent to each other can form a data bus. When the SerDes 
factor is 5 to 8 or the phase detector function is selected, two ISERDES2s are required and the 
pin next to the active input (which must be a master or  _p pin) cannot be used as a 
synchronous input since the necessary logic is already occupied.

The file serdes_1_to_n_clk_sdr_s8_se.v/vhd is used when SDR BUFIO2 data 
reception is required. When the SerDes factor is 4 or less (or not required at all), the clock 
receiver only uses one ISERDES2, and the adjacent clock pin can be used. When the SerDes 
factor is 5 to 8, then two ISERDES2s are required and the clock pin next to the active clock 
input (which must a master or  _p clock pin) cannot be used as a synchronous input since the 
necessary logic is already occupied. However, it can be used a clock input.

DDR BUFIO2 data reception adds complexity. A single-ended clock pin can only feed one 
BUFIO2 through an input delay, limiting access to the two BUFIO2s required for DDR reception. 
In this case, the solution is to feed the incoming single-ended clock simultaneously to two clock 
input pins. The master (_p) pin feeds one BUFIO2 directly through an input delay, and the slave 
(_n) pin inverts the clock inside the IOB and feed the second BUFIO2 through a second input 
delay. The design file for this example is serdes_1_to_n_clk_ddr_s8_se.v/vhd.

Receiver Timing 
Analysis

Timing analysis for the receiver consists of subtracting the various sources of timing errors and 
uncertainty from the bit period in picoseconds (ps) equivalent to the bit rate. The value 
remaining after this analysis is the margin available to the system. A positive number indicates 
that the system has sufficient margin and will function properly. 

The receiver skew margin (RSKM) is a specification that often appears in data sheets for 
ASSPs or other devices that perform a similar deserialization function. This value is generated 
by subtracting only the sources of uncertainty that exist inside the receiver from the bit period, 
and then dividing the result by two. An illustration of RSKM is shown in Figure 21.

X-Ref Target - Figure 21
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Uncertainty Without Phase Detector

For the interfaces described in this application note that use calibration, but do not use the 
phase detector, the sources of uncertainty are:

• All mismatch and silicon variations are bundled into one parameter, denoted as 
TSAMP_BUFIO2, which is guaranteed by characterization to be better than 480 ps for all 
Spartan-6 devices with LVDS signalling. This number includes the setup and hold window 
of the device, which is the time that the data must be present and valid relative to the 
internal synthesized clock at the IOB flip-flops (assuming that the input data lines are 
calibrated to be half of the unit interval (UI) delay).

• Package Skew

This number varies with the placement of the input lines in the package and is available 
from TRACE when the design is analyzed.

• Clock Skew

The BUFIO2 clocks are designed as full clock trees, the IOB skew is very small. An 
accurate number for a given device and placement can be obtained using FPGA Editor.

• Jitter and Timing Uncertainty

The clocking wizard (available in the Core Generator™ tool in the ISE® design suite) 
generates a value for the jitter accumulated in the transmitter PLL.

Uncertainty With Phase Detector

For the interfaces described in this application note that use the phase detector, the sources of 
uncertainty are:

• Accuracy of the Phase Detector Mechanism

The design of the phase detector and the state machine in the FPGA logic give a sampling 
point that is within ±2 delay taps of the ideal sampling point. The phase error of the PLL 
generated sampling clock is not a factor.

• Package Skew

This number varies with the placement of the input lines in the package and is available 
from TRACE when the design is analyzed.

• Jitter and Timing Uncertainty

The clocking wizard (available in the Core Generator™ tool in the ISE® design suite) 
generates a value for the jitter accumulated in the transmitter PLL.

The input delay line is made up of groups of eight tap delays that are used up to 32 times in an 
active delay line (equals 256 tap delays total). DS162: Spartan-6 FPGA data sheet specifies 
the maximum values to reach each tap. Table 1 shows some calcuation examples.

Table  1:  Example Calculation of Maximum Individual Delay Between Taps

Example Delay Calculation Total Delay Between 4 
Successive Taps

TTAP1 61 ps Delay from TTAP1 to TTAP5 170 ps

TTAP2 77 ps Delay from TTAP2 to TTAP6 215 ps

TTAP3 140 ps Delay from TTAP3 to TTAP7 203 ps

TTAP4 166 ps Delay from TTAP4 to TTAP8 258 ps

TTAP5 231 ps Delay from TTAP5 to TTAP1 170 ps

TTAP6 292 ps Delay from TTAP6 to TTAP2 215 ps
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An analysis of the example in Table 1 shows that the worst-case span of four taps is 258 ps. 
This example would suggest that based on phase-detector usage, a delay value of ±129 ps 
delay should be used for any calculations.

Another RSKM calculation example (Table 2) uses an input clock running at 135 MHz and 
multiplied to 945 MHz in a PLL to clock in 945 Mb/s data.

Transmitter 
Timing Analysis

For the interfaces described in this application note, the sources of uncertainty are:

• Package Skew

This number varies with the placement of the input lines in the package and is available 
from TRACE when the design is analyzed.

• Jitter and Timing Uncertainty

The clocking wizard (available in the Core Generator tool in the ISE design suite) generates 
a value for the jitter accumulated in the transmitter PLL.

Reference 
Design Files

Design files for the majority of the examples explained in this application note are available in 
both Verilog and VHDL at (https://secure.xilinx.com/webreg/clickthrough.do?cid=140956). The 
name of the appropriate file is included in the figures for different applications shown 
throughout this document. Also included are some example top-level files and example timing 
constraints for popular applications, such as the 7:1 interface used in flat panel displays and 
cameras.

Each of the data input and output modules can be parameterized for both input width (number 
of input pins) and depth (required SerDes factor), and there are versions for both singe-ended 
and differential I/O. The data receiver modules also contain a signal to indicate whether the 
generation of phase-detector logic is required in the example where it is required to deskew the 
input bus. The phase-detector mode is always used to allow input delay calibration to occur 
without any data loss occurring, and adding the phase-detector logic allows reliable operation 
at higher bit rates, and where the incoming data has an unknown phase to the incoming clock. 
The parallel data generated from the receiver modules is the width multiplied by the depth, for 
example receiving a 6-bit bus of 7:1 data will output 42 bits for each system clock cycle.

General information about the reference design is shown in Table 3. The device utilization is 
shown in Table 4.

TTAP7 343 ps Delay from TTAP7 to TTAP3 203 ps

TTAP8 424 ps Delay from TTAP8 to TTAP4 258 ps

Table  2:  Example Calculation

Bit Period at 945 Mb/s 1058 ps

Package skew (refer to TRACE for precise values) –120 ps

PLL Jitter (from the clocking wizard) –112 ps

Phase Detector accuracy –129 ps

Total 697 ps

RSKM = Total/2 349 ps

Table  1:  Example Calculation of Maximum Individual Delay Between Taps (Cont’d)

Example Delay Calculation Total Delay Between 4 
Successive Taps
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Table  3:  Reference Design Checklist

General Information

Developer name Xilinx

Target devices Spartan-6 FPGAs

Source code provided Yes

Source code format VHDL, Verilog

Design uses code/IP from an existing reference design, application note, 
3rd party, Core Generator No

Simulation

Functional simulation performed Yes

Timing simulation performed No

Testbench used for functional and timing simulations provided Yes

Testbench format VHDL, Verilog

Simulator software used MXE

SPICE/IBIS simulations No

Implementation

Synthesis software tools used XST 11.3

Implementation software tools used ISE 11.3

Static timing analysis performed Yes

Hardware Verification

Hardware verified Yes

Hardware platform used for verification SP601 and 
FMC101

Table  4:  Device Utilization

Design Files IODELAY2s PLLs BUFPLLs BUFIO2 BUFGs Slices ISERDES2 OSERDES2

Clock Generator Designs

clock_generator_ddr_s8_diff 0 0 0 2 or 4 1 0 0 0

clock_generator_pll_s16_diff 0 1 1 1 2 0 0 0

clock_generator_pll_s8_diff 0 1 1 1 1 0 0 0

clock_generator_sdr_s8_diff 0 0 0 3 1 0 0 0

Clock Receivers

serdes_1_to_n_clk_ddr_s8_diff 2 0 0 2 1 < 10 0, 1, or 2 0

serdes_1_to_n_clk_ddr_s8_se 2 0 0 2 1 < 10 0, 1, or 2 1

serdes_1_to_n_clk_pll_s16_diff 2 1 1 1 2 < 10 0, 1, or 2 2

serdes_1_to_n_clk_pll_s8_diff 2 1 1 1 1 < 10 0, 1, or 2 3

serdes_1_to_n_clk_pll_s8_se 1 or 2 1 1 1 1 < 10 0, 1, or 2 4

serdes_1_to_n_clk_sdr_s8_diff 1 0 0 1 1 < 10 0, 1, or 2 5

Data Receivers

http://www.xilinx.com
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Conclusion Spartan-6 FPGAs perform in a wide variety of applications requiring various serialization and 
deserialization factors up to 16-to-1, at speeds up to 1050 Mb/s, depending on the application, 
speed grade, and package.

Revision 
History

The following table shows the revision history for this document.
.

Notice of 
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

serdes_1_to_n_data_ddr_s8_diff 2 0 0 0 0

~4 per 
input 
line

2 0

serdes_1_to_n_data_ddr_s8_se 1 or 2 0 0 0 0 1 or 2 0

serdes_1_to_n_data_s16_diff 2 0 0 0 0 2 0

serdes_1_to_n_data_s8_diff 2 0 0 0 0 2 0

serdes_1_to_n_data_s8_se 1 or 2 0 0 0 0 1 or 2 0

Data Transmitters

serdes_n_to_1_ddr_s8_diff 0 0 0 0 0 0 0 2

serdes_n_to_1_ddr_s8_se 0 0 0 0 0 0 0 1 or 2

serdes_n_to_1_s16_diff 0 0 0 0 0 0 0 2

serdes_n_to_1_s8_diff 0 0 0 0 0 0 0 2

serdes_n_to_1_s8_se 0 0 0 0 0 0 0 1 or 2

Table  4:  Device Utilization (Cont’d)

Design Files IODELAY2s PLLs BUFPLLs BUFIO2 BUFGs Slices ISERDES2 OSERDES2

Date Version Description of Revisions

12/23/09 1.0 Initial Xilinx release.

06/03/10 1.1 Added Receiver Timing Analysis and Transmitter Timing Analysis sections.
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