
XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 1

© 2009–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Summary Spartan®-6 devices contain input SerDes (ISERDES) and output SerDes (OSERDES) blocks.
These primitives simplify the design of serializing and deserializing circuits, while allowing
higher operational speeds. This application note discusses how to efficiently use these
primitives in conjunction with the input delay blocks and phase detector circuitry.

ISERDES and
OSERDES
Guidelines

Each Spartan-6 FPGA input/output block (IOB) contains a 4-bit input SerDes and a 4-bit output
SerDes. The SerDes from two adjacent blocks (master and slave) can be cascaded to make an
8-bit block. This gives the possibility of SerDes ratios from 2:1 to 8:1 on both output and input
for both single and double data rate I/O clocks.

Cascading the ISERDES blocks is not an issue when a differential signaling standard is being
used because these standards use the two IOBs (master and slave) associated with the two
sets of SerDes registers. Thus, using two ISERDES effectively reduces design cost. However,
when using a single-ended signaling standard, some care needs to be taken when the design
requires either a SerDes ratio of five or more or the phase detector mode. Specifically, two data
lines cannot enter the device in adjacent master and slave IOBs when using cascaded SerDes.
This limitation is not necessary when the SerDes ratio is four or less and the phase detector
mode is not being used because the SerDes is not cascaded. However, by not using the phase
detector mode, data loss will occur during calibration and the application will need to account
for this loss.

Introduction to
Deserialization
and Data
Reception

A deserializer design and its associated clocking primitives are dependent on the format of the
incoming receive data stream. This data tends to fall into three categories.

Case 1

The data stream is a multiple of the rate of the incoming clock, and the clock signal is used as
a framing signal for the received data. Multiple changes in the state of the data lines occur
during one clock period. A widely used example is the 7:1 interface used in cameras and flat
panel TVs and monitors. Other ratios are obviously possible, and the Spartan-6 FPGA
ISERDES can support ratios of 2, 3, and 4:1, and also 5, 6, 7, and 8:1 when cascaded. In this
example, the received clock is multiplied in a PLL, and the resultant high-speed capture clock
is passed to the input logic through the BUFPLL primitive. The BUFPLL capture clock is
designed to always be used in single data rate (SDR) mode with respect to the input data. For
example, a 150 MHz input clock with accompanying 7:1 data requires the PLL and BUFPLL to
operate at 1050 MHz (equals 150 x 7). This high-speed capture clock is used to clock the
receive data into the input deserializers and is capable of driving one whole edge of a device.
Parallel data is then presented to the FPGA logic at the speed of the original incoming clock.
Figure 1 shows this 7:1 data formatting example.

Application Note: Spartan-6 FPGAs

XAPP1064 (v1.1) June 3, 2010

Source-Synchronous Serialization and
Deserialization (up to 1050 Mb/s)
Author: NIck Sawyer

http://www.xilinx.com

Introduction to Deserialization and Data Reception

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 2

Case 2

The data stream is a multiply by two of the incoming clock, commonly called Double Data Rate
(DDR) reception. A DDR data stream is shown in Figure 2. Each transition of the clock
indicates a change in the state of a data line. There are two ways of receiving this kind of data.
The first is to use a PLL and a BUFPLL (see Case 1), where the PLL is being used to multiply
the incoming clock by two and the BUFPLL allows use of the whole edge of a device. The other
method is to use the BUFIO2 primitive, where two BUFIO2s are required to receive DDR data,
and the BUFIO2s are only able to drive the same half edge of a device where the clock input is
located. The deserialization factor (ratio) can be chosen by the designer (values of 2, 4, 6, and
8:1). The necessary divided clock for the parallel data is generated through one of the BUFIO2
primitives. Two BUFIO2s must be used to multiply the incoming DDR clock by two to generate
an SDR capture clock.

Case 3

The data stream is at the same rate as the receiver clock (SDR). A drawing of an SDR data
stream is shown in Figure 3. Each data bit changes every two clock transitions, normally on the
rising edge of the clock. There are two ways of receiving this kind of data stream. The received
clock is multiplied by one in a PLL and the BUFPLL is used to receive data on a whole edge of
a device, or a single BUFIO2 or PLL is used to drive the inputs in the half edge of the device
where the clock input is situated. The BUFIO2 is also used to divide down the received clock to
be used with the deserialized parallel data. Using SDR, ratios of 2, 3, 4, 5, 6, 7, and 8:1 are
possible.

X-Ref Target - Figure 1

Figure 1: Data Stream Using a Low-Speed Clock with a 7:1 SerDes Ratio

X-Ref Target - Figure 2

Figure 2: 8:1 Data Stream Using DDR

X-Ref Target - Figure 3

Figure 3: 8:1 Data Stream Using SDR

Receive 7 to 1 Data

Receive Clock

D0 D1 D2 D3 D4 D5 D6

x1064_01_092809

Receiver 8:1 Data

Received Clock
(Clock polarity is not

important for DDR)

D0 D1 D2 D3 D4 D5 D6 D7

x1064_02_100509

Receiver 8:1 Data

Received Clock
(Clock rising edge

indicates the start of a data bit)

D0 D1 D2 D3 D4 D5 D6 D7

x1064_03_100509

http://www.xilinx.com

Introduction to Deserialization and Data Reception

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 3

Higher Deserialization Factors

Deserialization using factors greater than 8:1 is possible when receiving data. The PLL can be
used to generate a third clock, which is intermediate to the high-speed I/O capture clock and
the low-speed parallel data clock. Examples of designs using SerDes ratios of 10, 12, 14, and
16:1 are included in the Reference Design Files. Essentially, the input SerDes primitives are
still used in 5, 6, 7, and 8:1 modes, receiving data through a high-speed capture clock from the
PLL through the BUFPLL. The received parallel data is transferred to the FPGA logic in the
intermediate clock domain and then further transferred to the main clock domain using a 2:1
gearbox, also in the FPGA logic. A drawing of the mechanism is shown in Figure 4. In any of
these examples of higher deserialization factors where the PLL is used, the receiver clock can
be SDR, DDR, or a divided clock.

Data Reception Using PLL and BUFPLL

The topology for data reception using PLL and BUFPLL is uncomplicated. The receiver clock is
multiplied as required in the PLL to generate an internal single data-rate capture clock. The
incoming clock signal needs to pass through an input delay block (to balance datapath delays)
and a BUFIO2 to reach the PLL. In the 7:1 video example, the received pixel clock must be
multiplied by seven. The clock signal is routed from the PLL to a BUFPLL primitive to drive one
whole edge of the device. CLKOUT0 and CLKOUT1 are the only outputs of the PLL that are
capable of driving high-speed capture clocks to the BUFPLL. The BUFPLL also requires a
global clock signal equal to the original non-multiplied source clock, which can be driven from
any of the PLL outputs through a global buffer (BUFG), and the LOCKED signal from the PLL,
which is required for synchronization inside the BUFPLL.

X-Ref Target - Figure 4

Figure 4: Receiving Data at Higher SerDes Factors

serdes_1_to_n_clk_pll_s16_diff.v/vhd

Differential Clock IOB Calibration and
Bitslip State

Machine

Master
ISERDES

Slave
ISERDES

Master
IDELAY

Slave
IDELAY

(0)

PLL

BITSLIP

BUFPLL

BUFG

BUFIO2

BUFIO2FB
BUFG

BITSLIP

LVDS Clock P

Parameters:
S = serdes_factor

PLLX = PLL multiplier
CLKIN_PERIOD = Input clock period

BS = TRUE/FALSE to use Bitslip (or not)

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

x1064_04_100509

Feedback

x1 Clock x2 Clock
SerDes
Strobe I/O Clock

Feedback

serdes_1_to_n_data_s16_diff.v/vhd

“D” Differential Data IOB
Calibration and

Phase Detection
State Machine

Master
ISERDES

Slave
ISERDES

Master
IDELAY

Slave
IDELAY

BITSLIP

D x S

LVDS Data P

LVDS Data N

Gearbox
DxS

http://www.xilinx.com

Introduction to Deserialization and Data Reception

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 4

The three input signals to the BUFPLL allow the BUFPLL to distribute the high-speed receiver
clock to the input delay and SerDes primitives in the same edge of the device, along with the
required SerDes strobe signal (appropriately aligned) that allows safe transfer of low-speed
parallel data to the FPGA logic from the input SerDes.

When using the PLL for data reception, PLL deskew is required. The feedback clock signal is
routed from an I/O clock destination at the input SerDes primitive of the clock input pin back to
the PLL using a BUFIO2FB primitive. This mechanism forces the multiplied clock to be in the
same phase as the original received clock.

The mechanism for centering and capturing data reliably is based on the IODELAY2 primitive,
used in input delay mode only. This mechanism is discussed in the Delaying Input Data and
Clocks section. The block diagram of the receiver is shown in Figure 5.

DDR Data Reception Using Two BUFIO2s

The topology for DDR data reception using two BUFIO2s uses the incoming clock to directly
capture data without the use of a PLL. The incoming clock signal is fed through a delay block to
balance the data and clock delays. In the case of a differential signal, as shown in Figure 6, the
true and complement signals are fed through master and slave input delays (both set to zero)
and then to a pair of BUFIO2 primitives. The first BUFIO2 accepts both true and complement
input clocks and uses these to generate the appropriate divided clock and SerDes strobe for
the input SerDes primitives. For example, if the receiver clock is 311 MHz (622 Mb/s data) and
the design requires an 8:1 SerDes reduction, the BUFIO2 being driven by true and complement
receiver clocks with its divide parameter set to eight actually divides the input clock by 4 to
77.75 MHz. The resultant I/O clock is routed to the input SerDes primitives along with the other

X-Ref Target - Figure 5

Figure 5: Data Reception Using PLL and BUFPLL

serdes_1_to_n_clk_pll_s8_diff.v/vhd

Differential Clock IOB Calibration and
Bitslip State

Machine

Master
ISERDES

Slave
ISERDES

Master
IDELAY

Slave
IDELAY

(0)

PLL

BITSLIP

BUFPLL

BUFG

BUFIO2

BUFIO2FB

BITSLIP

LVDS Clock P

Parameters:
S = serdes_factor

PLLX = PLL multiplier
CLKIN_PERIOD = Input clock period

BS = TRUE/FALSE to use Bitslip (or not)

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

x1064_05_100509

Feedback

x1 Clock
SerDes
Strobe I/O Clock

Feedback

serdes_1_to_n_data_s8_diff.v/vhd

“D” Differential Data IOB
Calibration and

Phase Detection
State Machine

Master
ISERDES

(SDR Mode)

Slave
ISERDES

(SDR Mode)

Master
IDELAY

Slave
IDELAY

BITSLIP

D x S

LVDS Data P

LVDS Data N

http://www.xilinx.com

Introduction to Deserialization and Data Reception

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 5

(inverted) I/O clock generated from the other BUFIO2. These two clocks are doubled in the
input SerDes to give a 622 MHz sampling clock for the 622 Mb/s data.

The BUFIO2s need to be located in the same half edge as the clock input, and when using
input delays, it is not possible to simultaneously use the alternate BUFIO2s in the other half
edge. Reception of data buses when using input delays is therefore limited to the half edge
where the clock input is located.

The mechanism for centering and capturing data reliably is based on the IODELAY2 primitive,
used in input delay mode only. This mechanism is discussed in the Delaying Input Data and
Clocks section. The block diagram of the receiver is shown in Figure 6.

SDR Data Reception Using BUFIO2

The topology for SDR data reception using BUFIO2 uses the incoming clock directly to capture
data. The clock signal is fed through a delay block (set to 0) to a BUFIO2. The BUFIO2 uses this
input clock to generate the appropriate divided clock and SerDes strobe for the input SerDes
primitives. For example, if the receiver clock is 525 MHz (525 Mb/s data) and the design
requires an 8:1 SerDes reduction, then the BUFIO2 with its divide parameter set to eight
divides the input clock by 8 to 65.625 MHz. The resultant I/O clock is routed to the input SerDes
primitives for data capture. The limiting factor in this case is the maximum clock frequency
allowed through the clock input pin.

The BUFIO2 needs to be located in the same half edge as the clock input. When using input
delays, it is not possible to simultaneously use the alternate BUFIO2 in the other half edge.
Reception of data buses is therefore limited to the half edge, the location of the clock input
when using input delays.

The mechanism for centering and capturing data reliably is based on the IODELAY2 primitive,
used in input delay mode only. This mechanism is described in the Delaying Input Data and
Clocks section. The block diagram of the receiver is shown in Figure 7.

X-Ref Target - Figure 6

Figure 6: DDR Data Reception Using Two BUFIO2s

serdes_1_to_n_clk_ddr_s8_diff.v/vhd

Differential Clock IOB
Master
IDELAY

(0)

Slave
IDELAY

(0)

LVDS Clock P

Parameters:
S = serdes_factor

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

x1064_06_100509

N I/O Clock
SerDes
Strobe P I/O Clock

System
Clock

serdes_1_to_n_data_s8_ddr_diff.v/vhd

“D” Differential Data IOB
Calibration and

Phase Detection
State Machine

Master
ISERDES

(DDR Mode)

Slave
ISERDES

(DDR Mode)

Master
IDELAY
(DDR)

Slave
IDELAY
(DDR)

User
BITSLIP

D x S

LVDS Data P

LVDS Data N

BUFG

BUFIO2_2CLK

BUFIO2

http://www.xilinx.com

Introduction to Deserialization and Data Reception

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 6

Delaying Input Data and Clocks

The Spartan-6 FPGA data capture mechanism is based on the input delay primitives
(IODELAY2). The individual delay taps are not constant over PVT and therefore require regular
calibration. Mechanisms to perform the regular calibration that allow continuous data capture
are described in this section and shown in Figure 8. In this sort of data capture, it is important
that the capture clock and input data delays are closely matched. To achieve this, the input
clock must be routed through an input delay that is set to zero before being routed to either a
BUFIO2 or a PLL through a BUFIO2. With this method, the insertion delay in the clock and data
paths are equal, and the data delays can be varied to ensure data capture occurs in the middle
of the data eye.

Assuming that the received clock and data arrive edge aligned, the data delay needs to be set
to precisely half of the capture clock period so that the data is sampled in the middle of the eye.
To achieve this, the built-in calibration function of the input delay primitive must be used. When
a calibration command (CAL) is issued to the input delay (by asserting CAL High for one low-
speed clock cycle), the input delay internally determines how many delay tap elements are
required to delay the data by half a bit period, and then sets the delay line to be equal to half of
this value. The high-speed capture clock itself is used as the frequency reference. For example,
the calibration circuit determines the incoming capture clock, and therefore the incoming bit
period is equal to 24 delay taps at the current voltage and temperature. Setting the number of
delay taps equal to 12 delays the data by one half of a bit period, allowing successful data
capture. Some time later, the next calibration finds that the values have changed to 26 and 13
respectively, and the input delay values are then updated automatically.

Received data is lost while the calibration process is occurring in the input delay. In some
protocols, this is not a problem, but where the data is continuous, this causes issues. A further
or phase-detector mode is included within the input delays to allow calibration to occur without
data loss.

X-Ref Target - Figure 7

Figure 7: SDR Data Reception Using BUFIO2

serdes_1_to_n_clk_sdr_s8_diff.v/vhd

Differential Clock IOB

Master
IDELAY

(0)

LVDS Clock P

Parameters:
S = serdes_factor

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

x1064_07_100509

SerDes
Strobe I/O Clock

System
Clock

serdes_1_to_n_data_s8_diff.v/vhd

“D” Differential Data IOB
Calibration and

Phase Detection
State Machine

Master
ISERDES

(SDR Mode)

Slave
ISERDES

(SDR Mode)

Master
IDELAY

Slave
IDELAY

User
BITSLIP

D x S

LVDS Data P

LVDS Data N

BUFG

BUFIO2

http://www.xilinx.com

Phase Detector and Board Deskew

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 7

In phase-detector mode, an input data signal is supplied to two input delay primitives in parallel.
These primitives are referred to as master and slave. When in this mode, the slave input delay
is configured to control the behavior of both itself and the master input delay. Received data is
taken from the master delay, and the output of the slave delay is usually ignored unless the
deskew feature of the phase detector is required. The deskew feature is described further in
Phase Detector and Board Deskew section.

Using the previous example, a calibration command is issued to the slave input delay, the block
calculates the number of taps equal to one capture clock period, for instance 24, and then sets
the master input delay to half of this value, in this instance, 12. The update of the master input
delay value is synchronized to the input data stream, so no data loss occurs either during
calibration or when the delay value is updated.

In DDR mode, the capture clock that is measured and used for calibration is actually the two I/O
clock signals combined together. For example, an incoming 311 MHz clock used to capture
DDR data is doubled in the input SerDes and in the input delay primitives, thus producing a
622 MHz clock, which is therefore equal to the incoming bit rate.

Reset (RST) and CAL originate from a designer's state machine. Asserting CAL High for one
clock period causes a calibration to occur, this determines how many delay taps at the current
PVT are equal to one bit period. Asserting RST High for one clock period causes half the
resulting value to be loaded into the delay line. In phase-detector mode, performing a CAL
function does not affect data integrity. RST only needs to be asserted High following the initial
CAL function, further CAL functions do not require an RST.

Phase Detector
and Board
Deskew

The Spartan-6 FPGA phase detector has dual definitions. Phase-detector mode is the mode
where a slave input delay effectively controls a master input delay during calibration, allowing
the master delay to pass data through without modification (apart from delay) and is used to
avoid data loss.

The phase detector generally refers to the possibility of using dedicated logic inside the input
SerDes primitives to allow reception of data that is skewed for some reason from its associated
input clock. The function of the phase-detector logic, which requires control from an external
state machine, is to adjust the input delay appropriately to ensure that the receiver sampling
clock is in the center of the received data eye. This allows maximum performance of the
sampling circuitry and higher error-free data reception bit rates.

X-Ref Target - Figure 8

Figure 8: Input Delay Primitives

DDR I/O Sampling Clock 1

DDR I/O Sampling Clock 2

Input Data

Output Data before
CAL and RST

Output Data following
CAL and RST

SDR I/O Sampling Clock

or

Sample Points

Calibration
Period

x1064_08_100509

IODELAY2

System Clock

CAL

RST

Output DataInput Data

I/O Sampling Clock(s)

http://www.xilinx.com

Phase Detector and Board Deskew

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 8

The effects of a phase-controller operation are shown in Figure 9. The I/O sampling clock is
always SDR–whether coming from a BUFPLL, a BUFIO2, or when doubled by using two
BUFIO2s. The initial offset of the input data is shown in the first pair of traces. Data coming
through the master input delay, which is calibrated, is delayed by half a clock period, or as close
to half a clock period as a discrete delay line can achieve. The data coming through the slave
is initially delayed by zero, which is effectively the same as delaying it by one bit period as long
as the results, VALID and INCDEC, are pipelined accordingly. For clarity, the data pipeline
stage through the slave is not shown in the timing diagram.

As shown in the first pair of traces in Figure 9, the sampling point is not in the middle of the data
eye. As well, the sample taken from the master delay (inside the master input SerDes) is the
same as the one taken from the slave delay (inside the slave input SerDes). Following a change
in state of the input data, the phase detector determines that both signals tested are the same
value and indicates this by using a pair of output pins from the master input SerDes called
VALID and INCDEC. VALID is asserted High whenever a valid transition is detected. INCDEC
then indicates the direction to adjust the delays to move the sample clock closer to the center
of the data eye. The designer's state machine acts on this data and commands the input delay
primitives to increment or decrement appropriately, using the pins CE and INCDEC on the
slave input delay. CE is asserted High for one system clock period, with INCDEC set
appropriately for the required direction to adjust the delay.

The second pair of traces in Figure 9 shows the result of a decrement command issued to the
slave input SerDes. The delay is reduced by one tap. The master delay becomes ½ MAX – 1
(where MAX is the value found by calibration described in Delaying Input Data and Clocks, and
MAX is not the maximum possible delay of 256 taps) and the slave input delay is now MAX – 1.
The sampling circuitry finds that the two samples (master and slave) are the same and issues
another decrement command to the slave input delay.

The result following this decrement is shown in the third set of traces in Figure 9, and since the
two samples are still the same, another decrement command is issued to the slave input delay.

The fourth pair of traces in Figure 9 shows the master delay at ½ MAX – 3, the slave delay at
MAX – 3, and that the two samples taken by the input SerDes primitives are now different. This
indicates to the controlling state machine that an increment command to the slave input delay
must be issued. This command moves the result back to the state shown by the third pair of
traces in Figure 9.

The circuit moves around these two points because they correspond to the ideal situation
where the sampling clock is in the middle of the data eye. In actual silicon, there is jitter on the
incoming clock and data, but the principle of operation remains the same, and the sample point
is maintained near the middle of the eye over time. All the design examples include a state
machine based on a 32-bit filter to control the delays appropriately in the presence of jitter.

Periodically, the input delays need to be recalibrated to accommodate any changes in delay
that occur over voltage and temperature. The calibration command does not affect the
reception of data but does affect the current position of the sample point found by the phase
detector. The value of MAX changes with recalibration, but the phase detector continues its
operation transparently with the new value of MAX and, therefore, ½ MAX is loaded into both
delay primitives.

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 9

Introduction to
Serialization
and Data
Transmission

As with data reception, the design of the serializer and its associated clocking primitives
depends on the desired format of the transmitted data stream and forwarded clock. The design
depends upon whether the required output forwarded clock and data stream change state at
the same time and can be generated from the same transmit clock, or if the required output
forwarded clock is SDR and therefore changes state twice for each data bit transition.

Certain output standards, such as LVDS, are only available on the top and bottom edge of
Spartan-6 devices.

Case 4

The required output forwarded clock and data stream change state at the same time and can
be generated from the same transmit clock. Figure 10 shows a widely used example of this
data stream. The forwarded clock is the 7:1 interface used in cameras and flat panel TVs and
monitors. Other ratios are obviously possible, and the output SerDes supports ratios of 2, 3, 4:1
and also when cascaded 5, 6, 7, 8:1. This case also includes the forwarding of a DDR clock,
which is shown in Figure 11, with a 6:1 SerDes ratio. The SDR internal transmitter clock can be
generated either through a PLL and BUFPLL, a single BUFIO2, or two BUFIO2s, depending on
the frequency source for the internal transmitter clock.

X-Ref Target - Figure 9

Figure 9: Input Data Deskew Using the Phase Detector

I/O Sampling Clock

Offset Input Data From Slave Delayed by 0 (= MAX)

Offset Input Data From Master Delayed by ½MAX

MAX = Number of Taps in Bit Period

Decrement Delays

Offset Input Data From Slave Delayed by (MAX – 1)

Offset Input Data From Master Delayed by (½MAX – 1)

Decrement Delays
Offset Input Data From Slave Delayed by (MAX – 2)

Offset Input Data From Master Delayed by (½MAX – 2)

Decrement Delays

Offset Input Data From Slave Delayed by (MAX – 3)

Offset Input Data From Master Delayed by (½MAX – 3)

Increment Delays

PCB or Other Data to Clock Skew

Sample Points

x1064_09_121009

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 10

Case 5

The required output forwarded clock is SDR, where it changes state twice for each data bit
transition. There are two methods to solve this case. The first method, shown in Figure 12, uses
a single internal transmitter clock to generate an SDR forwarded clock by sending the pattern
0101 etc., and transmit each data bit twice at the same rate. The data only appears to change
once for every two clock transitions. This method can use a PLL plus BUFPLL, a BUFIO2, or
two BUFIO2s, depending on the frequency source for the internal transmitter clock. The
disadvantage of this method is that the effective output SerDes ratio is a maximum of four
rather than eight when using cascaded SerDes. The advantage is that only one BUFPLL is
used. The second method, shown in Figure 13, requires two transmitter clocks to be generated
through a PLL and two BUFPLLs. One transmitter clock is used to generate an SDR forwarded
clock, and the other (which is half the speed of the first) is used to generate the forwarded data.
The advantage of this method is that the full cascaded output SerDes ratio of eight is available,
but at the cost of using both BUFPLLs on a given edge of the device and an extra global buffer.

X-Ref Target - Figure 10

Figure 10: Output Data Stream Using a Forwarded Low-Speed Clock
with a 7:1 SerDes Ratio

X-Ref Target - Figure 11

Figure 11: Output Data Stream Using a DDR Forwarded Clock

Transmitted 7-Bit Data

Internal Transmitter Clock

D0 D1 D2 D3 D4 D5 D6

x1064_10_121409

Forwarded Clock = 1100001

Internal Global Clock

Parallel data
loaded into
internal transmitter
clock domain

Parallel data
loaded into
internal transmitter
clock domain

Transmitted 6-Bit Data

Internal Transmitter Clock

D0 D1 D2 D3 D4 D5

x1064_11_121409

Forwarded Clock = 010101

Internal Global Clock

Parallel data
loaded into
internal transmitter
clock domain

Parallel data
loaded into
internal transmitter
clock domain

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 11

X-Ref Target - Figure 12

Figure 12: Output Data Stream Using an SDR Forwarded Clock with One Transmitter Clock

Transmitted 4:1 Data

Internal Transmitter Clock

Master 4:1
OSERDES2

Forwarded Transmit Clock

Internal Transmit Clock
from BUFIO2 or PLL Cascade

Transmitted 4:1 Data

0
1
0
1

Slave 4:1
OSERDES2

Master 4:1
OSERDES2

Slave 4:1
OSERDES2

D0 D1 D2 D3

x1064_12_102709

ForwardedTransmit Clock
Clock rising edge indicates

the start of a data bit

Cascade

0
1
0
1

D3
D3
D2
D2

D1
D1
D0
D0

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 12

Higher Serialization Factors

Serialization using factors greater than 8:1 is possible when transmitting data, by using the PLL
to generate a third clock, which is intermediate to the high-speed transmit clock and the
low-speed parallel data clock. Examples of designs using SerDes ratios of 10, 12, 14, and 16:1
are included in the Reference Design Files. Essentially, the output SerDes primitives are still
used in 5, 6, 7, and 8:1 modes, transmitting data through a high-speed clock from the PLL and
the BUFPLL. The parallel data for transmission is transferred from the FPGA logic to the output
SerDes in the intermediate clock domain, having been transferred from the main clock domain
to the intermediate clock domain using a 2:1 gearbox also in FPGA logic. A drawing of the
mechanism is shown in Figure 14. The external transmitter clock can be SDR, DDR, or a
divided clock in any case where the PLL is used.

X-Ref Target - Figure 13

Figure 13: Output Data Stream Using an SDR Forwarded Clock with Two Transmitter Clocks

Transmitted 8:1 Data

Internal x2 Transmitter Clock

Master 4:1
OSERDES2

Forwarded Transmit Clock

Internal x2 Transmit
Clock from PLL

Internal x1 Transmit
Clock from PLL

Cascade

Transmitted 8:1 Data

0
1
0
1

Slave 4:1
OSERDES2

Master 4:1
OSERDES2

Slave 4:1
OSERDES2

D0 D1 D2 D3 D4 D5 D6 D7

x1064_13_102709

ForwardedTransmit Clock
Clock rising edge indicates

the start of a data bit

Internal x1 Transmitter Clock

Cascade

0
1
0
1

D7
D6
D5
D4

D3
D2
D1
D0

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 13

Data Transmission Using PLL and BUFPLL

The topology for data transmission using PLL and BUFPLL is uncomplicated. The transmitter
source clock is multiplied as required in the PLL to generate an internal SDR transmitter clock.
In the 7:1 video example, the internal pixel clock is multiplied by 7. This clock is routed from the
PLL to a BUFPLL primitive to drive one whole edge of the device. LVDS transmission is only
possible on the top and bottom edges. The only outputs of the PLL that are capable of driving
high-speed clocks to the BUFPLL are CLKOUT0 and CLKOUT1. The BUFPLL also requires a
global clock signal equal to the original non-multiplied source clock (which can be driven from
any of the PLL outputs through a global buffer (BUFG)), and the LOCKED signal from the PLL
(which is required for synchronization inside the BUFPLL).

The three input signals allow the BUFPLL to distribute the high-speed transmission clock to the
output SerDes primitives in the same edge of the device, along with the required SerDes strobe
signal (appropriately aligned) that allows safe capture of low-speed parallel data from the
FPGA logic into the output SerDes. This parallel data is then serialized for output using the
high-speed transmission clock. The forwarded clock output is similarly generated by sending a
constant value to the output SerDes associated with the clock line. For example, a forwarded
DDR clock associated with 8:1 data requires the pattern 10101010. A forwarded clock for
7:1 video applications requires 1110000 or 1111000. The necessary circuit and output
waveforms are shown in Figure 15.

X-Ref Target - Figure 14

Figure 14: Transmitting Data at Higher SerDes Factors

clock_generator_pll_s16_diff.v/vhd
Differential Clock IOB

PLL

LVDS Clock P

Parameters:
S = serdes_factor

PLLX = PLL multiplication factor
CLKIN_PERIOD = Input clock period

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

SerDes
Strobe

System Clock I/O Clock

X1 Clock

serdes_n_to_1_s16_diff.v/vhd

D x S-Bit
Transmitter Data

from FPGA Logic

Master
OSERDES

Slave
OSERDES

2:1
Gearbox

D Data
Lines

BUFPLL

BUFG

BUFG

BUFIO2

Parameters
D = 1

S = serdes_factor

x1064_14_110609

serdes_n_to_1_s16_diff.v/vhd

Constant Data to Generate
Appropriate Clock Output

Master
OSERDES

Slave
OSERDES

2:1
Gearbox

Forwarded
Clock

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 14

There is no need for any PLL deskew when only using the PLL for data transmission, thus,
internal feedback is used by connecting the feedback OUT pin of the PLL directly back to the
feedback IN pin.

X-Ref Target - Figure 15

Figure 15: Data Transmission Using PLL and BUFPLL

clock_generator_pll_s8_diff.v/vhd
Differential Clock IOB

PLL

LVDS Clock P

Parameters:
S = serdes_factor

PLLX = PLL multiplication factor
CLKIN_PERIOD = Input clock period

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

SerDes
StrobeSystem Clock I/O Clock

serdes_n_to_1_s8_diff.v/vhd

D x S-Bit
Transmitter Data

from FPGA Logic

Master
OSERDES

Slave
OSERDES

D Data
Lines

BUFPLL

BUFG

BUFIO2

Parameters:
D = 1

S = serdes_factor

x1064_15_121009

serdes_n_to_1_s8_diff.v/vhd

Constant Data to Generate
Appropriate Clock Output

Master
OSERDES

Slave
OSERDES

Forwarded
Clock

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 15

When one FPGA is performing both data reception and data transmission of a similar standard,
the PLL and BUFPLL can be shared between the transmitter and receiver. One PLL can drive
one or two BUFPLLs with the same clock. These PLLs can be on different edges of the device;
however, each PLL is associated with different edges of the device. Possible connections are
shown in Figure 16. In devices with four or less PLLs, any PLL can feed the BUFPLLs on any
edge. In devices with five PLLs, the middle PLL in the top half of the device cannot feed any of
the BUFPLLs. The input clock to a PLL has to come from a clock input pin through a BUFIO2
primitive to a PLL in the same vertical half (top or bottom) as the clock pin and BUFIO2. When
designing with feedback where deskew is required, the feedback must come through a BUFIO2
primitive adjacent to the BUFIO2 that is driving the clock towards the PLL. Feedback can only
come from a BUFIO2FB in the same vertical half (top or bottom) of the device as the PLL.

X-Ref Target - Figure 16

Figure 16: PLL to BUFPLL Connections

L6BUFIO2
BUFIO2FB

BUFPLL

L7

L4 L5

L2BUFIO2
BUFIO2FB

L3

L0 L1

B7BUFIO2
BUFIO2FB

B5

B6 B4

T0BUFIO2
BUFIO2FB

T2

T1 T3

BUFPLL

Top-half PLLs can be driven by top-half
BUFIO2 with feedback (if required) through
top-half BUFIO2FB

Bottom-half PLLs can be driven by top-half
BUFIO2 with feedback (if required) through
bottom-half BUFIO2FB

Can Drive
Any BUFPLL

PLL
CLK2

CLK1

PLL
CLK2

CLK1

PLL
CLK2

CLK1

Can Drive
Any BUFPLL

Cannot Drive
Any BUFPLL

Cannot Drive
Any BUFPLL

Can Drive
Any BUFPLL

Can Drive
Any BUFPLL

PLL
CLK2

CLK1

PLL
CLK2

CLK1

PLL
CLK2

CLK1

R1 BUFIO2
BUFIO2FB

BUFPLL

R0

R3 R2

T4 BUFIO2
BUFIO2FB

T6

T5 T7

R5 BUFIO2
BUFIO2FB

R4

R7 R6

B3 BUFIO2
BUFIO2FB

B1

B2 B0
BUFPLL

BUFPLL BUFPLL

x1064_16_100509

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 16

Data Transmission of an SDR Forwarded Clock Using a PLL and Two
BUFPLLs

The topology for this mechanism is uncomplicated. The transmitter source clock is multiplied as
required in the PLL to generate two internal SDR transmitter clocks, one of which is twice the
frequency of the other. These two clocks are routed from the PLL to two BUFPLL primitives on
the same edge of the device. Each can drive the entire edge. However, LVDS transmission is
only possible on the top and bottom edges. The only outputs of the PLL capable of driving high-
speed clocks to the BUFPLL are CLKOUT0 and CLKOUT1. The BUFPLL for data transmission
also requires a global clock signal equal to the original non-multiplied source clock, which can
be driven from any of the PLL outputs through a global buffer (BUFG), and the LOCKED signal
from the PLL, which is required for synchronization inside the BUFPLL. The BUFPLL for clock
transmission requires a BUFG of twice the frequency of the original clock source, which again
can be generated from any of the PLL outputs.

The three input signals to the BUFPLL allow distribution of the high-speed transmission clock to
the output SerDes primitives on the same edge of the device, along with the required SerDes
strobe signal (appropriately aligned) to allow safe capture of low-speed parallel data from the
FPGA logic into the output SerDes. This parallel data is then serialized for output using the
high-speed transmission clock. The forwarded clock output is generated in a similar manner but
at twice the internal clock rate, by sending a constant value to the output SerDes associated
with the clock line. For example, a forwarded SDR clock associated with 8:1 data requires the
pattern 10101010. The necessary circuit and output waveforms are shown in Figure 17.

There is no need for PLL deskew when only using it for data transmission, so internal feedback
can be used by connecting the feedback out pin of the PLL directly back to its feedback pin.

X-Ref Target - Figure 17

Figure 17: SDR Data Transmission through a PLL and BUFPLL

Differential Clock IOB

PLL

LVDS Clock P

LVDS Clock N

Internal x1 Transmit Clock
and SerDes Strobe

Internal x2 Transmit Clock
and SerDes StrobeSystem Clock

BUFPLL

BUFPLL

BUFG

BUFIO2

x1064_17_092809

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 17

Data Transmission Using Two BUFIO2s

Where a source transmitter clock is available that is half the required bit rate for transmission,
two BUFIO2s can be used to generate the output data and forwarded clock. For example, a
311 MHz input clock can generate data at 622 Mb/s and a forwarded clock that is also
311 MHz.

Each Spartan-6 FPGA input clock pin is connected to the non-inverting input of one primary
BUFIO2 and the inverting input of another primary BUFIO2 as long as the delay primitive is not
used. Two clocks that are 180° apart in phase are therefore available. These two clocks are
capable of being doubled inside each output SerDes configured for DDR operation when the
output SerDes is in the same half side as the clock input.

In addition, the input clock can also feed the alternate BUFIO2 sites on the other half of the
device, so it is possible to drive the whole side of a device by using four BUFIO2s, assuming the
input delay primitive is not used, which is normally the case for data transmission.

One of the BUFIO2s is also used to generate a low-speed clock for the internal parallel data
and the required SerDes strobe capture signal for the output SerDes primitives. The low-speed
clock output is divided by the required SerDes factor and then distributed through a global
buffer. For example, the incoming 311 MHz clock is divided by eight when 8:1 data transmission
is required.

The circuit and waveforms for this example are shown in Figure 18.

X-Ref Target - Figure 18

Figure 18: Data Transmission through Two BUFIO2s

Differential Clock IOB

LVDS Clock P

Parameters
D = Number of data lines

S = serdes_factor

LVDS Clock N

System Clock

serdes_n_to_1_s8_ddr_diff.v/vhd

clock_generator_ddr_diff.v/vhd

D x S-Bit
Transmitter Data
From FPGA Logic

Master
OSERDES

(DDR)

Slave
OSERDES

(DDR)

D Data
Lines

BUFG

P I/O
Clock

SerDes
Strobe

N I/O
Clock

BUFIO2
(USE_DOUBLER=TRUE)

BUFIO
(I_INVERT=TRUE)

Parameters
D = 1

S = serdes_factor

x1064_18_110609

serdes_n_to_1_s8_ddr_diff.v/vhd

Constant Data to
Generate Appropriate
Clock Output

Master
OSERDES

(DDR)

Slave
OSERDES

(DDR)

Forwarded
Clock

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 18

Data Transmission Using a BUFIO2

Where a source transmitter clock is available that is equal to the required bit rate for
transmission, a single BUFIO2 can be used to generate the output data and a DDR forwarded
clock. For example, a 622 MHz input clock can generate data at 622 Mb/s and a forwarded
clock that is 311 MHz.

The input clock pin is connected to its associated BUFIO2, which can drive all the associated
output SerDes in the same half side of a device. In addition, the input clock can also feed an
alternate BUFIO2 site in the other half side of the device. It is possible to drive the whole side
of a device by using two BUFIO2s, assuming the input delay primitive is not used, which is
normally the case for data transmission.

The BUFIO2 is also used to generate a low-speed clock for the internal parallel data and the
required SerDes strobe capture signal for the output SerDes primitives. The low-speed clock
output will be divided by the required SerDes factor and then distributed through a global buffer.
For example, the incoming 622 MHz clock can be divided by eight for a 8:1 data transmission.

The circuit and waveforms for this example are shown in Figure 19.

X-Ref Target - Figure 19

Figure 19: Data Transmission through Two BUFIO2s

Differential Clock IOB

LVDS Clock P

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

System Clock

serdes_n_to_1_s8_diff.v/vhd

clock_generator_sdr_diff.v/vhd

D x S-Bit
Transmitter Data
from FPGA Logic

Master
OSERDES

Slave
OSERDES

D Data
Lines

BUFG

I/O Clock
SerDes
Strobe

BUFIO2

Parameters:
D = 1

S = serdes_factor

x1064_19_110609

serdes_n_to_1_s8_diff.v/vhd

Constant Data to
Generate Appropriate
Clock Output

Master
OSERDES

Slave
OSERDES

Forwarded
Clock

http://www.xilinx.com

Introduction to Serialization and Data Transmission

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 19

Data Transmission of an SDR Forwarded Clock Using Two BUFIO2s

The topology for this mechanism combines the BUFIO2s used in single and double-rate modes
for transmission of data together with an associated SDR forwarded clock.

The incoming local transmitter source clock is connected to two BUFIO2s, which can be used
to generate a doubled clock inside the output SerDes associated with the forwarded clock,
whereas the output SerDes associated with the output data lines uses one undoubled clock.

For example, if a 622 MHz clock is available, this can be distributed to the data output SerDes
primitives to generate data at 622 Mb/s. It is also available by using both BUFIO2 clocks and
DDR mode in the clock output SerDes to regenerate the 622 MHz clock through a constant
10101010 pattern. The BUFIO2 is configured to provide a divided clock by setting its divide
parameter equal to the SerDes ratio desired. For example, with the 622 MHz input clock, a
division by eight enables 8:1 output SerDes operation, with an internal system clock of
77.75 MHz.

The circuit and waveforms for this example are shown in Figure 20.

X-Ref Target - Figure 20

Figure 20: SDR Data Transmission through Two BUFIO2s

Differential Clock IOB

LVDS Clock P

Parameters:
D = Number of data lines

S = serdes_factor

LVDS Clock N

System Clock

serdes_n_to_1_s8_ddr_diff.v/vhd

clock_generator_ddr_s8_diff.v/vhd

D x S-bit
Transmitter Data
from FPGA Logic

Master
OSERDES

Slave
OSERDES

D Data
Lines

BUFG

BUFIO2

P I/O
Clock

N I/O
Clock

I/O
Clock

SerDes
Strobe

SerDes
Strobe

BUFIO2
(USE_DOUBLER=TRUE)

BUFIO
(I_INVERT=TRUE)

Parameters:
D = 1

S = serdes_factor

x1064_20_110609

serdes_n_to_1_s8_diff.v/vhd

Constant Data to
Generate Appropriate
Clock Output

Master
OSERDES

Slave
OSERDES

Forwarded
Clock

http://www.xilinx.com

Design Considerations

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 20

Design
Considerations

Transmitter Use with Single-Ended Data and Clocks

All of the transmitter examples used differential clock and data signals. When transmission
requires a single-ended clock or data signal, then certain restrictions apply for SerDes factors
greater than four. The design file (serdes_n_to_1_s8_se.v/vhd) contains the necessary
serializer logic for a single-ended output (either forwarded clock or data) for SerDes factors
from 2 to 8. When the SerDes factor is 4 or less, only one OSERDES2 is used, and device pins
adjacent to each other can be used to form a data bus. When the SerDes factor is 5 to 8, then
two OSERDES2s are used and the pin next to the active output (which must be a master or
_p pin) is blocked from use as a synchronous output since the necessary logic is already
occupied.

Receiver Use with Single-Ended Data and Clocks

All of the receiver examples used differential clocks and data signals. When the received clock
and/or data is a single-ended signal, then certain restrictions apply.

Differential Data Signals with a Differential Clock

All of the design files and techniques given are valid.

Single-Ended Data Signals with a Differential Clock

The clock is received as in the previous examples. The data is received using the design file
serdes_1_to_n_data_s8_se.v/vhd. When the SerDes factor is 4 or less and the phase-
detector option is not selected, then the receiver only uses one ISERDES2, and device pins
adjacent to each other can form a data bus. When the SerDes factor is 5 to 8 or the phase
detector function is selected, two ISERDES2s are required and the pin next to the active input
(which must be a master or _p pin) is blocked from use as a synchronous input since the
necessary logic is already occupied.

Differential Data Signals with a Single-Ended Clock

The data is received as in the previous examples. When PLL clocking is required, the clock is
received using the design file serdes_1_to_n_clk_pll_s8_se.v/vhd. When the SerDes
factor is 4 or less (or not required at all), the clock receiver only uses one ISERDES2, and the
adjacent clock pin can be used. When the SerDes factor is 5 to 8, two ISERDES2s are required
and the clock pin next to the active clock input (which must be a master or _p clock pin) cannot
be used as a synchronous input since the necessary logic is already occupied. However, it can
be used a clock input.

The file serdes_1_to_n_clk_sdr_s8_se.v/vhd is used when SDR BUFIO2 data
reception is required. When the SerDes factor is 4 or less (or not required at all), the clock
receiver only uses one ISERDES2, and the adjacent clock pin can be used. When the SerDes
factor is 5 to 8, then two ISERDES2s are required and the clock pin next to the active clock
input (which must be a master or _p clock pin) cannot be used as a synchronous input since
the necessary logic is already occupied. However, it can be used a clock input.

DDR BUFIO2 data reception adds complexity. A single-ended clock pin can only feed one
BUFIO2 through an input delay, limiting access to the two BUFIO2s required for DDR reception.
In this case, the solution is to feed the incoming single-ended clock simultaneously to two clock
input pins. The master (_p) pin feeds one BUFIO2 directly through an input delay, and the slave
(_n) pin inverts the clock inside the IOB and feeds the second BUFIO2 through a second input
delay. The design file for this example is serdes_1_to_n_clk_ddr_s8_se.v/vhd.

http://www.xilinx.com

Receiver Timing Analysis

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 21

Single-Ended Data and Clock Signals

The data is received using the design file serdes_1_to_n_data_s8_se.v/vhd. When the
SerDes factor is 4 or less and the phase detector option is not selected, the receiver uses only
one ISERDES2, and device pins adjacent to each other can form a data bus. When the SerDes
factor is 5 to 8 or the phase detector function is selected, two ISERDES2s are required and the
pin next to the active input (which must be a master or _p pin) cannot be used as a
synchronous input since the necessary logic is already occupied.

The file serdes_1_to_n_clk_sdr_s8_se.v/vhd is used when SDR BUFIO2 data
reception is required. When the SerDes factor is 4 or less (or not required at all), the clock
receiver only uses one ISERDES2, and the adjacent clock pin can be used. When the SerDes
factor is 5 to 8, then two ISERDES2s are required and the clock pin next to the active clock
input (which must a master or _p clock pin) cannot be used as a synchronous input since the
necessary logic is already occupied. However, it can be used a clock input.

DDR BUFIO2 data reception adds complexity. A single-ended clock pin can only feed one
BUFIO2 through an input delay, limiting access to the two BUFIO2s required for DDR reception.
In this case, the solution is to feed the incoming single-ended clock simultaneously to two clock
input pins. The master (_p) pin feeds one BUFIO2 directly through an input delay, and the slave
(_n) pin inverts the clock inside the IOB and feed the second BUFIO2 through a second input
delay. The design file for this example is serdes_1_to_n_clk_ddr_s8_se.v/vhd.

Receiver Timing
Analysis

Timing analysis for the receiver consists of subtracting the various sources of timing errors and
uncertainty from the bit period in picoseconds (ps) equivalent to the bit rate. The value
remaining after this analysis is the margin available to the system. A positive number indicates
that the system has sufficient margin and will function properly.

The receiver skew margin (RSKM) is a specification that often appears in data sheets for
ASSPs or other devices that perform a similar deserialization function. This value is generated
by subtracting only the sources of uncertainty that exist inside the receiver from the bit period,
and then dividing the result by two. An illustration of RSKM is shown in Figure 21.

X-Ref Target - Figure 21

Figure 21: Receiver Skew Margin

Bit Period

Sample
Window

RSKM RSKM

Clock
Uncertainty/2

Clock
Uncertainty/2

x1064_21_051710

http://www.xilinx.com

Receiver Timing Analysis

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 22

Uncertainty Without Phase Detector

For the interfaces described in this application note that use calibration, but do not use the
phase detector, the sources of uncertainty are:

• All mismatch and silicon variations are bundled into one parameter, denoted as
TSAMP_BUFIO2, which is guaranteed by characterization to be better than 480 ps for all
Spartan-6 devices with LVDS signalling. This number includes the setup and hold window
of the device, which is the time that the data must be present and valid relative to the
internal synthesized clock at the IOB flip-flops (assuming that the input data lines are
calibrated to be half of the unit interval (UI) delay).

• Package Skew

This number varies with the placement of the input lines in the package and is available
from TRACE when the design is analyzed.

• Clock Skew

The BUFIO2 clocks are designed as full clock trees, the IOB skew is very small. An
accurate number for a given device and placement can be obtained using FPGA Editor.

• Jitter and Timing Uncertainty

The clocking wizard (available in the Core Generator™ tool in the ISE® design suite)
generates a value for the jitter accumulated in the transmitter PLL.

Uncertainty With Phase Detector

For the interfaces described in this application note that use the phase detector, the sources of
uncertainty are:

• Accuracy of the Phase Detector Mechanism

The design of the phase detector and the state machine in the FPGA logic give a sampling
point that is within ±2 delay taps of the ideal sampling point. The phase error of the PLL
generated sampling clock is not a factor.

• Package Skew

This number varies with the placement of the input lines in the package and is available
from TRACE when the design is analyzed.

• Jitter and Timing Uncertainty

The clocking wizard (available in the Core Generator™ tool in the ISE® design suite)
generates a value for the jitter accumulated in the transmitter PLL.

The input delay line is made up of groups of eight tap delays that are used up to 32 times in an
active delay line (equals 256 tap delays total). DS162: Spartan-6 FPGA data sheet specifies
the maximum values to reach each tap. Table 1 shows some calcuation examples.

Table 1: Example Calculation of Maximum Individual Delay Between Taps

Example Delay Calculation Total Delay Between 4
Successive Taps

TTAP1 61 ps Delay from TTAP1 to TTAP5 170 ps

TTAP2 77 ps Delay from TTAP2 to TTAP6 215 ps

TTAP3 140 ps Delay from TTAP3 to TTAP7 203 ps

TTAP4 166 ps Delay from TTAP4 to TTAP8 258 ps

TTAP5 231 ps Delay from TTAP5 to TTAP1 170 ps

TTAP6 292 ps Delay from TTAP6 to TTAP2 215 ps

http://www.xilinx.com

Transmitter Timing Analysis

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 23

An analysis of the example in Table 1 shows that the worst-case span of four taps is 258 ps.
This example would suggest that based on phase-detector usage, a delay value of ±129 ps
delay should be used for any calculations.

Another RSKM calculation example (Table 2) uses an input clock running at 135 MHz and
multiplied to 945 MHz in a PLL to clock in 945 Mb/s data.

Transmitter
Timing Analysis

For the interfaces described in this application note, the sources of uncertainty are:

• Package Skew

This number varies with the placement of the input lines in the package and is available
from TRACE when the design is analyzed.

• Jitter and Timing Uncertainty

The clocking wizard (available in the Core Generator tool in the ISE design suite) generates
a value for the jitter accumulated in the transmitter PLL.

Reference
Design Files

Design files for the majority of the examples explained in this application note are available in
both Verilog and VHDL at (https://secure.xilinx.com/webreg/clickthrough.do?cid=140956). The
name of the appropriate file is included in the figures for different applications shown
throughout this document. Also included are some example top-level files and example timing
constraints for popular applications, such as the 7:1 interface used in flat panel displays and
cameras.

Each of the data input and output modules can be parameterized for both input width (number
of input pins) and depth (required SerDes factor), and there are versions for both singe-ended
and differential I/O. The data receiver modules also contain a signal to indicate whether the
generation of phase-detector logic is required in the example where it is required to deskew the
input bus. The phase-detector mode is always used to allow input delay calibration to occur
without any data loss occurring, and adding the phase-detector logic allows reliable operation
at higher bit rates, and where the incoming data has an unknown phase to the incoming clock.
The parallel data generated from the receiver modules is the width multiplied by the depth, for
example receiving a 6-bit bus of 7:1 data will output 42 bits for each system clock cycle.

General information about the reference design is shown in Table 3. The device utilization is
shown in Table 4.

TTAP7 343 ps Delay from TTAP7 to TTAP3 203 ps

TTAP8 424 ps Delay from TTAP8 to TTAP4 258 ps

Table 2: Example Calculation

Bit Period at 945 Mb/s 1058 ps

Package skew (refer to TRACE for precise values) –120 ps

PLL Jitter (from the clocking wizard) –112 ps

Phase Detector accuracy –129 ps

Total 697 ps

RSKM = Total/2 349 ps

Table 1: Example Calculation of Maximum Individual Delay Between Taps (Cont’d)

Example Delay Calculation Total Delay Between 4
Successive Taps

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=140956

Reference Design Files

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 24

Table 3: Reference Design Checklist

General Information

Developer name Xilinx

Target devices Spartan-6 FPGAs

Source code provided Yes

Source code format VHDL, Verilog

Design uses code/IP from an existing reference design, application note,
3rd party, Core Generator No

Simulation

Functional simulation performed Yes

Timing simulation performed No

Testbench used for functional and timing simulations provided Yes

Testbench format VHDL, Verilog

Simulator software used MXE

SPICE/IBIS simulations No

Implementation

Synthesis software tools used XST 11.3

Implementation software tools used ISE 11.3

Static timing analysis performed Yes

Hardware Verification

Hardware verified Yes

Hardware platform used for verification SP601 and
FMC101

Table 4: Device Utilization

Design Files IODELAY2s PLLs BUFPLLs BUFIO2 BUFGs Slices ISERDES2 OSERDES2

Clock Generator Designs

clock_generator_ddr_s8_diff 0 0 0 2 or 4 1 0 0 0

clock_generator_pll_s16_diff 0 1 1 1 2 0 0 0

clock_generator_pll_s8_diff 0 1 1 1 1 0 0 0

clock_generator_sdr_s8_diff 0 0 0 3 1 0 0 0

Clock Receivers

serdes_1_to_n_clk_ddr_s8_diff 2 0 0 2 1 < 10 0, 1, or 2 0

serdes_1_to_n_clk_ddr_s8_se 2 0 0 2 1 < 10 0, 1, or 2 1

serdes_1_to_n_clk_pll_s16_diff 2 1 1 1 2 < 10 0, 1, or 2 2

serdes_1_to_n_clk_pll_s8_diff 2 1 1 1 1 < 10 0, 1, or 2 3

serdes_1_to_n_clk_pll_s8_se 1 or 2 1 1 1 1 < 10 0, 1, or 2 4

serdes_1_to_n_clk_sdr_s8_diff 1 0 0 1 1 < 10 0, 1, or 2 5

Data Receivers

http://www.xilinx.com

Conclusion

XAPP1064 (v1.1) June 3, 2010 www.xilinx.com 25

Conclusion Spartan-6 FPGAs perform in a wide variety of applications requiring various serialization and
deserialization factors up to 16-to-1, at speeds up to 1050 Mb/s, depending on the application,
speed grade, and package.

Revision
History

The following table shows the revision history for this document.
.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

serdes_1_to_n_data_ddr_s8_diff 2 0 0 0 0

~4 per
input
line

2 0

serdes_1_to_n_data_ddr_s8_se 1 or 2 0 0 0 0 1 or 2 0

serdes_1_to_n_data_s16_diff 2 0 0 0 0 2 0

serdes_1_to_n_data_s8_diff 2 0 0 0 0 2 0

serdes_1_to_n_data_s8_se 1 or 2 0 0 0 0 1 or 2 0

Data Transmitters

serdes_n_to_1_ddr_s8_diff 0 0 0 0 0 0 0 2

serdes_n_to_1_ddr_s8_se 0 0 0 0 0 0 0 1 or 2

serdes_n_to_1_s16_diff 0 0 0 0 0 0 0 2

serdes_n_to_1_s8_diff 0 0 0 0 0 0 0 2

serdes_n_to_1_s8_se 0 0 0 0 0 0 0 1 or 2

Table 4: Device Utilization (Cont’d)

Design Files IODELAY2s PLLs BUFPLLs BUFIO2 BUFGs Slices ISERDES2 OSERDES2

Date Version Description of Revisions

12/23/09 1.0 Initial Xilinx release.

06/03/10 1.1 Added Receiver Timing Analysis and Transmitter Timing Analysis sections.

http://www.xilinx.com

	Source-Synchronous Serialization and Deserialization (up to 1050 Mb/s)
	Summary
	ISERDES and OSERDES Guidelines
	Introduction to Deserialization and Data Reception
	Case 1
	Case 2
	Case 3
	Higher Deserialization Factors
	Data Reception Using PLL and BUFPLL
	DDR Data Reception Using Two BUFIO2s
	SDR Data Reception Using BUFIO2
	Delaying Input Data and Clocks

	Phase Detector and Board Deskew
	Introduction to Serialization and Data Transmission
	Case 4
	Case 5
	Higher Serialization Factors
	Data Transmission Using PLL and BUFPLL
	Data Transmission of an SDR Forwarded Clock Using a PLL and Two BUFPLLs
	Data Transmission Using Two BUFIO2s
	Data Transmission Using a BUFIO2
	Data Transmission of an SDR Forwarded Clock Using Two BUFIO2s

	Design Considerations
	Transmitter Use with Single-Ended Data and Clocks
	Receiver Use with Single-Ended Data and Clocks
	Differential Data Signals with a Differential Clock
	Single-Ended Data Signals with a Differential Clock
	Differential Data Signals with a Single-Ended Clock
	Single-Ended Data and Clock Signals

	Receiver Timing Analysis
	Uncertainty Without Phase Detector
	Uncertainty With Phase Detector

	Transmitter Timing Analysis
	Reference Design Files
	Conclusion
	Revision History
	Notice of Disclaimer

