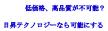


Xilinx Spartan6 XC6SLX45 ボードのマニュアル

株式会社日昇テクノロジー

copyright@2017~



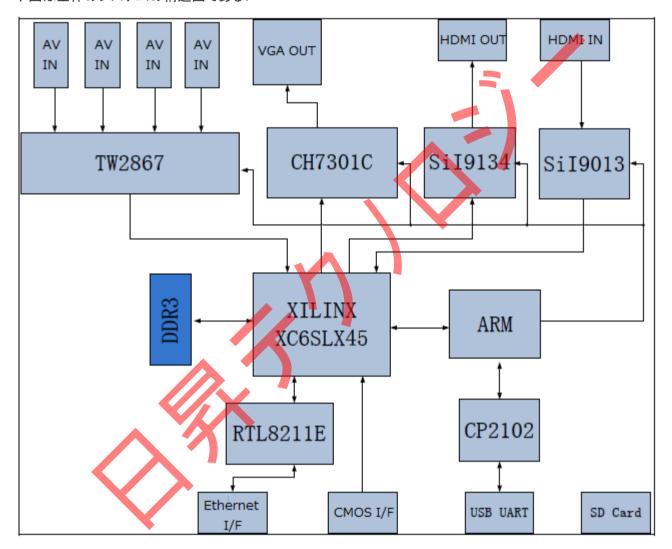
修正履歴

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2017/1/20
2	Ver1.1	ハードウェア変更	2017/4/11
		DVI 出カインタフェースを削除と共に VGA	
		出カチップを変更	

- ※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。最新版は弊社ホームページからご参照ください。「http://www.csun.co.jp」
- ※ (株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に禁じられています。

目次

1	概要	. 4
2	コアボード	. 6
	2.1 概要	. 7
	2.2 DDR3	. 7
	2.3 SPI Flash	10
	2.4 FPGA 給電電源	. 11
	2.5 拡張インタフェース	. 13
	2.6 電源インタフェース	. 15
	2.7 外部発振器	16
	2.8 LED	17
	2.9 コアボード PCB サイズ	. 18
3.	拡張ボード	20
	3.1 概要	20
	3.2 VGA インタフェース	21
	3.3 HDMI 出力インタフェース	23
	3.4 HDMI 入力インタフェース	26
	3.5 ビデオ入力インタフェース	. 28
	3.6 ギガイーサネットインタフェース	29
	3.7 ARM コントローラ	31
	3.7.1 リアルタイムクロック	
	3.7.2 EEPROM	33
	3.7.3 LED	
	3.7.4 USB シリアルポート	
	3.7.5 SD カード	35
	3.8 CMOS カメラ I/F	36
	3.9 拡張インタフェース	
	3.10 JTAG インタフェース	40
	3.11 +	41
		4.4


1 概要

本 FPGA 開発プラットフォームの機能について簡単に紹介する。

本開発ボードは Xilinx 会社の Spartan6 シリーズ FPGA を使用した。型番は XC6SLX45-2FG484 で、BGA 484 パッケージである。

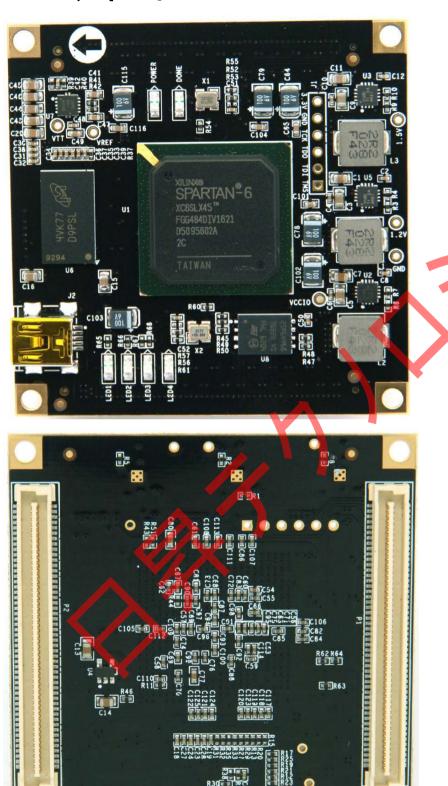
本開発ボードはコアボードと拡張ボードで構成。コアボードは主に FPGA+DDR3+FLASH で構成。Spartan6 FPGA 内部でハードウェアの DDR コントローラが集合されて DDR3 との間の通信のクロックは 333MHz にもあり、DDR3 内部は 666MHz で、4チャネルの 1080p ビデオ処理にも十分な処理能力を満足している。

下図は全体のシステムの構造図である:

上記の構造図に通じて、この開発ボードによって実現できる機能は下記の通り:

- USB インターフェース給電。USB ケーブルで開発ボードに給電することができる。同時に、USB インターフェースは USB からシリアルへの変換の機能もあり、USB ケーブルを繋ぐと、パソコンとシリアル通信もできる。
- 2Gbit の DDR3 を搭載、データのキャッシュとして使用。
- AV IN インターフェース x 4、Techwell 社の TW2867 を採用、PAL/NTSC/SECAM 自動認識し、BT656 出力、多チャネルでバス共用できる。
- VGA 出力インターフェース x 1、ADI 社の ADV7123 を採用、240Mhz のクロック出力と 1080P@60Hz の 解像度をサポートする。

コロニ とうしょう みと 可能による


- HDMI 出力インターフェース x 1、Silion Image 社の SIL9134 を採用、1080P@60Hz の出力、3D 出力をサポートする。
- HDMI 入力インターフェース x 1、Silion Image 社の SIL9013 を採用、1080P@60Hz の入力、多種のフォーマットのデータをサポートする。
- カメラインタフェース x 1、OV7670 カメラモジュール/OV5640 カメラモジュールと直結可能。
- 10/100M/1000M イーサネット RJ-45 インタフェース x 1、Realtek 社の RTL8211EG を採用。

また、拡張ボードには ARM チップ (STM32F103)を搭載して I2C で各インタフェースチップと FPGA を設定する。

2 コアボード

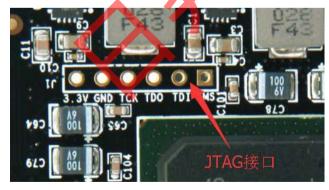
2.1 概要

コアボードは主に FPGA+DDR3+FLASH で構成。

メインチップの FPGA は Xilinx 会社の Spartan6 シリーズ FPGA を使用。型番は XC6SLX45-2FG484I で、BGA 484パッケージである。DDR3 は MICRON 社の MT41J128M16LA-187E を採用。容量は 2Gbit、16bit バス。

また 168 個の IO を引出ている。

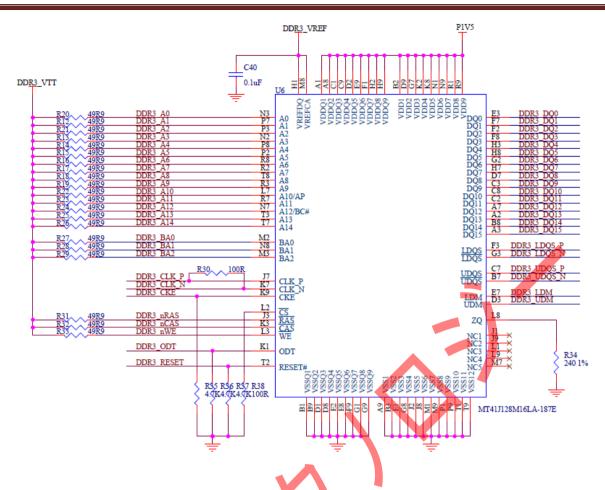
PCB サイズは 60*60(mm)。


(1) FPGA

XC6SLX45-2FG484Iの主なパラメータ:

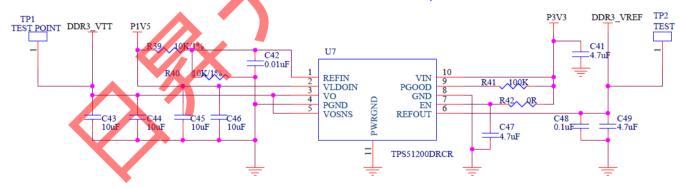
項目	値
Logic Cells	43,661
Slices	6,822
CLB flip-flops	54,576
Block RAM(kb) size	2,088
CMT	4
DSP48A1 Slices	58
Memory Controller Blocks	2
Package	BGA484,1.0mm pitch
Speed	-2
Temprature	Industrial class

(2) JTAG インタフェース



コアボードに JTAG インタフェースを予備しております。拡張ボードなくてもダウンロード及びデバッグが可能です。

2.2 DDR3


DDR3 部分の回路図:

また DDR3 のアドレスバスとコントロールバスの為に VTT 電源と DDR3 の基準電圧 VREF を提供する必要。二つとも 1.5V。 回路図は下記:

DDR3 POWER For VTT/VREF

DDR3 実物及び電圧部分のイメージ:

FPGA の BANK3 と接続する。詳しくは UCF ファイルをご参照ください。

Pin Name	FPGA Pin	Pin Name	FPGA Pin
DDR3_A[0]	H2	DDR3_A[11]	C1
DDR3_A[1]	H1	DDR3_A[12]	D1
DDR3_A[2]	H5	DDR3_A[13]	G6
DDR3_A[3]	K6	DDR3_A[14]	F5
DDR3_A[4]	F3	DDR3_BA[0]	G3
DDR3_A[5]	K 3	DDR3_BA[1]	G1
DDR3_A[6]	J4	DDR3_BA[2]	F1
DDR3_A[7]	H6	DDR3_nCAS	K4
DDR3_A[8]	E3	DDR3_CKE	D2
DDR3_A[9]	E1	DDR3_CLK_P	H4
DDR3_A[10]	G4	DDR3_CLK_N	H3

L1

T2

T1

DDR3 nRAS DDR3 DQ[8] K5 P2 DDR3 nWE F2 DDR3 DQ[9] P1 DDR3_DQ[10] DDR3 ODT J6 R3 DDR3_DQ[11] DDR3 RESET C3 R1 DDR3_DQ[12] DDR3 LDM 14 U3 **DDR3 UDM** DDR3 DQ[13] M3 U1 DDR3_DQ[14] DDR3 DQ[0] V2 N3 DDR3_DQ[1] DDR3_DQ[15] N1 V1 DDR3_LDQS_P DDR3_DQ[2] M2 L3

DDR3_LDQS_N

DDR3_UDQS_P

DDR3_UDQS_N

2.3 SPI Flash

DDR3_DQ[3]

DDR3_DQ[4]

DDR3_DQ[5]

DDR3_DQ[6]

DDR3_DQ[7]

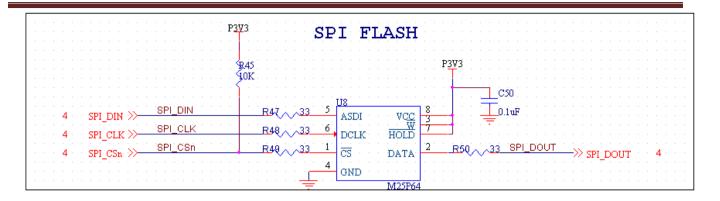
ST 社の型番 M25P64 の SPI Flash を搭載。容量は 64Mbit、3.3V CMOS 電圧。

M1

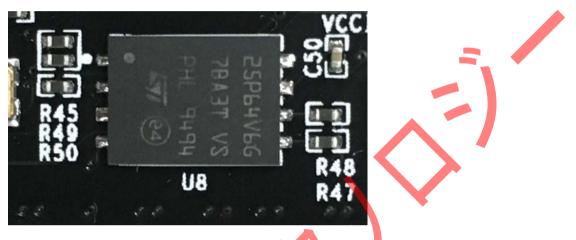
J3

J1

K2

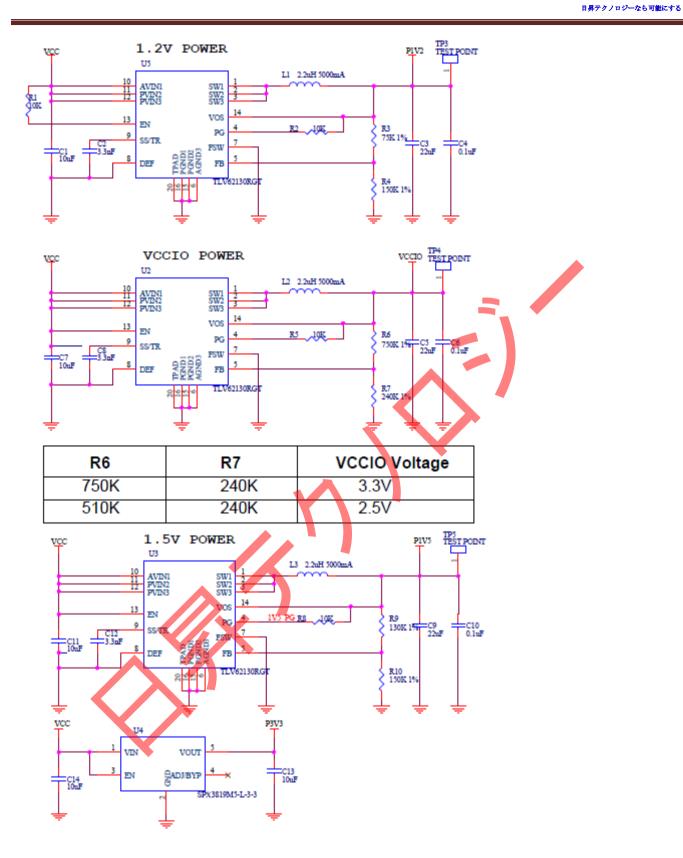

K1

Pin 配置:


引脚名称	FPGA 引脚
SPI_CLK	Y21
SPI_CSn	T5
SPI_DIN	AB20
SPI_DOUT	AA20

回路図:

実物イメージ:


2.4 FPGA 給電電源

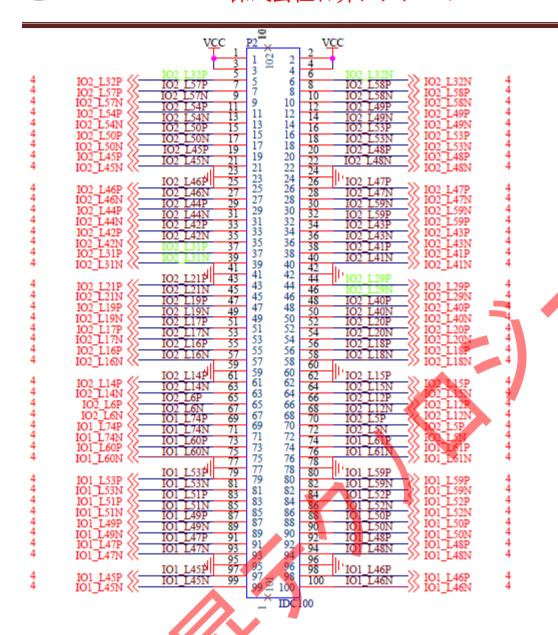
FPGA が正常に動作するには、P3V3、P1V2 と VCCIO 三つの電源を提供する必要。P3V3 は FPGA の VCCAUX に電源を提供する、電圧は3.3V。P1V2 は FPGA の VCCINT に電源を提供する、電圧は1.2V。 VCCIO は FPGA の BANKO, BANKI, BANK2 の VCCO に電源を提供する。また DDR3 も P1V5 が必要、 電圧は 1.5V(VTT と VREF を生成する)。

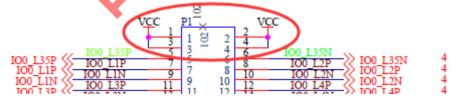
三つの電源は(P1V2, VCCIO, P1V5)TI 社の TLV62130RGT DCDC チップで実現。P3V3 は電流が小さい ので LDO チップ SPX3819M5-L-3-3 で実現。

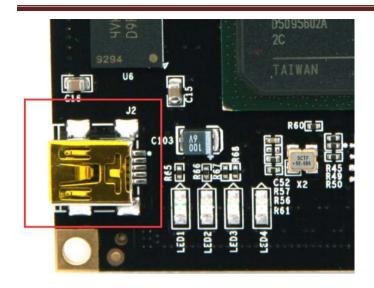
回路図:

実物イメージ:

2.5 拡張インタフェース

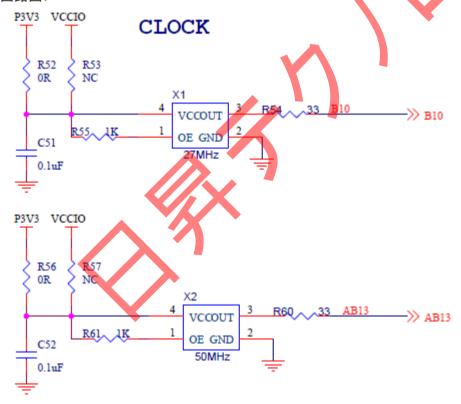

コアボードから2つの拡張インタフェースを引出、100pin x 2 のコネクタで拡張ボードと繋ぐ。 コネクタは AMP TYCO BTB、型番 5177984-4 を使用。0.8mm ピッチ、高さは 5mm。 拡張ボード上は型番 5177983-4 のコネクタを使用。




2.6 電源インタフェース

コアボードを正常に動作させる為に、拡張ボードからインタフェースを通して 5V の電源を提供する必要。コアボードの動作電圧範囲は 4.5V~5.5V、電流は 1A 前後なので、拡張ボード側の電源は 5V/2A がお勧め。 5V 電源は拡張インタフェースの P1,P2 の 1~4Pin(VCC)でコアボードに提供される。

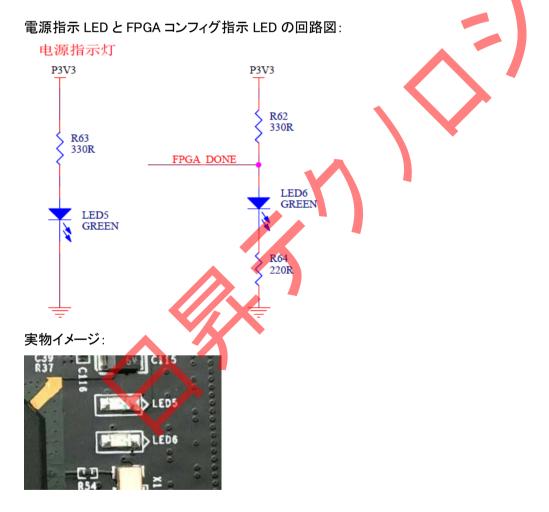
もしコアボードだけ動作する場合は、Mini USB インタフェース(J2)で電源供給かのうです。 注意点:拡張ボード給電と J2 給電同時には使用しないでください。どちらか一つだけにしてください。

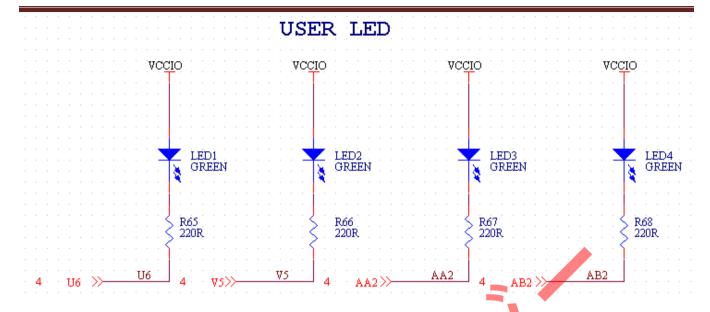


2.7 外部発振器

コアボードに 50M 水晶発振器と 27M 水晶発振器を搭載。50MHz クロックは FPGA の AB13 ピンと接続し、27MHz クロックは FPGA の B10 ピンと接続する。

回路図:


実物イメージ:


2.8 LED

コアボードに6つの LED 発光ダイオードがあり、4つはユーザーLED、1つは電源指示 LED、1つは FPGA コンフィグ指示 LED。電源指示 LED はP3V3と繋、3.3V 電圧が正常な場合、LED は点灯する。FPGA コンフィグ指示 LED は FPGA コンフィグ成功時点灯、失敗したら消灯する。

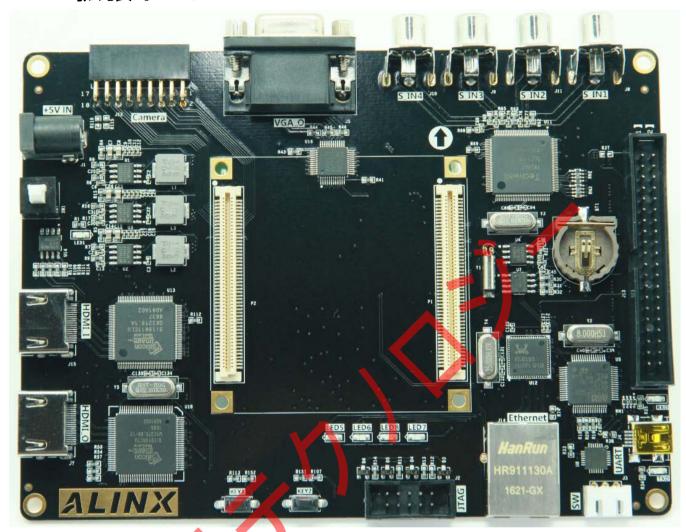
4つのユーザーLED について、低レベル時点灯する。 回路図:

LED 実物イメージ:

FPGA ピン配置:

LED 名称	FPGA 引脚
LED0	U6
LED1	V5
LED2	AA2
LED3	AB2

2.9 コアボード PCB サイズ


表面:

3. 拡張ボード

3.1 概要

主な機能:

- ・4チャネルのビデオ入力(TW2867)
- 1チャネルのHDMI入力(SiI9013)
- 1チャネルのVGA出力(ADV7123)
- 1チャネルのHDMI出力(SiI9134)
- •1チャネルのギガイーサネットI/F(RTL8211E)
- ・1チャネルのCMOS入力
- •1つのARMチップ(STM32F103)

主なサンプル:

01_led_test LEDテスト

02_ddr3_test DDR3テスト

03_i2c_slave I2C通信テスト

04_color_bar color bar VGA出力テスト

05_color_bar_ycbcr YCbCr色空間color bar HDMI出力テスト

06_ycbcr_to_rgb YCbCr色空間からRGB色空間に変換テスト

07_rgb_to_ycbcr RGB色空間からYCbCr色空間に変換テスト

08 ycbcr444 to ycbcr422 YCbCr444からYCbCr422色空間に変換テスト

09_hdmi_input_loopback HDMI入力ループテスト(バッファ無し)

10_hdmi_input_loopback_ddr HDMI入力ループテスト(DDRバッファあり)

11_ov5640_display OV5640カメラ表示テスト(VGA/HDMIで画像表示)

12_cvbs_display CVBS表示テスト

13 double cvbs pip 2チャネルのCVBS表示(PIP)テスト

14_red_blue_3d 赤と青の3Dテスト

15_quad_cvbs_display 4チャネルのCVBS表示テスト

16_freeze ビデオフレーム凍結テスト

17_sobel sobelエッジ検出テスト

18 osd OSDテスト

19_ethernet_test Ethernetテスト

20_ov5640_ethernet_800600 カメラとEthernetテスト(画像をイーサネットでPCに転送し表示する)


21_7lcd_test 7インチLCD表示テスト

22_full_test 総合テスト(Ethernet、HDMI入力、VGA出力、HDMI出力、CMOS入力、DDR動作状態、LEDなど)


23 ov5640 7lcd カメラとLCD表示テスト(画像をLCDに表示する)

3.2 VGA インタフェース

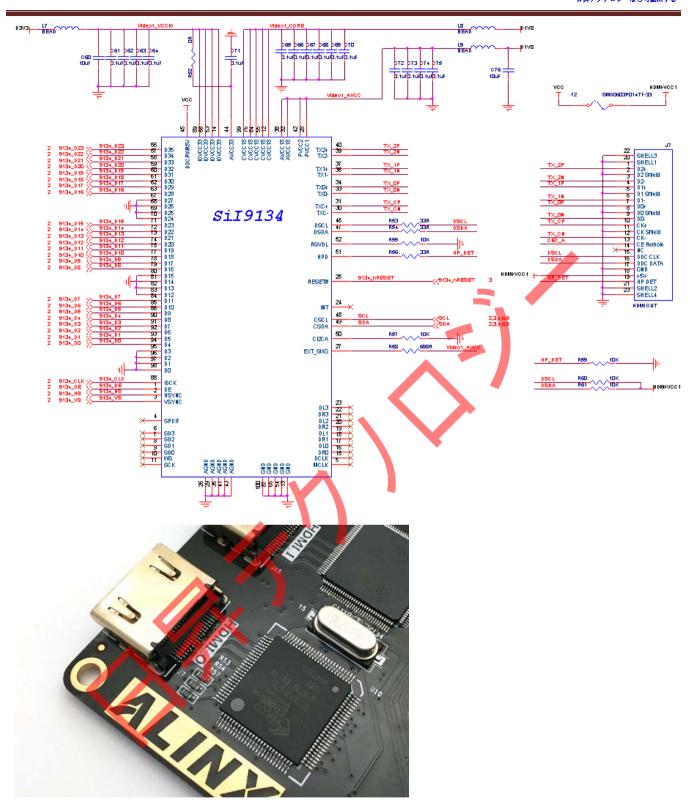
ADI 社の ADV7123 を採用、VGA 信号を出力し、1080p@60Hz 出力をサポートする。

FPGA ピン配置:

VGA_CLK	K20
VGA_EN	F20
VGA_HS	F18
VGA_VS	J17
VGA_R7	T22

	日外アクノロジーなら可能にす
VGA_R6	R22
VGA_R5	T21
VGA_R4	R20
VGA_R3	AB7
VGA_R2	AB8
VGA_R1	Y7
VGA_R0	AA8
VGA_G7	M22
VGA_G6	L22
VGA_G5	M21
VGA_G4	L20
VGA_G3	P22
VGA_G2	N22
VGA_G1	P21
VGA_G0	N20
VGA_B7	K17
VGA_B6	F 1 9
VGA_B5	D21
VGA B4	C20
VGA_B3	D22
VGA_B2	C22
VGA_B1	G19

3.3 HDMI 出力インタフェース


VGA_B0

HDMI 出力インターフェースは、Silion Image 社の SIL9134を採用、1080P@60Hz の出力、3D 出力をサポートする。

H19

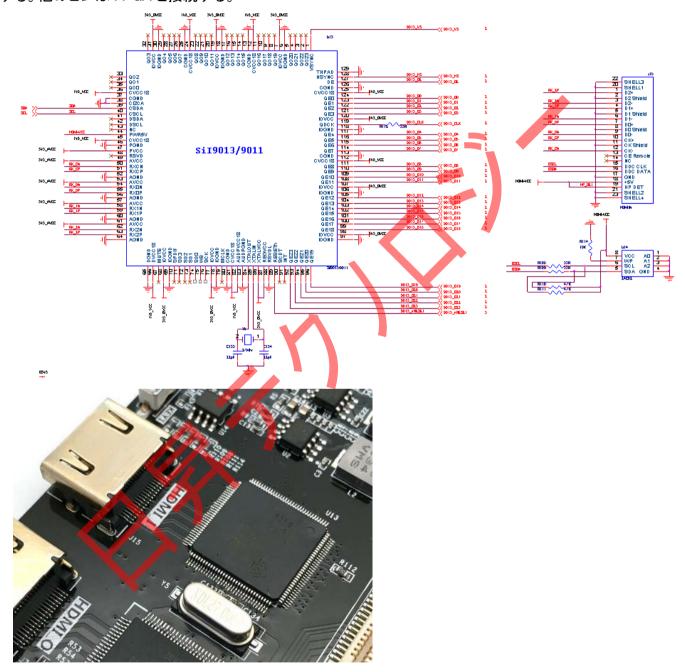
SIL9134 の IIC インタフェースは STM32F103 と接続し、STM32F103 を通じて SIL9134 の初期化と制御をする。他のピンは FPGA と接続する。

FPGAピン配置:

9134 CLK Y12 9134 HS U22 9134 VS U20 V22 9134 DE 9134 D[0] Y18 9134_D[1] U13 9134 D[2] W18 9134 D[3] U14 **AB18** 9134 D[4] AA18 9134 D[5] **AB17** 9134_D[6] 9134 D[7] **AB14** 9134 D[8] Y17 9134 D[9] **AA14** 9134_D[10] W13 9134 D[11] Y19 9134_D[12] T19 9134 D[13] **AB19** 9134_D[14] T20 9134 D[15] 117 9134_D[16] W20 9134_D[17] K18 9134_D[18] W22 9134_D[19] P19 9134 D[20] M19 9134 D[21] P20

9134 D[22]

9134 D[23]


N19

V21

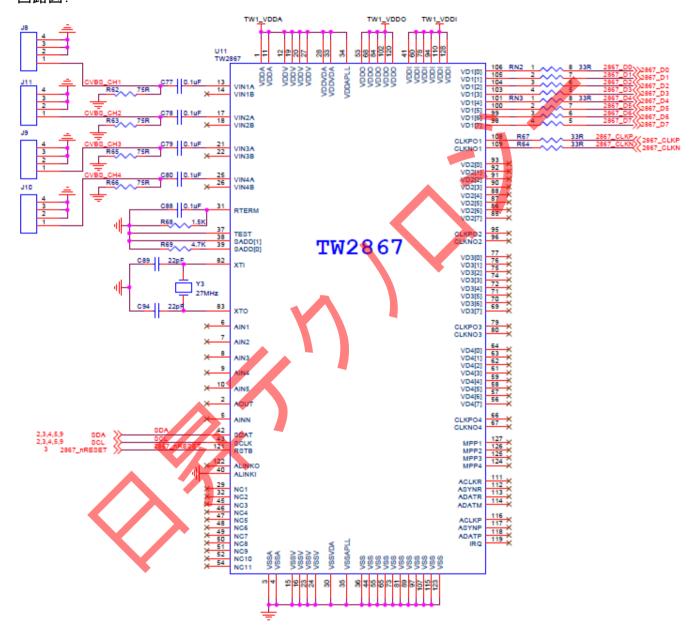
3.4 HDMI 入力インタフェース

HDMI 入力インターフェースは、Silion Image 社の SIL9013を採用、1080P@60Hz の入力、多種のフォーマットのデータをサポートする。

SIL9013 の IIC インタフェースは STM32F103 と接続し、STM32F103 を通じて SIL9013 の初期化と制御をする。他のピンは FPGA と接続する。

FPGA ピン配置:

低価格、高品質が不可能? 日昇テクノロジーなら可能にする


AA12 9013 CLK **Y8** 9013 HS 9013 VS W8 9013 DE V7 9013 D[0] W10 9013_D[1] W9 9013 D[2] Y10 9013 D[3] R8 Υ9 9013 D[4] 9013 D[5] R9 V11 9013_D[6] 9013 D[7] AB9 9013 D[8] W11 9013 D[9] **AA10** 9013 D[10] **AB12** 9013_D[11] **AB10** 9013 D[12] Y15 9013 D[13] W12 9013 D[14] **AB15** 9013 D[15] R11 9013 D[16] **AA16** 9013 D[17] T11 9013 D[18] W14 9013 D[19] V13 9013 D[20] W15 9013 D[21] Y14 9013_D[22] Y16 9013 D[23] **AB16**

3.5 ビデオ入力インタフェース

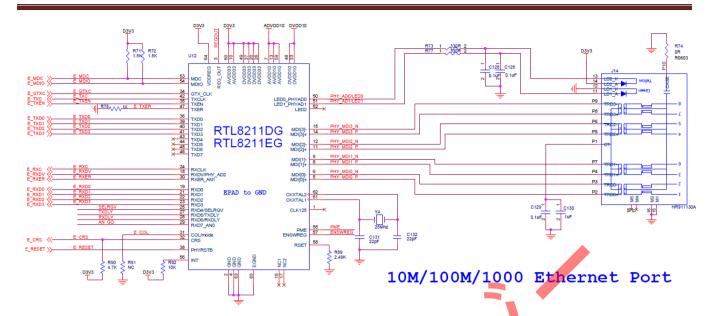
Techwell 社の TW2867 を採用、4 チャネルのビデオ入力をサポート。PAL/NTSC/SECAM 自動認識し、BT656 出力、多チャネルでバス共用できる。

TW2867 の IIC インタフェースは STM32F103 と接続し、STM32F103 を通じて TW2867 の初期化と制御をする。他のピンは FPGA と接続する。

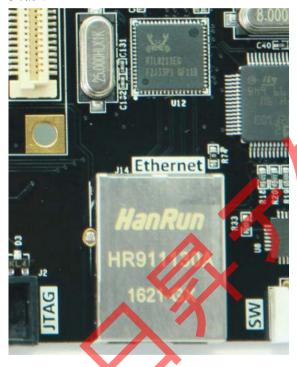
回路図:

実物イメージ:

FPGA ピン配置:


· · · · · · · · · · · · · · · · · · ·	
2867_CLKP	C11
2867_CLKN	A11
2867_D[0]	A3
2867_D[1]	C5
2867_D[2]	A4
2867_D[3]	A 5
2867_D[4]	D6
2867_D[5]	B6
2867_D[6]	C6
2867 D[7]	A 6

3.6 ギガイーサネットインタフェース


Realtek RTL8211EG イーサネット PHY チップでネットワークを実現。

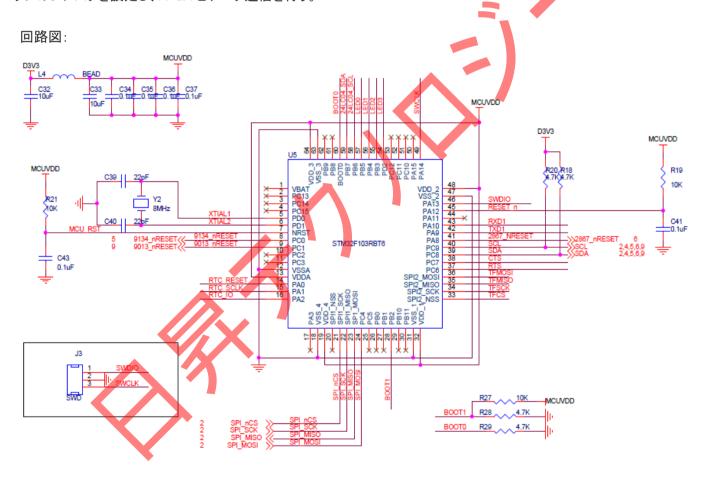
回路図:

実物イメージ:

FPGA ピン配置:

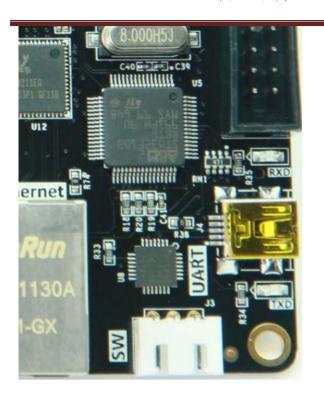
ピン名称	FPGA ピン	説明
E_GCLK	K19	RGMII 送信クロック
E_TXD0	E20	送信データ bit0
E_TXD1	E22	送信データ bit1
E_TXD2	D20	送信データ bit2
E_TXD3	F21	送信データ bit3
E_TXEN	H18	送信イネーブル
E_TXC	G22	MII 送信クロック
E_RXC	H21	RGMII 受信クロック
E_RXDV	K21	受信データ有効信号

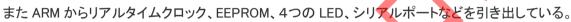
株式会社日昇テクノロジー

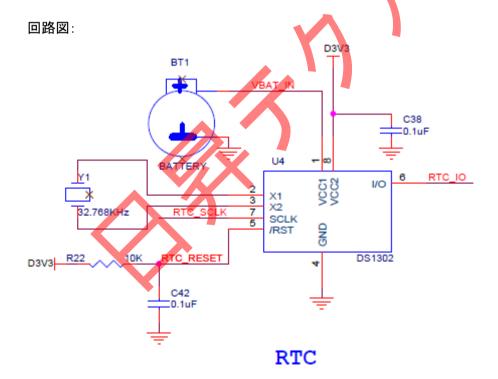

低価格、高品質が不可能?

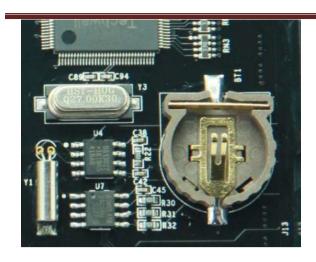
日昇テクノロジーなら可能にする

E_RXD0	J20	受信データ Bit0
E_RXD1	L19	受信データ Bit1
E_RXD2	H22	受信データ Bit2
E_RXD3	M20	受信データ Bit3
E_CRS	H20	Carrier Sense 信号
E_RESET	D19	リセット信号
E_MDC	J19	MDIO 管理クロック
E_MDIO	G20	MDIO 管理データ


3.7 ARM コントローラ

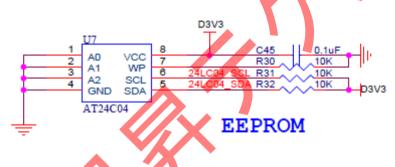

拡張ボードに ARM チップ(STM32F103)を搭載。IO で各インタフェースチップをリセットし、I2C で各インタフェースチップのレジスタを設定し、FPGA とデータ通信を行う。


実物イメージ:

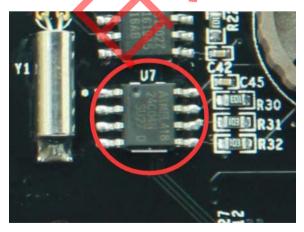


3.7.1 リアルタイムクロック

実物イメージ:

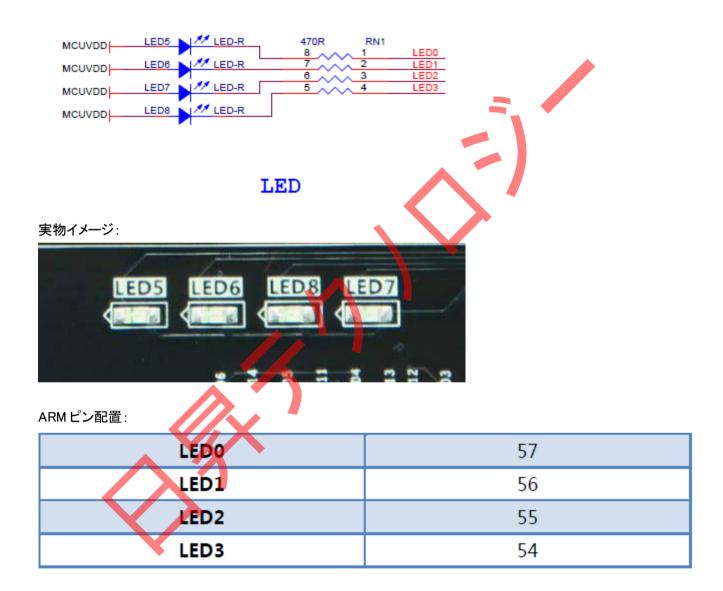


ARMピン配置:


RTC_SCLK	15
RTC_IO	16
RTC_RESET	14

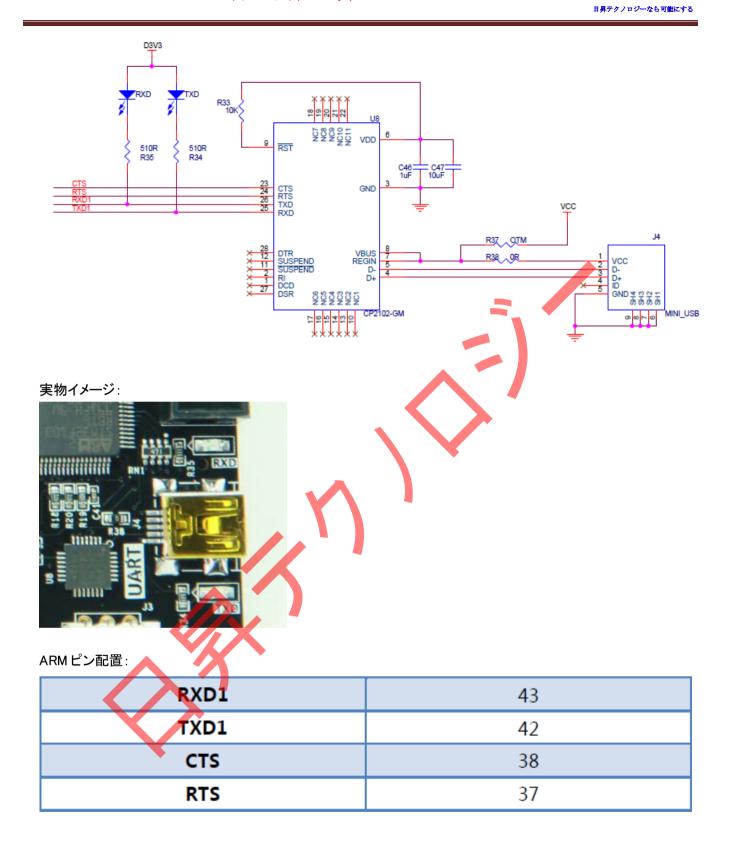
3.7.2 EEPROM

実物イメージ


ARMピン配置:

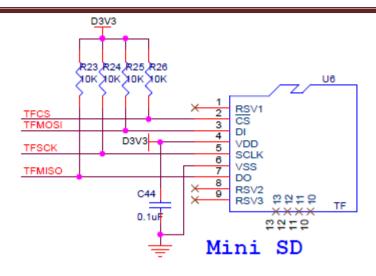
24LC04_SDA	59
24LC04_SCL	58

3.7.3 LED

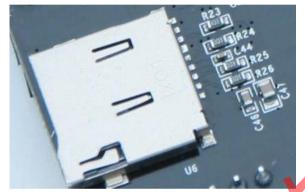

回路図:

3.7.4 USB シリアルポート

回路図:

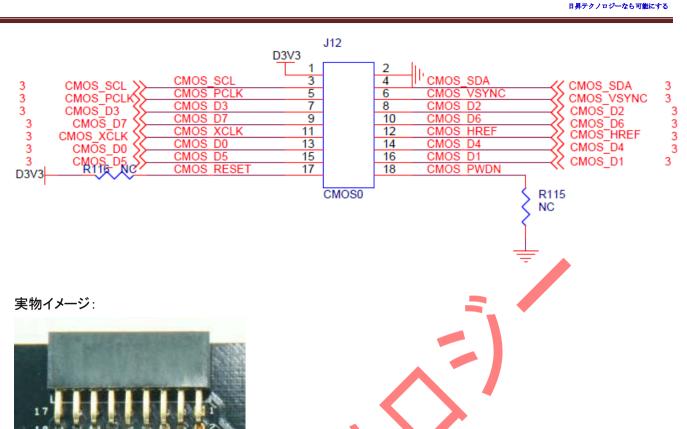


3.7.5 SD カード


ARM は SPI インタフェースで MicroSD カードと通信し、データの読取と保存を行う。

実物イメージ:

ARMピン配置:


TFCS	33
TFSCK	34
TFMOSI	36
TFMISO	35

3.8 CMOS カメラ I/F

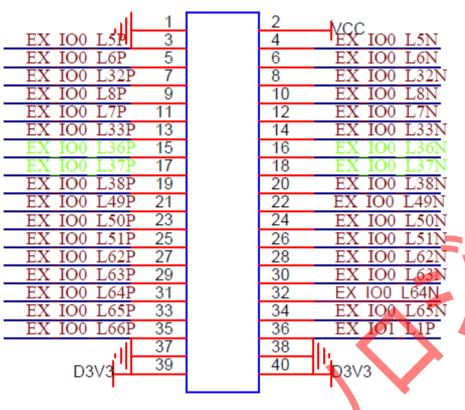
ボードの 18 ピンの CMOS カメラ I/F を搭載しております。 OV7670 カメラモジュール或いは OV5640 カメラモジュールと直結できる。 摂取した画像は HDMI 或いは VGA インタフェース経由で表示する。

回路図:

Camera

低価格、高品質が不可能? 日昇テクノロジーなら可能にする

CMOS_SCLK AB5 CMOS SDAT Y5 CMOS VSYNC AA4 CMOS HREF AB3 CMOS PCLK AB4 CMOS XCLK **Y**3 CMOS D[7] V9 CMOS D[6] U9 W6 CMOS_D[5] CMOS D[4] AB₆ Y11 CMOS D[3] CMOS_D[2] **AB11** CMOS_D[1] Y6 CMOS D[0] AA6 **CMOS RESET**


3.9 拡張インタフェース

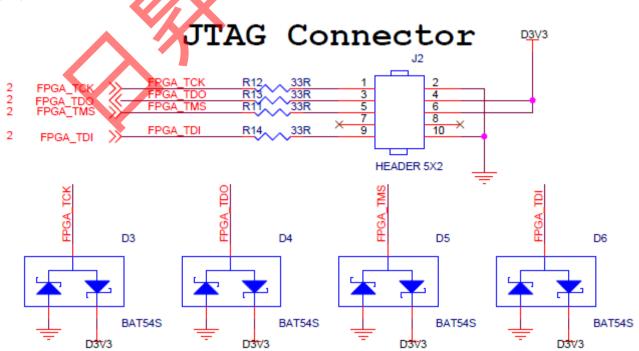
CMOS PWDN

拡張ボードに 40 ピンの拡張インタフェースを搭載。5V 電源 1 チャネル、3.3V 電源 2 チャネル、GND は 3 チャネル、IO ポートは 34 チャネル。IO ポートは 5V デバイスと直結しては行けない、FPGA が壊れる恐れがある。5V デバイスを接続する場合はレベル変換チップを接続する必要。

J13

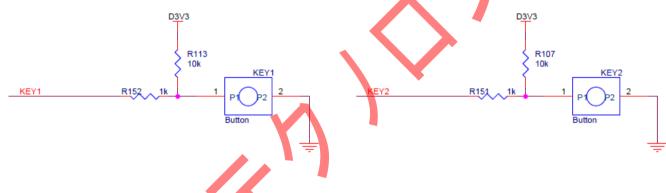
CON40A

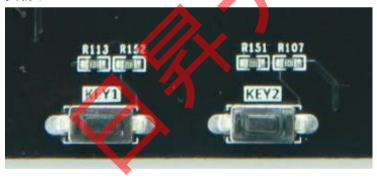
実物イメージ:



1	GND	2	VCC
3	C7	4	A7
5	B8	6	A8
7	D7	8	D8
9	C9	10	A9
11	D9	12	C8
13	D10	14	C10
15	D11	16	C12
17	B12	18	A12
19	C13	20	A13
21	D14	22	C14
23	B14	24	A14
25	C15	26	A15
27	D15	28	C16
29	B16	30	A16
31	C17	32	A17
33	B18	34	A18
35	E16	36	C19
37	GND	38	GND
39	D3V3	40	D3V3

3.10 JTAG インタフェース

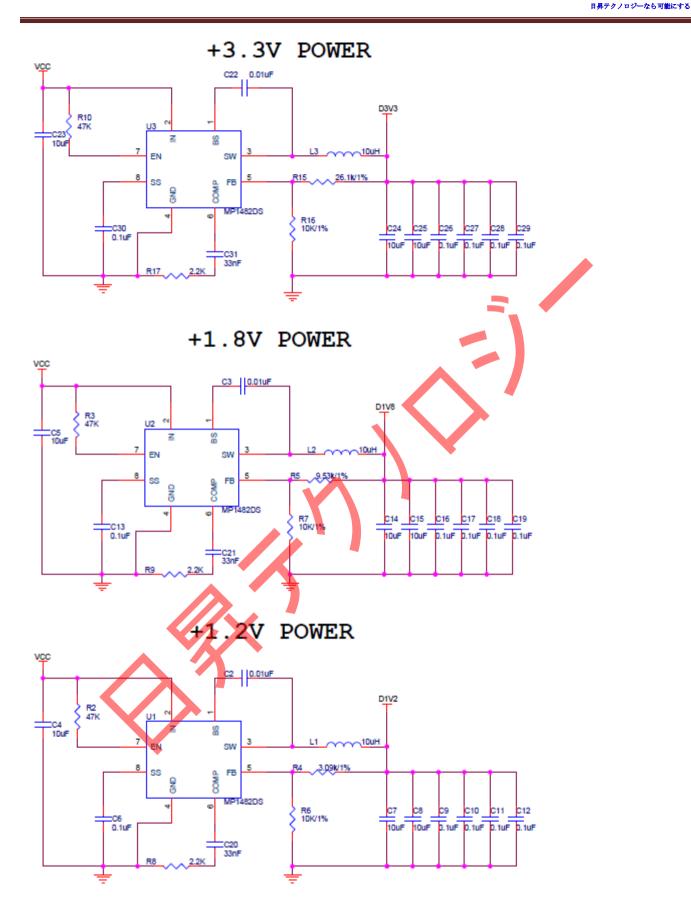

実物イメージ:


3.11 +-

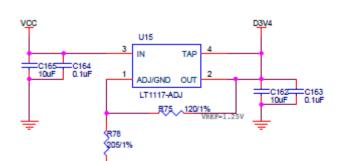
ボードに2つのユーザーキーを搭載。

回路図:

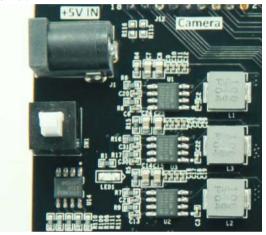
実物イメージ:


FPGAピン配置:

KEY1	J22
KEY2	K22


3.12 電源

3 チャネルの DC/DC 電源チップ MP1482 で 5V の入力電源を D3V3、D1V2、D1V8 を生成し、1 チャンルの LDO LT1117 で D3V4 電源を生成する。またコアボードにも給電する。



実物イメージ:

