

Siga LCD Board ユーザーマニュアル

株式会社日昇テクノロジー

http://www.csun.co.jp info@csun.co.jp 作成日 2014/4/22

copyright@2014

日昇テクノロジーなら可能にする

• 修正履歴

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2014/4/22

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。 最新版は弊社ホームページからご参照ください。「http://www.csun.co.jp」

※ (株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に 禁じられています。

第一章 LCD Board の簡単な紹介

LCD Board は Siga-S16 開発ボードの画像マルチメディア拡張ボードである。ボードに 500 万画素の画像センサーモジュールと 4.3 インチの 24 ビットトゥルーカラーLCD スクリーンを搭載し、ユーザーに画像の収集、処理と表示のマルチメディアプラットフォームを提供する。FPGA の開発者はこのプラットフォームで各種の撮影、画像処理とデータ通信、画像表示などの機能を評価できる。

ユーザーに FPGA の Verilog 参考設計と詳しいプログラムの説明を提供している。開発者はこれらの参考 設計に基づき、素早く複雑のアプリケーションシステムを構築できる。製品の開発と発表を素早く実現できる。

LCD Board に画像収集と表示ソリューションを統合し、Siga-S16 Sparten6 開発ボードと配合し、ユーザーに全面的なPFGA 開発設計環境を提供している。LCD Board は工業制御、マルチメディアアプリケーション、IC 検証などに適用である。更に、大学の教材機械、FPGA トレーニング、個人の研究学習にも適用である。

図 1-1 LCD Board 開発ボード

低価格、高品質が不可能?

Siga LCD Board の主な特徴は下記の通り:

- LCD タッチスクリーンモジュール
 - ◆ 4.3 インチの TFT-LCD モジュール (TMO43NBHO2) が付属し、解像度は 480*272
 - ◆ LED バックライトユニットが含まれる
 - ◆ 24 ビット並列 RGB インターフェースを使用する
- ◆ タッチ機能回路を取っておき、タッチポイント X/Y の座標を相応のサンプリングポイントのデータに転換する。

表 1-1 は LTC の主な物理仕様である (注意事項*)

技術パラメータ 単位 仕様 LCD の寸法 4.3 inch 解像度 480 x3 (RGB) x 272 dot ドットピッチ 0.198(W) x 0.198(H) mm 活性化領域 95.04(W) x 53.86(H) モジュールのサイズ 105. 50 (W) x 67. 20 (H) x 2. 90 (D) mm 表面処理 Anti-Glare 重さ 44.065 g ポート Digital RGB 24 bits

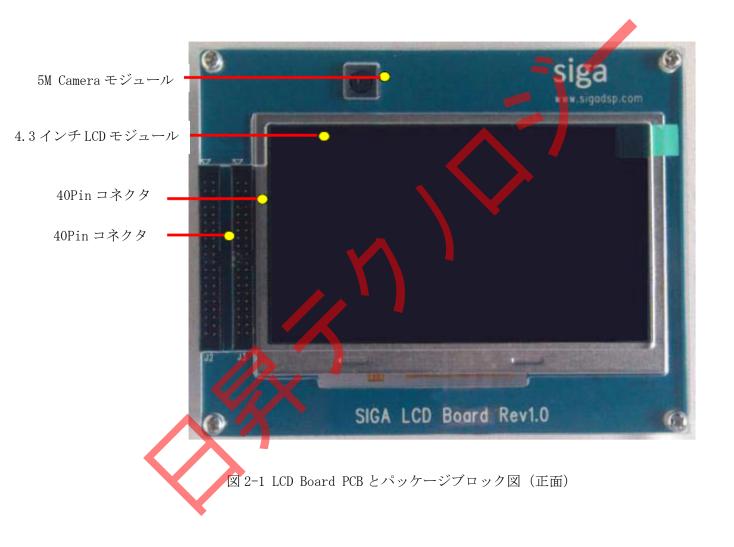
表 1-1 LCD の主な物理仕様

- 500 万画素のデジタルイメージセンサモジュール
 - ◆ 自動画像フォーカスと自動露出制御(AEC)
 - ◆ 自動ホワイトバランス、自動 50/60 Hz の輝度検出
 - ◆ プログラマブルフレームリフレッシュデータ
 - ◆ 水平方向と垂直方向のミラーモード
 - ◆ 列と行階層モード、サイズを調整する時画像質を改善する
 - ◆ 列と行のスキップモード
- ◆ 異なる画像出力モードをサポートする: RAW RGB、RGB565/555/444、CCIR656、YUV422/420、YCbCr422と圧縮モード
 - ◆ 標準なシリアル SCCB ポート制御
 - ◆ パラレルデジタル Vidio ポート(DVP)と Dual Lane MIPI ポートモードをサポートする

表 1-2 は CMOS センサーの主なパラメータ:

表 1-2 CMOS センサの主な性能パラメータ

パラメータ		数值		
有効画素	2592Hx1944V			
感知領域	1. 4umx1. 4um			
出力フォーマット	出力フォーマット			
入力 clock クロック		6~27 MHz		
最大スピード/メインク	ロック周波数	96Mp/s at 96MHz		
最大フレームレート	QSXGA	15 fps		
	1080p	30 fps		
	1280x960	45 fps		
	720p	60 fps		
	VGA (640x480)	90 fps		
	QVGA (320x240)	120 fps		
ADC 解像度		12-bit		
感度	600mV/lux-sec			
ダイナミック範囲	68 dB			
SNR (maximum)	36 dB			
電源電圧	供電電圧	Core 1.5V, analog:2.8V		
電源電圧 I/0 電圧		1. 8V/2. 8V		



第二章 LCD Board の概要

本節はシステムブロック図とパッケージを含め、Siga LCD Board の全体像を説明する。

2.1 レイアウトとパッケージ

図 2-1 は LCD Board の正面の写真である。

低価格、高品質が不可能?

図 2-2 は LCD Board の背面の写真である。

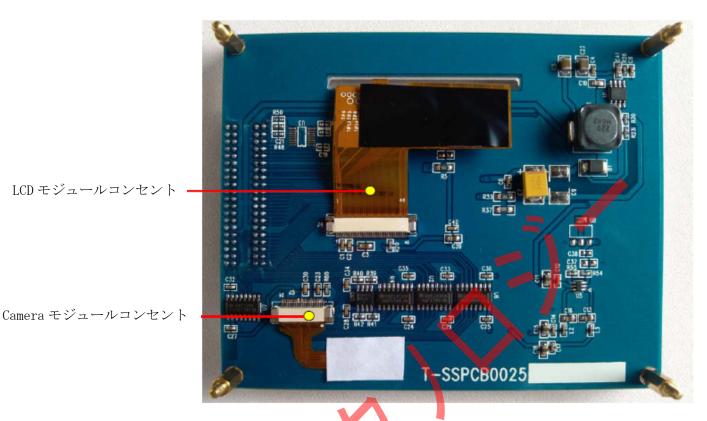
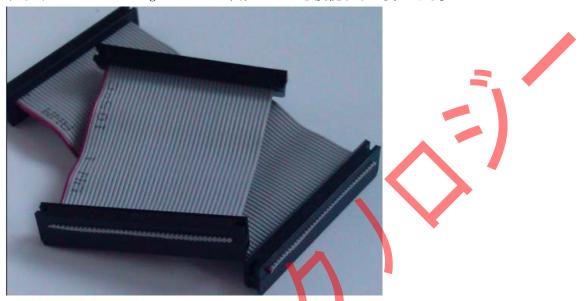


図 2-2 LCD Board PCB とパッケージブロック図 (背面)

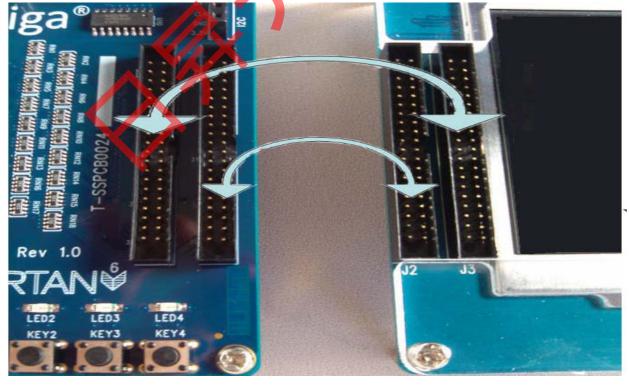
2.2 LCD Board システムプロック図

図 2-3 は LCD Board と Siga-S16 開発ボードの接続ブロック図。Sparten6 FPGA の拡張 IO を使用し LCD Board と直接に接続する。

図 2-3 LCD Board システムブロック図



第三章 Siga LCD Board の使用


本章はLCD Board と Siga-S16 開発ボードの接続とインタフェースの定義を紹介する。

3.1 LCD Board の設置

LCD Board と Siga-S16 FPGA 開発ボードの接続は 2 本の 40 ピンのフラットケーブルで実現する。デバッグする時 LCD Board と Siga-S16 FPGA 開発ボードを接続する必要がある。

2本のフラットケーブル、1本が短い、もう1本が長い。短いケーブルは FPGA 開発ボードの J4 と LCD Board の J2 と接続する、長いケーブルは FPGA 開発ボードの J3 と LCD Board の J3 と接続する。

接続する時ケーブルのギャップの方向と 1Pin の位置にご注意ください。ケーブルを差し込む時は密接する様に奥まで押してください。

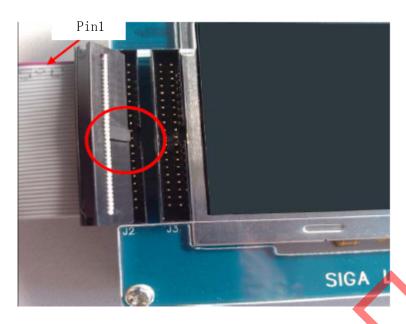
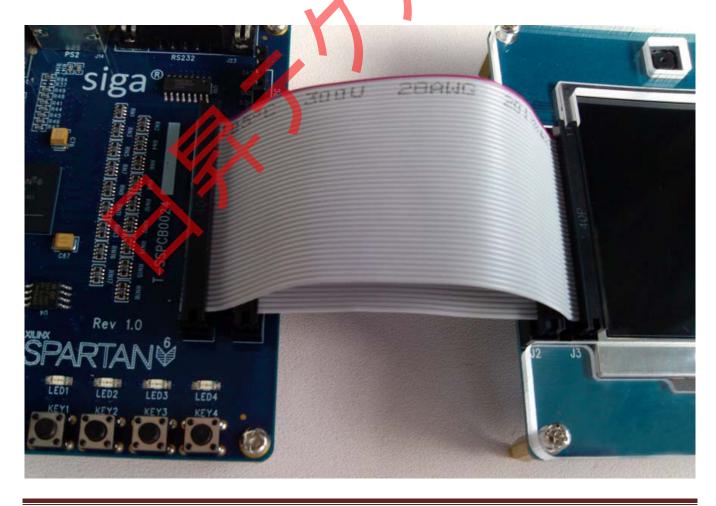



図 3-1 LCD ケーブル接続図

Siga-S16 開発ボードと LCD Board の接続後は図 3-2 の通り:

日展テクノロジーから可能にする

接続後 LCD board と SIga-S16 開発ボードを下図の通り積み上げるのもできる。

3.2 Pin の定義

以下はLCD Board の J2 と J3 のピンの定義、J2 の信号は Camera に接続する信号である。

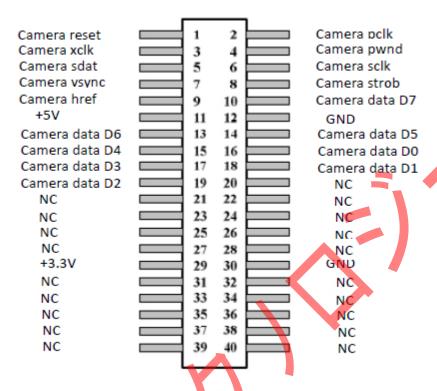


Figure 3.3 the pin-out of the 40-pin connector (J2).

Pin No. (J2)	Pin Net Name	Siga-S16 GPIO	FPGA Pin(U1)	Note
1	Camera_reset	EX_GPIO_B [0]	L14	Camera リセット信号
2	Camera_pclk	EX_GPIO_ B [1]	L13	クロックデータ信号
3	Camera_xclk	EX_GPIO_ B [2]	L12	Camera クロック信号
4	Camera_pwnd	EX_GPIO_ B [3]	M18	Power Down
5	Camera_sdat	EX_GPIO_ B [4]	M16	SCCB ポートデータ
6	Camera_sclk	EX_GPIO_ B [5]	M14	SCCB ポートクロック
7	Camera_vsync	EX_GPIO_ B [6]	M13	列同期
8	Camera_strob	EX_GPIO_ B [7]	N18	露光信号
9	Camera_href	EX_GPIO_ B [8]	N17	行同期
10	Camera_D7	EX_GPIO_ B [9]	N16	Camera データ信号
11	+5V	-	-	Power
12	GND	-	(2)	Ground
13	Camer_D6	EX_GPIO_ B [10]	N15	Camera データ信号
14	Camer_D5	EX_GPIO_ B [11]	N14	Camera データ信号
15	Camer_D4	EX_GPIO_ B [12]	P18	Camera データ信号
16	Camer_D0	EX_GPIO_ B [13]	P17	Camera データ信号
17	Camer_D3	EX_GPIO_ B [14]	P16	Camera データ信号
18	Camer_D1	EX_GPIO_ B [15]	T18	Camera データ信号
19	Camer_D2	EX_GPIO_ B [16]	T17	Camera データ信号
20-28	NC	-	-	NC

29	+3.3V	-	-	Power
30	GND	-	-	Ground
31-40	NC	2	-	NC

Table 3.1 the pin-out of the 40-pin connector (J2).

J3の信号はLCDモジュールに接続する信号。

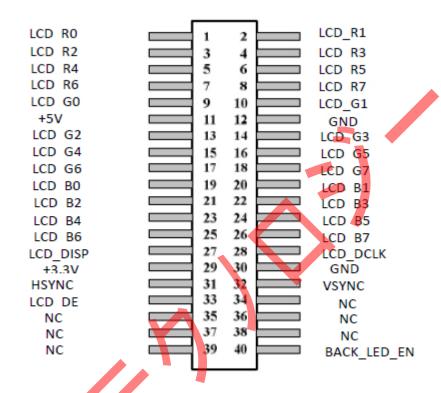


Figure 3.4 the pin-out of the 40-pin connector (J3).

日昇テクノロジーなら可能にする

Pin No. (J3)	Pin Net Name	Siga-S16 GPIO	FPGA Pin(U1)	Note
1	LCD_R0	EX_GPIO_A [0]	C17	LCD 赤色信号出力
2	LCD_R1	EX_GPIO_A [1]	C18	
3	LCD_R2	EX_GPIO_A [2]	D17	
4	LCD_R3	EX_GPIO_A [3]	D18	
5	LCD_R4	EX_GPIO_A [4]	E18	
6	LCD_R5	EX_GPIO_A [5]	E16	
7	LCD_R6	EX_GPIO_A [6]	F18	
8	LCD_R7	EX_GPIO_A [7]	F17	
9	LCD_G0	EX_GPIO_A [8]	F16	LCD 緑色信号出力
10	LCD_G1	EX_GPIO_A [9]	F15	
11	+5V	-	-	Power
12	GND	-	-	Ground
13	LCD_G2	EX_GPIO_A[10]	F14	LCD 緑色信号出力
14	LCD_G3	EX_GPIO_A[11]	G18	
15	LCD_G4	EX_GPIO_A[12]	G16	
16	LCD_G5	EX_GPIO_A[13]	G14	
17	LCD_G6	EX_GPIO_A[14]	G13	
18	LCD_G7	EX_GPIO_A[15]	H18	

19	LCD_B0	EX_GPIO_A[16]	H17	LCD 青色信号出力
20	LCD_B1	EX_GPIO_A[17]	H16	
21	LCD_B2	EX_GPIO_A[18]	H15	
22	LCD_B3	EX_GPIO_A[19]	H14	
23	LCD_B4	EX_GPIO_A[20]	H13	
24	LCD_B5	EX_GPIO_A[21]	H12	
25	LCD_B6	EX_GPIO_A[22]	J18	
26	LCD_B7	EX_GPIO_A[23]	J16	
27	LCD_DISP	EX_GPIO_A[24]	J13	LCD 表示イネーブル
28	LCD_DCLK	EX_GPIO_A[25]	K16	LCD クロック出力
29	+3.3V		-	Power
30	GND	-	-	Ground
31	HSYNC	EX_GPIO_A[26]	K18	LCD 行同期信号
32	VSYNC	EX_GPIO_A[27]	K17	LCD 列同期信号
33	LCD_DE	EX_GPIO_A[28]	K15	LCD データ出力有効信号
34-39	NC	-	-	_
40	BACK_LED_EN	EX_GPIO_A[35]	L15	バックライト回路制御

Table 3.2 the pin-out of the 40-pin connector (J3)

第四章 LCD Board 設計例と資料

本章はSiga-S16 開発キットでLCD 画像表示と撮影を実現する設計例を紹介する。

4.1 システム要求

これらの設計例を実行、コンパイルするために、下記の内容が必要である:

- Siga-S16 開発ボードと LCD Board
- 提供されたサンプルフォルダとディレクトリの全ての内容を PC にコピーする
- PCに ISE13.1或いは更に高いバージョンのソフトウェアをインストールする

4.2 LCD Board 設計例

設計例 1:LCD 画像表示

この設計例は FPGA 内部のテスト画像と SPI flash に保存する画像を表示する。テストする前に画像データを SPI Flash にダウンロードする必要がある。付属 DVD に画像データが保存された MCS ファイル (car. mcs 2 earth. mcs) が提供される。

Figure 4.2 MCS File For LCD Display

ここでは car. mcs を例にして紹介する。先ずは iMPACT ツールを使用し car. mcs ファイルを Siga-S16 開発ボードの SPI-Flash にダウンロードする。

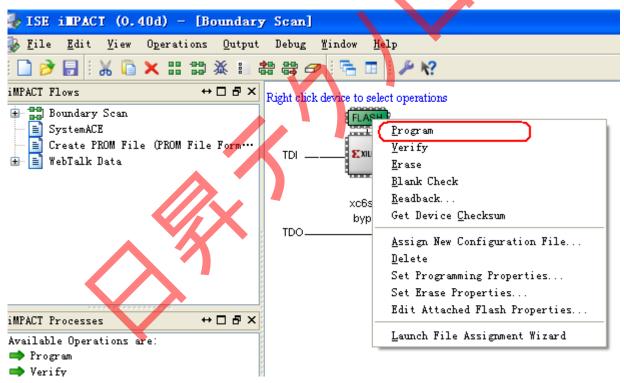
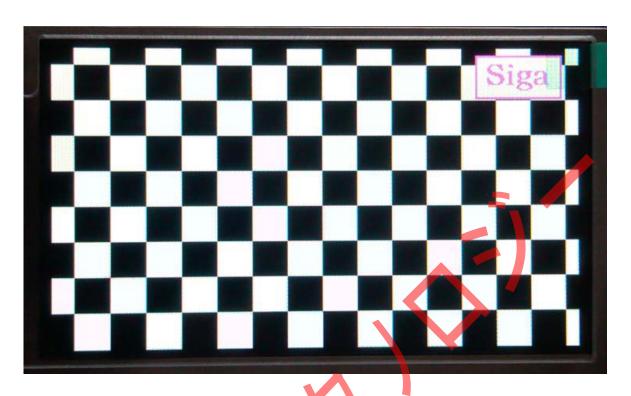



Figure 4.2 Program SPI Flash

ダウンロード後、Siga-S16 開発ボードの Key1 ボタンを押して LCD の表示画像を切り換える。

● 格子像を表示する

グラデーション画像を表示する

● FLASH の画像を表示する

設計例 2: Camera 画像収集と表示

iMPACT ツールを使用しディレクトリ¥Verilog¥camera_test のファイル camera_top. bit を FPGA にダウンロードする。

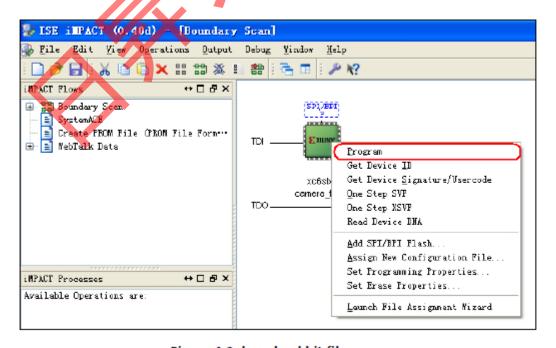
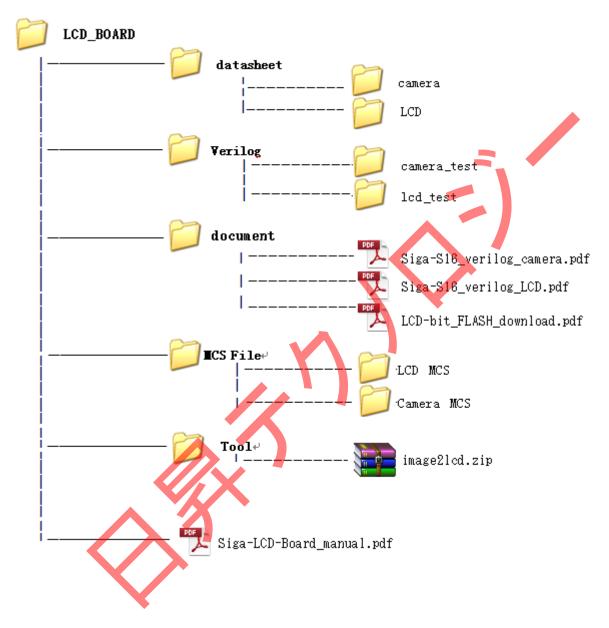


Figure 4.3 download bit file

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

ダウンロード後、LCD にリアルタイムで camera モジュールが収集した画像を表示する。Siga-S16 開発ボードの Key1 ボタンを押せば、ダイナミック表示モードが終了し、LCD はスタティックにボダンを押す時収集した画像を表示する。


Figure 4.4 Display Camera photo

4.3 資料

Siga LCD Board の資料ディレクトリの構成は下図の通り:

以上。