% { ORI O0 0T 0 1Y 117011001160

® 'm‘. QLR R gy | Ly 1100110001 0E4 0080
XILINX a0 odl L. 7 010D 081100
il] i | |||IIJ‘l.'I‘I1_l'3II".'I1‘I‘i]:'l.?l‘l‘H'.'I'EII

e iy B ooty w4 TCOTIEEIIONT100

' r Ty O, L 0 0 Iu.'ulzut.‘luuuuuﬂm

ilspat TTeaT 1801 10
a0 O O R I

SPARTAN-3E AT TR A LR

Pico3laze :

SHA-1 Algorithm for Caa
use with DS2432 K '.

o» o
.# e

m.p-“ﬁ:_

Ken Chapman
Xilinx Ltd
April 2006

Rev.1

1001100 1100711001100710011001 m;mwmnmﬂgl‘

(G111 0011001100 1100110071 1001 1001 LER I 0E g0

Limitations

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully
received by the author.

Ken Chapman
Senior Staff Engineer — Spartan Applications Specialist
email: chapman@xilinx.com

The author would also be pleased to hear from anyone using KCPSMS3 or the UART macros with information about your
application and how these macros have been useful.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 2

Design Overview

This design builds on a previous reference design called “PicoBlaze DS2432 Communicator” and allows you to further investigate the Dallas Semiconductor
DS2432 device which is a 1k-Bit Protected EEPROM with internal SHA-1 Engine. In this reference design, the focus is on those aspects of the device using
the 64-bit secret and the SHA-1 algorithm.

This design also employs PicoBlaze to implement the SHA-1 algorithm as well as provide the 1-wire communication protocol and provide a simple user
interface on your PC via the RS232 serial port (use HyperTerminal or similar). This design occupies less than 5% of the XC3S500E device. It is hoped that
the design may be useful to anyone interested in using the DS2432 or other 1-wire devices in their own designs. PicoBlaze can easily be reprogrammed in
this design using the JTAG_loader supplied with PicoBlaze.

RS232 Serial Cable.

Cable connects J9 on the board to
your PC serial port. For this you will
need a male to female straight
through cable (critically pin2-pin2,

HyperTerminal pin3-pin3 and pin5-pin5).

(or similar)

Dallas Semiconductor
DS2432
1k-Bit Protected 1-Wire
EEPROM with SHA-1 Engine

USB cable for downloading the design or
changing the PicoBlaze program.

Hint — It is recommended that you obtain a copy of the DS2432 data sheet. Ideally print this document to refer to whist using this design and reading
this description. It is particularly useful to have the flow charts available and the details concerning the SHA-1 algorithm and tables.

Hint — XAPP780 provides a design which can be used to provide copy protection for your own designs by exploiting the special properties of the DS2432.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 3

Using the Reference Design

This document is really in two sections. The first covers how to use the design ‘AS IS’ and in the process allow you to further study the DS2432 device with
particular focus on the SHA-1 algorithm and the 64-bit secret. The second section covers particular aspects of the actual design implementation. These again
focus on the SHA-1 algorithm requirements and are intended to help you follow the detailed comments to be read in the code supplied.

Configuring the Spartan-3E ‘The Quick Way’! D i o S Jove b

Unzip all the files provided into a directory. PicoBlaze SHA-1 Algorithn v1.00
Connect a suitable serial cable (see previous page).
Start a HyperTerminal (or similar) session using 9600 baud, 1 stop and no parity (see following pages). | |eete-3

&/n=0000000AKCE2

Check you have the USB cable connected and the board is turned on. Fama
Double click on the file ‘install_PicoBlaze_DS2432_SHA1_Algorithm.bat’. R
This should open a DOS window and run iMPACT in batch mode to configure the Spartan device. oo i e O

4-Read auth Page

Your terminal session should indicate the design is i
working with a version number and simple menu.

Alternatively use iIMPACT manually to configure the XC3S500E device on the Spartan-3E Starter
Kit via the USB cable with the BIT file provided.

T XILNX]

SPARTAN-3L

%7 Pico3laze

Hint 1 — If you have not reviewed and tried the
previous DS2432 reference design it is highly
recommended that you do so now. The
‘communicator’ reference design will enable you to
become familiar with the DS2432 device.

g T

onnected Gilidi41 ¥T100 (9600 811 T TR g T T T

DS2432 Communicator Terminal settings required (see Hint 2)
9600 baud
Hint 2 — The ‘communicator’ reference design also 1 stop bit
G i documents in detail how to set up HyperTerminal No parity
Xilinx Ltd such that it will work as shown in the following pages. Append line feeds to line ends.

6" April 2008

Do NOT echo locally typed characters.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 4

http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_ds2432

Initial Response and Menu

After configuring the Spartan-3E with the design your terminal should display a simple message, some information about the DS2432 on your board and a
menu with four options. These options correspond with four of the memory and SHA Functions offered by the DS2432 device.

From the ‘communicator’ reference design you will recall that these commands are only accessible after a master reset has been issued followed by one of
the ROM commands. In this design, PicoBlaze automatically issues a master reset and checks for the corresponding ‘presence pulse’. If no presence pulse is
received it will keep issuing master reset pulses until it does. Then PicoBlaze will automatically follow on with a Read ROM command.

code=33
s~n=000000CARC92
cro=hC

Pass

l1-Write scratchpad
Z-Read scratchpad
3-Load first secret
4-Head auth Page

Enter your selection (1 to 4) to proceed.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 5

PicoBlaze SHA-1 Algorithm w1.00 _—

Message confirms design is loaded.
If nothing is displayed after this message, it means that the DS2432 is
not responding to the master reset on your board.

This is the response to the read ROM command. It should show the family code of the DS2432 as '33’
hex followed by the unique 48-bit serial number (or registration number) of the device fitted to your
board. This number is used later in the SHA-1 algorithm. The 8-bit CRC is also tested by PicoBlaze and
a ‘Pass’ or ‘Fail’ status be given.

The main purpose of this reference design is to exercise and experiment with the SHA-1 algorithm.
Option ‘4’ will execute the Read Authenticated Page command for memory page 0 which will result in the
DS2432 generating a 160-bit message authentication code (MAC). This option will also invoke PicoBlaze
to execute the SHA-1 algorithm such that the MAC received from the DS2432 can be compared.

Since the MAC can only match if the 64-bit secret programmed in the DS2432 is the same as that used
by PicoBlaze, it is necessary to program the secret. Options ‘1’, ‘2’ and ‘3’ help you to program a 64-bit
secret into the DS2432 memory as well as define a 3-byte ‘challenge’ which is also fundamental to the

SHA-1 algorithm.

It is hoped that each option has been implemented in a such a way as to allow you to experiment and
prove that the SHA-1 algorithm will only result in matching MAC’s for identical secrets and challenges.
However, this does mean that you should follow the next pages carefully to understand what each option
does and does not do.

http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_ds2432

SHA-1 Failure!

The PicoBlaze program has been assembled with the 64-bit secret code ‘01 23 45 67 89 AB CD EF’ (hex). Obviously this can be changed if you modify the
program. Although this is rather silly choice for a ‘secret code’, it is highly unlikely that your DS2432 is programmed with the same secret unless you have
already programmed it the same following the example shown in the ‘communicator’ design. So if you execute the read authenticated page command (menu
option 4) the MAC received from the DS2432 will fail to match that computed by PicoBlaze as shown in this example below.

The DS2432 responds to the Read Authenticated Page command by sending back the 32

/ Option ‘4 bytes programmed into page. In this design, page 0 is always specified so the address range
54 is from 0000 to 001F as indicated on the left of the screen. In this example the memory page
oooo 00 00 00 00 00 OO0 00 0o read was still blank (un-programmed). The 32-bytes provide 50% of the information used by
onooa o0 o0 00 oo oo oo oo oo the SHA-1 algorithm. The DS2432 sends a single byte ‘FF’ after the data.

ao1iao oo oo o0 0o o0 oo 00 oo

oois oo oo oo oo ob 00 00 00 The command byte, page address and page data are used to form a 16-but CRC value which

§5c=DD6D 1 PicoBlaze also computes. ‘Pass’ indicates that the CRC value matched and shows that there
Pocs were no communication errors. Good communications are vital if a MAC is ever to match.

mac=87 F5 &C 94 F1 FD EC 3B 32 3F EO 39 13 8 58 37 38 20 7D 4a
Fail —l
cre=006a0C
Pass
A

PicoBlaze also computes the SHA-1 algorithm at the same time as the DS242. The 160bit
MAC computed by the DS2432 is then read back as 20 bytes. These 20 bytes are displayed as
well as being compared with the equivalent bytes of the PicoBlaze computed MAC.

If any of the 160-bits of the MAC do not match, then a ‘Fail’ message is displayed. This indicates
that either the secret stored in the DS2432 is not correct and/or the 3 byte challenge is not
consistent. In this example the secret was definitely incorrect.

code=33
s-n=000000CaaC592
crc=HC

Pass

l1-Write scratchpad
Z2-Read scratchpad
3-Load first secret
4-Fead auth Page

A second 16-bit CRC is generated based on the 20-bytes describing the MAC. This CRC is also
computed by PicoBlaze and compared with the value received. This will indicate if the MAC was
corrupted during communication. The ‘Pass’ in this example tells us that it really was the MAC
which failed to match since the communication was reliable.

> The DS2432 will send ‘AA’ hex until it is reset. PicoBlaze reads just one of these ‘AA’ bytes
before repeating the master reset and read ROM commands.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 6

Writing a Secret — part 1

To write your 64-bit secret into the DS2432 is a two stage process. First you need to put the secret into the DS2432 scratch pad memory using a Write
Scratchpad command, and secondly, to copy the contents of the scratchpad into the EEPROM array using the Load First Secret. The next 3 pages show the
programming of the 64-bit secret code ‘01 23 45 67 89 AB CD EF’ required to match the reference design as supplied. A real application would definitely use
a different and more obscure secret!

Option ‘1’ is the Write Scratchpad command.

w1 / When prompted for the address you should enter 0080 which is the memory location for the secret. If you
addrass=0080 use any other address then the DS2432 will not allow your secret to be stored during the Write First Secret
datal=01 N command.

datal==23

datal=45 You are then prompted to enter the 8 bytes defining the 64-bit secret. ‘data0’ is the least significant byte
datai=g7 >// and will eventually be stored at address 0080. ‘data?7’ is the most significant byte and will eventually be
datad=89 stored at address 0087. Enter each byte value as prompted. If you enter an illegal hexadecimal character
datab=ab you will be prompted to enter that byte again. If you make a mistake entering the secret, don’'t worry, jut
datab=cd repeat the write scratchpad command again.

data7=af 7

cro=FORE 1

Pass J The 16-bit CRC confirms that communication with the DS2432 is reliable.

Hint — It is a good idea to confirm your write of the scratchpad memory using the Read Scratchpad

code=33 command (option 2). This lets you confirm that you entered the address and the data for the secret
5-/n=000000CAACHZ correctly before you actually copy it into the EEPROM array. This is particularly important since you
;rc =BC can not directly read back and verify the secret (for obvious reasons!).

=R=1=]

/ Option 2’ is the Read Scratchpad command.

1-Write scratchpad ;czidress=lil|:|8|:| Correct address of secret.
%—Eeag ?r_:ratchpad E~3=5F Note E/S register reports ‘5F’

-Load first secret data= 01 23 45 67 89 AB CD EF

cro=E4D6 Correct data for secret.
Pass }“-_~___ .
16-bit CRC

4-Head auth Page

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 7

Writing a Secret — part 2

When you are happy that the secret is correctly defined, you can move on to actually writing the secret into the memory array of the DS2432.

/ Option ‘3 is the Write First Secret command.
»3

Providing the address specified was correct and the E/S register of the DS2432 was ‘5F’ then the secret
secret Pass should successfully transfer into the non-volatile memory at the protected (un-readable) locations. At this
stage, the only indication of success is if the DS2432 responds with ‘AA’ hex when read. PicoBlaze reads
the DS2432 and reports ‘secret Pass’ if this is the case.

code=33 If the write to the array was not successful the DS2432 responds with ‘FF’ hex and PicoBlaze will indicate
s-/n=000000CAACYZ his with a ‘secret Fail’ message. This will happen if you did not specify the correct address (0080) for the
cro=BC location of the secret or the E/S register was not value ‘5F’ indicating that the DS2432 was ready to write the
Pass array in the first place.

>3 Wrong address or DS2432 not

1-Write scratchpad
Z-Read scratchpad
3-Load first secret
4-Head auth Page

secret Fail — ready to write secret (E/S#5F)

Hint — Use the Read Scratchpad command (option 2) to again confirm that you wrote the correct

/ secret and see form the E/S register that the write was sucessful.
2

addres=s=0080

E/S=DF Note that the E/S register changes from ‘5F’ to ‘DF’ indicating a
data= 01 23 45 A7 A9 AR D EF successful write of the non-volatile array.

cro=22B7

Pass

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 8

Set the Challenge Bytes

The SHA-1 algorithm computes the MAC based on an input of 16 words of 32-bits. That is a total of 64 bytes which are made up as follows:-
32-bytes are the contents of the page being authenticated and provided at the start of the read authenticated page command.
8-bytes are the secret which no one can read directly and should normally be a complete secret unlike in this design!

6 bytes are the unique serial number of your DS2432 device which is known from the read ROM command.
15-bytes are constants (at least within the confines of the read authenticated page 0 command)
3-bytes are a challenge which we are about to set with a Write Scratchpad.

The 3-byte challenge is set using the scratchpad memory of the DS2432. This is easy to achieve with the Write Scratchpad command. Since the 32-bytes of
page memory are not easy to change and all the other bytes are essentially fixed for the given device, the 3-byte challenge is the only quick way to cause
different MACs to be generated by the SHA-1 algorithm. In practice, the 3-byte challenge allows 16,777,216 to be generated and this is useful in preventing
‘copy-cat’ or ‘playback’ attacks on security.

Use option ‘1’ to execute the Write Scratchpad command.

»1
address=0000
datal=00

datal=00
data?=00 The challenge bytes are those in locations 4, 5 and 6 of scratchpad memory. All other bytes will be

data3=00n ignored by the SHA-1 algorithm.
datad=245
dataS=2h
datab=5C

Any address can be used below because the data is never going to be copied into the memory array
/ of the DS2432. However, the DS2432 will reject addresses above 0090 hex.

data?=00
cro=EC35
FPass

The 16-bit CRC indicates if the communication was reliable.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 9

Making SHA-1 Pass!

Assuming that the correct secret is now stored in the DS2432 and a ‘challenge’ has been set in the scratchpad memory, we can now expect the SHA-1
algorithms implemented in the DS2432 and PicoBlaze to compute the same MAC. This is where you may be disappointed to discover that the report is still of
failure on your first attempt!

S q Option ‘4’ executes the Read Authenticated Page command

goon 00 00 00 00 00 00 00 OO0
ooog 00 00 00 00 00 00 00 OO0
ao1n g0 00 00 00 00 00 00 OO0
oo1g g0 00 00 00 00 00 60 00

FF

cro=0D6D

Pass

?Zri:;?;l 33 27 13 F9 Cg 9F 3B 59 88 03 47 21 DE DO 59 20 9F 8E Ed The MAC from the DS2432 (as displayed) has stil
cro=7 684 failed to match with the PicoBlaze

Pass

AR

The reason for this failure is purely down to the experimental properties of the PicoBlaze reference design. Indeed, this is a deliberate mechanism to help you
prove that the challenge byes have an effect on the MAC. For PicoBlaze to generate the same MAC, it must also use the same 3-byte challenge. However,
when you use the Write Scratchpad command (option ‘1°) you only tell the DS2432 what the challenge is and the PicoBlaze SHA-1 algorithm continues to use
an older value. In order to give the PicoBlaze SHA-1 algorithm the same challenge, you must execute a Read Scratchpad command which will cause the
contents of the DS2432 scratchpad to be copied and used by PicoBlaze.

Option ‘4’ executes the Read Authenticated

Option ‘2’ reads the challenge and gives it to _ ' .
/ PicoBlaze SHA-1 algorithm s d Page command. Note that the DS2432 is
»2

0000 00 00 00 00 00 00 00 00 generating the same MAC because the
address=0000 0Ooo0s 00 00 00 00 00 00 00 oo challenge has not changed but now PicoBlaze
E~Q=C5F ao1o 00 00 00 00 00 o0 00 0o is able to compute a matching MAC.
data= 00 00 00 EIDIAS 26 SCIIIIIII ools 00 00 OO0 OO 0O 00 00 o0
cre=0223 FF
Pacs croc=0D6D

Pass

mac=74 33 27 13 F9 Ch 9F 3B 59 858 03 47 21 DB DO 59 20 9F 8B E9

Fass \
Hint — Read Scratchpad is always a good idea to cro=708A

confirm that the challenge is correctly set and both SEISS @
. . : . . b
parties are working with the same information.

Note- Even with the same secret and challenge, the computed MAC on your
board will be different because of the unique serial number of each DS2432.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 10

Design Files

For those interested in the actual design implementation, the following pages provide some details and an introduction to the source files provided. This
description may be expanded in future to form a more complete reference design. As well as these notes, the VHDL and PicoBlaze PSM files contain many
comments and descriptions describing the functionality. You are again recommended to study the ‘PicoBlaze DS2432 Communicator’ reference design
before proceeding with this document which focuses specifically on the implementation of the SH1-algorithm.

The source files provided for the reference design are.....

picoblaze_DS2432_SHA1_algorithm.vhd Top level file and main description of hardware.

I/O constraints file for Spartan-3E Starter Kit

""""" picoblaze_DS2432_SHA1_algorithm.uct and timing specification for 50MHz clock.

— kecpsm3.vhd PicoBlaze processor for Spartan-3E devices.

— shailprog.vhd Assembled program for PicoBlaze (stored in a Block memory)

R ERE shaiprog.psm PicoBlaze program source assembler code

L uart_tx.vhd)
i: kc_uart_tx.vhd
bbfifo_16x8.vhd
UART transmitter and receiver with 16-byte FIFO buffers.
L— uart_rx.vhd
i: kc_uart_rx.vhd
bbfifo_16x8.vhd |

Note: Files shown in green are not included with the reference design as they are all provided with PicoBlaze download. Please visit the PicoBlaze
Web site for your free copy of PicoBlaze, assembler and documentation.

www.Xxilinx.com/picoblaze

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 11

http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_ds2432
http://www.xilinx.com/picoblaze
http://www.xilinx.com/products/boards/s3estarter/reference_designs.htm#picoblaze_ds2432_sha1

PicoBlaze Design Size

The images and statistics on this page show that the design occupies just 176 slices and 1 BRAM. This is only 3.8% of the slices and 5% of the BRAMs
available in an XC3S500E device and would still be less than 19% of the slices in the smallest XC3S100E device.

MAP report
Number of occupied Slices: 176 out of 4,656 3%
Number of Block RAMs: 1 out of 20 5%

Total equivalent gate count for design: 80,878

FPGA Editor view

Pt TR

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 12

PicoBlaze, the UART macros and ‘W, buffer make extensive use of the
distributed memory features of the Spartan-3E device leading to very
high design efficiency. If this design was replicated to fill the XC3S500E
device, it would represent the equivalent of over 1.5 million gates. Not
bad for a device even marketing claims to be 500 thousand gates ©

Floorplanner view

R

Demands of the SHA-1 Algorithm

This functionality of this reference design is implemented almost entirely by a single PicoBlaze processor. In order to communicate with the DS2432 device it
implements the 1-wire protocol and navigates the operational state machine associated with the commands. In many ways, these functions are ideal for
PicoBlaze because they are very much ‘control’ and ‘state machine’ in nature. Another observation about these functions is that they only require a small
number of variables to be handled for which the 8-bit registers are nearly always sufficient.

In looking at the SHA-1 algorithm we see a different kind of demand being placed on PicoBlaze. This is much more a ‘data processing’ application and begins
to push the capability of what is really a controller. Fortunately there is no real demand to perform the SHA-1 algorithm at high speed and the algorithm is
small enough to fit comfortably in the sit in the 1024 instructions of program space. The solution actually requires 219 instructions to describe the actual SHA-
1 algorithm and this executes in approximately 2.9ms (at 50MHz) which is similar to the time taken by the DS2432.

However, there is one particular demand placed on PicoBlaze by the algorithm and that is the need to deal with more variables and data than it can hold

internally. It is therefore necessary to add external memory via the input/output ports which the PicoBlaze program can then access as required. Of course,
this ‘external’ memory is still inside the same Spartan-3E device.

Variables and Constants

The SHA-1 algorithm fundamentally a pair of processes with variations which must be executed 80 times (=0 to t=79) to generate the Message
Authentication Code (MAC). So the first variable required is the one which counts these iterations and this is within the range of a single register (‘sE’ is
used).

One process involves five variables called ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’ which are initialised with constants and eventually describe the MAC. These variables are 32-
bits and require 4 bytes. That means that these variable alone require 20 bytes to store and this exceeds the 16 registers available in PicoBlaze. However, it
is possible to store these variables in the 64-bytes of internal scratchpad memory and then use sets of 4 registers as temporary storage whilst manipulating
them. There is also a requirement for four other constants referred to as ‘Kt’, but as with the initialisation of the variables these can be described within
instructions and need no specific storage space.

The other process is used to generate a variable called ‘Wt'. This is also 32-bits and can be treated as a temporary value stored in registers. Whilst that is not
an issue, the challenge is that each ‘Wt’ is computed from a pool of 16 variables which are again all 32-bits. That demands another 64-bytes of storage space
which just isn’t available inside PicoBlaze. Because this is the critical demand and defines the hardware of the design, the following pages will focus on this
aspect first.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 13

W, Buffer holds ‘M’ words

The SHA-1 algorithm takes as input 16 words of 32-bits. These words are called ‘M0’ through to ‘M15’ and are initialised in three different ways by the
DS2432 depending on the command being executed (see DS2432 data sheet for details). This design implements Read Authenticated Page command, but
obviously the ‘M’ words could be set for the other commands and this has no effect on the actual implementation of the SHA-1 algorithm which then reads
them to produce a specific MAC.

Generic Table For the Read Authenticated Page 0 command the ‘M’ words are as follows...

[31:24] [23:16] [15:8] [7:0] [31:24] [23:16] [15:8] [7:0]
MO MO_byte3 MO_byte2 MO_byte1 MO_byte0 MO secret0 secrett secret2 secret3
M1 M1_byte3 M1_byte2 M1_bytet M1_byteO M1 page_data0| page_datal| page_data2| page_data3
M2 M2_byte3 M2_byte2 M2_byte1 M2_byte0 M2 page data4| page_data5| page_data6| page data7
M3 M3_byte3 M3_byte2 M3_bytet M3_byte0 M3 page_data8| page_data9| page datal0] page_dataili
M4 M4_byte3 M4_byte2 M4_bytet M4_byte0 M4 | page_datal2| page datal3| page_datai4] page datal5
M5 M5_byte3 M5_byte2 M5_bytet M5_byte0 M5 | page_datal6| page datal7| page_datal8| page datal9
M6 M6_byte3 M6_byte2 M6_byte1 M6_byte0 M6 | page_data20| page data21| page_data22| page data23|
M7 M7_byte3 M7_byte2 M7_bytet M7_byte0 M7 | page_data24| page data25| page_data26| page data27
M8 M8_byte3 M8_byte2 M8_byte1 M8_byte0 M8 | page_data28| page data29| page_data30| page data31
M9 M9_byte3 M9_byte2 M9_bytet M9_byte0 M9 FF hex FF hex FF hex FF hex
M10 | M10_byte3 M10_byte2 M10_byte1 M10_byte0 M10 40 hex 33 hex Serial No 0 | Serial No 1
M11 | M11_byte3 M11_byte2 M11_bytel M11_byte0 M11 | Serial No 2 | Serial No 3 | Serial No 4 | Serial No 5
M12 | M12_byte3 | M12_byte2 | M12_bytel | M12_byte0 M12 secret4 secretb secret6 secret7
M13 | M13_byte3 M13_byte2 M13_byte1 M13_byte0 M13 | scratchpad4 | scratchpad5 | scratchpad6 80 hex
M14 | M14_byte3 | M14_byte2 | M14_bytel M14_byte0 M14 00 hex 00 hex 00 hex 00 hex
M15 | M15_byte3 | M15_byte2 | M15_bytel M15_byte0 M15 00 hex 00 hex 00 hex B8 hex

What the table does show is that 64-byes of storage are required so that these ‘M’ words can be set up before calling the SHA-1 algorithm itself. During the
first 16 iterations of the SHA-1 algorithm (t=0 to t=15) the temporary variable called ‘Wt is a simple assignment of each ‘M’ word.

For iterations t=0 to t=15
Wt = Mt
(e.9. Wg=M,)

This is obviously very easy to implement as it only requires the appropriate 4-bytes value to be read from the
initial table of values. If this were the only use of this 64-byte storage then it would be possible to avoid it and
create each ‘M’ word dynamically as part of the SHA-1 algorithm. However, the remaining 64 iterations require
something more significant than this simple value assignment.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 14

W, Buffer holds "W’ words

Each iteration of SHA-1 algorithm generates a ‘Wt word (32-bits) and we have seen that the first 16 of these are just copies of the original table of ‘M’ words.
The remaining 64 ‘Wt words involve some computation and a history of previous values of ‘Wt'.

For iterations t=16 to t=79
W, = rotate_left_1_place(W, ; XOR W, ; XOR W, ,, XOR' W, ;)

e.g. W,, =rotate_left_1_place (W,; XOR W, XOR W,, XOR Wj)

The EXCLUSIVE-OR operations are easy enough to achieve, as is the rotate left, but the key is to access the older ‘W’ words. As the suffix suggests in
each case, it is necessary to access the value of Wt which were generated 3, 8, 14 and 16 iterations before. This again leads to the fundamental
requirement for a buffer of 16 words or 64-bytes. Fortunately there is an opportunity to use the same buffer storage as that used to hold the 16 initial ‘M’
words because after they have been read during the fist 16 iterations they are not read directly again. Of course, the values of W, through W, are actually
the same as the original MO through M15 values and will be used during iterations 16 to 31.

[31:24] [23:16] [15:8] [7:0]
W. ——»| Wt-1_byte3 -Wi-+—byter—-Wi-byte+— Wt-1_byte0
t Wt-2_byte3 || Wt-2_byte2 | Wi-2_byte1 || Wt-2_byteO

Wt-3_byte3 || Wt-3 byte2 | Wt-3 bytel [|Wt-3 byted —— Wt 3 So in some way the 64-byte buffer must be arranged
Wt-4_byte3 || Wt-4_byte2 | Wi-4_byte1 || Wi-4_byte0 A and controlled in such a way that it can be initialised with
Wt-5_byte3 || Wt-5_byte2 | Wt-5_byte1 || Wt-5_byte0 the ‘M’ words and then always hold the last 16 ‘Wt’
Wt-6_byte3 || Wt-6_byte2 | Wt-6_byte1 |[Wt-6_byteo words in such a way that 4 of them can be read. As this
Wt-7_byte3 || Wt-7_byte2 | Wt-7_byte1 || Wt-7_byte0 diagram indicates, it is as if the contents of the memory
Wt-8_byte3 || Wt-8 byte2 | Wt-8 bytel || wt-8 byted f——> Wt g must all move down by one place such that the new
Wt-9_byte3 || Wt-9_byte2 | Wt-9 byte1 || Wt-9_byte0) value can be stored and the oldest data is lost. This is
Wt-10_byte3 || Wt-10_byte2 [Wt-10_byte1 [[Wt-10_byte0 very similar to a FIFO, but always with the same number
Wi-11_byte3 || Wi-11_byte2 | Wit-11_byte1 |[wt-11_byte0 of words stored and the ability to snoop internal values
Wita—bytead | Wt-12_byte2 [Wi-12_byte1 [bwit2—-bye0 as well as the first to be written (oldest).

Wt-13 Dyte3 | Wt-13 byte2 [Wi-13 bytet [w8 byteo
Wt-14_byte3 W14 _byte2 [Wt-14_byter{Wt-14_byte0 —> \\/
Wt-15_byte3 | Wt-15~yte2 | Wi-15-Bytet [Wt-15_byteo
Wt-16_byte3 | Wt-16_byte2Wt-16_bytet [Wt-16_byte0 ——» \\/

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 15

W, Buffer using RAM

PicoBlaze is an 8-bit processor and the communication protocol of the DS2432 is also byte based (across a serial connection). It therefore makes total sense
to implement the buffer as 64-bytes rather than 16-words. Memory (RAM) provides the most eff|0|ent way to implement the 16 word buffer (64-bytes). Spartan
devices contain Block Memories each of which provide 2k-bytes and would be excessive and wasteful in this application. So in this case, the smaller
distributed memory option is far more attractive and efficient. In fact this is the very same way in which the scratch pad memory inside PicoBlaze is
implemented. Distributed memory is ability to use the look-up tables (LUTs) contained in the slices of a Configurable Logic Blocks (CLB) as RAM. Each LUT
can implement a 16x 1-bit memory so when the four LUTs contained in two ‘slices’ are combined you have a 64x 1-bit memory. Therefore 16 slices can

implement a 64 byte RAM and would be ideal for the W, buffer.

PicoBlaze . 64x8 RAM
Other [7:0] . _
INPUL e IN_PORT OUT_PORT DI[7:0] DOI[7:0]
Ports WRITE_STROBE N\
- - WE
PORT_ID)
- [5:0_{ Aj6:0]

There is absolutely nothing wrong with this approach
although it does becomes the responsibility of the PicoBlaze
software to keep track of where each data word was stored.
A ‘cyclic buffer’ would be implemented in which the newest
data is always written to the location of the oldest data. This
requires a ‘memory pointer’ to be maintained for which a
single register would be suitable. Adding to the software
complicity is the requirement to read back the ‘W’ words
written 3, 8, 14 and 16 iterations before which requires some
address computation in order to access the correct data.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 16

Memory
pointerto T —»

A simple 64-byte memory has 6 address lines. This
simplified circuit diagram shows how this can be
mapped to the PicoBlaze port address range CO to FF.
The use if input/output instructions with indirect
addressing (e.g. OUTPUT s5,(s8)) will need to be used
to write and read to different locations during each
iteration of the algorithm.

CO0 FF

4 locations hold the bytes
for a given ‘W, .’ word

\

Data remains in same locations but
the base memory pointer advances

by 4 locations as the oldest word is
over-written by the newest word.

Base + offset
allows older ‘W;’ value to be read.
This must wrap round to CO from
FF in this memory map.

W, Buffer Using SRL Technique

Although the simple memory approach is valid, it is possible to exploit distributed memory to provide PicoBlaze with an application specific memory structure.
In this alternative implementation, the 64-bytes will be organised as a shift register which completely obviates the requirement to address the memory
structure; it will naturally allow each new ‘Wt word to be shifted in and cause the oldest ‘Wt-16" word to be pushed out (and lost). Spartan LUTs can be
configured to provide a shift register up to 16-bits long using the SRL16E mode. Additionally, the SRLC16E mode implements a 16-bit shift register with a
secondary tapping point. The diagram below shows how these are combined with dedicated multiplexers to implement a byte-wide shift register with a length
of 64 which can be read from any location. This takes the same 16-slices as normal RAM.

CE
8x SRLC16E 8x SRLC16E 8x SRLC16E 8x SRL16E
Wo CE

CE CE
= Q15 Q15 Q15
\\ \ /
Q Q Q
A[3:0]
Al4] ?

|—@ 8x MUXF5 —@ 8x MUXF5

Al5]
A[SZO] 8x MUXF6
wt_buffer

Wis Wi1g
A[5:0]=1Cto 1F A[5:0] =34 to 37

Each ‘W’ word is stored as 4 bytes. Providing that all 4 bytes of the new ‘W’ word are shifted in, then all the older words move along so that they can always
be read from the same physical addresses. The initial ‘M’ words will also need to be stored by writing them in ascending order. In fact, this is a direct
implementation of the buffer shown as a table on page 15 and can be called a ‘history buffer’.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 17

PicoBlaze Circuit Diagram

baud_timer Decode 325

counter

‘JTAG_loader’ allows rapid
PicoBlaze code development. ds_wire

en_16_x_baud

clk baud_count

program_rom

uart_rx receive input_ports shalprog - J
rx female proc_reset
H serial in rx_data instruction
- data_out iu)
read_from_uart %
read_buffer rx full o —) clk address
en 16 x baud buffer_full e . g
—_— | £ .
en_lé_x_baud rx_half_full 5|2 7
buffer_half_full - /] g o 0
reset_buffer 6 7 Y]
— 3 kepsm3 processor H
© 1%
— clk rx_data_present J 5
buffer_data_present instruction address
UART macros include 16-byte g’ infport out_port
FIFO buffers D]‘ in_port
uart_tx . @ write_strobe L J
transmit 4{_0)
out_port 2 read_strobe
data_in tx_femaleD n port_id
write_to_uart serial_out reset port_id - 3
write_buffer 0y S
Q
I
en_16_x_baud MR
en_16_x_baud tx_full A D o out_port
buffer_full interrupt interrupt_ack (”|)
-
reset_buffer tx_half_ full K g
puffer_half_full [——————" o
C|k%D clk = read_from_uart
= cix g g
interrupt interrupt_ack
write_w_buffer o— \ write_to_uart
CE 64x8 buffer 2 /
out_port .
D H H See previous page for
—>Al5:0 internal details of the ﬂ)
. t buff
A\ / 64x8 buffer , prerenopur et
[5:0] L/
wt_buffer

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 18

Software Access to W, Buffer

CONSTANT W_word_write_port, 10 ;Write byte
7
CONSTANT Wt_minus3_byteO_read_port, 08 ;Read of Wt-3
CONSTANT Wt_minus3_bytel_read_port, 09
CONSTANT Wt_minus3_byte2_read_port, O0A
CONSTANT Wt_minus3_byte3_read_port, 0B
7
CONSTANT Wt_minus8_bytelO_read_port, 1C ;Read of Wt-8
CONSTANT Wt_minus8_bytel_read_port, 1D
CONSTANT Wt_minus8_byte2_read_port, 1E
CONSTANT Wt_minus8_byte3_read_port, 1F
7
CONSTANT Wt_minusl4d_byteO_read_port, 34 ;Read of Wt-14
CONSTANT Wt_minusl4_bytel_read port, 35
CONSTANT Wt_minusl4d_byte2_read_port, 36
CONSTANT Wt_minusl4d_byte3_read port, 37
7
CONSTANT Wt_minusl6_byteO_read _port, 3C ;Read of Wt-16
CONSTANT Wt_minusl6_bytel_ read_port, 3D
CONSTANT Wt_minusl6_byte2_read_port, 3E
CONSTANT Wt_minusl6_byte3_read_port, 3F
INPUT s9, Wt_minusl6_byte3_read_port
INPUT s8, Wt_minusl6_byte2_read_port
INPUT s7, Wt_minusl6_bytel_read_port
INPUT s6, Wt_minusl6_bytelO_read_port
COMPARE sE, 10
JUMP C, store_Wt \)
store_Wt: OUTPUT s9, W_word write_port

OUTPUT
OUTPUT
OUTPUT

s8, W_word_write_port
s7, W_word_write_port
s6, W_word_write_port

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 19

The PicoBlaze software completes the processing of ‘Wt' words
by interacting with the external history buffer.

The SRL16E approach to implementing the buffer means that
input/output instructions using direct addressing are possible. The code
provides defines each address of interest as a constant to make the
process code easier to understand and to make the whole design easier
to maintain.

Using the constants, it is a simple task to copy ‘Wt words from the
external buffer into a set of internal registers. In this case the set of
registers [s9,s8,s7,s6] are used to read the oldest word W, ;4

s9 s8 s7 s6
W46 = | | | | | | | |

The first 16 iterations only require the ‘M’ word to be copied
}/ directly to form W, through to W,. The register ‘sE’ is used to
count the iterations and enables this selection to be made.

Storing the new ‘Wt word in the buffer only requires the 4 bytes
to be written to the single port. It is vital that the 32-bit word is
consistently written with the significant byte first for the read
locations to correlate.

[s9,s8,57,56]

INPUT s0, Wt_minus14_byte3 read port
XOR s9, sO

INPUT s0, Wi_minus14_byte2 read port
XOR s8, sO

INPUT s0, Wt_minus14_byte1_read port
XOR s7, sO

INPUT s0, Wi_minus14_byte0 read port
XOR s6, sO

INPUT s0, Wt_minus8_ byte3 read_port
XOR s9, sO

INPUT s0, Wt_minus8 byte2 read_port
XOR s8, s0

INPUT s0, Wt_minus8 byte1_read_port
XOR s7, sO

INPUT s0, Wt_minus8_ byte0_read_port
XOR s6, sO

INPUT s0, Wt_minus3_byte3 read_port
XOR s9, sO

INPUT s0, Wt_minus3_byte2 read_port
XOR s8, sO

INPUT s0, Wt_minus3_byte1_read_port
XOR s7, sO

INPUT s0, Wt_minus3_byte0_read_port

Computing W, Values

During iterations t=16 to t=79 (sE register contents = 11 to 4F hex) the following equation needs to be
implemented...

XOR s6, sO

4

v XORW, ;,

\ XOR W,

\ XOR W,

CALL rotate_word_left
rotate_word_left:

[s9,s8,57,56]

TEST s9, 80
SLA s6
SLA s7
SLA s8
SLA s9
RETURN

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 20

W, = rotate_left_1_place(W, 3 XOR W, s XOR W, ;, XOR W, ()

The Exclusive-OR is a bitwise operation so this can be conducted separately on each byte of
the 32-bit word. From the previous page we saw that the value of W,_,; was loaded into the
register set [s9,88,57,s6]. It is in these registers that the final value of W, will be formed by
repeatedly reading a byte from the external buffer and executing an XOR with the appropriate
register. The following diagram illustrates the first four instructions of this process.

s9 s8 s7 s6
Wie= | | | | | [| |
sOXOR
I W, bytes
s9 ﬂ' s8 s7 s6
| | | | | | |
sOXOR
I W, byte2
s9 s8 ﬂ' s7 s6
e | | | | etc....

The 32-bit rotate left is achieved by first copying the MSB into the carry flag using a TEST
instruction and then performing a shift left (with carry) on each byte starting with the least
significant.

s9 CY s8

CY s7 CY s6

TEST 10000000

[

CcY

MAC Variables and Processing

The 5 words used to form the message Authentication Code (MAC) are stored in PicoBlaze Scratch pad memory. Duing the implementation of the main
SHA-1 process, these values are copied into registers where they are manipulated. Since each word is 32-bit, the temporary copies and all manipulations
are carried out using sets of 4 registers. This is clearly seen in the function f(B,C,D)” which takes 3 different forms depending on the iteration (t).

CONSTANT
CONSTANT
CONSTANT
CONSTANT
7

CONSTANT
CONSTANT
CONSTANT
CONSTANT
’

CONSTANT
CONSTANT
CONSTANT
CONSTANT
’

CONSTANT
CONSTANT
CONSTANT
CONSTANT
7

CONSTANT
CONSTANT
CONSTANT
CONSTANT

var_AOQ0,
var_Al,
var_A2,
var_A3,

var_BO,
var_B1,
var_B2,
var_B3,

var_CO0,
var_C1,
var_C2,
var_C3,

var_DO,
var_D1,
var_D2,
var_D3,

var_EOQO,
var_E1,
var_E2,
var_E3,

08
09
0A
0B

0oc
0D
OE
OF

10
11
12
13

14
15
16
17

18
19
1A
1B

;Variable

;Variable

;Variable

;Variable

;Variable

lAl

lBl

lcl

lDl

lEl

Hint — The code supplied contains many comments and
descriptions for the whole algorithm. It is hoped that
these pages have introduced the coding style and
special requirements of the ‘Wt’ buffer such that they
can be understood fully.

PicoBlaze SHA-1 Algorithm for use with DS2432 - page 21

FETCH s9,
FETCH s8,
FETCH s7,
FETCH s6,

var_C3
var_C2
var_Cl1
var_CO0

—=

—=

s5 s4 s2
B= | | | | | |
s9 s8 s6
C=| | | | | |
sD sC sA
C=| | | | | |

The required variation of the function is then selected (using value in ‘sE’)and decomposed into
sections. In this example the function is (B and C) or ((not B) and D) is shown...

B=[s5 | | s4 [|s3 [| s2 |
AND AND AND AND
C=(s9 [| s8 [| s7 [| s6 |
(BAND C) =| s9 [| s8 [| s7 [| s6 |
B=[s5 [| s4 [|s3 [| s2 |
XORFF XORFF XORFF XORFF
/B =]|s5 [| s4 [|s3 [| s2 |
AND AND AND AND
D=|sD []sC [|sB [| sA |
(/BAND D) = | s5 | | s4 [|s3 [| s2 |
OR OR OR OR
(BANDC) = |[s9 [| s8 [| s7 [| s6 |

4 4 4 0

(BAND C) OR (/BAND D) = | s5

[| s4

[|s3

|[s2 |

AND
AND
AND
AND

XOR
XOR
XOR
XOR

AND
AND
AND
AND

OR
OR
OR
OR

s9,
s8,
87,
s6,

s5,
s4,
s3,
s2,

s5,
s4,
s3,
s2,

s5,
s4,
s3,
s2,

s5
s4
s3
s2

FF
FFE
FF
FF

sD
sC
sB
sSA

s9
s8
s
s6

