
SPI FLASH Programmer
for

Spartan-3E Starter Kit

Ken Chapman
Xilinx Ltd
November 2004

Rev.1

PicoBlaze SPI FLASH Programmer 2

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully
received by the author.

Ken Chapman
Staff Engineer - Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using KCPSM3 or the UART macros with information about your
application and how these macros have been useful.

PicoBlaze SPI FLASH Programmer 3

Design Overview
This design will transform the Spartan-3E device on your Spartan-3E Starter Kit into an SPI FLASH programmer. Using a simple terminal program on your
PC such as HyperTerminal, you will be able to program the SPI FLASH device with an MCS memory file defining the configuration for the Spartan-3E device
as well as perform SPI FLASH memory ID check, bulk erase and read operations.

The design is implemented using a single PicoBlaze processor and UART macros occupying under 5% of the XC3S500E device. It is hoped that the design
may be of interest to anyone interested in reading, writing and erasing SPI_FLASH as part of their own applications even if it is not used exactly as provided.

HyperTerminal
(or similar)

RS232
Serial Communication

M25P16
16 Mbit Serial FLASH memory

(STMicroelectronics)

http://www.xilinx.com/products/boards/s3estarter/files/s3esk_picoblaze_spi_serial_flash_programmer.zip

PicoBlaze SPI FLASH Programmer 4

Using the Design
The design is provided as a configuration BIT file for immediate programming of the Spartan XC3S500E provided on the Spartan-3E Starter Kit. Source
design files are also provided for those more interested in the intricacies of the design itself. An example MCS programming file is also provided to enable
you to verify that your set up is working.

Hardware Setup

USB cable.
Used to configure the Spartan-3E

with the PicoBlaze design.

Cable plus devices on board
essentially provide the same

functionality as a Platform Cable
USB to be used in conjunction

with iMPACT.

RS232 Serial Cable.
Used for programming of the SPI

FLASH memory.

Cable connects J9 on the board to
your PC serial port. For this you will

need a male to female straight
through cable (critically pin2-pin2,

pin3-pin3 and pin5-pin5).

+5v supply
Don’t forget to switch on the board too!

(SWP)PC

Idea – The PicoBlaze SPI programmer design could be programmed into the XCF04S Platform
FLASH device so that it can be loaded directly on the board by changing the J30 jumpers.

PROG
button

J30 configuration mode jumpers and selection chart.
It does not matter which settings you have during the JTAG programming of the XC3S500E from via
the USB cable but remember to set correctly (M0=open, M1=M2=short) for configuration from the
SPI FLASH once it has been programmed (press PROG button or cycle power).

http://www.xilinx.com/products/boards/s3estarter/files/s3esk_picoblaze_spi_serial_flash_programmer.zip

PicoBlaze SPI FLASH Programmer 5

Serial Terminal Setup
Once the design is loaded into the Spartan-3E, you will need to communicate using the RS232 serial link. Any simple terminal program can be used, but
HyperTerminal is adequate for the task and available on most PCs.

A HyperTerminal configuration file is also provided with this design with the file name ‘PicoBlaze_SPI_programmer.ht’. It should be possible to copy this to a
your working directory or to your desktop and then launch HyperTerminal by double clicking on it.

Alternatively a new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings
and protocol required by an alternative terminal utility.

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at
Programs -> Accessories -> Communications -> HyperTerminal.

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is
correct for your PC because you can change it later.

3) Set serial port settings.

Bits per second : 115200
Data bits: 8
Parity: None
Stop bits: 1
Flow control: XON/XOFF

Hint – The design uses XON/XOFF flow control. It may be possible to modify
the design and use higher baud rates to reduce SPI programming time .

PicoBlaze SPI FLASH Programmer 6

HyperTerminal Setup

4 - Disconnect

5 - Open the properties dialogue

To select a different COM port and
change settings (if not correct).

6 - Open Settings

7 - Open ASCII Setup

Ensure boxes are filled in as shown.

The design will echo characters that you type so you do not
need the ‘Echo typed characters locally’ option.

The design transmits carriage return characters (ODHEX) to
indicate end of line so you do need the ‘Append line feeds to
incoming line ends’ option to be enabled.

8 - Connect

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are few other protocol settings which need to be set or verified for the PicoBlaze
design.

PicoBlaze SPI FLASH Programmer 7

Configure Spartan-3E
Use iMPACT to configure the XC3S500E device on the Spartan-3E Starter Kit via the USB cable.
An iMPACT project file is provided called ‘configure_PicoBlaze_SPI_programmer.ipf’ or you can set up your own with the BIT file provided.

Configure XC3S500E with provided BIT file
‘spi_flash_memory_uart_programmer.bit’

The warning about ‘JtagClk’ can safely be ignored.

Your terminal session should indicate the design is
working with a version number and simple menu.

The other two devices are in BYPASS mode.

PicoBlaze SPI FLASH Programmer 8

Talking to PicoBlaze

The welcome message
should appear at start.

Commands can be entered at the > prompt in upper
or lower case

Program command waits for file to be sent

Erase commands must be confirmed with an
upper case ‘Y’

Simple menu of commands
(repeat list using ‘H’ help command)

PicoBlaze SPI FLASH Programmer 9

‘H’, ‘I’, ‘E’ and ‘S’ Commands
H – Help command displays the simple menu again.

>i
ID= 20 20 15

>h

PicoBlaze SPI FLASH Programmer v1.00

E-Erase all
S-Sector Erase
P-Program MCS File
R-Read page
I-Device ID
H-Help

I – Read Identification code of the M25P16 ST Microelectronics 16Mbit Serial FLASH memory.

This command is a good way to confirm communication with the SPI FLASH is working.
The expected response is 20 20 15 (please see M25P16 data sheet for details)

E – Erase command will perform a bulk erase of the M25P16 device.

>e

Confirm Erase (Y/n) Y
Erase in Progress

OK
The erase operation can take up to 40 seconds for the SPI FLASH to complete although 20 seconds is
more typical (please see M25P16 data sheet for specification and details).

S – Sector Erase command will erase sectors 0 to 5 only. This covers the address range 000000 to 04FFFFFF which is consistent with the storage of a
configuration file for the XC3S500E device. This command is faster that the ‘E’ command and will leave the upper memory unchanged

>s

Confirm Erase (Y/n) Y
Erase in Progress

OK

The erase operation can take up to 3 seconds per sector (15 seconds total). Typically this command will
take 5 seconds to complete.

Note that the device will be completely erased using this command and hence you will be asked to
confirm the operation with an upper case ‘Y’.

You will be asked to confirm the operation with an upper case ‘Y’.

PicoBlaze SPI FLASH Programmer 10

‘P’ Command
P – Program command.

>p
Waiting for MCS File

First enter the ‘P’ command and a message prompting you for the MCS file will appear.

This is the most important command as it will allow you to program the SPI FLASH device with a configuration bit stream suitable for the XC3S500E to
load from at power up or by pressing the PROG button. Later in the documentation we will consider how to prepare an MCS file and what is actually
happening, but for now this page shows how to program the provided example file ‘LCD_test_design.mcs’ into the memory.

In HyperTerminal, select the ‘Transfer’ menu and then select the ‘Send Text File’ option.
(Note: Do not use the ‘Send File’ option)

Navigate to your working directory and select the desired MCS
file which in this case is ‘LCD_test_design.mcs’.

You will need to change ‘Files of type’ to ‘All files (*.*)’ to see
the MCS files listed.

Once you are happy with your selection click on ‘Open’.

Hint If you accidentally enter the ‘P’ command you can get out by carefully
typing the end of file record found in an MCS file which is…..
:00000001FF

PicoBlaze SPI FLASH Programmer 11

‘P’ Command continued

045380
045390
0453A0
0453B0
0453C0
0453D0
0453E0
0453F0
045400
045410
045420
045430
045440
045450
045460
045470

OK

>

Programming will start immediately and will be indicated by a running display list of hexadecimal numbers.

Each number indicates the address currently being programmed in the SPI FLASH memory as defined in the MCS file. For the
XC3S500E the final address displayed is 045470 and hence this can be used to monitor progress.

Programming will typically take 80 seconds to complete. This time is almost entirely as a result of the RS232 serial interface
and why it will be useful to investigate higher baud rates in future.

The programming will complete with ‘OK’ and a return to the > prompt.

It should now be possible to press the PROG button on the board and a simple design (also using a PicoBlaze)
will drive the LCD display with some messages and then a free running counter.

Remember, that you will need to reload the SPI Programmer if you want to try any of the other commands.

PicoBlaze SPI FLASH Programmer 12

‘R’ Command
A ‘page’ is defined as a block of 256 bytes in the SPI FLASH memory (please see M25P16 data sheet for full details).
This command will display any specified block of 256 bytes which can be used (in part) to verify if the device has been programmed or erased correctly.

P – Read page command.

>r
page address=000000

000000 FF FF FF FF AA 99 55 66 30 00 80 01 00 00 00 07
000010 30 01 60 01 00 00 00 60 30 01 20 01 00 00 3F E5
000020 30 01 C0 01 01 C2 20 93 30 00 C0 01 00 00 00 00
000030 30 00 80 01 00 00 00 09 30 00 20 01 00 00 00 00
000040 30 00 80 01 00 00 00 01 30 00 40 00 50 01 14 9A
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

OK

Hint: Data in an erased device will be ‘FF’ so if you read ’00’ it has been programmed. It is common for a configuration bit file to contain many ’00’
bytes especially if the design is relatively small.

After entering the ‘R’ command you will be prompted to enter a page
address. You should then enter a 6 digit hexadecimal value.

The M25P16 memory has an address range of 000000 to 1FFFFF.

The display will indicate the address of the first byte on each line
followed by 15 bytes from successive memory locations.

Note that the SPI FLASH considers a page to be an address range
xxxx00 to xxxxFF. However this read page command is not restricted to
these boundaries and will always read sequentially for 256 bytes starting
with the address provided.

PicoBlaze rejects incorrect address values but does not support on-line
editing in this version. Please just type in a valid address if you are
prompted again.

PicoBlaze SPI FLASH Programmer 13

MCS files and Device configuration

:020000040000FA
:10000000FFFFFFFF5599AA660C000180000000E089
:100010000C800680000000060C8004800000FCA715
:100020000C800380804304C90C00038000000000A2
:100030000C000180000000900C0004800000000013
:100040000C000180000000800C0002000A8028598A
:1000500000000000000000000000000000000000A0
:100060000000000000000000000000000000000090
:100070000000000000000000000000000000000080
:100080000000000000000000000000000000000070
:100090000000000000000000000000000000000060
:1000A0000000000000000000000000000000000050
:1000B0000000000000000000000000000000000040
:1000C0000000000000000000000000000000000030
:1000D0000000000000000000000000000000000020
:1000E0000000000000000000000000000000000010
:1000F0000000000000000000000000000000000000
etc

An MCS file contains additional information to define the storage address which PicoBlaze interprets as well as obtaining the configuration data. How an
MCS file defines the addresses is beyond the scope of this document at this time, but in general the first lines of the MCS file defining an FPGA
configuration from SPI FLASH will be associated with address zero (000000) and each line contains 16 data bytes to be stored in sequential locations.

If we look at the supplied MCS example file ‘LCD_test_design.mcs’ the first configuration data byes can be identified in each line. Having programmed the
SPI FLASH memory, it is possible to read back those same data bytes with the ‘R’ command with page start address ‘000000’.

000000 FF FF FF FF AA 99 55 66 30 00 80 01 00 00 00 07
000010 30 01 60 01 00 00 00 60 30 01 20 01 00 00 3F E5
000020 30 01 C0 01 01 C2 20 93 30 00 C0 01 00 00 00 00
000030 30 00 80 01 00 00 00 09 30 00 20 01 00 00 00 00
000040 30 00 80 01 00 00 00 01 30 00 40 00 50 01 14 9A
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Start of MCS file with byte data highlighted in blue
‘R’ command

Although the data looks similar, it is not the same. This is because each byte must be bit reversed for configuration of the Spartan-3E device. The MCS file
defines the data assuming each byte is serialised LSB first but an SPI FLASH is actually read MSB first. e.g. ‘0C’ becomes ’30’ (‘00001100’ bit reversed is
‘00110000’)

IMPORTANT Note: PicoBlaze is performing the bit reversal operation during programming which allows a standard MCS file to be used. Do not attempt to
reverse the bit order in the preparation of the configuration MCS file. Also take care if using this design to store raw data.

PicoBlaze SPI FLASH Programmer 14

Preparing an MCS file
This design has been provided so that a ‘default’ MCS programming file generated by the ISE tools can be used. The following indicate how that may be
achieved but is not intended to replace existing documentation for PROM generation.

1) Select ‘Generate PROM’ in Project Manger 2) Select ‘MCS’ for the file format and provide a file name.

You could generate the file for a ‘Xilinx PROM’
such as the XCF04S if you like, but this
sequence will use the ‘Generic Parallel PROM’
even though an SPI memory is really serial!

3) ‘Auto Select PROM’

4) Confirm file generation

5) Add File….

PicoBlaze SPI FLASH Programmer 15

Preparing an MCS file continued

6) Locate the BIT file for your design and ‘Open’ 7) No! 9) Yes!8) Finish

You now have a suitable MCS file to
program into the SPI FLASH memory using
PicoBlaze SPI FLASH Programmer.

PicoBlaze SPI FLASH Programmer 16

Design Files
For those interested in the actual design implementation, the following pages provide some details and an introduction to the source files provided. This
description may be expanded in future to form a more complete reference design.

The source files provided for the reference design are…..

spi_flash_memory_uart_programmer.vhd

uart_tx_plus.vhd

bbfifo_16x8.vhd

kc_uart_tx.vhd

Top level file and main description of hardware.
Contains I/O required to disable other device on eth board which may otherwise interfere with the SPI
FLASH memory communication.

PicoBlaze program source assembler code

kcpsm3.vhd PicoBlaze processor for Spartan-3E devices.

spi_prog.vhd

uart_tx.vhd

bbfifo_16x8.vhd

kc_uart_tx.vhd

UART transmitter and receiver with 16-byte FIFO buffers.

spi_flash_memory_uart_programmer.ucf I/O constraints file for Spartan-3E Starter Kit
and timing specifications for 50MHz clock.

spi_prog.psm

Assembled program for PicoBlaze (stored in a Block memory)

Note: Files shown in green are not included with the reference design as they are all provided with PicoBlaze download. Please visit the PicoBlaze
Web site for your free copy of PicoBlaze, assembler and documentation. www.xilinx.com/picoblaze

‘uart_tx_plus.vhd’ is the same as the ‘uart_tx.vhd’ supplied with PicoBlaze
except that the ‘buffer_data_present’ signal has also been brought out to
provide better support for XON/XOFF flow control.

PicoBlaze SPI FLASH Programmer 17

PicoBlaze Design Size
The images and statistics on this page show that the design occupies just 156 slices and 1 BRAM. This is only 3.3% of the slices and 5% of the BRAMs
available in an XC3S500E device and would still be less than 17% of the slices in the smallest XC3S100E device.

Number of occupied Slices: 156 out of 4,656 3%
Number of Block RAMs: 1 out of 20 5%

Total equivalent gate count for design: 78,710

PicoBlaze and the UART macros make extensive use of the distributed
memory features of the Spartan-3E device leading to very high design
efficiency. If this design was replicated to fill the XC3S500E device, it
would represent the equivalent of over 1.5 million gates. Not bad for a
device even marketing claims to be 500 thousand gates �

MAP report

FPGA Editor view Floorplanner view

XC3S500E

PicoBlaze Circuit Diagram

buffer_full

uart_rx receive

serial_in

clk

data_out

reset_buffer

buffer_data_present

en_16_x_baud

read_buffer

buffer_half_full
rx_half_full

rx_full

rx_data_present

read_from_uart

rx_data
rx_female

buffer_full

uart_tx_plus
transmit

data_in

clk

serial_out

reset_buffer

en_16_x_baud

write_buffer

buffer_half_full

tx_half_full

tx_full

out_port
tx_female

write_to_uart

5

baud_count

Decode 26

clk

en_16_x_baud

UART macros include 16-byte
FIFO buffers

baud_timer

buffer_data_present
tx_data_present

strataflash_oe

strataflash_ce

strataflash_we

platformflash_oe

Vcc

counter

s
t
a
t
u
s
_
p
o
r
t

*
*
*

*

* Other devices on the Starter Kit board
must be disabled to prevent interference

with SPI FLASH. Some connect to
PicoBlaze to enable software to disable

or use for future development.

interrupt_control

XOR

rx_half_full_event

‘JTAG_loader’ allows rapid
PicoBlaze code development.

port_id

kcpsm3 processor

instruction

write_strobe

clk

out_port

read_strobe

address

reset

interrupt_ackinterrupt

in_port

i
n
s
t
r
u
c
t
i
o
n

a
d
d
r
e
s
s

spi_prog

program_rom

instruction

addressclk

port_id

w
r
i
t
e
_
s
t
r
o
b
e

out_port

read_strobe

interrupt_ack

interrupt

in_port

JTAGproc_reset

clk

k
c
p
s
m
3
_
r
e
s
e
t

10

spi_sdo

spi_amp_sdo
*

spi_sdi

spi_amp_cs

spi_rom_cs

spi_sck

spi_amp_shdn

spi_dac_cs

spi_adc_conv

spi_dac_clr
*
*
*
*
*

read_from_uart

write_to_uart

input_ports

0
1

4

3

2

PicoBlaze SPI FLASH Programmer 19

SPI Communication
The Serial Peripheral Interface (SPI) is formally described as being a full-duplex, synchronous, character-oriented channel employing a 4-wire interface. In
this case the PicoBlaze in eth Spartan-3E is the master and the SPI FLASH memory is the slave.

SDOSDI

Master

QD

SLAVE
SCK C

S

CS
QD

C
S

7 6 5 4 3 2 1 0

slave

Master

SLAVE

Bytes describing commands, addresses or data are all transmitted MSB first by the master. As each bit is transmitted, the slave also transmits a bit allowing
one byte to be passed in each direction at the same time. In the case of the FLASH memory, this full duplex capability is not used, but it is still necessary to
transmit ‘dummy’ bytes when receiving and ignore received ‘dummy’ bytes when transmitting.

Each bit is transmitted or received relative to the SCK clock. The system is fully static and any clock rate up to the maximum is possible. The M25P16
captures data (D) on the rising edge of SCK and changes the output data (Q) on the falling edge of SCK.

Communication is only possible with the M25P16 device when the select signal (S) is Low. Therefore the PicoBlaze master is responsible for controlling the
select signal before transmitting the command byte and then transmitting or receiving any associated bytes. In the cases of writing or erasing the M25P16, it
is the release (setting High) of the select line which actually executes the command.

PicoBlaze SPI FLASH Programmer 20

Software SPI Communication
PicoBlaze is used to implement the SPI communication 100% is software. The fundamental byte transfer routine is shown below. The ‘s2’ register is used to
supply the data byte (or a dummy byte) for transmission and this will be replaced by the byte data (or a dummy byte) received from the SPI memory.

SPI_FLASH_tx_rx: LOAD s1, 08 ;8-bits to transmit and receive
FETCH s0, SPI_control_status ;read control status bits

next_SPI_FLASH_bit: OUTPUT s2, SPI_output_port ;output data bit ready to be used on rising edge
INPUT s3, SPI_input_port ;read input bit
TEST s3, SPI_sdi ;detect state of received bit
SLA s2 ;shift new data into result and move to next transmit bit
XOR s0, SPI_sck ;clock High (bit0)
OUTPUT s0, SPI_control_port ;drive clock High
XOR s0, SPI_sck ;clock Low (bit0)
OUTPUT s0, SPI_control_port ;drive clock Low
SUB s1, 01 ;count bits
JUMP NZ, next_SPI_FLASH_bit ;repeat until finished
RETURN

The routine generates SCK. Since every PicoBlaze instruction executes in 2 clock cycle and the design uses the 50MHz clock course on the board, the
actual SPI bit rate can be determined. Although this is not as fast as the hardware can support, it is not the weakest link in this system and keeps the design
small and flexible.

50MHz clock

Data to FLASH

Data from FLASH

SCK

IN
P

U
T

O
U

TP
U

T

TE
S

T

S
LA

X
O

R

O
U

TP
U

T

X
O

R

O
U

TP
U

T

S
U

B

JU
M

P

IN
P

U
T

O
U

TP
U

T

TE
S

T

S
LA

X
O

R

O
U

TP
U

T

X
O

R

O
U

TP
U

T

S
U

B

JU
M

P

LO
A

D

FE
TC

H

Actual
read point

10 instructions = 20 clock cycles = 2.5Mbit/s

PicoBlaze SPI FLASH Programmer 21

XON/XOFF Flow Control
When the SPI FLASH device executes a page program (PP) it could take up to 5ms to complete. At the same time the PC will continue to transmit the MCS
file at 115200 baud rate. This could mean that 57 characters are transmitted whilst PicoBlaze is waiting for the SPI memory to be free for writing again and
the 16 byte FIFO buffer on the UART receiver will overflow. For this reason, the design incorporates a degree of XON/XOFF soft control to enable this
design to work at without errors.

Note: Although the design includes soft flow control, it is not a comprehensive solution and should only be used as a starting point for other designs. In
particular the response to XON/XOFF command characters received from the PC is handled entirely in software and is rather crude at this time.

The principle requirement of flow control, as explained above, is to limit the flow from the PC to the PicoBlaze design. This is achieved by a combination of
hardware and software employing interrupts.

rx_half_full

interrupt

interrupt_ack

UART_TX

UART_RX Data flow from PC is halted

XOFF XON

The hardware detects when the ‘half_full’ flag on the receiver buffer changes state and generates an interrupt to the PicoBlaze. When PicoBlaze responds to
the interrupt it clears the hardware interrupt automatically with the ‘interrupt_ack’ signal. The interrupt service routine then decides what action to take by
reading the status of the ‘half_full’ flag. If the flag is High, then it indicates the buffer has at least 8 characters waiting to be read and so it immediately
transmits and XOFF character on the UART transmitter. If the flag is Low, then it indicates the buffer has started to empty and it is able to immediately send
an XON character to restore the data flow from the PC.

