uumm:iﬁuu

® =] QT g 1 SPRETRIRR R 58 [=E UYL 5
i (5% \ B 0T A0 001 00

n it 19T 10101100

il oy i o 37 | 0 00 TOOSHBE OO 00

T g g ol a0 O e R R

' r Ty O, iiag 10 Iu.'ulzut.‘luuuuuﬂm

B 68108 10

a0 18 |11ﬂ'l1|mrun

SPARTAN-3E ' Ry =iyt Coficsngntyusign m o

Pico3laze

SPl FLASH Programmer

for

Spartan-3E Starter Kit

Ken Chapman

Xilinx Ltd

November 2004
Rev.1

100116311007 10011005100 110011001100 TR 1001 Iﬁ
/0 11601100 110041081 1001 |00 0a1 a0 0RO

Limitations

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement of KCPSM3 or this reference design would be gratefully
received by the author.

Ken Chapman
Staff Engineer - Applications Specialist
email: chapman@xilinx.com

The author would also be pleased to hear from anyone using KCPSMS3 or the UART macros with information about your
application and how these macros have been useful.

PicoBlaze SPI FLASH Programmer 2

Design Overview

This design will transform the Spartan-3E device on your Spartan-3E Starter Kit into an SPI FLASH programmer. Using a simple terminal program on your
PC such as HyperTerminal, you will be able to program the SPI FLASH device with an MCS memory file defining the configuration for the Spartan-3E device
as well as perform SPI FLASH memory ID check, bulk erase and read operations.

The design is implemented using a single PicoBlaze processor and UART macros occupying under 5% of the XC3S500E device. It is hoped that the design
may be of interest to anyone interested in reading, writing and erasing SPI_FLASH as part of their own applications even if it is not used exactly as provided.

RS232
Serial Communication

HyperTerminal
(or similar)

M25P16
16 Mbit Serial FLASH memory
(STMicroelectronics)

PicoBlaze SPI FLASH Programmer 3

http://www.xilinx.com/products/boards/s3estarter/files/s3esk_picoblaze_spi_serial_flash_programmer.zip

Using the Design

The design is provided as a configuration BIT file for immediate programming of the Spartan XC3S500E provided on the Spartan-3E Starter Kit. Source
design files are also provided for those more interested in the intricacies of the design itself. An example MCS programming file is also provided to enable
you to verify that your set up is working.

Hardware Setup
+5v supply
Don'’t forget to switch on the board too!
(SWP)
USB cable.

RS232 Serial Cable.
Used for programming of the SPI
FLASH memory.

Used to configure the Spartan-3E
with the PicoBlaze design.

Cable plus devices on board
essentially provide the same
functionality as a Platform Cable
USB to be used in conjunction
with iIMPACT.

Cable connects J9 on the board to
your PC serial port. For this you will
need a male to female straight
through cable (critically pin2-pin2,

pin3-pin3 and pin5-pin5).

J30 configuration mode jumpers and selection chart.
It does not matter which settings you have during the JTAG programming of the XC3S500E from via LE A
the USB cable but remember to set correctly (MO=open, M1=M2=short) for configuration from the = : P
SPI FLASH once it has been programmed (press PROG button or cycle power).

PROG
button

Idea — The PicoBlaze SPI programmer design could be programmed into the XCF04S Platform
FLASH device so that it can be loaded directly on the board by changing the J30 jumpers.

PicoBlaze SPI FLASH Programmer 4

http://www.xilinx.com/products/boards/s3estarter/files/s3esk_picoblaze_spi_serial_flash_programmer.zip

Serial Terminal Setup

Once the design is loaded into the Spartan-3E, you will need to communicate using the RS232 serial link. Any simple terminal program can be used, but
HyperTerminal is adequate for the task and available on most PCs.

A HyperTerminal configuration file is also provided with this design with the file name ‘PicoBlaze_SPI_programmer.ht'. It should be possible to copy this to a
your working directory or to your desktop and then launch HyperTerminal by double clicking on it.

Alternatively a new HyperTerminal session can be started and configured as shown in the following steps. These also indicate the communication settings
and protocol required by an alternative terminal utility.

1) Begin a new session with a suitable name.
HyperTerminal can typically be located on your PC at
Programs -> Accessories -> Communications -> HyperTerminal.

Connection Description

IQ‘ New Connection

el 3

Enter a name and choose an icon for the connection:

MName:

IPicoBIazeJS PI_programrier

lcon:

2) Select the appropriate COM port (typically COM1 or COM2) from
the list of options. Don’t worry if you are not sure exactly which one is
correct for your PC because you can change it later.

<7 “a PicoBlaze_SPI_programmer

Enter details for the phone number that you want to dial:

Country/region: IUNitEd Kingdaorm [44) j
Area code: |D1 932

Phone number: I

Conect using: | ETR - |
ak I Cancel I

Hint — The design uses XON/XOFF flow control. It may be possible to modify
the design and use higher baud rates to reduce SPI programming time .

PicoBlaze SPI FLASH Programmer 5

Port Settings |
Bitz per second: |1152DD j
Data hits: IB j
Parity: INone j
Stop bits: I‘I j
Flow contral; Iﬁ

Restore Defauls |

3) Set serial port settings.

Bits per second : 115200
Data bits: 8

Parity: None

Stop bits: 1

Flow control: XON/XOFF

o]

Cancel | Apply

HyperTerminal Setup

Although steps 1, 2 and 3 will actually create a Hyper terminal session, there are few other protocol settings which need to be set or verified for the PicoBlaze
design.

5 - Open the properties dialogue

4 Dlsconnect serial Properties . ﬂil
Cormect Ta | Seltings I

“g serial - HyperTerminal
File Edit Wiew Call Transfer Help

To select a different COM port and
. change settings (if not correct).

sEEEEE

Enter the area code without the long-distance prefix |
Arga code |D1 332 '.’.
Phone number: I ..’.
Connect using: ICDM‘I ﬂ
6 - Open Settings : 8 - Connect
Configure. .
— | ¥ | ze countip/region code and;area-code L serial - prEI‘TEI‘ITIII'IﬂI
C LT elhings - . q H A
- I™ Fedisloribusy File Edit Wew Cal Transfer Help
r— Function, arrow, and ctrl keys act as —————
% Teminal keps £ windows keys D |@,|‘ @ El EDl Hl |
DK | Cancel
— Backspace kepsends————————————————————— D
& ChleH Del Chl+H, Space, Chil+H |
ASCII Setup 2=l
Emulation:
IAuto detect vl Tiermirial Setup... | Calars... | — ASCI Sending
Telnet terminal |0: IANS\— r Send line ends with line feeds 7 - Open ASC” Setup
) - E cha typed characters locally
Backscrall buffer lines: 500 3
™ Play sound when connecting o disconnecting / I:ine dela-l": ID millseconds. Eﬂsure bOXGS are f|”ed Iﬂ as ShOWﬂ
Exit d t q -
I st progiam upon dscornecting LCharacter delag: IEI millizeconds.
The design will echo characters that you type so you do not

ok Cancel

— 4501l Receiving need the ‘Echo typed characters locally’ option.

ppend line feeds to incoming line ends

The design transmits carriage return characters (OD,zy) to
indicate end of line so you do need the ‘Append line feeds to
incoming line ends’ option to be enabled.

[Eoree incoming data to 7-bit &5C11
¥ ‘wirap lines that exceed tarminal width

Cahicel |

PicoBlaze SPI FLASH Programmer 6

Configu

re Spartan-3E

Use iIMPACT to configure the XC3S500E device on the Spartan-3E Starter Kit via the USB cable.

An iIMPACT project file is provided called ‘configure_PicoBlaze_SPI_|

[=] Chymydocs'Designs_7.1i4spi_flash_memory_uart_programmer'configure_PicoBlaze SPI_progr:

programmer.ipf’ or you can set up your own with the BIT file provided.

File Edit Miew Mode Operations Qutput Debug Help

=lof |

IR

Configure XC3S500E with provided BIT file

mw oo
ss 0o

B L
Boundary-Scan |Slave Serlall Selel:lMAF'I Desktop Cunﬁguralinnl

‘spi_flash_memory_uart_programmer.bit’ \

The other two devices are in BYPASS mode.

B

wcilds
EYP45E

#c3sb00s
=pi_flash_me..

Programming Succeeded

TDO-

The warning about ‘JtagCIk’ can safely be ignored.

Kilink iMPACT N

X

x|

WARMIMGMPACT:Z257 - Startup Clock has been changed to 'JkagClklin the bitstream stored in memory,
bt the original bitstream File remains unchanged.

PROGRESS_START — Starting Operation
Validating chain. .
Boundary-scan chain walidated successfully
'l' Programming device
done.
'l': Reading status register contents. .
CRC error
Decryptor security set
DCH locked
DCI matched
legacy input error
‘statu=s of GTS_CFG_E
status of GWE
status of GHIGH
walue of MODE pin HO
value of MODE pin H1
walue of MODE pin M2
wvalus of CFG_RDY (INIT_B)
DOWEIN input from DONE pin
IDCODE not walidated while trying to write FDRI
write FDRI issued before or after decrypt operation: a
Decryptor keys not used in proper ssgquence o
THFO: iHPACT : 2219 - Status register values
INFO:iMPACT — 0011 0111 1001 1000 0000 0000 0000 O0O0O
IHFO:iMPACT:579 - '1': Completed downloading bit file to device
INFO iMPACT 580 - '1':Checking done pin done
1': Programmed successfully.

oHHOORRRHRORROO

Pliﬁf"'PF'C\C‘. FHNO — Frd Ormeration

bl | b

For Help, press FL |Corfiguration Mode [Boundary-Scan |Platform Cable USE jusk-Fs

|6 MHz

N

« Picolllaze_SH1_programmer - Hypes T erminal =181
B Bl ow Cal Tromier el
OF w306

|

PicoBlaze SPI FLASH Programmer v1.00

E-Erase all

5-Sactor Erase

P-Program MOS Fila

R-Boad page

1-Device ID

H-Help

5
Connected (:20:07 Mutodetect [LSH0MNL [EA00 (A5 5

PicoBlaze SPI FLASH Programmer 7

our terminal session should indicate the design is

working with a version number and simple menu.

Talking to PicoBlaze

#PicoBlaze_SPI_programmer - HyperTerminal _ _II:IIEI
File Edit ‘iew Call Transfer Help

_ The welcome message
FPicoBlaze 2FPI FLASH Programmer wl.00 ———— should appear at start.

E-Erase all
a-Sector Erace
P-Program MCS File
E-Fead page
I-Devwvice ID

H-Help
Commands can be entered at the > prompt in upper

»e

Confirm Erase (¥~n) Y ——— Erase commands mustbe confirmed with an
Erase in Progress upper case ‘Y’

Simple menu of commands
(repeat list using ‘H’ help command)

QOE

cp
Waiting for MCS Filg —— Program command waits for file to be sent

w

Connected 0:21:55 lautodetect [1152008-N-1 [SCROLL [CAPS [NuM [Capture [Printecho

PicoBlaze SPI FLASH Programmer 8

‘H’, ‘I, ‘E’ and ‘'S’ Commands

H — Help command displays the simple menu again.

>h

PicoBlaze SPI FLASH Programmer v1.00

E-Erase all
S—Sector Erase
P-Program MCS File
R-Read page
I-Device 1ID

H-Help

| — Read Identification code of the M25P16 ST Microelectronics 16Mbit Serial FLASH memory.

>1
ID= 20 20 15

This command is a good way to confirm communication with the SPI FLASH is working.
The expected response is 20 20 15 (please see M25P16 data sheet for details)

E — Erase command will perform a bulk erase of the M25P16 device.

>e

Confirm Erase (Y/n) Y
Erase in Progress

Note that the device will be completely erased using this command and hence you will be asked to
confirm the operation with an upper case ‘Y’.

The erase operation can take up to 40 seconds for the SPI FLASH to complete although 20 seconds is
OK more typical (please see M25P16 data sheet for specification and details).

S — Sector Erase command will erase sectors 0 to 5 only. This covers the address range 000000 to 04FFFFFF which is consistent with the storage of a
configuration file for the XC3S500E device. This command is faster that the ‘E’ command and will leave the upper memory unchanged

>Ss

Confirm Erase (Y/n) Y

OK

PicoBlaze SPI FLASH Programmer 9

You will be asked to confirm the operation with an upper case ‘Y’.

Erase in Progress The erase operation can take up to 3 seconds per sector (15 seconds total). Typically this command will
take 5 seconds to complete.

‘P’ Command

P — Program command.

This is the most important command as it will allow you to program the SPI FLASH device with a configuration bit stream suitable for the XC3S500E to
load from at power up or by pressing the PROG button. Later in the documentation we will consider how to prepare an MCS file and what is actually
happening, but for now this page shows how to program the provided example file ‘LCD_test_design.mcs’ into the memory.

>p First enter the ‘P’ command and a message prompting you for the MCS file will appear.
Waiting for MCS File

In HyperTerminal, select the ‘Transfer’ menu and then select the ‘Send Text File’ option.

& 115200 XON - HyperTerminal (Note: Do not use the ‘Send File’ option)
Fle Edit Wiew Call Transfer | Help

N w305 | 11
| Laok in: |E} =pi_flazh_mernary_uart_prograrmmer j =[] Iﬁ(,

! = COMSTANT, TXT -GI]F‘F\SSS.DP.T
. | Filker Filker @PASS‘LDAT

Riecenl B hewasuf E1Passs.oaT
| hex2svf exe m ppm_ronitar_s3e.|
™ hexzsvFsetup.exe ﬂ previous_spi_prog,
= itag_loader.bat ﬂ RCM_Form.coe
=™k CPSM3.EXE 4] ROM_Farm.
4 kcpsm3.vhd ﬂ ROM_Farm.vhd
m keuart_rwx.whd ﬂ ROM_Farm_ITAG_|
|4 keuart _tx.vhd |14] ROM_Farm_MORM:
[Z] LABELS.T=T |14] short_test.mes
LCD_test_design.mcs @ spi_flash_memary_

Navigate to your working directory and select the desired MCS .
file which in this case is ‘LCD_test_design.mcs’. ©
Blesklop
You will need to change ‘Files of type’ to ‘All files (*.*)’ to see
the MCS files listed. .

by Documents

Once you are happy with your selection click on ‘Open’.

LCD_test_design.prmm spi_flash_mamary_
E:PASSL.DAT I@s|:-i_|‘Iash_n'namu:n.f_
S PASS2 . DAT spi_ﬂash_memorv_
I i3
. . Fil 2 LCD desigr. - o
Hint If you accidentally enter the ‘P’ command you can get out by carefully e (EREEERE E T
typing the end of file record found in an MCS file which is..... Files of type: [l iles %) =l -Ea_ncellf
:00000001FF

PicoBlaze SPI FLASH Programmer 10

045380
045390
0453A0
0453B0
0453C0
0453D0
0453E0
0453F0
045400
045410
045420
045430
045440
045450
045460
045470

OK

PicoBlaze SPI FLASH Programmer 11

‘ P, Command continued

Programming will start immediately and will be indicated by a running display list of hexadecimal numbers.

Each number indicates the address currently being programmed in the SPI FLASH memory as defined in the MCS file. For the
XC3S500E the final address displayed is 045470 and hence this can be used to monitor progress.

Programming will typically take 80 seconds to complete. This time is almost entirely as a result of the RS232 serial interface
and why it will be useful to investigate higher baud rates in future.

The programming will complete with ‘OK’ and a return to the > prompt.

It should now be possible to press the PROG button on the board and a simple design (also using a PicoBlaze)
will drive the LCD display with some messages and then a free running counter.

Remember, that you will need to reload the SPI Programmer if you want to try any of the other commands.

‘R’ Command

P — Read page command.

A ‘page’ is defined as a block of 256 bytes in the SPI FLASH memory (please see M25P16 data sheet for full details).
This command will display any specified block of 256 bytes which can be used (in part) to verify if the device has been programmed or erased correctly.

>r

page address=000000
After entering the ‘R’ command you will be prompted to enter a page
000000 FF FF FF FF AA 99 55 66 30 00 80 01 00 00 00 07 address. You should then enter a 6 digit hexadecimal value.
000010 30 01 60 01 00 00 00 60 30 01 20 01 00 00 3F E5
000020 30 01 CO 01 01 C2 20 93 30 00 CO 01 00 00 00 00 The M25P16 memory has an address range of 000000 to 1FFFFF.
000030 30 00 80 01 00 00 00 09 30 00 20 01 00 00 00 00
000040 30 00 80 01 00 00 00 01 30 00 40 00 50 01 14 9A The display will indicate the address of the first byte on each line
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 followed by 15 bytes from successive memory locations.
000060 00 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Note that the SPI FLASH considers a page to be an address range

000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 xxxx00 to xxxxFF. However this read page command is not restricted to
0000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 these boundaries and will always read sequentially for 256 bytes starting
0000BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 with the address provided.

0000CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0000DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 PicoBlaze rejects incorrect address values but does not support on-line
0000EO0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 editing in this version. Please just type in a valid address if you are
0000FO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 prompted again.

OK

Hint: Data in an erased device will be ‘FF’ so if you read '00’ it has been programmed. It is common for a configuration bit file to contain many 00’
bytes especially if the design is relatively small.

PicoBlaze SPI FLASH Programmer 12

MCS files and Device configuration

An MCS file contains additional information to define the storage address which PicoBlaze interprets as well as obtaining the configuration data. How an
MCS file defines the addresses is beyond the scope of this document at this time, but in general the first lines of the MCS file defining an FPGA
configuration from SPI FLASH will be associated with address zero (000000) and each line contains 16 data bytes to be stored in sequential locations.

If we look at the supplied MCS example file ‘LCD_test_design.mcs’ the first configuration data byes can be identified in each line. Having programmed the
SPI FLASH memory, it is possible to read back those same data bytes with the ‘R’ command with page start address ‘000000’

Start of MCS file with byte data highlighted in blue

:020000040000FA R’ command

:10000000FFFFFFFF5599AA660C000180000000E089 000000 FF FF FF FF AA 99 55 66 30 00 80 01 00 00 00 07
:100010000C800680000000060C8004800000FCAT15 000010 30 01 60 01 00 00 00 60 30 01 20 01 00 00 3F ES5
:100020000C800380804304C90C00038000000000A2 000020 30 01 CO 01 01 C2 20 93 30 00 CO 01 00 00 00 00
:100030000C000180000000900C0004800000000013 000030 30 00 80 01 00 00 00 09 30 00 20 01 00 00 00 00
:100040000C000180000000800C0002000A8028598A 000040 30 00 80 01 00 00 00 O1 30 00 40 00 50 01 14 9A
:1000500000000000000000000000000000000000A0 000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:100060000000000000000000000000000000000090 000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:100070000000000000000000000000000000000080 000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:100080000000000000000000000000000000000070 000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:100090000000000000000000000000000000000060 000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:1000A0000000000000000000000000000000000050 0000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:1000B0000000000000000000000000000000000040 0000BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:1000C0000000000000000000000000000000000030 0000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:1000D0000000000000000000000000000000000020 0000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:1000E0000000000000000000000000000000000010 0000E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
:1000F0000000000000000000000000000000000000 0000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
etc

Although the data looks similar, it is not the same. This is because each byte must be bit reversed for configuration of the Spartan-3E device. The MCS file
defines the data assuming each byte is serialised LSB first but an SPI FLASH is actually read MSB first. e.g. ‘0C’ becomes '30° (00001100’ bit reversed is
‘00110000’)

IMPORTANT Note: PicoBlaze is performing the bit reversal operation during programming which allows a standard MCS file to be used. Do not attempt to
reverse the bit order in the preparation of the configuration MCS file. Also take care if using this design to store raw data.

PicoBlaze SPI FLASH Programmer 13

Preparing an MCS file

This design has been provided so that a ‘default’ MCS programming file generated by the ISE tools can be used. The following indicate how that may be
achieved but is not intended to replace existing documentation for PROM generation.

1) Select ‘Generate PROM’ in Project Manger 2) Select ‘MCS’ for the file format and provide a file name.
2 -
Processes for Source: “lod_16x2_test_design-behavioral” I;l Prepare PO B
X3 Generats Primetime Metlist)
@ Analyze Post-Place & Route Static Timing [Timing Anal |t vt
Wiew/Edit Placed Design [Floorplanner] ‘C.XHII’H FROM
View/Edit Routed Design [FPGA Eiter) £ Gensiic Paralel PROM #You could generate the file for a ‘Xilinx PROM’
Analyze Power [xPaower) S . Teus® . .)
- Generate Power Data PROM File Format————————— SUCh as the XC FO4S |f y0U ||ke, bUt thIS
K3 Generate Post-Place & Route Simulation Model C5 TEK & UFP[LC'format) H J i ’
A
B63 Generate BIS Model e o e sequence will use the ‘Generic Parallel PROM
@43 MuliPass Place & Roule [even though an SPI memory is really serial!
@£} Back-annatate Fin Locations {4
EIO/ Generate Programming File . - I—FF
e & Programming File Generation Repart st (AN EhEiE
Generate PROM, ACE, or JTAG File R o] PROM File Name: I LCD_test_design '
o Eanicus BevieelMACT) " - 'ﬂ Laocation: It'\mydncs\Deslgns_?T\\sp_flash_me Browse... |
3) ‘Auto Select PROM’ 5) Add File....
x x
ulu Salect PROM < Back I Next > I Cancel | Help Datest .
ata tream :
Select a Faralle! PROM Densit gk | - Add
ST o Starting Address (Max 8 Hex Digits] - 1}
[Fasition Density X :
4) Conflrm flle geﬂel’atlon MNow start adding device filefs] |
x
“fau have ertered folowing informaion
FROM Typs: Paralll
File Format
Fill Val
PROM Filename: LCD_test_design
Delete Al Number of PROMs: Auto Select
I Create Spartan 3E MultBoot PROM ——

|itial oot Direction: ERI- up ‘I Iade Pins M[2:0]:010

Mumber of Data Steams 1 -I

Laoading Direction up i

Ciick e to add device fle.

< Back I Hest » I Cancel | Help

et > Cancel Help
< Back [Cancel Help =

PicoBlaze SPI FLASH Programmer 14

Preparing an MCS file continue

6) Locate the BIT file for your design and ‘Open’ 7) No! 8) Finish 9) Yes!
dd Device x|] Add Device Fie x| B

Look e [() 1o 1642 test_design = s s 0 Would you ke to add ancther design file to 2

= \') ,\.’) Do you want to generate file now?
) __projnay

=) _nge

Data Stream: 02 Data Stream 0
Starting Address (Max 8 Hex Digits] ID—
6wz test desian bit G Mow start adding device file(s) : Add File: |

|]

Dinskiog

Click 'Finish' ta start generating file.

Click 'Cancel' to go to user screen.

File name: [led_1642_test_desian.bit =l Geen |

Files of fype: |4 Design Files =l Cancel

x2_test_design.ipf [File Generation Mode] - =[0]x=]

B

File Edit Wew Mode Operations Lufout Help
=T = =T
System ACE PROM Formatter |SVF—STAPL—XSVF|

< Back Cancel

Help

4

== et |

pacseanp” T F E T <« [= |

feararties
PROM

512K
54 % Full

#c3s600e

BB You now have a suitable MCS file to
— . program into the SPI FLASH memory using
Collection ICD test_design .
Design 0 T PicoBlaze SPI FLASH Programmer.

e |

Device Chain i}
Fosition FPartName FileNane
1 xc3s500e C:nmydocs™Designs 7.1inled 16x2_test_designhled 16x2 test_design bit

s % BATCH CMD . setittribute —configdevice —attr fillValue -value "FF"

v we# BATCH CMD | setttributc —configdevice —attr filsFormat —value 'mos’

s wew BATCH CHD . setttribute —collection —attr dir —valuc “UP*

7 wew BATCH CHD . setittributc —configdevice —attr path —walue “Cinydocs Designs_7.lisspi_flash_ne
v =% BATCH CHD : setittributc —collection —attr neme -valus "LCD_test_design”

./ wx% BATCH CHD : gencrate —generic

'1': Added Device 512k successfully

Generating Prom fils using the following auto generatsd Prom(s):
517k

0x45480 (283776) bytes loadsd up from 0=0
Using ussr—spscified prom size of 512K
Uriting file 'C:\nydocs-Designs 7 li“spi_flash memory uart_progranmsr/~LCD_test_design mcs®

Writing file "C:snydocs~Designs 7. 1iSspi_flash memory uart_programmer/~LCD test_design. prn®
r:vr ——— Total confimnration hit =ize = 2270208 hit= | _’LI
4

For Help, press F1 |File Generation Mods [Prom Formatter [Parallel Prom [v

PicoBlaze SPI FLASH Programmer 15

Design Files

For those interested in the actual design implementation, the following pages provide some details and an introduction to the source files provided. This
description may be expanded in future to form a more complete reference design.

The source files provided for the reference design are

i flash hd Top level file and main description of hardware.
spi_flash_memory_uart_programmer.v Contains 1/0O required to disable other device on eth board which may otherwise interfere with the SPI
FLASH memory communication.

......... spi_flash_memory_uart_programmer.ucf 1/O constraints file for Spartan-3E Starter Kit
and timing specifications for 50MHz clock.

— kecpsm3.vhd PicoBlaze processor for Spartan-3E devices.

— spi_prog.vhd Assembled program for PicoBlaze (stored in a Block memory)

R ERE spi_prog.psm PicoBlaze program source assembler code

— uart_tx_plus.vhd A — ‘uart_tx_plus.vhd’ is the same as the ‘uart_tx.vhd’ supplied with PicoBlaze
except that the ‘buffer_data_present’ signal has also been brought out to
provide better support for XON/XOFF flow control.

kc_uart_tx.vhd

bbfifo_16x8.vhd
UART transmitter and receiver with 16-byte FIFO buffers.

L uart_tx.vhd
i: kc_uart_tx.vhd
bbfifo_16x8.vhd

Note: Files shown in green are not included with the reference design as they are all provided with PicoBlaze download. Please visit the PicoBlaze
Web site for your free copy of PicoBlaze, assembler and documentation. www.xilinx.com/picoblaze

J

PicoBlaze SPI FLASH Programmer 16

PicoBlaze Design Size

The images and statistics on this page show that the design occupies just 156 slices and 1 BRAM. This is only 3.3% of the slices and 5% of the BRAMs
available in an XC3S500E device and would still be less than 17% of the slices in the smallest XC3S100E device.

MAP report
Number of occupied Slices: 156 out of 4,656 3%
Number of Block RAMs: 1 out of 20 5%

Total equivalent gate count for design: 78,710

FPGA Editor view

PicoBlaze SPI FLASH Programmer 17

PicoBlaze and the UART macros make extensive use of the distributed
memory features of the Spartan-3E device leading to very high design
efficiency. If this design was replicated to fill the XC3S500E device, it
would represent the equivalent of over 1.5 million gates. Not bad for a
device even marketing claims to be 500 thousand gates ©

Floorplanner view

W

PicoBlaze Circuit Diagram

UART macros include 16-byte

FIFO buffers

spi_sdo

spi_amp_sdo

‘JTAG_loader’ allows rapid

spi_dac_clr
spi_amp_shdn
spi_dac_cs
spi_adc_conv

spi_amp_cs

uart_rx receive input_ports PicoBlaze code development. spi_rom_cs
H \ i k
rx_female) 3 /spl_sc
|> serial_in rx_data in_port program_rom /
data_out et
read_from_uart .
read_buffer rx_full spl_prog
I
buffer_full proc_reset ry . .
en_16_x_baud rx_half_ full 01 instruction B spi_sdi
buffer_half_ full)
reset_buffer g
o —1) clk address
— clk rx_data_present ml] 2
buffer_data_present ——————————' gl ,S S
al @ 5 -
o @ 0 0
bt <| 3 rocessor 2 ‘
H) kcpsm3 P e 9
3 o %) A
i 5 H
uart_tx_plus . 0 a =
transmit B instruction address
©
out_port n out_port
data_in tx_female D @ out_port
write_to_uart serial_out in_port
write_buffer write_strobe —.
read_strobe
[en_16_x_baud tx_full A read_strobe T read_from_uart
buffer_full € id TO
port_i]
reset_buffer tx_half_ full reset port_id [
buffer_half full -
— clk tx_data_present 4
buffer_data_present interrupt \ write_to_uart
interrupt interrupt_ack [] 4 [
en_16_x_baud CIK%D clk
rx_half_ full_event
baud_timer

counter

clk

baud_count

Decode 26

5

Vece

strataflash_oe

strataflash_ce

strataflash_we

platformflash_oe

%

D

interrupt_ack

Other devices on the Starter Kit board
must be disabled to prevent interference
with SPI FLASH. Some connect to
PicoBlaze to enable software to disable
or use for future development.

SPI Communication

The Serial Peripheral Interface (SPI) is formally described as being a full-duplex, synchronous, character-oriented channel employing a 4-wire interface. In
this case the PicoBlaze in eth Spartan-3E is the master and the SPI FLASH memory is the slave.

Master
J 716543210
» SDI SDO » D Q
SLAVE
SCK > C ~ slave
Master S D Q
Cs |
SLAVE
— C

5
|

Bytes describing commands, addresses or data are all transmitted MSB first by the master. As each bit is transmitted, the slave also transmits a bit allowing
one byte to be passed in each direction at the same time. In the case of the FLASH memory, this full duplex capability is not used, but it is still necessary to
transmit ‘dummy’ bytes when receiving and ignore received ‘dummy’ bytes when transmitting.

Each bit is transmitted or received relative to the SCK clock. The system is fully static and any clock rate up to the maximum is possible. The M25P16
captures data (D) on the rising edge of SCK and changes the output data (Q) on the falling edge of SCK.

Communication is only possible with the M25P16 device when the select signal (S) is Low. Therefore the PicoBlaze master is responsible for controlling the
select signal before transmitting the command byte and then transmitting or receiving any associated bytes. In the cases of writing or erasing the M25P16, it
is the release (setting High) of the select line which actually executes the command.

PicoBlaze SPI FLASH Programmer 19

Software SPlI Communication

PicoBlaze is used to implement the SPI communication 100% is software. The fundamental byte transfer routine is shown below. The ‘s2’ register is used to
supply the data byte (or a dummy byte) for transmission and this will be replaced by the byte data (or a dummy byte) received from the SPI memory.

SPI_FLASH_tx_rx: LOAD sl, 08 ;8-bits to transmit and receive

FETCH s0, SPI_control_status ;read control status bits

next_SPI_FLASH_bit: OUTPUT s2, SPI_output_port joutput data bit ready to be used on rising edge
INPUT s3, SPI_input_port ;read input bit
TEST s3, SPI_sdi ;detect state of received bit
SLA s2 ;shift new data into result and move to next transmit bit
XOR s0, SPI_sck ;jclock High (bit0)
OUTPUT s0, SPI_control_port ;jdrive clock High
XOR s0, SPI_sck ;clock Low (bitO0)
OUTPUT s0, SPI_control_port ;drive clock Low
SUB sl1, 01 ;count bits
JUMP NZ, next_SPI_FLASH_bit ;repeat until finished
RETURN

The routine generates SCK. Since every PicoBlaze instruction executes in 2 clock cycle and the design uses the 50MHz clock course on the board, the
actual SPI bit rate can be determined. Although this is not as fast as the hardware can support, it is not the weakest link in this system and keeps the design
small and flexible.

JUMP
OUTPUT
INPUT
TEST
OUTPUT
OUTPUT

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
Eg SUB
=

LOAD

FETCH
OUTPUT
INPUT
TEST
SLA
XOR
OUTPUT
XOR
OUTPUT
SuUB
SLA
XOR
XOR
JUMP

50MHz clock | | | | | |

Data to FLASH

Data from FLASH | X | X B Actual
SCK read point

10 instructions = 20 clock cycles = 2.5Mbit/s

PicoBlaze SPI FLASH Programmer 20

XON/XOFF Flow Control

When the SPI FLASH device executes a page program (PP) it could take up to 5ms to complete. At the same time the PC will continue to transmit the MCS
file at 115200 baud rate. This could mean that 57 characters are transmitted whilst PicoBlaze is waiting for the SPI memory to be free for writing again and
the 16 byte FIFO buffer on the UART receiver will overflow. For this reason, the design incorporates a degree of XON/XOFF soft control to enable this
design to work at without errors.

The principle requirement of flow control, as explained above, is to limit the flow from the PC to the PicoBlaze design. This is achieved by a combination of
hardware and software employing interrupts.

UART_RX

rx_half_ full

interrupt |_ |_

—]

interrupt_ack I_

UART_TX XOFF

The hardware detects when the ‘half_full’ flag on the receiver buffer changes state and generates an interrupt to the PicoBlaze. When PicoBlaze responds to
the interrupt it clears the hardware interrupt automatically with the ‘interrupt_ack’ signal. The interrupt service routine then decides what action to take by
reading the status of the ‘half_full’ flag. If the flag is High, then it indicates the buffer has at least 8 characters waiting to be read and so it immediately
transmits and XOFF character on the UART transmitter. If the flag is Low, then it indicates the buffer has started to empty and it is able to immediately send
an XON character to restore the data flow from the PC.

Note: Although the design includes soft flow control, it is not a comprehensive solution and should only be used as a starting point for other designs. In
particular the response to XON/XOFF command characters received from the PC is handled entirely in software and is rather crude at this time.

PicoBlaze SPI FLASH Programmer 21

