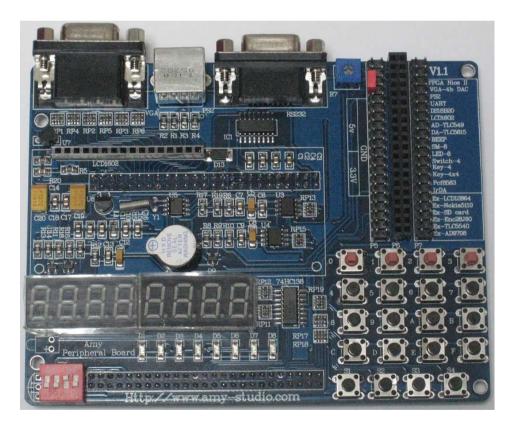


CPLD/FPGA の実験用 I/F ボード


マニュアル

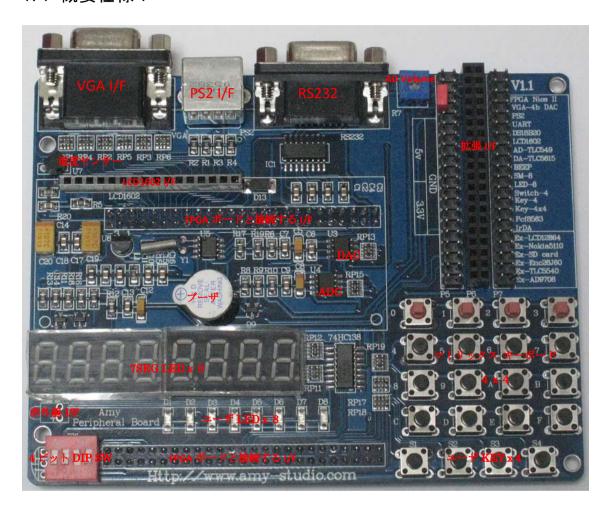
株式会社日昇テクノロジー

http://www.csun.co.jp

info@csun.co.jp

2010/05/27

copyright@2010


第一	-章 CPLD/FPGA の実験用 I/F ボードの概要	3
1.	.1 概要仕様:	3
1.	. 2 詳細説明	4
	1. 2. 1 FPGA ボードとのインタフェース	4
	1.2.2 拡張インタフェース	5
	1. 2. 3 VGA インタフェース	8
	1.2.4 PS/2 インタフェース	9
	1.2.5 シリアル通信インタフェース	10
	1.2.6 DS18B20 温度センサー	10
	1.2.7 LCD1602 液晶インタフェース	10
	1.2.8 PCF8563 クロック回路	11
	1.2.9 DA 回路	11
	1. 2. 10 AD 回路	12
	1. 2. 11 7SEG LED	12
	1. 2. 12 4x4 マトリクスキーボード	13
	1.2.13 赤外線通信インタフェース	13
	1.2.14 4bit DIP SW	14
	1.2.15 単独キー	14
第 -		15

※ 使用されたソースコードはhttp://www.csun.co.jp/からダウンロードできます。

第一章 CPLD/FPGA の実験用 I/F ボードの概要

1.1 概要仕様:

- $LED \times 8$
- 4 ビット DIP スイッチ
- ボタンx4、マトリックスキーボード4x4
- PS2 x 1、キーボード又はマウスを接続可
- $VGA \times 1$
- RS232 x 1
- 1602液晶 I/F x 1、4096色 VGA I/F x 1
- 7セグメントLEDx8
- Beep x 1
- 温度センサー (DS18B20)
- DAC-TLC5615、8bit シングルチャネル DA 出力

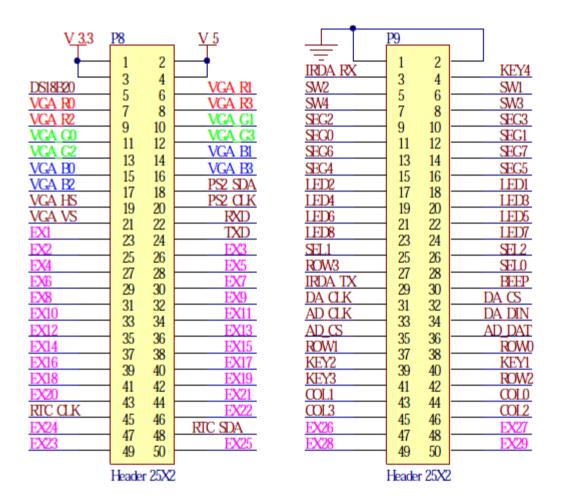
ホームページ: http://www.csun.co.jp メール:info@csun.co.jp

佐価格、高品質が不可能?

- ADC-TLC549、 8bit シングルチャネル入力
- 拡張 I/F (LCD12864 液晶 I/F、Nokia5110 液晶 I/F、SD カード I/F)
- 赤外線通信 I/F、未実装
- 外形寸法: 125×95(mm) ※突起物は除く
- 回路図を提供しております

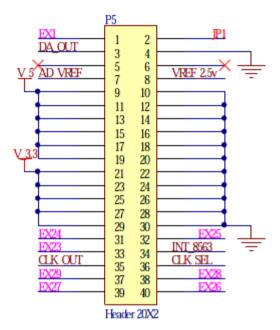
裏面と側面のイメージ:

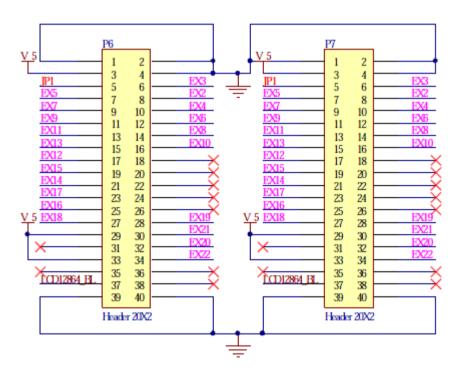
1.2 詳細説明


1.2.1 FPGA ボードとのインタフェース

EP2C5、EP2C8、EP3C16 の IO の数は別々ですが、共に本ボードと接続して利用する。

ホームページ: http://www.csun.co.jp


メール:info@csun.co.jp



1.2.2 拡張インタフェース

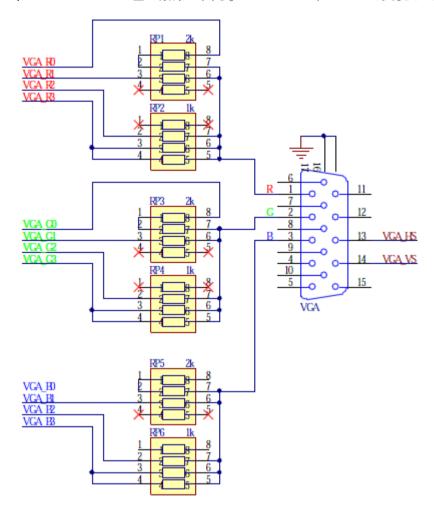
拡張 I/F は P5、P6、P7 三つある。

P5 は EP3C16 で使ってないピンと AD、DA、クロック、赤外線通信関連ピンを引き出している。 EX1 は JP1 により、P6、P7 に接続する事が出来る。P5 は主には信号制御と外部に電源提供するに利用する。

P6: 2x20、P7: 2x20、配置は全く同じなので、ユーザの必要に応じて利用できる。 P6 の左側のピン配置は LCD12864 液晶のインタフェースにより設計しているので、 LCD12864 液晶をそのまま使える。3番のピンは5 V電源出力。5~12番は双方向の IO で、

ユーザの方で自由に利用できる。SD カードと ENC28J60 モジュールもこの部分の IO で実現 している。

実験用 I/F ボードの拡張 I/F と各 FPGA ボードのピン配分は下記の表の通り。 EX1 を P6、 P7に利用したい場合は P5 の 1 と 2 番のピンをショートする必要。合計は 25 個。


I/F ボード拡張 I/F ピン	EP2C5 ボードピン	EP2C8 ボードピン	EP3C16 ボードピン
EX1	45	96	117
EX2	43	94	113
EX3	42	95	114
EX4	41	90	111
EX5	40	92	112
EX6	32	88	109
EX7	31	89	110
EX8	30	86	107
EX9	28	87	108
EX10	27	82	103
EX11	26	84	106
EX12	25	80	101
EX13	24	81	102
EX14	9	76	99
EX15	8	77	100
EX16	7	74	95
EX17	4	75	98
EX18	3	70	93
EX19		72	94
EX20		68	87
EX21		69	88
EX22		64	85
EX23			84
EX24			81
EX25			82
EX26		199	220
EX27			221
EX28			222
EX29			223

ホームページ: http://www.csun.co.jp メール: info@csun.co.jp

1.2.3 VGA インタフェース

低価格、高品質が不可能? 日昇テクノロジーなら可能にする

単色 2⁴ = 16、16x16x16 = 4096 色の効果が出る。4x3+2 = 14 本のピンで実現している。

制御タイミング図:

ホームページ:http://www.csun.co.jp

メール: info@csun.co.jp

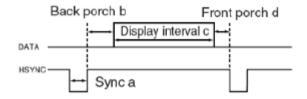
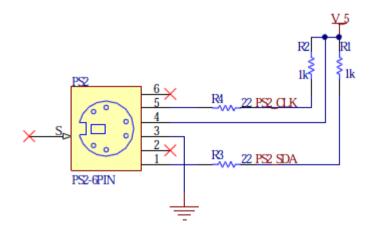
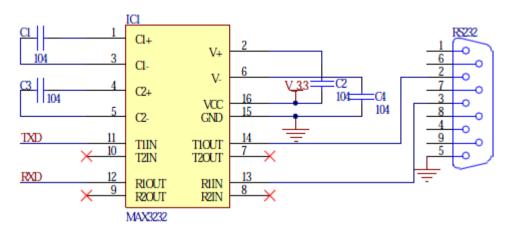


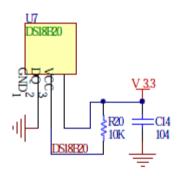
Figure 4.15. VGA horizontal timing specification


Table 4.9. VGA horizontal timing specification

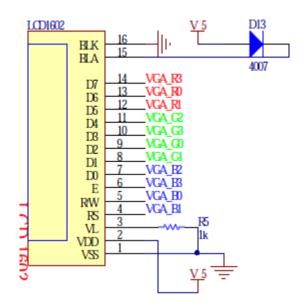
VGA mode		Horizontal Timing Spec					
Configuration	Resolution(HxV)	a(us)	b(us)	c(us)	d(us)	Pixel clock(Mhz)	
VGA(60Hz)	640x480	3.8	1.9	25.4	0.6	25	(640/c)


Table 4.10. VGA vertical timing specification

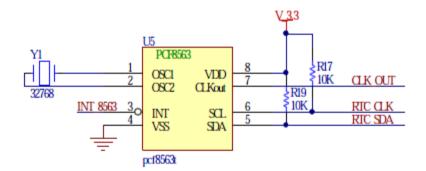
VG	Vertical Timing Spec				
Configuration	Resolution (HxV)	a(lines)	b(lines)	c(lines)	d(lines)
VGA(60Hz)	640x480	2	33	480	10


1.2.4 PS/2 インタフェース

1.2.5 シリアル通信インタフェース

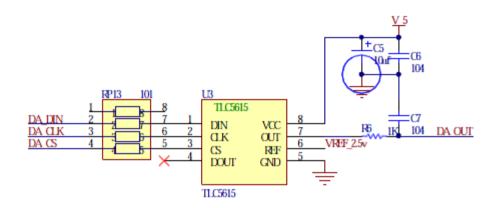


1.2.6 DS18B20 温度センサー

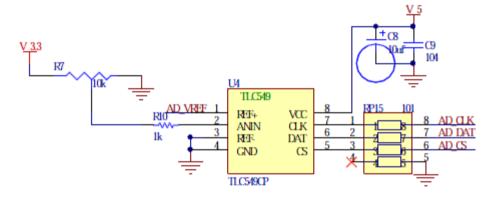

1.2.7 LCD1602 液晶インタフェース

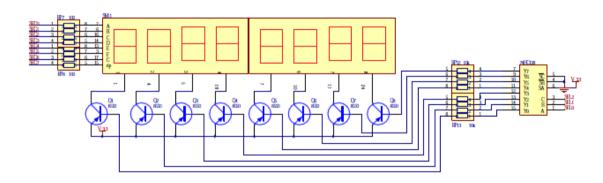
5V 給電、明るさ調整機能はない。コントラストは 1K 抵抗設置している。コントラストが足りない場合、この 1K 抵抗を交換して見てください。

1.2.8 PCF8563 クロック回路


I2C 通信のクロックを実現している PCF8563 の CLKout と INT ピンは P5 に引き出している。

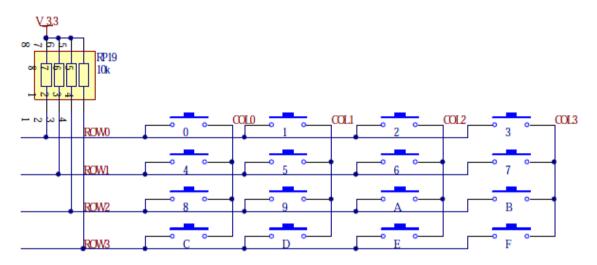
1.2.9 DA 回路


TLC5615 は 10bit DAC で SPI で実装している。VREF は TL431 の 2.5v と直接接続している。DA の出力ピンは P5 に引き出している。



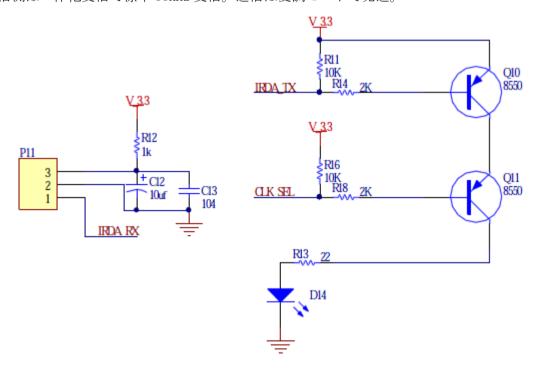
1.2.10 AD 回路

TLC549 は8bit ADCでSPIで実装している。



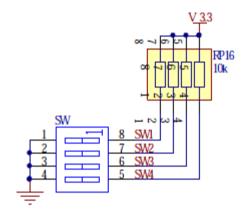
1.2.11 7SEG LED

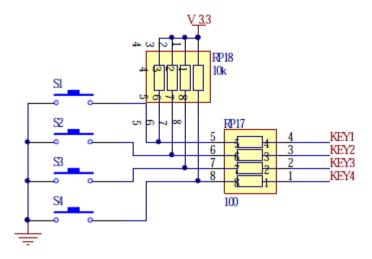
低価格、高品質が不可能? 日昇テクノロジーなら可能にする


1.2.12 4x4 マトリクスキーボード

1.2.13 赤外線通信インタフェース

未実装ですが、応用ニーズにより実装ください。

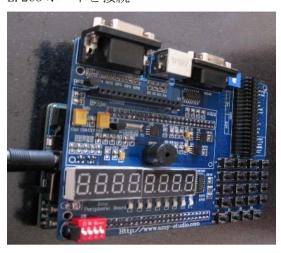

受信側は一体化受信で標準 38kHz 受信。送信は変調モードで発送。


低価格、高品質が不可能で

日昇テクノロジーなら可能にする

1.2.14 4bit DIP SW

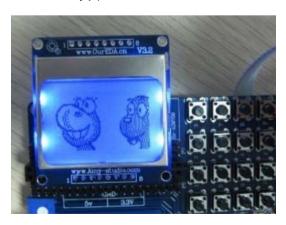
1.2.15 単独キー



本マニュアルに記述してない部分の回路は回路図をご参照ください。

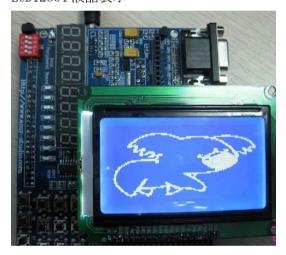


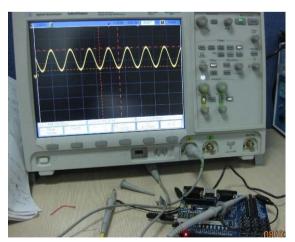
第二章 実験用 I/F ボード動作イメージ


EP2C8 ボードと接続

7SEG LED 表示

Nokia5110 表示




LCD1602 と接続

LCD12864 液晶表示

DA 出力

