MODEL NO. : _	TM043NBH02
ISSUED DATE: _	2011-10-17
VERSION : _	Ver 2.0

Preliminary SpecificationFinal Product Specification

Customer :_____

Approved by	Notes

SHANGHAI TIANMA Confirmed :

Prepared by	Checked by	Approved by

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

Table of Contents

Tab	le of Contents	2
Red	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	5
3	Absolute Maximum Ratings	7
4	Electrical Characteristics	8
5	Timing Chart	10
6	Touch panel SPECIFICATION	16
7	Optical Characteristics	. 19
8	Environmental / Reliability Tests	. 22
9	Mechanical Drawing	23
10	Packing Drawing	24
11	Precautions for Use of LCD Modules	25

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2010-08-23	Preliminary Specification Release	Kelly.hu
1.1	2010-9-13	Updated LCM thickness	Kelly.hu
1.2	2010-9-30	Corrected RA temperature condition	Kelly.hu
2.0	2011-10-17	Final Specification Release	longping.deng

The information contained herein is the exclusive property of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of SHANGHAI TIANMA MICRO-ELECTRONICS Corporation.

1 General Specifications

	Feature	Spec		
	Size	4.3 inch		
	Resolution	480(RGB)x272		
	Interface	RGB 24 bits		
	Color Depth	16.7M		
Display Spec.	Technology Type	a-Si		
Display Spec.	Pixel Configuration	R.G.B Vertical Stripe		
	Display Mode	TN,NW		
	Surface Treatment	AG		
	Viewing Direction	6 o'clock		
	Gray Scale Inversion Direction	12 o'clock		
	LCM (W x H x D) (mm)	105.50x67.20x4.10		
Mechanical	Active Area(mm)	95.04x53.856		
Characteristics	With /Without TSP	With TSP		
	Weight (g)	TBD		
	LED Numbers	10 LEDs		

Note 1: Viewing direction for best image quality is different from TFT definition. There is a 180 degree shift.

- Note 2: Requirements on Environmental Protection: Q/S0002
- Note 3: LCM weight tolerance: ± 5%

2 Input/Output Terminals

2.1 TFT LCD Panel

No	Symbol	I/O	Description	Comment
1	VLED-	Р	Back light cathode	
2	VLED+	Р	Back light anode	
3	GND	Р	Ground	
4	VDD	Р	Power supply	
5	R0	I	Data input	
6	R1	I	Data input	
7	R2	I	Data input	
8	R3	I	Data input	
9	R4	I	Data input	
10	R5	I	Data input	
11	R6	I	Data input	
12	R7	Ι	Data input	
13	G0	I	Data input	
14	G1	Ι	Data input	
15	G2	I	Data input	
16	G3	I	Data input	
17	G4	I	Data input	
18	G5	I	Data input	
19	G6	I	Data input	
20	G7	I	Data input	
21	В0	I	Data input	
22	B1	I	Data input	
23	B2	I	Data input	
24	B3	I	Data input	
25	B4	I	Data input	
26	B5	I	Data input	
27	B6	I	Data input	
28	B7	I	Data input	
29	GND	Р	Ground	
30	DCLK	I	Clock for input data. Data latched at rising edge of this signal.	2
31	DISP	I	Standby mode. DISP ="1": Normally operation. DISP ="0": Standby mode.	
32	HSYNC	I	Horizontal sync input with negative polarity. I unused, please pull high level.	F

TM043NBH02 V2.0

33	VSYNC	I	Vertical sync input with negative polarity. If unused, please pull high level.	
34	DE	I	Data input enable. If unused, please pull low level.	
35	NC		No connection	
36	GND	Р	Ground.	
37	X_R	0	XR	
38	Y_B	0	YD	
39	X_L	0	XL	
40	Y_T	0	YU	

Note 1: I-Input, O-Output, P-Power/Ground

3 Absolute Maximum Ratings

3.1 Driving TFT LCD Panel

					Ta =25 ℃
ltem	Symbol	MIN	MAX	Unit	Remark
Supply Voltage	VDD	-0.3	4.0	V	
Back Light Forward Current	I _{LED}		25	mA	For each LED
Operating Temperature	T _{OPR}	-20	60	°C	
Storage Temperature	T _{STG}	-30	70	°C	

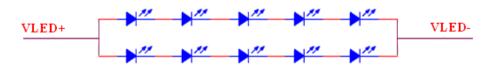
4 Electrical Characteristics

4.1 Driving TFT LCD Panel

	GND=0V,Ta=25℃								
lten	n	Symbol	MIN	TYP	MAX	Unit	Remark		
Supply V	oltage	VDD	3.0	3.3	3.6	V			
Input Signal Voltage	Low Level	VIL	0	_	0.3xVDD	V			
	High Level	VIH	0.7xVDD		VDD	V			
Output Signal	Low Level	V _{OL}			0.3xVDD	V			
Voltage	High Level	V _{OH}	0.7xVDD		VDD	V			
(Panel+LSI) Power Consumption		Black Mode (60Hz)		TBD		mW			
		Standby Mode		TBD		mW			

4.2 Backlight Unit

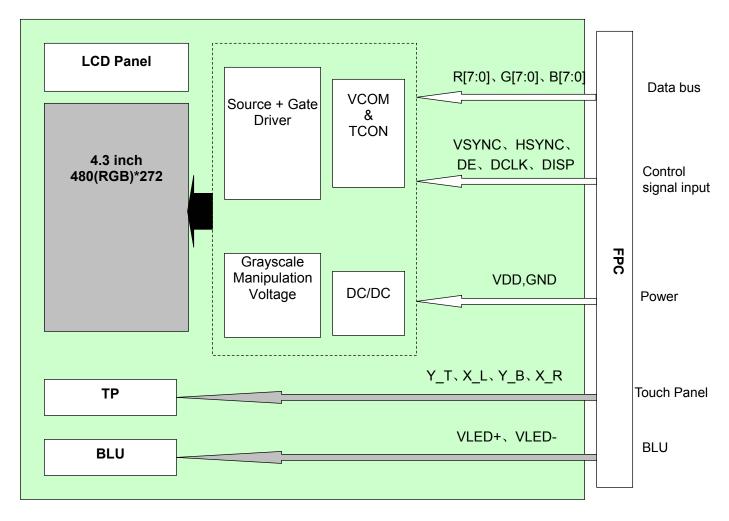
						Ta=25 ℃
Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	l _F		40	50	mA	
Forward Current Voltage	VF		16	18	V	
Backlight Power Consumption	W _{BL}		640		mW	24 LEDs (3 LED Serial, 8
LED life time		10000	(20000)	-	Hrs	LED Parallel)


Note1: The LED driving condition is defined for each LED module (5 LED Serial, 2 LED Parallel).

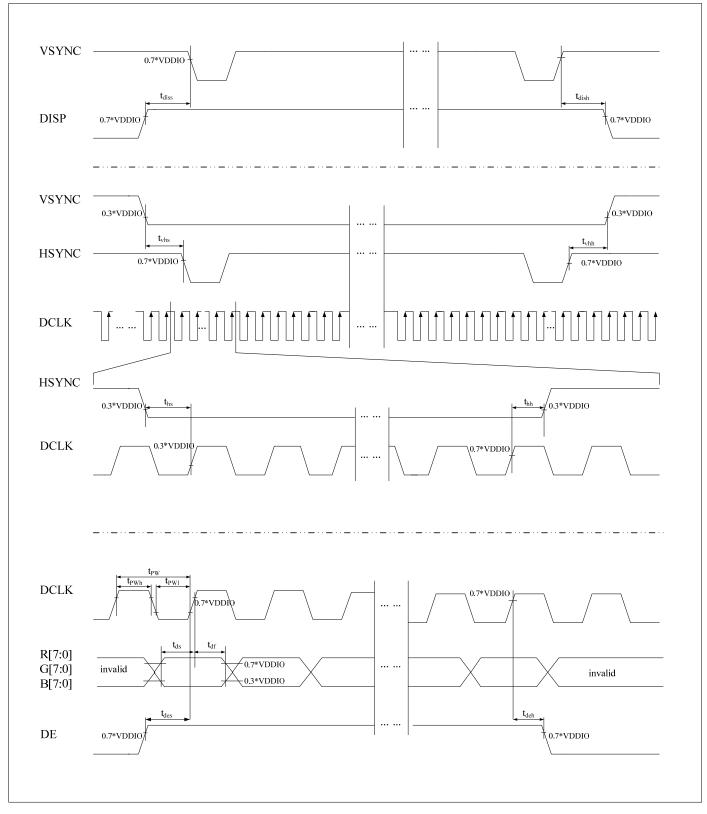
Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: I_F is defined for one channel LED.Optical performance should be evaluated at Ta=25°C only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced.Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Note4: The LED driving condition is defined for each LED module.



4.3 Block Diagram


LCD module diagram

TM043NBH02 V2.0

5 Timing Chart

5.1 Input Setup Timing

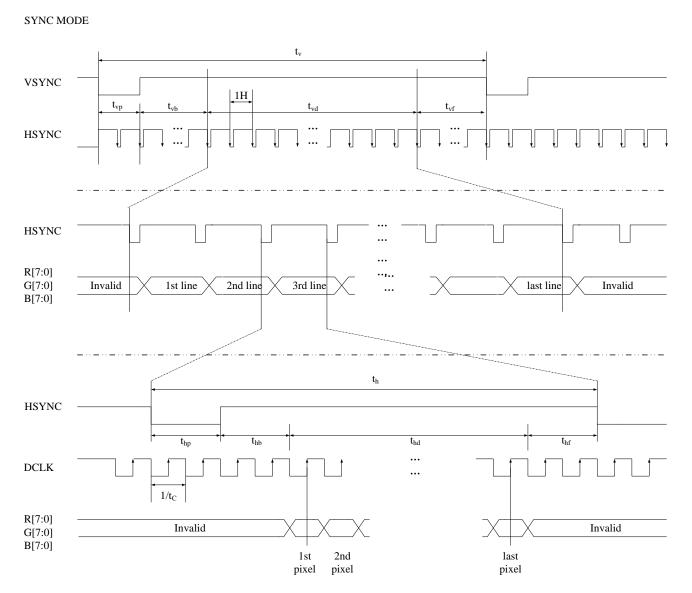
TM043NBH02 V2.0

5.2 Input Setup Timing Parameter Setting

VDD=3.3V Ta=25℃

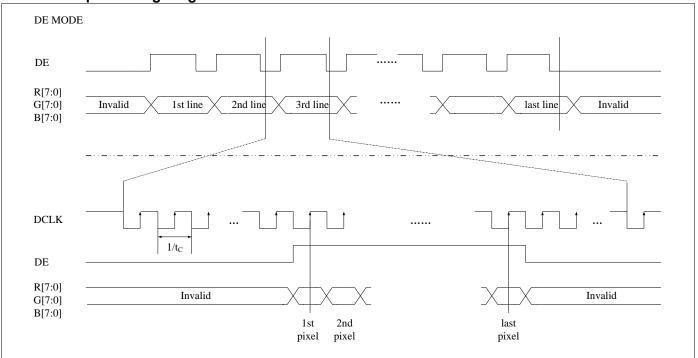
Parameter	Symb ol	Min	Тур	Max	Unit	Remark
DCLK Cycle Time	T_{pw}	66.7	-	-	ns	
DCLK Pulse High Width	T_{pwh}	26.7	-	-	ns	
DCLK Pulse Low Width	T _{pwl}	26.7	-	-	ns	
DE Setup Time	T _{des}	10	-	-	ns	
DE Hold Time	T_{deh}	10	-	-	ns	
HSYNC Setup Time	T _{hs}	10	-	-	ns	
HSYNC Hold Time	T_{hh}	10	-	-	ns	
VSYNC Setup Time	T_{vhs}	10	-	-	ns	
VSYNC Hold Time	T_{vhh}	10	-	-	ns	
Data Setup Time	T _{ds}	10	-	-	ns	
Data Hold Time	T_{dh}	10	-	-	ns	
DISP Setup Time	T _{diss}	10	-	-	us	
DISP Hold Time	T_{dish}	10	-	-	ms	

Note 1: $t_r=t_f=2ns.t_r$, t_f is defined 10% to 90% of signal amplitude.


Note 2: For parallel interface, maximum clock frequency is 15MHz.

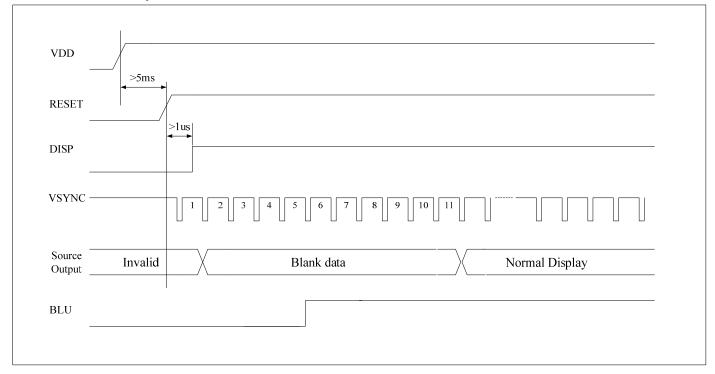
 \sim

SHANGHAI TIANMA MICRO-ELECTRONICS


5.3 Data Input Format

TM043NBH02 V2.0

5.3.2 Data Input Timing Diagram under DE Mode


5.4 Data Input Timing Parameter Setting

Parameter	Symbol	Spec.			Unit
Farameter	Symbol	Min.	Тур.	Max.	Unit
DCLK frequency	f _{clk}	-	9	15	MHZ
HSYNC frequency	1/t _h	-	17.14	-	KHz
VSYNC frequency	1/t _v	-	59.94	-	Hz
Horizontal cycle	t _h	525	525	605	DCLK
Horizontal display period	t _{hd}		480		DCLK
Horizontal pulse width	t _{hp}	2	41	41	DCLK
Horizontal back porch	t _{hb}	2	2	41	DCLK
Horizontal front porch	t _{hf}	2	2	82	DCLK
Vertical cycle	tv	285	286	399	HSYNC
Vertical display period	t _{vd}		272		HSYNC
Vertical pulse width	t _{vp}	1	10	11	HSYNC
Vertical back porch	t _{vb}	1	2	11	HSYNC
Vertical front porch	t _{vf}	1	2	227	HSYNC

Note 1: Unit: CLK=1/ f_{CLK} , H= t_h ,

Note 2: It is necessary to keep $t_{vp}+t_{vb}=12$ and $t_{hp}+t_{hb}=43$ in sync mode. DE mode is unnecessary to keep it.

5.5 Power ON Sequence

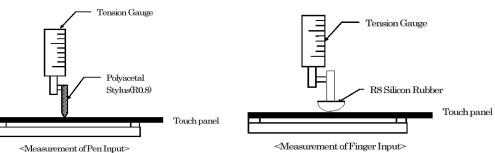
5.6 Power Off Sequence

VDD			
RESET			
DISP			
VSYNC			
Source Output	Valid Bla	ank data	
BLU			

Touch Screen Panel Specifications

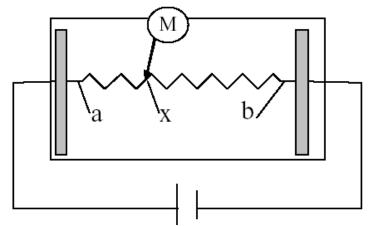
6.1 Electrical Characteristics

Item		Min.	Тур.	Max.	Unit	
Linearity				1.5%		Each axis: X and Y
Operating Volt	age		5.0	10.0	V	DC
Resistance	X axis:	480		1100	Ω	
	Y axis:	120		450	Ω	
Chattering Time				10.0	ms	
Insulation Resistance		20			MΩ	@DC25V

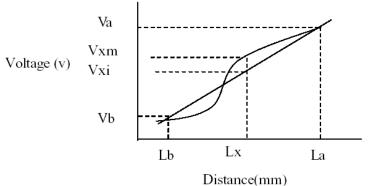

6.2 Touch Panel Mechanical & Reliability Characteristics

Item	Value			Unit	Remark	
	Min	Тур	Max			
Activation	80	-	160	gf	Note 1	
Durability-surface scratching	Write 100000	-	-	characters	Note 2	
Durability-surface pitting	1000000	-	-	touches	Note 3	
Surface hardness	3			Н	JIS K5400	

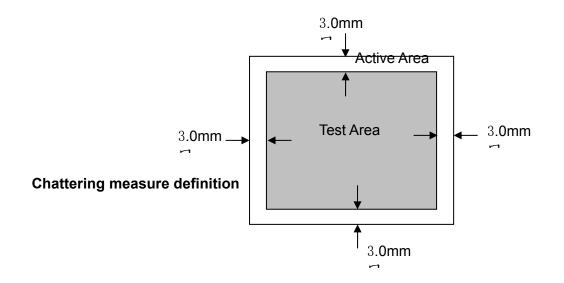
Note1:


1. Input DC 5V on X direction, Drop off Polyacetal Stylus(R0.8), until output voltage stabilize ,then get the activation force;

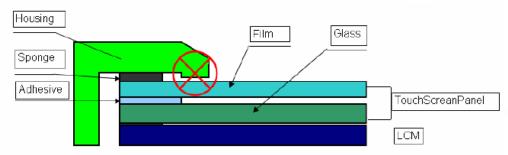
- 2. R8 Silicon rubber for finger Activation force test;
- 3. Test point: 9 points.

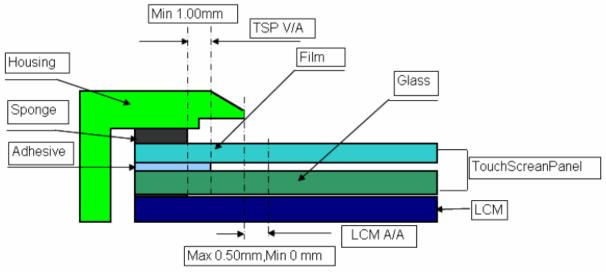


Note2: End shape: R0.8mm(Stylus) Load force: 150gf Writing speed: 60 mm/sec Material of Pen: Polyacetal resin Sliding length: 10~100 mm Note3: End shape: R8.0mm, Material of Pen: Silicon rubber Hardness: 60° Load force: 100gf Frequency: 2 Hz


6.2 Electrical Characteristic Linearity Definition

Va: maximum voltage in the active area of touch panel Vb: minimum voltage in the active area of touch panel X: random measuring point Vxm: actual voltage of Lx point Vxi: theoretical voltage of Lx point


Note: Test area is as follows and operation force is 150gf(single layer ITO Film), polyacetal stylus: R0.8mm.



6.3.Housing design guide

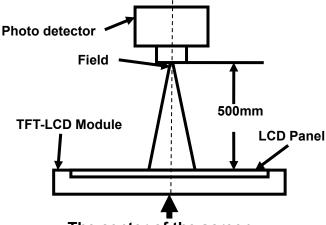
- Housing design follow as below
- 1. Avoid the design that housing overlap and press on the active area of the LCM
- 2. Give enough gap(Over 0.5mm at compressed) between the housing and TSP to Protect wrong operating.

- 3. Use a buffer material(Gasket) between the TSP and housing to protect damage and wrong operating
- 4. Avoid the design that buffer material overlap and press on the inside of TSP view area.

Ta=25℃

7 Optical Characteristics

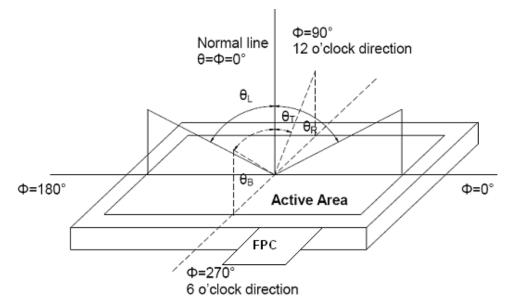
ltem		Symbol	Condition	Min	Тур	Мах	Unit	Remark
		θT		60	70	-		
View Angles		θΒ		40	50	-	Degree	Note2,3
		θL	CR≧10	60	70	-		
		θR		60	70	-		
Contrast Ratio)	CR	θ=0°	400	450	-		Note 3
		T _{ON}	25℃ -		30		Note 4	
Response Tim	e	T _{OFF}	250	- 20 :	50	ms		
	White	x	Backlight is on	0.265	0.315	0.365		Note 1,5 Note 1,5 Note 1,5 Note 1,5
	Winte	У		0.278	0.328	0.378		
	Red	x		0.540	0.590	0.640		
Chromaticity	Neu	У		0.300	0.350	0.400		
omonationy	Green	х		0.290	0.340	0.390		
	Oreen	У		0.500	0.550	0.550 0.600		
	Blue	x]	0.094	0.144	0.194		
		у		0.050	0.100	0.150		
Uniformity		U			75	-	%	Note 6
NTSC				-	50	-	%	Note 5
Luminance		L		230	280	-	cd/m ²	Note 7


Test Conditions:

- 1. I_F = 22 mA, and the ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 and Note 2.

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

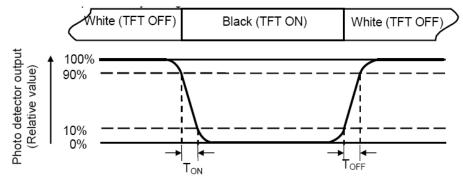


Item	Photo detector	Field
Contrast Ratio		
Luminance	SR-3A	1°
Chromaticity	3R-3A	
Lum Uniformity		
Response Time	BM-7A	2°

The center of the screen

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

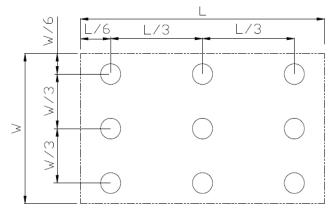

Note 3: Definition of contrast ratio

 $Contrast ratio (CR) = \frac{Luminance measured when LCD is on the "White" state}{Luminance measured when LCD is on the "Black" state}$ "White state ": The state is that the LCD should drive by Vwhite. "Black state": The state is that the LCD should drive by Vblack. Vwhite: To be determined Vblack: To be determined.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

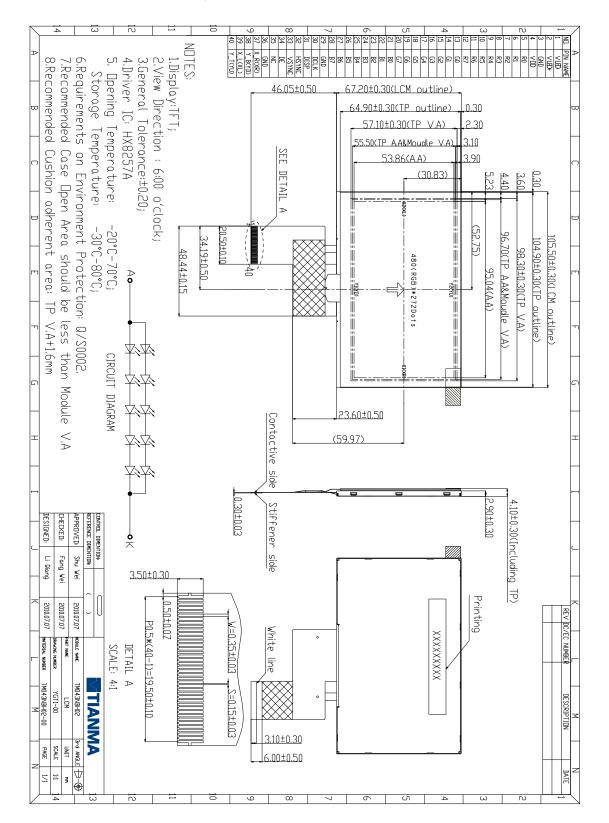
L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

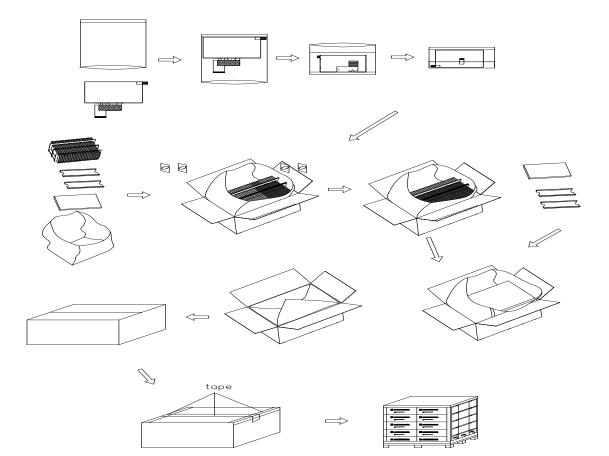
Measure the luminance of white state at center point.


8 Environmental / Reliability Tests

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts=+60℃, 240hrs	Note1 IEC60068-2-1,GB2423.2
2	Low Temperature Operation	Ta=-20℃, 240hrs	IEC60068-2-1 GB2423.1
3	High Temperature Storage	Ta=+70℃, 240hrs	IEC60068-2-1 GB2423.2
4	Low Temperature Storage	Ta=-30℃, 240hrs	IEC60068-2-1 GB2423.1
5	High Temperature & High Humidity Storage	Ta=+60℃, 90% RH 240 hours	Note2 IEC60068-2-78 GB/T2423.3
6	Thermal Shock (Non-operation)	-30℃ 30 min~+70℃ 30 min, Change time:5min, 20 Cycles	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22
7	Electro Static Discharge (Operation)	C=150pF, R=330Ω,5points/panel Air:±8KV, 5times; Contact:±4KV, 5 times; (Environment: 15℃~35℃, 30%~60%, 86Kpa~106Kpa)	IEC61000-4-2 GB/T17626.2
8	Vibration (Non-operation)	Frequency range:10~55Hz, Stroke:1.5mm Sweep:10Hz~55Hz~10Hz 2 hours for each direction of X.Y.Z. (6 hours for total)(Package condition)	IEC60068-2-6 GB/T2423.10
9	Shock (Non-operation)	60G 6ms, ±X,±Y,±Z 3times, for each direction	IEC60068-2-27 GB/T2423.5
10	Package Drop Test	Height:80 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8
11	Package Vibration Test	Random Vibration: 0.015GxG/Hz for 5-200Hz, -6dB/Octave from 200-500Hz 2 hours for each direction of X,Y,Z (6 hours for total)	IEC60068-2-34 GB/T2423.11

Note1: Ts is the temperature of panel's surface.

Note2: Ta is the ambient temperature of sample.


9 Mechanical Drawing

10 Packing Drawing

No	ltem	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM module	TM043NBH02	105.5x67.2x4.1	TBD	112	
2	Partition_1	Corrugated Paper	513x333x106	0.7	2	
3.	Anti-Static Bag	PE	175.8x125x0.05	0.0007	112	Anti-stati c
1 4	Dust-Proof Bag	PE	700x530	0.0600	1	
5	Partition_2	Corrugated Paper	505x332x4.00	0.09	3	
6	Corrugated Bar	Corrugated Paper	513x117x3	0.04	8	
7	Carton	Corrugated Paper	530x350x250	1.1000	1	
8	Total weight		TBD Kg	·		

11 Precautions for Use of LCD Modules

11.1Handling Precautions

11.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

11.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

11.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

11.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

11.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

Isopropyl alcohol

Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents

11.1.6 Do not attempt to disassemble the LCD Module.

11.1.7 If the logic circuit power is off, do not apply the input signals.

11.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

10.1.8.1 Be sure to ground the body when handling the LCD Modules.

10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

11.2Storage precautions

11.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

11.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° \sim 40 $^{\circ}$ Relatively humidity: \leq 80%

11.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

11.3Transportation Precautions

11.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.