ispLEVER Classic 1.7.00.05.28.13 Fitter Report File

Copyright(C), 1992-2012, Lattice Semiconductor Corporation

All Rights Reserved

The Basic/Detailed Report Format can be selected in the dialog box Tools->Fitter Report File Format... Project_Summary
Project Name : beep Project Path : J:\My_Workspace\beep\par_LC4128 Project Fitted on : Mon Sep 20 09:34:24 2010 Device : M4128_64 Package : 100 GLB Input Mux Size : 19 Available Blocks : 8 Speed : -10 Part Number : LC4128V-10T100I Source Format : Pure_Verilog_HDL Project 'beep' Fit Successfully! Compilation_Times
Prefit Time 0 secs Load Design Time 0.22 secs Partition Time 0.06 secs Place Time 0.00 secs Route Time 0.00 secs Total Fit Time 00:00:01 Design_Summary
Total Input Pins 2 Total Logic Functions 27 Total Output Pins 1 Total Bidir I/O Pins 0 Total Buried Nodes 26 Total Flip-Flops 27 Total D Flip-Flops 7 Total T Flip-Flops 20 Total Latches 0 Total Product Terms 89 Total Reserved Pins 0 Total Locked Pins 3 Total Locked Nodes 0 Total Unique Output Enables 0 Total Unique Clocks 1 Total Unique Clock Enables 0 Total Unique Resets 1 Total Unique Presets 1 Fmax Logic Levels 1 Device_Resource_Summary
Device Total Used Not Used Utilization ----------------------------------------------------------------------- Dedicated Pins Clock/Input Pins 4 2 2 --> 50 Input-Only Pins 6 0 6 --> 0 I/O / Enable Pins 2 0 2 --> 0 I/O Pins 62 1 61 --> 1 Logic Functions 128 27 101 --> 21 Input Registers 64 0 64 --> 0 GLB Inputs 288 56 232 --> 19 Logical Product Terms 640 35 605 --> 5 Occupied GLBs 8 3 5 --> 37 Macrocells 128 27 101 --> 21 Control Product Terms: GLB Clock/Clock Enables 8 0 8 --> 0 GLB Reset/Presets 8 0 8 --> 0 Macrocell Clocks 128 0 128 --> 0 Macrocell Clock Enables 128 0 128 --> 0 Macrocell Enables 128 0 128 --> 0 Macrocell Resets 128 0 128 --> 0 Macrocell Presets 128 0 128 --> 0 Global Routing Pool 220 27 193 --> 12 GRP from IFB .. 1 .. --> .. (from input signals) .. 1 .. --> .. (from output signals) .. 0 .. --> .. (from bidir signals) .. 0 .. --> .. GRP from MFB .. 26 .. --> .. ---------------------------------------------------------------------- <Note> 1 : The available PT is the product term that has not been used. <Note> 2 : IFB is I/O feedback. <Note> 3 : MFB is macrocell feedback. GLB_Resource_Summary
# of PT --- Fanin --- I/O Input Macrocells Macrocells Logic clusters Unique Shared Total Pins Regs Used Inaccessible available PTs used ------------------------------------------------------------------------------------------- Maximum GLB 36 *(1) 8 -- -- 16 80 16 ------------------------------------------------------------------------------------------- GLB A 0 0 0 0/8 0 0 0 16 0 0 GLB B 0 0 0 0/8 0 0 0 16 0 0 GLB C 2 3 5 1/8 0 4 0 12 7 4 GLB D 0 0 0 0/8 0 0 0 16 0 0 ------------------------------------------------------------------------------------------- GLB E 2 25 27 0/8 0 14 0 2 15 14 GLB F 0 0 0 0/8 0 0 0 16 0 0 GLB G 0 0 0 0/8 0 0 0 16 0 0 GLB H 2 22 24 0/8 0 9 0 7 13 9 ------------------------------------------------------------------------------------------- TOTALS: 6 50 56 1/64 0 27 0 101 35 27 <Note> 1 : For ispMACH 4000 devices, the number of IOs depends on the GLB. <Note> 2 : Four rightmost columns above reflect last status of the placement process. GLB_Control_Summary
Shared Shared | Mcell Mcell Mcell Mcell Mcell Clk/CE Rst/Pr | Clock CE Enable Reset Preset ------------------------------------------------------------------------------ Maximum GLB 1 1 16 16 16 16 16 ============================================================================== GLB A 0 0 0 0 0 0 0 GLB B 0 0 0 0 0 0 0 GLB C 0 0 0 0 0 0 0 GLB D 0 0 0 0 0 0 0 ------------------------------------------------------------------------------ GLB E 0 0 0 0 0 0 0 GLB F 0 0 0 0 0 0 0 GLB G 0 0 0 0 0 0 0 GLB H 0 0 0 0 0 0 0 ------------------------------------------------------------------------------ <Note> 1 : For ispMACH 4000 devices, the number of output enables depends on the GLB. Optimizer_and_Fitter_Options
Pin Assignment : Yes Group Assignment : No Pin Reservation : No @Ignore_Project_Constraints : Pin Assignments : No Keep Block Assignment -- Keep Segment Assignment -- Group Assignments : No Macrocell Assignment : No Keep Block Assignment -- Keep Segment Assignment -- @Backannotate_Project_Constraints Pin Assignments : No Pin And Block Assignments : No Pin, Macrocell and Block : No @Timing_Constraints : No @Global_Project_Optimization : Balanced Partitioning : Yes Spread Placement : Yes Note : Pack Design : Balanced Partitioning = No Spread Placement = No Spread Design : Balanced Partitioning = Yes Spread Placement = Yes @Logic_Synthesis : Logic Reduction : Yes Node Collapsing : FMAX Fmax_Logic_Level : 1 D/T Synthesis : Yes XOR Synthesis : Yes Max. P-Term for Collapsing : 16 Max. P-Term for Splitting : 80 Max Symbols : 24 @Utilization_options Max. % of Macrocells used : 100 @Usercode 1E17 (HEX) @IO_Types Default = LVCMOS18 (2) @Output_Slew_Rate Default = FAST (2) @Power Default = HIGH (2) @Pull Default = PULLUP_UP (2) @Fast_Bypass Default = None (2) @ORP_Bypass Default = None @Input_Registers Default = None (2) @Register_Powerup Default = None Device Options: <Note> 1 : Reserved unused I/Os can be independently driven to Low or High, and does not follow the drive level set for the Global Configure Unused I/O Option. <Note> 2 : For user-specified constraints on individual signals, refer to the Output, Bidir and Buried Signal Lists. Pinout_Listing
| Pin | Bank |GLB |Assigned| | Signal| Pin No| Type |Number|Pad |Pin | I/O Type | Type | Signal name -------------------------------------------------------------------------- 1 | GND | - | | | | | 2 | TDI | - | | | | | 3 | I_O | 0 |B0 | | | | 4 | I_O | 0 |B2 | | | | 5 | I_O | 0 |B4 | | | | 6 | I_O | 0 |B6 | | | | 7 |GNDIO0 | - | | | | | 8 | I_O | 0 |B8 | | | | 9 | I_O | 0 |B10 | | | | 10 | I_O | 0 |B12 | | | | 11 | I_O | 0 |B13 | | | | 12 | IN0 | 0 | | | | | 13 |VCCIO0 | - | | | | | 14 | I_O | 0 |C14 | | | | 15 | I_O | 0 |C12 | | | | 16 | I_O | 0 |C10 | | | | 17 | I_O | 0 |C8 | * |LVCMOS18 | Output|beep 18 |GNDIO0 | - | | | | | 19 | I_O | 0 |C6 | | | | 20 | I_O | 0 |C5 | | | | 21 | I_O | 0 |C4 | | | | 22 | I_O | 0 |C2 | | | | 23 | IN1 | 0 | | | | | 24 | TCK | - | | | | | 25 | VCC | - | | | | | 26 | GND | - | | | | | 27 | IN2 | 0 | | | | | 28 | I_O | 0 |D13 | | | | 29 | I_O | 0 |D12 | | | | 30 | I_O | 0 |D10 | | | | 31 | I_O | 0 |D8 | | | | 32 |GNDIO0 | - | | | | | 33 |VCCIO0 | - | | | | | 34 | I_O | 0 |D6 | | | | 35 | I_O | 0 |D4 | | | | 36 | I_O | 0 |D2 | | | | 37 | I_O | 0 |D0 | | | | 38 |INCLK1 | 0 | | | | | 39 |INCLK2 | 1 | | | | | 40 | VCC | - | | | | | 41 | I_O | 1 |E0 | | | | 42 | I_O | 1 |E2 | | | | 43 | I_O | 1 |E4 | | | | 44 | I_O | 1 |E6 | | | | 45 |VCCIO1 | - | | | | | 46 |GNDIO1 | - | | | | | 47 | I_O | 1 |E8 | | | | 48 | I_O | 1 |E10 | | | | 49 | I_O | 1 |E12 | | | | 50 | I_O | 1 |E14 | | | | 51 | GND | - | | | | | 52 | TMS | - | | | | | 53 | I_O | 1 |F0 | | | | 54 | I_O | 1 |F2 | | | | 55 | I_O | 1 |F4 | | | | 56 | I_O | 1 |F6 | | | | 57 |GNDIO1 | - | | | | | 58 | I_O | 1 |F8 | | | | 59 | I_O | 1 |F10 | | | | 60 | I_O | 1 |F12 | | | | 61 | I_O | 1 |F13 | | | | 62 | IN3 | 1 | | | | | 63 |VCCIO1 | - | | | | | 64 | I_O | 1 |G14 | | | | 65 | I_O | 1 |G12 | | | | 66 | I_O | 1 |G10 | | | | 67 | I_O | 1 |G8 | | | | 68 |GNDIO1 | - | | | | | 69 | I_O | 1 |G6 | | | | 70 | I_O | 1 |G5 | | | | 71 | I_O | 1 |G4 | | | | 72 | I_O | 1 |G2 | | | | 73 | IN4 | 1 | | | | | 74 | TDO | - | | | | | 75 | VCC | - | | | | | 76 | GND | - | | | | | 77 | IN5 | 1 | | | | | 78 | I_O | 1 |H13 | | | | 79 | I_O | 1 |H12 | | | | 80 | I_O | 1 |H10 | | | | 81 | I_O | 1 |H8 | | | | 82 |GNDIO1 | - | | | | | 83 |VCCIO1 | - | | | | | 84 | I_O | 1 |H6 | | | | 85 | I_O | 1 |H4 | | | | 86 | I_O | 1 |H2 | | | | 87 | I_O/OE| 1 |H0 | | | | 88 |INCLK3 | 1 | | * |LVCMOS18 | Input |reset_n 89 |INCLK0 | 0 | | * |LVCMOS18 | Input |clk 90 | VCC | - | | | | | 91 | I_O/OE| 0 |A0 | | | | 92 | I_O | 0 |A2 | | | | 93 | I_O | 0 |A4 | | | | 94 | I_O | 0 |A6 | | | | 95 |VCCIO0 | - | | | | | 96 |GNDIO0 | - | | | | | 97 | I_O | 0 |A8 | | | | 98 | I_O | 0 |A10 | | | | 99 | I_O | 0 |A12 | | | | 100 | I_O | 0 |A14 | | | | -------------------------------------------------------------------------- <Note> GLB Pad : This notation refers to the GLB I/O pad number in the device. <Note> Assigned Pin : user or dedicated input assignment (E.g. Clock pins). <Note> Pin Type : ClkIn : Dedicated input or clock pin CLK : Dedicated clock pin I_O : Input/Output pin INP : Dedicated input pin JTAG : JTAG Control and test pin NC : No connected Input_Signal_List
Input Pin Fanout Pin GLB Type Pullup Signal ------------------------------------------ 89 -- INCLK -------- Up clk 88 -- INCLK 3 --C-E--H Up reset_n ------------------------------------------ Output_Signal_List
I C P R P O Output N L Mc R E U C O F B Fanout Pin GLB P LL PTs S Type E S P E E P P Slew Pullup Signal ----------------------------------------------------------------------- 17 C 2 1 1 1 DFF * S -------- Fast Up beep ----------------------------------------------------------------------- <Note> CLS = Number of clusters used INP = Number of input signals PTs = Number of product terms LL = Number of logic levels PRE = Has preset equation RES = Has reset equation PUP = Power-Up initial state: R=Reset, S=Set CE = Has clock enable equation OE = Has output enable equation FP = Fast path used OBP = ORP bypass used Bidir_Signal_List
I C P R P O Bidir N L Mc R E U C O F B Fanout Pin GLB P LL PTs S Type E S P E E P P Slew Pullup Signal ----------------------------------------------------------------------- ----------------------------------------------------------------------- <Note> CLS = Number of clusters used INP = Number of input signals PTs = Number of product terms LL = Number of logic levels PRE = Has preset equation RES = Has reset equation PUP = Power-Up initial state: R=Reset, S=Set CE = Has clock enable equation OE = Has output enable equation FP = Fast path used OBP = ORP bypass used Buried_Signal_List
I C P R P Node N L Mc R E U C I F Fanout Mc GLB P LL PTs S Type E S P E R P Signal -------------------------------------------------------- 6 C 2 1 1 1 DFF * R 3 --C-E--H cnt_0_ 1 E 11 1 1 1 TFF * R 2 ----E--H cnt_10_ 2 E 12 1 1 1 TFF * R 2 ----E--H cnt_11_ 3 E 13 1 1 1 TFF * R 2 ----E--H cnt_12_ 4 E 14 1 1 1 TFF * R 2 ----E--H cnt_13_ 5 E 15 1 1 1 TFF * R 2 ----E--H cnt_14_ 6 E 16 1 1 1 TFF * R 2 ----E--H cnt_15_ 7 E 17 1 1 1 TFF * R 2 ----E--H cnt_16_ 8 E 18 1 1 1 TFF * R 2 ----E--H cnt_17_ 9 E 19 1 1 1 TFF * R 2 ----E--H cnt_18_ 10 E 20 1 1 1 TFF * R 2 ----E--H cnt_19_ 3 C 3 1 2 1 DFF * R 3 --C-E--H cnt_1_ 11 E 21 1 1 1 TFF * R 2 ----E--H cnt_20_ 9 H 22 1 1 1 TFF * R 2 ----E--H cnt_21_ 12 E 23 1 1 1 TFF * R 2 ----E--H cnt_22_ 12 H 24 1 1 1 TFF * R 1 ----E--- cnt_23_ 13 E 25 1 1 1 TFF * R 1 ----E--- cnt_24_ 0 E 27 1 2 1 DFF * R 2 --C-E--- cnt_25_ 1 C 4 1 3 1 DFF * R 3 --C-E--H cnt_2_ 0 H 5 1 4 1 DFF * R 2 ----E--H cnt_3_ 1 H 6 1 2 1 DFF * R 2 ----E--H cnt_4_ 2 H 6 1 1 1 TFF * R 2 ----E--H cnt_5_ 3 H 7 1 1 1 TFF * R 2 ----E--H cnt_6_ 4 H 8 1 1 1 TFF * R 2 ----E--H cnt_7_ 5 H 9 1 1 1 TFF * R 2 ----E--H cnt_8_ 7 H 10 1 1 1 TFF * R 2 ----E--H cnt_9_ -------------------------------------------------------- <Note> CLS = Number of clusters used INP = Number of input signals PTs = Number of product terms LL = Number of logic levels PRE = Has preset equation RES = Has reset equation PUP = Power-Up initial state: R=Reset, S=Set CE = Has clock enable equation OE = Has output enable equation IR = Input register FP = Fast path used OBP = ORP bypass used PostFit_Equations
beep.D = cnt_25_.Q ; (1 pterm, 1 signal) beep.C = clk ; (1 pterm, 1 signal) beep.AP = !reset_n ; (1 pterm, 1 signal) cnt_0_.D = !cnt_0_.Q ; (1 pterm, 1 signal) cnt_0_.C = clk ; (1 pterm, 1 signal) cnt_0_.AR = !reset_n ; (1 pterm, 1 signal) cnt_10_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q ; (1 pterm, 10 signals) cnt_10_.C = clk ; (1 pterm, 1 signal) cnt_10_.AR = !reset_n ; (1 pterm, 1 signal) cnt_11_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q ; (1 pterm, 11 signals) cnt_11_.C = clk ; (1 pterm, 1 signal) cnt_11_.AR = !reset_n ; (1 pterm, 1 signal) cnt_12_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q ; (1 pterm, 12 signals) cnt_12_.C = clk ; (1 pterm, 1 signal) cnt_12_.AR = !reset_n ; (1 pterm, 1 signal) cnt_13_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q ; (1 pterm, 13 signals) cnt_13_.C = clk ; (1 pterm, 1 signal) cnt_13_.AR = !reset_n ; (1 pterm, 1 signal) cnt_14_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q ; (1 pterm, 14 signals) cnt_14_.C = clk ; (1 pterm, 1 signal) cnt_14_.AR = !reset_n ; (1 pterm, 1 signal) cnt_15_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q ; (1 pterm, 15 signals) cnt_15_.C = clk ; (1 pterm, 1 signal) cnt_15_.AR = !reset_n ; (1 pterm, 1 signal) cnt_16_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q ; (1 pterm, 16 signals) cnt_16_.C = clk ; (1 pterm, 1 signal) cnt_16_.AR = !reset_n ; (1 pterm, 1 signal) cnt_17_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q ; (1 pterm, 17 signals) cnt_17_.C = clk ; (1 pterm, 1 signal) cnt_17_.AR = !reset_n ; (1 pterm, 1 signal) cnt_18_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q ; (1 pterm, 18 signals) cnt_18_.C = clk ; (1 pterm, 1 signal) cnt_18_.AR = !reset_n ; (1 pterm, 1 signal) cnt_19_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q ; (1 pterm, 19 signals) cnt_19_.C = clk ; (1 pterm, 1 signal) cnt_19_.AR = !reset_n ; (1 pterm, 1 signal) cnt_1_.D = cnt_0_.Q & !cnt_1_.Q # !cnt_0_.Q & cnt_1_.Q ; (2 pterms, 2 signals) cnt_1_.C = clk ; (1 pterm, 1 signal) cnt_1_.AR = !reset_n ; (1 pterm, 1 signal) cnt_20_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q & cnt_19_.Q ; (1 pterm, 20 signals) cnt_20_.C = clk ; (1 pterm, 1 signal) cnt_20_.AR = !reset_n ; (1 pterm, 1 signal) cnt_21_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q & cnt_19_.Q & cnt_20_.Q ; (1 pterm, 21 signals) cnt_21_.C = clk ; (1 pterm, 1 signal) cnt_21_.AR = !reset_n ; (1 pterm, 1 signal) cnt_22_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q & cnt_19_.Q & cnt_20_.Q & cnt_21_.Q ; (1 pterm, 22 signals) cnt_22_.C = clk ; (1 pterm, 1 signal) cnt_22_.AR = !reset_n ; (1 pterm, 1 signal) cnt_23_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q & cnt_19_.Q & cnt_20_.Q & cnt_21_.Q & cnt_22_.Q ; (1 pterm, 23 signals) cnt_23_.C = clk ; (1 pterm, 1 signal) cnt_23_.AR = !reset_n ; (1 pterm, 1 signal) cnt_24_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q & cnt_19_.Q & cnt_20_.Q & cnt_21_.Q & cnt_22_.Q & cnt_23_.Q ; (1 pterm, 24 signals) cnt_24_.C = clk ; (1 pterm, 1 signal) cnt_24_.AR = !reset_n ; (1 pterm, 1 signal) cnt_25_.D.X1 = cnt_25_.Q ; (1 pterm, 1 signal) cnt_25_.D.X2 = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q & cnt_9_.Q & cnt_10_.Q & cnt_11_.Q & cnt_12_.Q & cnt_13_.Q & cnt_14_.Q & cnt_15_.Q & cnt_16_.Q & cnt_17_.Q & cnt_18_.Q & cnt_19_.Q & cnt_20_.Q & cnt_21_.Q & cnt_22_.Q & cnt_23_.Q & cnt_24_.Q ; (1 pterm, 25 signals) cnt_25_.C = clk ; (1 pterm, 1 signal) cnt_25_.AR = !reset_n ; (1 pterm, 1 signal) cnt_2_.D = cnt_0_.Q & cnt_1_.Q & !cnt_2_.Q # !cnt_1_.Q & cnt_2_.Q # !cnt_0_.Q & cnt_2_.Q ; (3 pterms, 3 signals) cnt_2_.C = clk ; (1 pterm, 1 signal) cnt_2_.AR = !reset_n ; (1 pterm, 1 signal) cnt_3_.D = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & !cnt_3_.Q # !cnt_2_.Q & cnt_3_.Q # !cnt_1_.Q & cnt_3_.Q # !cnt_0_.Q & cnt_3_.Q ; (4 pterms, 4 signals) cnt_3_.C = clk ; (1 pterm, 1 signal) cnt_3_.AR = !reset_n ; (1 pterm, 1 signal) cnt_4_.D.X1 = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q ; (1 pterm, 4 signals) cnt_4_.D.X2 = cnt_4_.Q ; (1 pterm, 1 signal) cnt_4_.C = clk ; (1 pterm, 1 signal) cnt_4_.AR = !reset_n ; (1 pterm, 1 signal) cnt_5_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q ; (1 pterm, 5 signals) cnt_5_.C = clk ; (1 pterm, 1 signal) cnt_5_.AR = !reset_n ; (1 pterm, 1 signal) cnt_6_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q ; (1 pterm, 6 signals) cnt_6_.C = clk ; (1 pterm, 1 signal) cnt_6_.AR = !reset_n ; (1 pterm, 1 signal) cnt_7_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q ; (1 pterm, 7 signals) cnt_7_.C = clk ; (1 pterm, 1 signal) cnt_7_.AR = !reset_n ; (1 pterm, 1 signal) cnt_8_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q ; (1 pterm, 8 signals) cnt_8_.C = clk ; (1 pterm, 1 signal) cnt_8_.AR = !reset_n ; (1 pterm, 1 signal) cnt_9_.T = cnt_0_.Q & cnt_1_.Q & cnt_2_.Q & cnt_3_.Q & cnt_4_.Q & cnt_5_.Q & cnt_6_.Q & cnt_7_.Q & cnt_8_.Q ; (1 pterm, 9 signals) cnt_9_.C = clk ; (1 pterm, 1 signal) cnt_9_.AR = !reset_n ; (1 pterm, 1 signal)