
January 2003, Version 1.1 Data Sheet

 Nios DMA
General
Description

The Nios® DMA module is an Altera® SOPC Builder library component
included in the Nios development kit. The DMA module allows for
efficient bulk data transfer between peripherals and memory by removing
the CPU from the data path. The SOPC Builder DMA library component
has available system choices to define device logic and interface signals on
the Nios development board. The DMA’s Verilog HDL or VHDL source
code is available for development and includes the necessary software
subroutines for easy system integration.

Functional
Description

The Nios direct memory access (DMA) peripheral is used to perform
DMA data transfers between two memories, between a memory and a
peripheral, or between two peripherals. The DMA peripheral is used in
conjunction with streaming-capable peripherals, and allows data
transfers of fixed or variable length without intervention from the CPU.

The DMA peripheral has two Avalon master ports—a master read port
and a master write port—and one Avalon slave port for controlling the
DMA as shown in Figure 1 on page 2. The DMA determines its
configuration by inspecting the slaves to which it is connected. The user
can override the default values.

f For a details on streaming Avalon data transfers and streaming Avalon
peripherals, see the Avalon Bus Specification Reference Manual.
Altera Corporation 1

DS-NIOSDMA-1.1

http://www.altera.com/literature/manual/mnl_avalon_bus.pdf
http://www.altera.com/literature/manual/mnl_avalon_bus.pdf

Nios DMA Data Sheet
Figure 1. DMA Peripheral with Master & Slave Ports

A typical DMA transfer proceeds as follows:

1. Software configures the DMA to transfer data by writing to the
control port.

2. Software enables the DMA peripheral. The DMA peripheral then
begins transferring data without additional intervention from the
CPU.

3. The DMA’s master read port reads data from the read address,
which may be a memory or a peripheral, while the master write port
writes the data to the destination address (a memory or peripheral).
A shallow first-in first-out (FIFO) may buffer data between the read
and write ports.

4. The DMA transfer ends when a specified number of bytes are
transferred, or an “end of packet” (EOP) symbol is transferred. The
DMA peripheral may issue an interrupt request at the end of the
transfer.

5. During or after the transfer, software may determine if a transfer is
in progress, or if the transfer ended (and how) by examining the
DMA’s status register.
2 Altera Corporation

Nios DMA Data Sheet
Table 1 lists and describes the DMA register map

DMA Registers

Note
(1) A write operation to the status register clears the len, weop, reop, and done bits.

status Register

The status register consists of individual bits that indicate particular
conditions inside the DMA. The status register can be read at any time
by software. Reading the status register does not change its value.

The status register bits are shown in Table 2:

Table 1. DMA Register Map

A2..A0 Register
Name

R/W Description/Register Bits

31 . . . 9 8 7 6 5 4 3 2 1 0

0 status(1) RW len weop reop busy done

1 readaddress RW Read master start address

2 writeaddress RW Write master start address

3 length RW Length in bytes

4 reserved1 – Reserved

5 reserved2 – Reserved

6 control RW wcon rcon leen ween reen i_en go word hw byte

7 reserved3 – Reserved

Table 2. status Register Bits

Bit Number Bit Name Description

0 done A DMA transfer is completed.

1 busy A DMA transfer is in progress.

2 reop Read end of packet occurred.

3 weop Write end of packet occurred.

4 len A DMA transfer is completed and the requested number
of bytes are transferred.
Altera Corporation 3

Nios DMA Data Sheet
done Bit

The done bit is set to 1 when an end of packet condition is detected or the
specified length is completed. A write operation to the status register
clears the done bit, which in turn clears the IRQ.

busy Bit

The busy bit is 1 when a DMA transfer is in progress.

reop Bit

The reop bit is 1 when a transfer is completed due to an end of packet
event on the read side.

weop Bit

The weop bit is 1 when a transfer is completed due to an end of packet
event on the write side.

len Bit

The len bit is 1 when a transfer completes with length bytes being
transferred.

readaddress Register

The readaddress register specifies the first location to be read in a DMA
transfer. The readaddress register width is determined at system
generation time. It is wide enough to address the full range of all slaves
mastered by the read port.

writeaddress Register

The writeaddress register specifies the first location to be written in a
DMA transfer. The writeaddress register width is determined at
system generation time. It is wide enough to address the full range of all
slaves mastered by the write port.

length Register

When written, the length register specifies the number of bytes to be
transferred from the read port to the write port.
4 Altera Corporation

Nios DMA Data Sheet
The length register width is determined at system generation time. It is
wide enough to span any of the slave devices mastered by the read or
write ports. The length register width can be overridden by supplying a
minimum width value in the DMA wizard or in the lengthwidth PTF
assignment. Overriding the length register may be necessary if the DMA
master (read or write) only masters a data peripheral, such as a UART. In
that case, the slave’s address span is small, but it is likely that a large
number of data items will need to be read or written.

The length register is decremented as each data value is written by the
DMA write master. When length reaches 0, the len bit is set if enabled
by the control register’s leen bit. The length register does not
decrement below 0.

1 The length register is specified in bytes. For word transfers, the
value must be a multiple of 4. For half-word transfers, the value
must be a multiple of 2.

control Register

The control register is composed of individual bits that control the
DMA’s internal operation. The control register’s value can be read at
any time by software. The control register bits allow software to
determine which, if any, conditions of the DMA transfer result in the end
of a transfer and an interrupt request to software, if enabled.

The control register bits are shown in Table 3:

Table 3. control Register Bits

Bit Number Bit Name Description

0 byte Byte (8-bit) transfer.

1 hw Half-word (16-bit) transfer.

2 word Word (32-bit) transfer.

3 go Enable DMA.

4 i_en Enable interrupt.

5 reen Enable read end of packet.

6 ween Enable write end of packet.

7 leen End DMA transfer when length register reaches 0.

8 rcon Read from a fixed address.

9 wcon Write to a fixed address.
Altera Corporation 5

Nios DMA Data Sheet
byte, hw and word Bits

The data width of a transfer is specified by the byte, hw, and word bits.
Set only one of these bits to 1 for any given transfer. The width of the
transfer is determined by the narrowest of the two slaves read and written
in the transfer. For example, a DMA transfer that reads 16-bit flash and
writes 32-bit on-chip memory is a half-word transfer. The setting is:
byte = 0, hw = 1, and word = 0.

go Bit

When the go bit is set to 1, the DMA is enabled to execute its transfers, if
any. For example, if the length register is non-zero, transfers begin when
the go bit changes from 0 to 1.

i_en Bit

When the i_en bit is 1, the DMA generates an interrupt request (sets its
IRQ output to 1) when the status register’s done bit is set to 1. When the
i_en bit is 0, the IRQ output is always 0. A write operation to the status
register clears the done bit, which in turn clears the IRQ.

reen Bit

When the reen bit is set to 1, a slave on the read side may end a transfer
by asserting endofpacket.

ween Bit

When the ween bit is set to 1, a slave on the write side may end a transfer
by asserting endofpacket.

leen Bit

When the leen bit is set to 1, the DMA transfer ends when the length
register reaches 0. When this bit is set to 0, length reaching 0 does not
cause a transfer to end.

rcon Bit

The rcon bit controls an aspect of read address incrementing. For details,
see “Address Incrementing” on page 7.
6 Altera Corporation

Nios DMA Data Sheet
wcon Bit

The wcon bit controls an aspect of write address incrementing. For details,
see “Address Incrementing” on page 7.

Address
Incrementing

A DMA transfer is a sequence of read (or write) accesses to memory or
peripheral devices. For a typical memory access, the read (or write)
address increments by 1, 2 or 4 after each access, depending on the
transfer’s data size. A typical peripheral device (such as UART) has fixed
read (or write) register locations—in this case, the read (or write) is held
constant throughout the transfer. The rules for address incrementing are,
in order of priority:

� If the control register’s rcon (or wcon) bit is set, the read (or write)
increment value is 0.

� Otherwise, the read and write increment values are set according to
the transfer size specified in the control register:

Interrupts The DMA peripheral has a single IRQ output that equals 1 when the
status register’s done bit equals 1 and the control register’s i_en bit
equals 1.

A typical DMA interrupt handler reads the status register to check the
transfer’s conditions len, reop, and weop bits. Then it writes the status
register to reset the conditions. If appropriate, another DMA transfer can
then be started.

Software Data
Structure

typedef volatile struct
{
 int np_dmastatus; // status register
 int np_dmareadaddress; // read address
 int np_dmawriteaddress; // write address
 int np_dmalength; // length in bytes
 int np_dmareserved1; // reserved
 int np_dmareserved2; // reserved
 int np_dmacontrol; // control register
 int np_dmareserved3; // reserved
} np_dma;

Bit Name Transfer Width Increment

byte byte 1

hw half-word 2

word word 4
Altera Corporation 7

Nios DMA Data Sheet
Software
Subroutines

Table 4 lists the DMA subroutines available in the Nios library (lib folder
in the custom SDK) when one or more DMA peripherals are present in the
Nios system. These functions are declared in the include file nios.h.

nr_dma_copy_1_to_1

This subroutine transfers transfer_count units of data between the
unchanging source address and destination address.

Syntax

nr_dma_copy_1_to_1
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *source_address,
 void *destination_address,
 int transfer_count
);

Table 4. DMA Software Subroutines

Subroutine Description

nr_dma_copy_1_to_1 Transfers transfer_count units of data
between the unchanging source address
and destination address.

nr_dma_copy_1_to_range Transfers transfer_count units of data
between the source address and
destination address. The same source
address is used repeatedly, while the
destination address increments by
bytes_per_transfer each transfer.

nr_dma_copy_range_to_range Transfers transfer_count units of data
between the source address and
destination address. Both the source
address and the destination address
increment by bytes_per_transfer
each transfer.

nr_dma_copy_range_to_1 Transfers transfer_count units of data
between the source address and
destination address. The source address
increments by bytes_per_transfer
each transfer, while the same destination
address is used repeatedly.
8 Altera Corporation

Nios DMA Data Sheet
Parameters

nr_dma_copy_1_to_range

This subroutine transfers transfer_count units of data between the
source address and destination address. The same source address is used
repeatedly, while the destination address increments by
bytes_per_transfer each transfer.

Syntax

nr_dma_copy_1_to_range
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *source_address,
 void *first_destination_address,
 int transfer_count
);

Parameters

Parameter Description

dma Indicates which DMA peripheral to use.

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus size.

source_address Address to transfer data from.

destination_address Address to transfer data to.

transfer_count Number of individual data transfers to perform.

Parameter Description

dma Indicates which DMA peripheral to use.

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size.

source_address Address to transfer data from.

first_destination_address Address to transfer data to.

transfer_count Number of individual data transfers to perform.
Altera Corporation 9

Nios DMA Data Sheet
nr_dma_copy_range_to_range

This subroutine transfers transfer_count units of data between the
source address and destination address. Both the source address and the
destination address increment by bytes_per_transfer each transfer.

Syntax

nr_dma_copy_range_to_range
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *first_source_address,
 void *first_destination_address,
 int transfer_count
);

Parameters

Parameter Description

dma Indicates which DMA peripheral to use.

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size.

first_source_address Address to transfer data from.

first_destination_address Address to transfer data to.

transfer_count Number of individual data transfers to perform.
10 Altera Corporation

Nios DMA Data Sheet
nr_dma_copy_range_to_1

This subroutine transfers transfer_count units of data between the
source address and destination address. The source address increments
by bytes_per_transfer each transfer, while the same destination
address is used repeatedly.

Syntax

nr_dma_copy_range_to_1
 (
 np_dma *dma,
 int bytes_per_transfer,
 void *first_source_address,
 void *destination_address,
 int transfer_count
);

Parameters

Parameter Description

dma Indicates which DMA peripheral to use.

bytes_per_transfer Must be 1, 2, or 4, but does not have to match the bus
size.

first_source_address Address to transfer data from.

destination_address Address to transfer data to.

transfer_count Number of individual data transfers to perform.
Altera Corporation 11

Nios DMA Data Sheet
PTF
Assignments

Table 5 lists the DMA’s PTF file assignments. All of these assignments are
located in the system PTF’s MODULE/WIZARD_SCRIPT_ARGUMENTS
section.

lengthwidth

The lengthwidth assignment specifies the minimum value for the DMA
length register’s width. The length register width will not fall below
the number specified in this assignment.

fifo_depth

The fifo_depth assignment specifies the minimum value for the
number of locations in the internal memory.

fifo_in_logic_elements

When fifo_in_logic_elements is set to 1, the FIFO memory is built
out of logic elements (LEs). When fifo_in_logic_elements is set
to 0, the FIFO memory is built out of embedded system blocks (ESBs),
embedded array blocks (EABs), and so on.

Table 5. DMA PTF Assignments

Parameter Type Allowed Values Default

lengthwidth Decimal 1 .. 32 8

fifo_depth Decimal 2

fifo_in_logic_elements Boolean 1, 0 1

2≥
12 Altera Corporation

Nios DMA Data Sheet
Advanced PTF Assignments

Table 6 lists advanced PTF parameters for the DMA. Each parameter is a
representation of a register or register bit and specifies its reset value.
control register reset values are specified on a per-bit basis.

Table 6. Advanced DMA PTF Parameters

Parameter Type Allowed Values Default
Value

readaddress_reset_value Hexadecimal The useful range of
these values depends

upon the corresponding
register width.

0x0

writeaddress_reset_value Hexadecimal 0x0

length_reset_value Hexadecimal 0x0

control_byte_reset_value Boolean 1,0 0

control_hw_reset_value Boolean 1,0 0

control_word_reset_value Boolean 1,0 1

control_go_reset_value Boolean 1,0 0

control_i_en_reset_value Boolean 1,0 0

control_reen_reset_value Boolean 1,0 0

control_ween_reset_value Boolean 1,0 0

control_leen_reset_value Boolean 1,0 0

control_rcon_reset_value Boolean 1,0 0

control_wcon_reset_value Boolean 1,0 0
Altera Corporation 13

Nios DMA Data Sheet
Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, mask work rights, and copyrights. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera’s standard
warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed
to in writing by Altera Corporation. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information and before
placing orders for products or services.

14 Altera Corporation

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
http://www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
lit_req@altera.com

	General Description
	Functional Description
	DMA Registers
	status Register
	done Bit
	busy Bit
	reop Bit
	weop Bit
	len Bit

	readaddress Register
	writeaddress Register
	length Register
	control Register
	byte, hw and word Bits
	go Bit
	i_en Bit
	reen Bit
	ween Bit
	leen Bit
	rcon Bit
	wcon Bit

	Address Incrementing
	Interrupts
	Software Data Structure
	Software Subroutines
	nr_dma_copy_1_to_1
	Syntax
	Parameters

	nr_dma_copy_1_to_range
	Syntax
	Parameters

	nr_dma_copy_range_to_range
	Syntax
	Parameters

	nr_dma_copy_range_to_1
	Syntax
	Parameters

	PTF Assignments
	lengthwidth
	fifo_depth
	fifo_in_logic_elements
	Advanced PTF Assignments

