
An Overview on Writing a VHDL Testbench

Dan Biederman
Member of Technical Staff

Hughes Missile Systems Company
Bldg 805, M / S F6
P. 0. Box 11337

Tucson, AZ 85734

Abstract
This paper is an overview of VHDL

testbenches and other related topics. It has been
written for a digital design engineer with little
VHDL or programming experience to get a
better understanding of writing VHDL, and
using a testbench. The future of VHDL is also
discussed.

Introduction
Finding errors in the design of

electrical circuits before the fabrication or
production stage can reduce the product
development time and cost. One way that
engineers have to do this is by building a device
around the prototype circuit called a hardware
testbench. A hardware testbench would
generate the inputs (Stimulus) and review the
outputs (Monitor) of the device.

In recent years the design of digital
circuitry, such as Application Specific
Integrated Circuits (ASICs) and Programmable
Logic Devices (PLDs), has been done using a
software programming language known as a
Hardware Description Language o L) such as
VHDL. One of the reasons for this is that VHDL
can ideally be synthesized into any current gate-
level technology such as an ASIC or PLD.
Thus an ASIC designed today can be redesigned
several years later reusing the software code that
was written originally.

Once a digital device has been
designed, it needs to be tested. One method of.
testing these devices and their surroundmg
circuitry is to use a HDL testbench before the

fabrication of the device. This paper discusses
the methodologies of HDL testbenches and
reviews their uses in the design process at the
gate level, board level, and system levels to
verlfy the proper operation of a digital design.

Writing a VHDL testbench
A testbench has three major parts, the

stimulus, the monitor, and the device under test
@UT) as shown in Figure la. The stimulus is
the part of the testbench that controls the input
signal values. Thls portion of the software
program should contain all of the information
that the DUT needs to perform its job properly.
This may include address and data buses,
interrupt signals, enables, etc.

The monitor, on the other hand, checks
or verifies the outputs of the DUT. This is
usually done by waiting for the simulation event,
and then checking that the event occurred with
an “Assert” statement. By venfylng the DUT
using “Assert” statements, one can usually save
simulation time, because all signal traces need
not be stored, and also save engmeering time,
because all of the signals need not be verified
individually.

In using VHDL, one can have the
monitor and the stimulus in the same program
(entity) as shown in Figure lb. If a digital
designer wishes to use only one program, and
still keep the stimulus separate from the
monitor, it can be acheved by using different
processes for the monitor and different process
for the stimulus.

384
0-8186-7873-9/97 $10.00 0 1997 IEEE

new
线条

new
线条

new
线条

I I I

Stim u lu s Device
Under

Monitor and Test bi

Figure 1: (a) Testbench configuration with separate Stimulus and Monitor sections, (b) Testbench
configuration with a single Stimulus and Monitor section.

Using a descriptive coding style
Before one designs a VHDL module,

one should consider a descriptive coding style
that will be easy to reuse in future designs. The
easiest way to describe your code is to use
comment statements or remarks. These
comments will describe the operations of the
code for others to understand. This may be
adequate for simple modules, but for complex
modules, other methods may be more desirable.

Using prefixes, suffixes, underscores and
capital letters

In writing code, your engineering team
may want to decide on a coding style which
everyone will follow. Prefixes and suffixes can
be very helpful in telling the reader exactly what
an identifier is. Underscores or capital letters
can be used to separate words in a signal name.
Look at the example below:

Address-Enable-Out-Sig-Low <=
not (Address-Enable-Sig)

If (ResetInSigLow = ‘0’ or
COUNTER-VAR = 15) then

From the examples above, one can easily
determine from the signal name that the signal,
Address-Enable-Out-Sig-Low, is an active low

output signal used as an address enable.
Likewise the signal name, ResetInSigLow, is an
active low input signal that occurs during a
system reset. Even though VHDL is not case
sensitive, it is often useful to write VHDL code
as if it were case sensitive. For example, if all
variables are capitalized it is immediately
apparent to the reader where variables are used.

Designing flexibility into the software
testbench

In writing a testbench, the flexibility of
the code should be considered. This is due to
the fact that requirements inevitably change.
For example, an ASIC may originally be
targeted to work at 15 MHz device, and as the
system evolves, the ASIC may be required to
work at 30 MHz to meet final system
performance objectives. If flexibility is not
included in the testbench, it may require much
time to update the stimulus and monitor to the
new speed.

Flexibility is an important issue when
considering future reuse of the testbench. As
technology advances, the 30 MHz device maybe
too slow and might need several new features to
be added to keep up with the competition. In
order to be more time and cost efficient the old
tmtbcmh may be reused, in whole or in part by
changing the variable to the faster requirements,

385

and adding new modules to test the additional
new features.

Avoiding Hard-Coded values in
testbenches

In writing code, hard-coding of timing
values should be avoided. These statements
easily lose their meaning over time, often even
to the digtal designer who wrote the statements
as memories fade. Also, force statements, a
series of linear staements of the form “X occurs
at time Y (or in VHDL, X <= Z after Y ns;) are
not very flexible. Thus if the code consisted of
2000 force statements, and the digital designer
decides to change the timing, every line might
need to be to changed. Instead, stimulus can be
structured in a more behavioral form and code
can be parameterized.

Mimicking the hardware or system
operation

The VHDL programmer should try to
mimic the actual hardware or system behavior
when possible. This will make the code easier
to comprehend for someone who is unfamiliar
with it, but understands the operation of the
design being implemented. Also, the code will
be more flexible to changes should they be
required.

Parameterizing instead of Hard-Coding
Below is an example of a line of code

with hard values and two examples of
parameterized code:

Wait for 100 ns;
Wait for CLK-2-OUTPUT-DELAY;
Wait for 2 * CLOCK-200MHZ-PERIOD;

The first line is hard-coded. Thus in
every instance the code will wait for a specific
time. This is passable for a simple testbench,
but far mnre complex testbenches- this wait
statement is too rigid. Also, if there exist many
related wait statements, all of them might have
to be changed if timing changes.

The last two lines of code are
parameterized statements. Parameterized code
uses defined constants or variables in place of

hard-coded values. Then, with a simple change
in a small section of code (the constants or
variables) the rest of the stimulus or monitor
code automatically “readjusts” as new timing is
calculated. These variables or constants, which
may be defined in a package, are descriptive to
the purpose of the constant or variable. Also,
since these variables are defined in one place,
changing the values of these variables only
involves changing one line of code.

Creating reuseable Iibraries.
One of the great advantages of VHDL

is that it can be synthesized directly into
different technologies. Thus it is time efficient
to create a Reuse Library for the VHDL code. A
reuse library is simply a collection of pre-
compiled design units that are shared. This is
currently being done for synthesizable VHDL
code, but one should also use t h s for behavioral
testbench modules. This will allow future test
programs to be generated from the reuse library
components reducing development time of the
testbench. Also, if a design is a legacy design,
the testbench may be completely reused in the
new design with few modifications.

Reusing code at different levels of the
design

One advantage of VHDL code is that
the code can be used at Werent levels in the
design hierarchy. Thus a test module for an
ASIC on a board might be modified to test the
board itself. Likewise if a board level testbench
exists, a subset of the testbench could be
m o a e d to test the ASIC level design. The
same is true for the system level.

Also, the digital designer may wish for
the testbench to only test the functionality of the
design at the board or system level and not the
timing. If this is the case, the designer may use
the pre-synthesis VHDL code instead of a
synthesized gate-level netlist. This will allow
for faster simulations to venfy the operation of
new design at the board or system levels,
without using the computing resources to
validate timing of each individual gate of the
design. This allows for reduced simulation
times in initial functional verification.

386

Using different designers to develop the
hardware and the testbench

One important concept to consider is
having separate designers for the device under
test and the testbench. The designers should
work independently, each basing his
functionality on the original specification, not
the other’s interpretation. When the testbench
and the DUT are connected together, and
potential errors are uncovered, the designers can
examine their interpretations of the specification
and correct and eliminate the errors. This
technique reduces the chances of human error in
the final product.

Taking advantage of behavioral (non-
synthesizable) code

Since a testbench does not need to be
synthesized, the designer may take advantage of
the non-synthesizable language constructs that
exists in VHDL. Thus unsynthesizable “wait”
statements and “loop” statements, among others
can be used to implement the stimulus according
to what the specification requires and can make
the task of monitoring results much easier.

Using an input file can add
tremendous flexibility as well. This allows the
same program to read in variables that may
change the overall operation of the testbench.
For example, the stimulus of a testbench of an
Intel 8255A2, programmable peripheral interface,
could contain a data file for the input, and a data
file that would contain the mode word that
would be written to the device. The monitor
could use a data file for the expected outputs.

Testing the fabricated design using the
software testbench.

One advantage of a software testbench
is that it can be used at various levels of testing.
For example, an ASIC design can be tested
before synthesis, to verify the functionality of the
ASIC can be tested; after synthesis, to verrfy
functionality and timing; prior to release to
fabrication, to verify the total operation of the
system; and after fabrication, to verify the ASIC
design. After the ASIC has been fabricated, this
testing can occur straight from the HDL by
connecting a hardware modeler to the
workstation network, or by a separate tester that

can use the HDL or translate the HDL to a
special language required by the tester.

Using vendor technology dependent
libraries

Much can be said in favor and against
vendor libraries. Thus this paper will review
same advantages and disadvantages.

Advantages
Efficient /Specialized Components

The vendor libraries allow the designer
to take advantage of highly specialized or
efficient components in their designs. Some
vendors allow complex multipliers, analog-to-
digital converters and even microprocessors to
be added to the design. These components allow
enhancement of the design to greater levels.

Architecture-Specific Constructs as With
Programmable Logic Devices (PLDs)

Every PLD company has a Werent
architecture for its devices. Thus if one’s code
can be designed for architecture of the PLD
being used, one can get higher density of gates
and greater throughput on the PLD. For
example, Xilinx 4000 series FPGAs use
Configurable Logic Blocks that make it easy to
implement certain DSP functions such as digital
filters [11.

Disadvantages
Unavailable Simulation Models and Non-
Digital Simulations

One of the main problems with using
these components in the design is that they are
difficult to test with a testbench. For example, if
a digital designer uses the vendor’s
microprocessor, how would the microprocessor
in the system be tested. Or if an analog-to-
digital converter is used, how does one test the
mixed signal chip. Most HDLs do not allow for
analog inputs. A second problem with the
libraries is they are vendor dependent. Thus if
problems occur and the vendor quits supporting
the libraries or goes out of business, it will be
difficult to get the design fabricated. A third
problem is that most of the libraries are
technology dependent. Thus if your design
needs to use the latest and greatest libraries,

387

these devices may not exist in the newest
technology.

Non-Portability across vendors and even across
same vendor’s technology

Many of the ASIC and PLD companies
have proprietary library designs that are not
compatible with any other companies’ libraries.
Also, old library designs becoming obsolete over
time. This makes designs with the old libraries
obsolete as well. One of the main goals of HDLs
is to reduce design time through reuse and
flexibility, and these vendor technology
dependent libraries hender the flexibility of the
HDL code, and can reduce the ability of a
company to reuse old HDL code.

The future of hardware description
languages

There are several ways that HDLs are
going. Two of the most popular are system level
HDLs and Analog (AHDLs) or Mixed signal
HDLs. The system level HDL allows a designer
to write a high-level code similar to a
component specification. The synthesizer will
then convert the code into a gate-level design
used in ASICs or PLDs. This may eliminate the
need for the lower level HDLs used today.

Analog HDLs will allow analog
designer the opportunity to design using
reusable code similar to VHDL[2]. Currently a
large push has been made to enter analog field
programmable arrays into the market. AHDLs
will be necessary to the success of these new
devices. Likewise with the development of
AHDLs, a new set of HDLs will be developed
that will combine the analog and digital HDLs
into a single language.

Conclusion
In conclusion, this has been an

overview of VHDL and VHDL testbenches. It

has discussed topics about writing VHDL
testbenches. Using a descriptive coding style,
mimicking the hardware, and parameterizing
the hardware have been discussed as ways of
making VHDL code more flexible and easier to
use by others. Also how using reuse libraries to
reduce design time for the designers of future
projects has been discussed. The advantages and
disadvantages of using vendor dependent
libraries have been reviewed. And a final look
into the future of Hardware Description
Languages was discussed.

Acknowledgments
I would like to acknowledge the help of

my wife Shobana for helping me by reviewing
this paper. Also, I would like to thank Mr.
David Clark, a Senior Engineer and VHDL
expert at Hughes Missile Systems Company, for
his comments and suggestions.

Bibliography
Dan Biederman graduated from

Tennessee Technological University with his
B.S.E.E. in 1993. In 1995, he completed his
M.S.E.E.. His thesis was titled A Neural
Network-Based Digital Multiplier. He has
worked at Hughes Missile Systems Company
since 1996 as part of an ASIC-level and board-
level digital design team. He has written
several VHDL testbenches for both the ASIC-
level and board-level designs.

References
1. Newgard, Bruce. Signal Processing with

Xilinx FPGAs. Xilinx, San Jose. July
1996.
Rhodes, David L. A Design Language for
Analog Circuits. IEEE Spectrum. pages 43
- 48. October 1996.

2.

388

