
January 2003, Version 3.0 Data Sheet

Nios UART
General
Description

The Nios® UART module is an Altera® SOPC Builder library component
included in the Nios development kit. The UART module is a common
serial interface with variable baud rate, parity, stop and data bits, and
optional control signals. The SOPC Builder UART library component has
available system choices to define device logic and interface signals on the
Nios development kit. The UART’s Verilog HDL or VHDL source code is
available for development and includes the necessary software
subroutines for easy system integration.

Functional
Description

The Nios UART implements simple RS-232 asynchronous transmit and
receive logic inside an Altera device. The UART sends and receives serial
data over two external pins (RxD and TxD). Software controls and
communicates with the UART through five memory-mapped, 16-bit
registers.

To comply with RS-232 voltage-signaling specifications, an external level
shifting buffer is required (e.g., Linear Technology LTC-1386) between the
TxD/RxD I/O pins and the corresponding RS-232 external connections.
The acceptable input voltage range and the output voltage level depends
on how the Altera device’s I/O pins are configured. The UART uses a
logic 0 for mark, and a logic 1 for space. The UART runs on a single
synchronous clock input, clk.

The UART peripheral can be used in conjunction with the DMA
peripheral to allow streaming data transfers between the UART and
memory. See the Nios DMA Data Sheet for details.

You can customize the UART peripheral specifically for simulation. For
example, during high-speed system simulation (e.g., 100 MHz), UART
simulation can be painstakingly slow because the UART transmits
approximately 11,500 characters per second at 115,200 bps. At this baud
rate, an 11-bit character (8 bits, 1 start-bit, 2 stop bits) takes greater than
9,500 clock cycles to simulate at 100 MHz. To speed functional simulation,
you can run the UART with a small baud divisor, which allows the UART
to run at half the system clock speed. In this mode, one bit is transmitted
every two clock cycles, or roughly one character per 10 clock cycles.
Altera Corporation 1

DS-NIOSUART-3.0

http://www.altera.com/literature/ds/ds_nios_dma.pdf
http://www.altera.com/literature/ds/ds_nios_dma.pdf

Nios UART Data Sheet
Additionally, you can customize the data stream transmitted to the UART,
which is useful for simulating operation of an application that normally
requires a user to type text that is sent to the Nios application (e.g., via the
GERMS monitor).

You specify how data streams transmit to the UART in one of the
following ways:

� Using the Simulated RXD-Input Character Stream dialog box
� Using the optional Interactive windows in the ModelSim software

f See AN 189: Simulating Nios Embedded Processor Designs for details on the
Nios development kit simulation flow and process using an example Nios
design and the ModelSim simulator.

Transmitter Logic

The UART transmitter consists of a 7-, 8-, or 9-bit txdata holding register
and a 7-, 8-, or 9-bit transmit shift register (the number of data bits is
determined by the data_bits PTF assignment). The txdata holding
register is directly written by software. The transmit shift register is
automatically loaded from the txdata register when a serial transmit
shift operation is not currently in process. The transmit shift register
directly feeds the TxD data pin. Data is shifted out to TxD LSB first.

These two registers provide double buffering; software can write a new
value into the txdata register while the previously written character is
being shifted out. Software can monitor the transmitter’s status by reading
the status register’s transmitter ready (trdy), transmitter shift register
empty (tmt), and transmitter overrun error (toe) bits.

The transmitter logic automatically inserts the correct number of start,
stop, and parity bits in the serial TxD data stream as required by the
RS-232 specification and determined by the PTF assignments.

Receiver Logic

The UART receiver consists of a 7-, 8-, or 9-bit receiver-shift register and a
7-, 8-, or 9-bit rxdata holding register (the number of data bits is
determined by the data_bits PTF assignment). The rxdata holding
register can be read directly by software. The rxdata holding register is
loaded from the receiver shift register automatically every time a new
character is fully received.
2 Altera Corporation

http://www.altera.com/literature/an/an189.pdf

Nios UART Data Sheet
These two registers provide double buffering. The rxdata register can
hold a previously received character while the subsequent character is
being shifted into the receiver shift register.

Software can monitor the receiver’s status by reading the status
register’s read-ready (rrdy), receiver-overrun error (roe), break detect
(brk), parity error (pe), and framing error (fe) bits. The receiver logic
automatically detects the correct number of start, stop, and parity bits in
the serial RxD stream as required by the RS-232 specification, and as
determined by the hardware compile time UART configuration. The
receiver logic checks for four exceptional conditions in the received data,
and sets corresponding status register bits (fe, pe, roe, or brk).

Baud Rate Generation

The UART’s internal baud clock is derived from the UART’s master clock
input, which is the same as the Avalon-bus system clock. The internal
baud clock is generated by a clock divider. The divisor value can come
from one of the following sources:

� A constant value set by the UART’s baud PTF assignment and the
system’s clock_freq PTF assignment

� The host-settable 16-bit value in the divisor register

The UART uses a host-settable baud rate divisor register when the
fixed_baud PTF parameter is set to 0. The UART uses a fixed baud rate
when fixed_baud is set to 1.

UART Registers Table 1 lists and describes the UART registers.

Notes to Table 1:
(1) A write operation to the status register clears the dcts, e, toe, roe, brk, fe, and pe bits.
(2) status register bit 8 (e) is the logical OR of the toe, roe, brk, fe, and pe bits.

Table 1. UART Register Map

A2..A0 Register
Name

R/W Description/Register Bits

15 . . . 12 11 10 9 8 7 6 5 4 3 2 1 0

0 rxdata RO RxData

1 txdata WO TxData

2 status (1) RW eop cts dcts – e (2) rrdy trdy tmt toe roe brk fe pe

3 control RW ieop rts idcts trbk ie irrdy itrdy itmt itoe iroe ibrk ife ipe

4 divisor RW Baud Rate Divisor (optional)

5 endofpacket RW End-packet value
Altera Corporation 3

Nios UART Data Sheet
rxdata Register

Software reads received characters from the rxdata register. When a new
character is fully received via the RxD input, it is transferred into the
rxdata register, and the status register’s rrdy bit is set to 1. When
software reads a value from the rxdata register, the status register’s
rrdy bit is set to 0. If a character is transferred into the rxdata register
when the rrdy bit is set (that is, software has not retrieved the previous
character), a receiver-overrun error occurs and the status register’s roe
bit is set to 1. New characters are always transferred into the rxdata
register, whether or not software retrieved the previous character. Writing
data to the rxdata register has no effect.

txdata Register

Software writes characters to be transmitted directly into the txdata
register. Characters should not be written to the txdata register until the
transmitter is ready for a new character, as indicated by the trdy bit in the
status register. If a character is written to the txdata register when
trdy is 0, the results are undefined. The trdy bit is set to 0 when software
writes a character into the txdata register. The trdy bit is set to 1 when
a character is transferred from the txdata register into the transmitter
shift register.

For example, assume the UART is idle and software writes a first character
into the txdata register. The trdy bit is set to 0, then set to 1 when the
character is transferred into the transmitter shift register. Software can
then write a second character into the txdata register, and the trdy bit
is set to 0 again. However, this time the first character still occupies the
transmitter shift register and is still in the slower process of being
transmitted over the TxD output pin. The trdy bit is not set to 1 until the
first character is fully shifted out and the second character is automatically
transferred into the transmitter shift register. Reading data from the
txdata register produces an undefined result.

status Register

The status register consists of individual bits that indicate particular
conditions inside the UART. The status register can be read at any time
by software. Reading the status register does not change the value of
any of the bits. Each status bit is associated with a corresponding
interrupt-enable bit in the control register. When a status bit’s
corresponding interrupt-enable equals 1, a true (1) condition on that
status bit causes an interrupt request to be sent to software.
4 Altera Corporation

Nios UART Data Sheet
Most status bits are set to 0 when software performs a write operation
to the status register (the written data value is ignored). See the bit
descriptions for the bits that are not effected.

The status register bits are shown in Table 2:

pe Bit

A parity error occurs when the received parity bit has an unexpected
(incorrect) logic level.

The pe bit is set to 1 when the UART receives a character with an incorrect
parity bit. When the PTF parameter parity is set to “N”, no parity
checking is performed and the pe bit is always 0 (see “parity” on page 19).
The pe bit is persistent—it stays set to 1 until it is explicitly cleared by a
software write operation to the status register.

fe Bit

A framing error occurs when the receiver fails to detect a correct stop
bit.The fe bit is set to 1 when the UART receives a character with an
incorrect stop bit. The fe bit is persistent—it stays set to 1 until it is
explicitly cleared by a software write operation to the status register.

1 When the pe or fe bit is set, reading from the rxdata register
produces an undefined result.

Table 2. status Register Bits

Bit Number Bit Name Description

0 pe Parity error

1 fe Framing error

2 brk Break detect

3 roe Receive overrun error

4 toe Transmit overrun error

5 tmt Transmit empty

6 trdy Transmit ready

7 rrdy Receive char ready

8 e Exception

10 dcts Change in clear to send (CTS) signal

11 cts CTS signal

12 eop End of packet encountered
Altera Corporation 5

Nios UART Data Sheet
brk Bit

The receiver logic detects a break when the RxD pin is held low (logic 0)
continuously for longer than a full-character time (7, 8, or 9 bit-cycles, plus
start, stop, and parity bits). When a break is detected, the brk bit is
set to 1. The brk bit is persistent—it stays set to 1 until it is explicitly
cleared by a software write operation to the status register.

roe Bit

A receiver-overrun error occurs when a newly received character is
transferred into the rxdata holding register before the previous character
is read by software (that is, while the rrdy bit is 1). In this case, the roe
bit is set to 1, and the rxdata register’s previous contents are overwritten
with the newly received character. The roe bit is persistent—it stays set
to 1 until it is explicitly cleared by a software write operation to the
status register.

toe Bit

The toe bit is set to 1 when software writes a new character into the
txdata holding register while the trdy bit is 0 (that is, before the
previous character is transferred into the transmitter shift register). The
toe bit is persistent—it stays set to 1 until it is explicitly cleared by a
software write operation to the status register.

tmt Bit

The tmt bit indicates the transmitter shift register’s current state. When
the transmitter shift register is in the process of shifting a character out the
TxD pin, tmt is set to 0. When the transmitter shift register is idle (that is,
a character is not being transmitted) the tmt bit is 1. Software can
determine if a transmission is completed (and should be received at the
other end of a serial link) by checking the tmt bit.

The tmt bit is not changed by a write operation to the status register.
6 Altera Corporation

Nios UART Data Sheet
trdy Bit

The trdy bit indicates the txdata holding register’s current state. When
the txdata holding register is empty (that is, its contents are transferred
to the transmitter shift register), it is ready for a new character and trdy
is 1. When the value in the txdata register is not transferred into the
transmitter shift register (because the transmitter shift register is busy
shifting out the previous character), trdy is 0. Software must always wait
for trdy to equal 1 before writing a new character into the txdata
register.

The trdy bit is not changed by a write operation to the status register.

rrdy Bit

The rrdy bit indicates the rxdata holding register’s current state. When
the rxdata holding register is empty (that is, the UART has not received
any new characters), it is not ready to be read and rrdy is 0. When a newly
received value is transferred into the rxdata register, rrdy is set to 1. The
rrdy bit is set to 0 when software performs a read operation on the
rxdata register. Software must always wait for rrdy to equal 1 before
reading a character from the rxdata register.

The rrdy bit is not changed by a write operation to the status register.

e Bit

The exception condition e bit is a simple logical-OR of the status
register’s toe, roe, brk, fe, and pe bits. The e bit indicates to software
that an exception condition—other than the normal character
transactions—is occurring. The e bit and corresponding interrupt-enable
exception condition (ie) bit also provide a convenient method to
enable/disable interrupts for all error conditions.

The e bit is set to 0 by a write operation to the status register because all
of its constituent bits are set to 0 by this action.

dcts Bit

When the PTF parameter use_cts_rts = 1, the status register
includes the dcts bit (see “use_cts_rts” on page 18). This bit is set to 1
whenever a logic-level transition (that is, an edge) is detected on the
synchronously-sampled cts_n input pin. This bit is set by both falling (1
to 0) and rising (0 to 1) transitions on the cts_n input. The dcts bit is
persistent—it stays set to 1 until it is explicitly cleared when software
performs a write operation to the status register.
Altera Corporation 7

Nios UART Data Sheet
If the control register’s idcts interrupt-enable bit is 1, the UART
generates an interrupt when dcts is 1.

When the PTF parameter use_cts_rts = 0, the dcts bit is always 0.

cts Bit

When the PTF parameter use_cts_rts = 1, the status register
includes the read-only cts bit (see “use_cts_rts” on page 18). This bit
reflects the CTS input signal’s instantaneous, synchronously-sampled
logic state. The UART hardware has a logic-negative input pin, cts_n.
Thus, cts = 1 when a 0 logic-level is applied to the external cts_n input,
and cts = 0 when a 1 logic-level is applied to the external cts_n input.

When the PTF parameter use_cts_rts = 0, the cts bit is always 0.

1 The cts_n input has no effect on the UART’s transmit or receive
logic. The only visible effect of the cts_n input is the state of the
cts and dcts bits, and a potential interrupt that can be
generated when the control register’s idcts bit is enabled.

eop Bit

When the PTF parameter use_eop_register = 1, the status register
includes the eop bit (see “use_eop_register” on page 18). This bit is set to
1 by one of the following events:

� Software writes an EOP character to the transmitter
� Software reads an EOP character from the receiver

Specifically, the eop bit is set to 1 when software executes a write
transaction to the txdata register and the data value written to txdata
is the same as the endofpacket register’s current value. This bit is also
set to 1 when software executes a read transaction from the rxdata
register and the data value read by software is the same as the
endofpacket register’s current value. The eop bit is persistent—it stays
set to 1 until it is explicitly cleared when software performs a write
operation to the status register.

When the PTF parameter use_eop_register = 0, the eop bit always
reads as 0.
8 Altera Corporation

Nios UART Data Sheet
control Register

The control register is composed of individual bits, each controlling the
UART’s internal operation. Each bit in the control register enables an
interrupt bit for the corresponding bit in the status register. The value
in the control register can be read at any time by software.

The control register bits are shown in Table 3:

The control register bits allow software to determine which, if any,
internal conditions of the UART result in an interrupt request to software.

Each bit in the status register has a corresponding interrupt-enable bit
at the same bit position in the control register. For example, the pe bit
is bit 0 of the status register, and the corresponding ipe bit is bit 0 of the
control register. For each status register bit, an interrupt request is
generated when both the status bit and its corresponding interrupt-
enable bit both equal 1.

Table 3. control Register Bits

Bit Number Bit Name Description

0 ipe Enable interrupt for a parity error

1 ife Enable interrupt for a framing error

2 ibrk Enable interrupt for a break detect

3 iroe Enable interrupt for a receiver overrun error

4 itoe Enable interrupt for a transmitter overrun error

5 itmt Enable interrupt for a transmitter shift register
empty

6 itrdy Enable interrupt for a transmission ready

7 irrdy Enable interrupt for a read ready

8 ie Enable interrupt for an exception

9 trbk Transmit break

10 idcts Enable interrupt for a change in CTS signal

11 rts Request to send (RTS) signal

12 ieop Enable interrupt for an end of packet encountered
Altera Corporation 9

Nios UART Data Sheet
trbk Bit

The transmit break (trbk) bit, allows software to transmit a break
character over the UART’s TxD pin under software control. The TxD pin
is set to 0 when the trbk bit equals 1. The trbk bit overrides any normal
logic level that the transmitter logic may have otherwise driven on the
TxD pin. The trbk bit interferes with any transmission in process. The
software must set the trbk bit back to 0 after an appropriate break period
elapses.

rts Bit

When the PTF parameter use_cts_rts = 1, the control register
includes the rts bit (see “use_cts_rts” on page 18). This readable and
writable bit directly feeds the logic-negative rts_n output pin. Software
can write rts at any time. The value of rts has no effect on the UART’s
transmit or receive hardware. The rts bit’s only purpose is to determine
the rts_n output pin’s value. When rts is 1, a low logic-level (0) is
driven on the rts_n output pin. When rts is 0, a high logic-level (1) is
driven on the rts_n output pin.

When the PTF parameter use_rts_cts = 0, the rts bit always reads as
0 and writing to rts has no effect.

divisor Register

The divisor register is only implemented when the PTF parameter
fixed_baud is set to 0 (see “fixed_baud” on page 17). When
fixed_baud is set to 1, the divisor register does not exist—the write
operations to the divisor register have no effect, and the result of a read
operation from the divisor register is undefined.

When fixed_baud is set to 0, the divisor register’s contents are used
to generate the UART’s baud rate clock. The UART’s final baud rate is
computed by the formula:

Software can read back the value in the divisor register at any time.

endofpacket Register

The end of packet character is determined by the value of the
endofpacket register. The default value is zero. For more information,
see “eop Bit” on page 8.

baud rate clock_freq
divisor 1+()---------------------------------------=
10 Altera Corporation

Nios UART Data Sheet
Interrupt
Outputs

The UART produces a single IRQ output signal as part of its Avalon bus
interface. The UART asserts its interrupt-request output when one or
more internal conditions occurs and the condition’s corresponding
interrupt-enable bit in the control register is also set. At reset, all
interrupt-enable bits are set to 0; therefore, the UART cannot assert its
interrupt-request output until one or more of its interrupt-enable bits are
set to 1 by software.

Each possible interrupt condition has an associated bit in the status
register and an associated interrupt-enable bit in the control register.
When any of the interrupt conditions occurs, the associated status bit is
set to 1 and remains set until the status register is cleared by software.
Software clears the status register by writing it with any value (the
value is ignored).

All possible interrupt conditions are listed with their associated status
and control (interrupt-enable) bits in Table 2 and Table 3. Details of
each condition are provided in the status bit descriptions. The IRQ
output is asserted when any of these status bits are set while the
corresponding interrupt-enable bit is 1.

Software Data
Structure

Below is the UART software data structure.

typedef volatile struct{
 int np_uartrxdata; // Read-only, 8-bit
 int np_uarttxdata; // Write-only, 8-bit
 int np_uartstatus; // Read-only, 9-bit
 int np_uartcontrol; // Read/Write, 9-bit
 int np_uartdivisor; // Read/Write, 16-bit, optional
 int np_uartendofpacket; // Read/Write, end of packet character
} np_uart;
Altera Corporation 11

Nios UART Data Sheet
Software
Subroutines

Table 4 lists the UART software subroutines available in the Nios library
(lib folder in the custom software development kit (SDK) when one or
more UART peripherals are present in the Nios system. These functions
are declared in the include file nios.h.

nr_uart_rxchar

This subroutine reads a character from the UART peripheral whose
address is passed in uartBase. If no character is waiting, nr_uart_rxchar
returns -1. If zero is passed for the peripheral address, nr_uart_rxchar
reads a character from the UART at location nasys_printf_uart
(nios.h).

Syntax

int nr_uart_rxchar(np_uart *uartBase);

Parameter

The uartBase parameter is a pointer to the UART peripheral.

Table 4. UART Software Subroutines

Subroutine Description

nr_uart_rxchar Reads a character from the UART whose address is passed
as an argument.

nr_uart_txcr Sends a carriage return and line feed to the UART at address
nasys_printf_UART.

nr_uart_txchar Sends a single character to the UART whose address is
passed as an argument.

nr_uart_txhex Prints an integer value, in hexadecimal, to the UART at
address nasys_printf_UART.

nr_uart_txhex16 Prints the value of a short integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txhex32 Prints the value of a long integer, in hexadecimal, to the
UART at address nasys_printf_UART.

nr_uart_txstring Prints a null-terminated string to the UART at address
nasys_printf_UART.
12 Altera Corporation

Nios UART Data Sheet
Figure 1 shows an example of nr_uart_rxchar subroutine.

Figure 1. nr_uart_rxchar Example

#include "nios.h"

void main(void)
{
 int c;

 printf("Please enter a character:\n");

 while((c = nr_uart_rxchar(nasys_printf_UART)) == -1)
 ; // wait for valid input

 printf("Your character is:\t%c\n", c);
}

nr_uart_txchar

This subroutine sends a single character, c, to the UART peripheral whose
address is passed as uartBase. If zero is passed for the peripheral address,
nr_uart_txchar sends a character to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txchar(int c, np_uart *uartBase);

Parameters

Parameter Name Description

c Character to be sent.

uartBase Pointer to the UART peripheral.
Altera Corporation 13

Nios UART Data Sheet
Figure 2 shows an example of the nr_uart_txchar subroutine.

Figure 2. nr_uart_txchar Example

#include "nios.h"

#define kLineWidth 77
#define kLineCount 100

void SendLots(void)
{
 char c;
 int i,j;
 int mix;

 printf("\n\nPress character, or <space> for mix: ");
 while((c = nr_rxchar(0)) < 0);

 printf("%c\n\n",c);

 // Don't show unprintables

 if(c < 32)
 c = '.';

 mix = c==' ';

 for(i = 0; i < kLineCount; i++)
 {
 for(j = 0; j < kLineWidth; j++)
 {
 if(mix)
 {
 c++;
 if(c >= 127)
 c = 33;
 }
 nr_uart_txchar(c,nasys_printf_UART);
 // send character to UART
 }
 nr_uart_txcr();
 // send carriage return and new line

 }
 printf("\n\n");
}

nr_uart_txcr

This subroutine sends a carriage return and line feed to the UART at
location nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txcr(void);
14 Altera Corporation

Nios UART Data Sheet
nr_uart_txhex

This subroutine prints the integer value of x in hexadecimal to the UART
at location nasys_printf_uart (defined in nios.h). The range for a 16-bit
Nios CPU is 0000 to FFFF, and for a 32-bit Nios CPU is 00000000 to
FFFFFFFF.

Syntax

int nr_uart_txhex(int x);

Parameter

The x parameter is an integer value to be sent to UART.

nr_uart_txhex16

This subroutine prints the 16-bit value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range is from 0000 to
FFFF.

Syntax

int nr_uart_txhex16(short x);

Parameter

The x parameter is a 16-bit integer value to be sent to UART.

nr_uart_txhex32

This subroutine prints the 32-bit value of x in hexadecimal to the UART at
location nasys_printf_uart (defined in nios.h). The range is from 00000000
to FFFFFFF. This subroutine is not available on a 16-bit Nios CPU.

Syntax

int nr_uart_txhex32(long x);

Parameter

The x parameter is a 32-bit integer value to be sent to UART.
Altera Corporation 15

Nios UART Data Sheet
nr_uart_txstring

This subroutine prints the null-terminated string s to the UART at location
nasys_printf_uart (defined in nios.h).

Syntax

int nr_uart_txstring(char *s);

Parameter

The s parameter is a pointer to a null-terminated character string.

PTF
Assignments

Table 5 lists the UART’s PTF parameters followed by a description of each
parameter.

Note to Table 5:
(1) The Section column describes the parameter’s location in the PTF:

S/WSA = SYSTEM/WIZARD_SCRIPT_ARGUMENTS
M/WSA = MODULE/WIZARD_SCRIPT_ARGUMENTS

clock_freq

The clock_freq assignment is the global system clock frequency. This
setting is derived from the system PTF, and is not set by the wizard.

Table 5. UART PTF File Parameters

Parameter Section (1) Type Allowed Values Default Units

clock_freq S/WSA Integer 33333000 Hz

fixed_baud M/WSA Boolean 1, 0 1 –

use_cts_rts M/WSA Boolean 1, 0 0 –

use_eop_register M/WSA Boolean 1, 0 0 –

data_bits M/WSA Integer 7, 8, 9 8 bits

stop_bits M/WSA Integer 1, 2 1 bits

parity M/WSA String “N”, “E”, “O” “N” –

baud M/WSA Integer clock_freq/65536 to clock_freq/2 115200 bps

sim_true_baud M/WSA Boolean 1, 0 0 –

sim_char_stream M/WSA String any printable alphanumeric character,
plus “\n” (newline), “\r” (carriage return),

and “\"” (double-quote character)

– –

1≥
16 Altera Corporation

Nios UART Data Sheet
fixed_baud

When fixed_baud is set to 1, the UART is implemented using a constant
(unchangeable) baud divisor. Thus, UARTs constructed with
fixed_baud set to 1 always run at the same baud rate, given by the baud
assignment (see “baud” on page 20). When fixed_baud is set to 1, the
hard coded baud divisor value is computed according to the formula:

The clock_freq assignment determines the clock frequency. When
fixed_baud is set to 1, software cannot change the UART’s baud rate,
and the UART does not implement a divisor register at address offset 4.
When fixed_baud is set to 1, writing to address offset 4 has no effect,
and reading from address offset 4 produces an undefined result.

When fixed_baud is set to 0, the UART includes a 16-bit divisor
register at address offset 4 (see “divisor Register” on page 10). The
divisor register’s value determines the baud rate according to the
formula:

Software can write the divisor register to any 16-bit value, which is
treated as an unsigned integer. At reset, the divisor register is initialized
to a value that depends on the baud assignment, according to the formula:

Thus, when fixed_baud is set to 0, the baud assignment determines the
UART’s baud rate, until and unless software writes a different value into
the divisor register.

divisor int clock_freq
baud

------------------------------------ 0.5+ 
 =

baud rate clock_freq
divisor 1+()---------------------------------------=

divisor reset value int clock_freq
baud

------------------------------------ 0.5+ 
 =
Altera Corporation 17

Nios UART Data Sheet
use_cts_rts

When use_cts_rts is set to 1, the UART includes:

� A cts_n (logic-negative CTS) input pin
� An rts_n (logic-negative RTS) output pin
� A cts bit in the status register
� A dcts bit in the status register
� An rts bit in the control register
� An idcts bit in the control register

When use_cts_rts is set to 1, software can detect CTS and transmit RTS
flow control signals. The cts-input and rts-output pins are entirely
under the control of software, and have no direct effect on any other part
of the UART hardware, other than the associated control and status
bits.

When use_cts_rts is set to 0, the UART does not include cts_n and
rts_n pins, and the control/status bits cts, dcts, idcts, and rts
are not implemented (always read as 0).

use_eop_register

When use_eop_register is set to 1, the UART includes:

� A 7-, 8-, or 9-bit endofpacket register at address-offset 5 (size given
by data_bits assignment)

� An eop bit in the status register
� An ieop bit in the control register
� An end of packet signal on its Avalon bus interface to be used in

conjunction with streaming data transfers

When use_eop_register is set to 1, the UART can be programmed to
automatically terminate streaming data transactions when used with a
streaming-capable Avalon master (such as a DMA controller).

The eop detection feature can be used with a DMA, for example, to
implement a UART that automatically fills a buffer until a specified
character is encountered in the incoming rxdata or txdata stream. The
terminating (end of packet) character’s value is taken from the
endofpacket register.
18 Altera Corporation

Nios UART Data Sheet
When use_eop_register is set to 0, the UART does not include:

� endofpacket register
� end of packet Avalon interface signal
� eop bit in the status register
� ieop bit in the control register

Also, when use_eop_register is set to 0, writing to address offset 5 has
no effect, and reading from address offset 5 produces an undefined result.

data_bits

The UART can be constructed to transmit and receive 7-, 8-, or 9-bit data
values, as determined by the value of data_bits. The txdata, rxdata,
and endofpacket register widths are all determined by the data_bits
assignment.

stop_bits

The UART can be constructed to transmit either 1 or 2 stop bits with every
character, as determined by the stop_bits assignment. The UART
always terminates a receive transaction at the first stop bit, and ignores all
subsequent stop bits, regardless of this parameter’s value.

parity

When parity is set to N, the UART transmit-logic sends data without
including a parity bit, and the UART receive-logic presumes the incoming
data does not include a parity bit. When parity is set to N, the status
register’s pe bit is not implemented (always reads 0).

For the other parity values, the UART transmit-logic computes and
inserts the required parity bit into the outgoing TxD bitstream, and the
UART receive-logic checks the incoming parity bit in the RxD bitstream. If
the receiver finds data with incorrect parity, the status register’s pe bit
is checked and an interrupt is asserted when the corresponding mask bit
in the control register (ipe) is enabled.
Altera Corporation 19

Nios UART Data Sheet
The outgoing parity bit inserted into the TxD stream and the received
parity bit’s expected correct value is determined by the parity
assignment:

baud

When fixed_baud is set to 1, the baud assignment determines the
UART’s baud-rate. When fixed_baud is set to 0, the baud assignment
determines the divisor register’s initial (reset) value. The formulas for
computing the resultant divisor constant are described in “fixed_baud”
on page 17.

sim_true_baud

When the UART logic is generated, a simulation model is also
constructed. When sim_true_baud is set to 1, the UART simulation
faithfully models the transmit- and receive baud divisor logic. This often
leads to long simulation runtimes, since serial transmission rates are often
slower than any other process in the system. Accurately modeling the
UART’s divisor logic is time-consuming and seldom useful.

When sim_true_baud is set to 0, the simulated UART’s baud divisor is
overridden by the fixed value 4. This assignment only affects the
simulation model—the generated UART logic as such is not changed. The
smaller baud divisor tends to accelerate simulation runtimes with little
loss of authenticity in the simulated system results. When fixed_baud is
set to 0 and sim_true_baud is set to 0, the software-writable divisor
register is included in the simulation model, but its initial (reset) value is
4 instead of the actual (non-simulation) value determined by the baud
assignment.

sim_char_stream

The sim_char_stream value consists of simulation information entered
in the wizard. Based on this stream, the SOPC Builder generates a
simulation vector file that inputs the sim_char_stream into the UART.
By default, sim_char_stream contains no characters.

parity Assignment Description

E Parity bit is set to 1 if txdata has an even number of 1-bits,
otherwise parity bit is set to 0

O Parity bit is set to 1 if txdata has an odd number of 1-bits,
otherwise parity bit is set to 0
20 Altera Corporation

Nios UART Data Sheet
f See the SOPC Builder PTF File Reference Manual for comprehensive
information about the internal workings of the SOPC Builder tool
including details on the PTF file structure and parameters.
Altera Corporation 21

http://www.altera.com/literature/manual/mnl_sopcptf.pdf

Nios UART Data Sheet
Copyright © 2003 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their
respective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, mask work rights, and copyrights. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera’s standard
warranty, but reserves the right to make changes to any products and services at any time
without notice. Altera assumes no responsibility or liability arising out of the application
or use of any information, product, or service described herein except as expressly agreed
to in writing by Altera Corporation. Altera customers are advised to obtain the latest
version of device specifications before relying on any published information and before
placing orders for products or services.

22 Altera Corporation

101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com
Applications Hotline:
(800) 800-EPLD
Literature Services:
lit_req@altera.com

	General Description
	Functional Description
	Transmitter Logic
	Receiver Logic
	Baud Rate Generation

	UART Registers
	rxdata Register
	txdata Register
	status Register
	pe Bit
	fe Bit
	brk Bit
	roe Bit
	toe Bit
	tmt Bit
	trdy Bit
	rrdy Bit
	e Bit
	dcts Bit
	cts Bit
	eop Bit

	control Register
	trbk Bit
	rts Bit

	divisor Register
	endofpacket Register

	Interrupt Outputs
	Software Data Structure
	Software Subroutines
	nr_uart_rxchar
	Syntax
	Parameter

	nr_uart_txchar
	Syntax
	Parameters

	nr_uart_txcr
	Syntax

	nr_uart_txhex
	Syntax
	Parameter

	nr_uart_txhex16
	Syntax
	Parameter

	nr_uart_txhex32
	Syntax
	Parameter

	nr_uart_txstring
	Syntax
	Parameter

	PTF Assignments
	clock_freq
	fixed_baud
	use_cts_rts
	use_eop_register
	data_bits
	stop_bits
	parity
	baud
	sim_true_baud
	sim_char_stream

