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Behavioral Hardware Description
Languages
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Behavioral HDL

N

#®To efficiently accomplish the verification
task, you must well-versed in behavioral

descriptions.

#To reliably and correctly use the
behavioral constructs of Verilog, it is
necessary to understand the side
effects of the simulation algorithm and
the limitations of the language — and

ways to circumvent them.
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RTL Coding Guidelines to Avoid

Undesirable Hardware Structures

N

#To avoid latches, set all outputs of
combinational blocks to default values
at the beginning of the block.

#To avoid internal buses, do not assign
regs from two separate a/ways blocks.

#To avoid tri-state buffers, do not assign
value 1’bz.




RTL Coding Guidelines to

Maintain Simulation Behavior

N

#All inputs must be listed in the
sensitivity list of a combinational block.

# The clock and asynchronous reset must
be in the sensitivity list of a sequential
block.

#Use a non-blocking assignment when
assigning to a reg intended to be
inferred as a flip-flop.
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A Simple
Example

N
¥

# It detec

Handshaking Protocol

s that an acknowledge signal
(ACK) is asserted after a requesting
signal (REQ) is asserted.

#0nce ACK is detected, REQ is de-

asserted, and it then waits for ACK to
be de-asserted.

REQ = I ACK =1 REQ = 0 ACK =0

ACK =0 ACK =1




N

Advantages of Behavioral Models

# Faster to write

#Simpler, requiring less effort to ensure
that it is correct

# Higher simulation performance




You Gotta Have Style!

N

#\Write maintainable, robust code.
#Invest time now, save support time
later.

= [ime invested in writing better code would
be saved much time over in subsequent
support efforts.

#Good comments improve maintainability.
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Optimize the Right Thing

N

# Saving lines actually costs money.

m There is no economic reason to reduce the
number of lines of code. Unless, it also
improves the maintainability.

# Optimizing performance costs money.

» Performance optimization usually reduce
maintainability and must be done only
when absolutely required.
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Structure of Behavioral Code

N

@ Structuring code is the process of
allocating portions of the functionality
to different modules or entities.

@ For maintainability reasons, behavioral
code is structured according to
functionality or need.




N

Available constructs for
structuring code

VHDL Verilog

Entity and architecture |Module

Function Function
Procedure Task
Package Module
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Encapsulation of Behavioral Code

N

# Encapsulation is an application of the
structuring principle.

#® The idea behind encapsulation is to hide
implementation details and decouple the
usage of a function from its implementation.

# The simplest encapsulation technique is to

keep declarations as local as possible.

= Avoid accidental interactions with another portion
of the code where the declaration is also visible.
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An Encapsulation Example

-
N
always task send;
begin: block_1 input [7:0] data;
integer i; reg parity;
for (i=0; i<32; i=i+1) begin begin
end end
end endtask
always function [31:0] average;
begin: block_2 input [31:0] vall;
integer i; input [31:0] val2;
for (i=15; i>=0; i=i-1) begin reg [32:0] sum;
begin
end sum=vall+val2;
end average=sum/2;
end
endfunction
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Encapsulating Useful

N

Subprograms

#®Example: error reporting routines

= 10 have a consistent error reporting format,
a set of standard routines are used to issue

messages during simulation.

= They are implemented as tasks, with two

packaging alternatives.
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Packaging Technique I

N

# Put the tasks in a file to be included via a
compiler directive within the module where
they are used.

# Advantage

= It can be used in synthesizable code whereas the
other cannot.

# Disadvantages

= The package cannot be compiled on its own since
the tasks are not contained within a module.

= Since the tasks are compiled within each module
where it is included, it is not possible to include
global variables, such as an error counter.




Packaging Technique II

N

# Put the tasks in @ module to be included in
the simulation, but never instantiated within
any of the modules where they are used.
Instead, an absolute hierarchical name is
used to access the task in this global module.

# It can be compiled on its own since the tasks
are now contained within a module.

# It is also possible to include global variables,
such as an error counter.
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N

Data Abstraction

@ Synthesizable models are limited to bits

and vectors.

#Work at the same level as the design

under verification.
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Real Values

N

@ Constant could be defined using " define
symbols.

» define symbols are global to the
compilation and violate the data
encapsulation principle.

# Defining them as parameters is better.
= They would be local to the module.
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N

An Example — Real Values

@ Using  define
symbols

" define a0 0.500000
“define al 1.125987
“define a2 -0.097743
“define bl -1.009373
“define b2 0.009672

# Using parameters

parameter a0=0.500000,
al=1.125987,
a2=-0.097743,
b1=-1.009373,
b1=0.009672;

FTIUER R
MTad7 2 Al 42 B8 P pz vl % 42221 =% -2 o1l 4 TN T% B8 26 4|

W



Limitation

N

#Real values cannot be passed across
interfaces.

m Tasks, functions, and modules cannot
accept a real value as one of its input
arguments.

#\Verilog provides a build-in system task
to translate a real value to and from a

64-bit vector: $realtobits and $bitstoreal,
respectively.
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N

Records

# A module can emulate a record by
containing only register declarations.

#\When instantiated, the module instance
emulates a record register, with each
register in the module becoming a field
of the record instance.
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An Example — Records

module atm_cell_type;

reg [11:0] vpi;
reg [15:0] vci;

.r.e.g [7:0] payload [0:47];

endmodule

module testcase;
atm_cell_type cell();

initial

begin
integer i,
cell.vci=0;

for (i=0; i<48; i=i+1) begin
cell.payload[i]=8’hFF;
end
end
endmodule
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Limitation

N

@ The record is not a single variable such
as a register.

m [t cannot be assigned as a single unit or
aggregate, nor in an expression.

# By using a technique similar to the one
build-in for the real numbers:
conversion functions between records
and equivalent vectors.

T IR % (
EEm o =X 5 % zE 4 T L A4 B 7 pz vl %2 42 2p 2L == 22 o] 4 TN §%% pA ¢ 40| V



Records — An Alternative
Implementation Technique

N

#®If records are not nested.

# By using a vector composed of the
concatenated fields

# The fields are declared and accessed
using compiler symbols.

# Advantage

= The records are true objects, thus can be
passed through interfaces, or used in
expressions.
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An Example — Records

N

# In file “atm_cell_type.vh” # In file “testcase.v”

. L module testcase;
define ATM_CELL_TYPE [53*8:1]

_define VPI [12:1] “include “atm_cell_type.vh”
define VCI [28:13]

reg "ATM_CELL_TYPE actual_cell;

“define PAYLOAD_0 [47:40] reg *ATM_CELL_TYPE expect_cell;
“define PAYLOAD_47 [423:416] initial
begin

// Receive the next ATM cell
receive_cell(actual_cell);

// Compare against expected one
if (actual_cell '= expect_cell) ...

// Increment the VPI field
actual_cell” VPI=actual_cell” VPI+1;

o
endmodule
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Mapping a Array to a Linear
Memory

N
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Multi-Dimensional Arrays

N

#Two-dimensional arrays
= Use a memory of vectors.

= The memory implements the first
dimension.

= The vectors in the memory implement the
second one.

# Multi-dimensional arrays can be
mapped onto a single dimensional
structure.
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Multi-Dimensional Arrays

N

J(cont.)

# A function and a task can be used to
look-up and assign the array,

respectively.

# A function and a task should be
contained to convert the memory to
and from a vector if the array needs to
be passed through interfaces.



Issues

N

#How large should the memory be?

#What if you need two different array
sizes in the same simulation?

#\What about being able to use it in a
subsequent project?
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Lists

N

# Lists use memory more efficiently than
arrays.

# Lists can be used to model large
memories.

#0nly the sections of the memory
currently in use to be modeled.

# A linked list can be used to model a
sparse memory.

#Lists can be implemented using an
. arrav. R ot
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Lists (cont.)

#\Verilog does not directly support
dynamic memory allocation and
pointers or access values.

#There is a dynamic memory model PLI
package provided by Cadence.

@ This PLI package provides PLI routines
that implement a sparse memory model
using hashed linked lists.



N

Files

@ External input files complicate
configuration management.

#Many use files to initialize Verilog
memories.

reg [7:0] pattern [0:55];
initial $readmemh(pattern, “pattern.memh”);

1
TR R (
- -2 s ol 4 DA B2% pB 4 4 v



N

Files (cont.)

& If the file always contains the same

data for the same testcase, it can be
replaced with an explicit initialization of

the memory in the Verilog code.

reg [7:0] pattern [0:55];
initial
begin

pattern[0]=8"h00;

end

pattern[ 1]=8'hFF;

pattern[55]=8"hCO;
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Advantages and
Disadvantages

#\Verilog can only read binary and
hexadecimal values.

#® External files can eliminate

recompilation.

#®Files can program bus-functional
models.

\
TR R (
- -2 s ol 4 DA B2% pB 4 4 V



Concepts in HDLs

N

@ Connectivity

= Construct a design by connecting simpler
blocks.

#Time

m Represent how the internal states evolves
over time.

#Concurrency
m Describe actions occurring simultaneously.
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Examples of HDLs

#\erilog
#VHDL

#® SystemC: extend C/C++ to include
connectivity, time and concurrency.
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N

Problems with Concurrency

#You write better testbenches when
understanding concurrency.

#Two problems:
m Describe concurrent systems
s Execute them
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Describing Concurrent Systems

-

Concurr'ent///<

Processes \

Y #®Hybrid approach: concurrent processes
(always and initial blocks in Verilog)
described sequentially.

always @(...) begin

c=a+b;
e=c-d;

end

initial begin
a=_0;
b=1;
end

Sequ
desc

entially
ribed

A4 P pz vl L sk 2p 2l
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Executing Concurrent Systems

#Emulating parallelism on a sequential
processor
m Like a time-sharing OS

= But has no time slice limit; process
executes until a wait
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Simulation Cycle

" @ For each time instant

1. Execute all processes scheduled at
current time.

non-blocking assignments).

2. Assign zero-delay future values (from

3. Schedule processes that are sensitive to
the new values and return to step 1.

Advance » Execute % Assign

time processes y  Cycle

zero-delay
future values
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Time Progression

N

# Zero-delay cycles are called

# Simulators do not increment time step
by step.

A
Delta time 4= Delta cycle

. 4.

Simulation time
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An Example About Concurrency

in Verilog

reg R;
initial begin

R = 1’bO;

R <= #10 1’b1;

#10;

if (R == 1’b0) $wrirte(“R is 0”);
end

Will “R is 0
be printed?



N

Parallel vs. Sequential Description

 #Use sequential description as much as
possible.

» Easier to understand and maintain
# Misuse of parallel description

reg clk; reg clk;
initial clk = 1°b0; initial begin
always #50 clk = ~clk; clk = 1°b0;

forever #50 clk = ~clk;
@f concurren@ end
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N

Fork/Join Statement

@JfSeries of sequential and concurrent control
lows.

@ The sequential execution resumes after join,
once all the concurrent regions are complete.

initial begin

fork jobA

jopB Y\ jobC
#5 JobA;
#7 jobB;

Y JobD starts to
#3 jobC; }jobD | execute at time 7.
join
jobD;
end

1
TR R (
22l Hm -z ol 4 TN IR P i 4] V




ASS|gn|ng vS. Driving

/‘\

@

values to a register variable.
= [he last assignment determines the value.

# Each device a value onto a wire.

= All the individual values being driven on
the wire determines the final logic.

[CEVICe | | | L | L |

—7 Tri-state
buffer
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Verilog Portability Issues

#®Two compliant simulators can produce
different results

m Because of unspecified situations in the
IEEE standard
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#® Two concurrent bloc

IS

Read/Write Race Conditions

ks attempt to read and

write the same register in the same timestep.
# However, the execution order among blocks

always @(posedge clk)
count = count + 1;

always @(posedge clk)
$write (“count = %d”, count

Assume count currently
is 3. What value will be
displayed once ck

p incurs a positive edge
event?
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N

#se

To Solve Read/Write Races

assignment.

always @(posedge clk)
count count +-1;

always @(posedge clk)
$write (“count = %d”, count

Assume count currently
is 3. What value will be
displayed once c/k

p incurs a positive edge
event?
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Write/Write Race Conditions

L

#®Two concurrent blocks attempt to write
to the same register at the same
timestep.

# Non-blocking assignment does NOT
solve this problem.

always @(posedge clk)
count <= count + 1;

always @(posedge clk)
count <= count - 1;
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I

nitialization Races

@ Initial blocks are necessarily
executed first
s When the simulation is started, the /initial

and a/ways blocks are executed one after
another, in any order.

always @(posedge clk)
$write(“block #1 at %t”, $time);

initial clk = 1°b1;

always @(posedge clk)
$write(“block #3 at %t”, $time);
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Guidelines for Avoiding Race

N

Conditions (4 rules)

& If a register is declared outside of the

always or initial block, assign to it using
a hon-blocking assignment. Reserve the

blocking assignment for registers local
to the block.




Guidelines for Avoiding Race
Conditions

N

# Assign to a register from a single
always or initial block.

#Use continuous assignments to drive
pins only. Do not use them to
model internal combinational functions.
Prefer sequential code instead.

# Do not assign any value at time 0.




Events from Overwritten
Scheduled Values

/ #®Avoid overwriting previously scheduled
values using non-blocking assignments.

N

always @(strobe) begin
$write(“strobe = %b”, strobe);

/ Schedule a 1 for

end strobe at time 10 and

initial begin B thena 0. :
strobe = 1°b0: Does strobe rgcelve an
strobe <= #10 1°b1; A S
strobe <= #10 1°b0;

end
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Disabled Scheduled Values

# Avoid disabling a block where non-
blocking assignments are performed.

always begin: if_logic What will happeni?
if_logicis disabled
data <= #(10) read_val; when this line has

been executed but
end read valhas not

| it (reset 1°b1) begi been assigned to
always wait (reset == 1’ egin register data?
disable if_logic; \ : e

wait (reset == 1°b0);
end
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Output Arguments on Disabled
Tasks

#Disable the internal begin/end block
inside the task instead of the task itself.

N

task read; task read;
output out; _ .
begin / Does out will B(e)uitr?'u:e?cllt’c N
L be copied to gin. read_cy
out = data; actual when
. . —— _ i
ercmlcljsable e EEX EE/liE giica]bled&r];z’d cycle;
aborted by || - _Cycie,
always begin disable?

\ / New version
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Non-Reentrant Tasks

N

#The same memory space is used for all
invocations of a task.

task write; The memory space is
input [7:0] wadd;— r L

allocated at compile time.
input [7:0] wdat; N s

begin
addr <= wadd;
@ (posedge rdy);
data <= wdat;
end
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Guarding Non-Reentrant Task

“Using a Semaphore

we misuse a non-reentrant task.

task write;
input [7:0] wadd;

input [7:0] wdat;

begin

addr <= wadd;

@ (posedge rdy);

data <= wdat;
end

| @A semaphore can give a message when
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