J Chapter 1
What Is Verification?

N

4\ FoT AT 3
B T Tl R fR) KT e
; EDAZE B 3,

Verification

N

@ A process used to demonstrate the functional
correctness of design.

Verification consumes about 70% of the
design effort.

#® The methodologies to reduce the verification
time
s Parallelism
= Abstraction
= Automation

T IR 3 (\
FELETL L E Tt AR B AR KT e dIARE R T L

What iIs a Testbench?

N

#Create a pre-determined input
seguence to a design, then optionally
observe the response.

Testbench

Design
—{ Under —
Verification

=

it
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Reconvergence Model

N

@ A conceptual representation of the
verification process

Transformation

® ®
—— Verification _—"

=

it
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

The Human Factor

N
\J

5

#The same individual RTL coding

Specifi—. Interpre- ./\A‘
u z >
cation tation Verification

#® Different individuals |
Inter re— RTL coding

tat
cation
m Ve”flca’uy'

tation BT AR % (\
FASF L RN 4 PR T TR 14 AR o8] B

Equivalence Checking

N

#Compare two models

#®Prove the origin and output are logically
equivalent and the transformation
preserved Its functionality

/Snt_heSis\A

RTL or‘ RTL-0or
Netlist *—__Equivalence _— Netlist
Checking

=

it
45
=)

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

5

Model Checking

N

#®Look for generic problems or violation
of user-defined rules about the behavior
or the design

/RTLQOding\‘
RTL or @R
Netlist pterpretation
Model
‘_ Checking
Assertions

Fo7 SR (\
FAgFal Rt ERET T IR TR S o IE TR

5

N

Functional Verification

#Ensure that a design implements
Intended functionality

#Show that a design meets the intent of
Its specification, but it cannot prove it

/Fm__%‘
cation _
“——__ Functional _—"
Verification

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Testbench Generation

N

#®Generate testbenches to either increase
code coverage or to exercise the design
to violate a property

Code Coverage/Proof
A Testbench

jdin Metrics‘ ‘

Code \ y

Testbench Generation

T IR 3 (\
FEAET B A TR MR AR KT e SEARE Y L

5

Functional Verification

Approaches

N

Black-box

= Without any knowledge of the actual
Implementation of a design

\White-box

= Has full visibility and controllability of the internal
structure and implementation of the design being
verified

@ Grey-box

= Controls and observes a design entirely through its
top-level interfaces

T IR 3 (\
FAgFal Rt ERET T IR TR S o IE TR

Testing vs Verification

#®Testing
= Verify that the design was manufactured
correctly
#Verification
= Ensure that a design meets its functional
tent W Design Manufacturing
igiicoi::i-‘ @ \ctlist @silicon

_/ \[/
Verification Testing

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

=

it
45
=)

Testing vs Verification

N

@ Scan-based testing
= All registers are hooked-up in a long serial chain.

ikl il
alm

Design for verification
= Addition design effort to simplify verification

= Providing additional software-accessible registers
to control and observe internal locations

= Providing programmable multiplexors to isolate or
by pass functional units
FT IR 3

FEAFF R A Mg AT R AR RV s REDAM B (I,\

5
it

N

Verification and Design reuse

W%
R

#Engineers do not trust that the other
design Is as good as reliable as one
designed by themselves.

#Proper functional verification
demonstrates trustworthiness of a
design.

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

The cost of verification

N

@ |s my design functionally correct?

Errors No Errors
Bad Type II
Design (False Positive)
Good Type 1
Design (False Negative)

@ How much is enough?
@ When will | be done?

T IR 3 (\
FELETL L E Tt AR B AR KT e dIARE R T L

J Chapter 2
Verification Tools

N

4\ FoT AT 3
B T Tl R fR) KT e
; EDAZE B 3,

Linting Tools

N

#|dentify common mistakes programmer
made, such as syntax errors

#Similar to spell checkers

#0nly find problems that can be statically
deduced by looking at the code
structure, not problems in the algorithm
or data flow.

=

it
45
=)

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

5

Simulators

N

®An approximation of reality

#®Not static tools ("."Simulation requires
stimulus)

«—— Linting tools are static tools

#®The simulation outputs are validated
externally, against design intents.
#®Co-simulators

= Both simulators are running together,
cooperating to simulate the entire design.

T IR 3 (\
FAgFal Rt ERET T IR TR S o IE TR

5

Simulators

N

#Event-driven simulation

= Outputs change only when an input
changes

= Change In values, called events, drive the
simulation process

#®Cycle-driven simulation
= Has no timing information
= Can only handle synchronous circuits

T IR 3 (\
FAgFal Rt ERET T IR TR S o IE TR

Third-Party Models

N

@ It Is cheaper to buy models than write them
yourself.

@ Your models is not as reliable as the one you
buy.
#® Hardware Modeler

= A real physical chip that needs to be simulated is
plugged in it.

N
HDL Simulation Hardware ’.
Models Engine Modeler e

T b/ —~ Y popg >
k) i ﬁ .) \
FELEFLL B A AFMT RS AR KT e SEDAmE e ¥ L

5

N

Waveform Viewers

#Display the changes in signal values
over time

#Used to debug simulations
#Record trace information significantly

reduce the performance of the
simulator
HDL A’[Simulation I Event Waveform}
: Database -
Models Engine Viewer

File

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

5
it

N

Code coverage

Instrumented

Original Pre- Model Testbenches
Model processor \ /

Simulation
Engine

l

Coverage Report
Metrics Generator

J

4%

=4
I

Metrics
] Database
HT IR R

TAg X AT B kAR KT s REDAm R %l

o)

Statement Coverage

N

How much of the total lines of code were executed
#® EX:
V) if (parity == ODD || parity == EVEN) begin

-] tx <= compute_parity(data, parity);
] #(tx_time);
end
Q@) tx <= 1'b0; When
W) #(tx_time); parity!=0ODD &
W] if (stop_bits == 2) begin Parity!=EVEN &
¥ x<=1b0; Stop_bits=2
v #(tx_time);
end

Statement Coverage = 6/8 = 75%

FOT IR 2 (\
FEAET B A TR MR AR KT e SEARE Y L

Path Coverage

N
\J

All possible ways you can execute a sequence of
statements
#® EX:
ﬁ i{ (Jarity == dDD || parit}y == EVEN) begin
tx <= compute] parity(data, |parity);
#(tx_time);

W tk 4= 1'b0; Path Coverage=75%

V) #(tk_time); Statement Coverage=100%
ﬁ If (qtop_bits =F 2) begin

v =1'O;

v _tirpe); ‘

?{“1 FKéP\F

CEFk RE A T A QMM T R R RV e FEDASRE R

o)

N

Expression Coverage

Measure the various ways paths through the code
are executed

® EX:
V) i (prity == ity == FVEN) begin
v X <= Cbmpu’te_parity(d ta, parity);
v #(Ix_time);
gnd
| tk <F 1'bO;
¥ #(tx|time); -
| =500
v i’ (sthp_bits == 2) begin Expression Coverage=50%
v tx<=1'b0:; Statement Coverage=100%
v #(tx_time);
3
D KT IR R
AEFL A EY A TRk AT RS h AR KT Eii@?‘%EDAB&?ﬂ‘%@

o)

5

What Does 100 Percent Coverage
Mean?

N

L

#Completeness does not imply

correctness.

#Code coverage lets you know if you are
not done.

#®Some tools can help you reach 100%
coverage.

5
it

N

Verification Language

W%
R

#\Verification languages can raise the
level of abstraction.

#VHDL and Verilog are simulation
languages, not verification languages.

® Specman from Verisity
VERA from Synopsys
Rave from Chronology

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Revision Control

N

#® Source Control Management Systems
= Files must be centrally managed.
= The history of a file iIs maintained.

Configuration Management

= Views need not be always composed of the latest
version

= Symbolic tags are attached to specific version of
files

= EX: Submit, Bronze, Silver, Gold, To Layout,
To Synthesis...etc

Constantly updates their view to appropriate
release.

Fo7 SR (\
FELEFL R ERET T IR TR S o IE TR

5

Issue Tracking

N

#®|ssues:
= Bugs
= Ambiguities or incompleteness in the spec,
= Architectural decisions and trade-offs
m Errors
= New relevant testcases

#®\What is an issue worth tracking?

Fo7 SR (\
FAEFL E Tt AR B AR KT e dIARE R T L

Issue Tracking

N

#The Grapevine System
#®The Post-It System
#®The Procedural System
#Computerized System

=

it
45
=)

o7 R % (\
CEFL A it MR B G HRG oT e kAR e T L

5

N

Metrics

#Essential management tools.
#Best observed over time to see trends.

#Historical data should be used to create
a baseline

#®Can help assess the verification effort.

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Metrics

N

5

#®Code-Related Metrics
= Code coverage
= Number of lines of code
= Ratio of lines of code
= Source code changes

#®Quality-Related Metrics
= Number of known outstanding issues

= Number of bugs found during its service
life

Fo7 SR (\
FAEFL E Tt AR B AR KT e dIARE R T L

J Chapter 3
The Verification Plan

N

.f\. TR 2
.B ﬂ". Mg AT RS AR kTR
7 EDA®: B 3 %

5

The Role of the Verification

Plan

N

#® Specifying the verification
= Schedule

= The verification plan is the specification
document for the verification effort.

#®Defining first-time success

s Ensure all essential features are
appropriately verified.

FOT IR 2 (\
FAgFal Rt ERET T IR TR S o IE TR

5
it

N

Levels of Verification

W%
R

#Unit-Level Verification

#®Reuseable Components Verification
#ASIC and FPGA Verification

System-Level Verification
#®Board-Level Verification

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Verification Strategies

N

Decide

= Type of testcases (White-box or Black-box)

= Level of abstraction (Cycle level or Device driver
level)

@ Verifying the response
= How to check the response

@® Random Verification
= System-level verification
= Create unexpected conditions or hit corner cases

KT IVER %
FEAEFI R RY A T AF TR AR KT DAY %Yl

o)

From Specification to Features

N

#|dentify features
#| abel each features

#®Features
s Component-level features
= System-level features

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

=

i
45
=)

From Features to Testcases

N

@ Prioritize
= Mmust-have
= should-have
= Nice-to-have

@ Group into testcases

= Features should be grouped together and
assigned to the same verification engineer.

@ Design for verification
= Modify the design to aid verification

FTIER R
SHEF O RY A TR A AHT RS AR KT e AEDAT R %l

=

it
45
=)

o)

From Testcases to
Testbenches

N

#Group into testbenches

= Each group of testcases is divided into
testbenches.

#®Verify testbenches

T IR 3 (\
F Tt AR B AR KT e dIARE R T L

=
i
%
=
p

