
CHAPTER 5 STIMULUS AND RESPONSE

The purpose of writing testbenches is to apply stimulus signals to a
design and observe the response. That response must then be com-
pared against the expected behavior.

This chapter
shows how to
apply stimulus
and observe
response.

The next chapter
shows how to
structure a test-
bench.

In this chapter, I show how to generate the stimulus signals. The
greatest challenge with stimulus is making sure they are an accurate
representation of the environment, not just a simple case. In this
chapter I also show how to observe response, and more importantly,
how to compare it against expected values. The final part of this
chapter covers techniques for communicating the predicted the out-
put to the monitors.

In the next chapter, I show how to best structure the stimulus gener-
ators and response monitors and the testcases that use them to mini-
mize maintenance, and increase reusability across testbenches. If
you prefer a top-down perspective, I recommend you start with the
next chapter then come back to this one.

SIMPLE STIMULUS

In this section, I explain how to generate deterministic waveforms.
Various techniques are developed to best generate stimulus signals.
I show how synchronized waveforms can be properly generated
and how to avoid underconstraining stimulus. I also demonstrate
how to encapsulate and package signal generation operations using
bus-functional models.
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Stimulus and Response

Generating stimulus is the process of providing input signals to the
design under verification as shown in Figure 5-1. From the perspec-
tive of the stimulus generator, every input of the design is an output
of the generator.

Generating a Simple Waveform

Clock signals are
simple signals, but
must be generated
with care.

Because a clock signal has a very simple repetitive pattern, it is one
of the first and most fundamental signals to generate. It is also the
most critical signal to generate accurately. Many other signals use
the clock signal to synchronize themselves.

The behavioral code to generate a 50 percent duty-cycle 100MHz
clock signal is shown in Sample 5-1. To produce a more robust
clock generator, use explicit assignments of values ‘0’ and ‘1’.
Using a statement like “clk = ~clk” would depend on the
proper initialization of the clock signal to a value different than the
default values of 1'bx or 'U'. Assigning explicit values also provides
better control over the initial phase of the clock; you control
whether the clock is starting high or low.

Sample 5-1.
Generating a
50% duty-
cycle clock

reg clk;
parameter cycle = 10; // 100MHz clock
always
begin

#(cycle/2) ;
clk = 1’b0;
#(cycle/2) ;
clk = 1’b1;

end

Any deterministic
waveform is easy
to generate.

Waveforms with deterministic edge-to-edge relationships with an
easily identifiable period are also easy to generate. It is a simple
process of generating each edge in sequence, at the appropriate
time. For example, Figure 5-2 outlines an apparently complex
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waveform. However, Sample 5-2 shows that it is simple to gener-
ate.

Sample 5-2.
Generating a
deterministic
waveform

process
begin

S < = ’0’ ; wait for 20  ns;
S <= ’1’; wait for 10  ns;
S <= ’0’; wait for 10  ns;
S <= ’1’; wait for 20  ns;
S <= ’0’ ; wait for 50  ns;
S <= ’1’; wait for 10  ns;
S <= ’0’ ; wait for 20  ns;
S <= ’1’; wait for 10  ns;
S <= ’0’ ; wait for 20  ns;
S <= ’1’; wait for 40  ns;
S <= ’0’ ; wait for 20  ns;

...end process;

The Verilog time-
scale may affect
the timing of
edges.

When generating waveforms in Verilog, you must select the appro-
priate timescale and precision to properly place the edges at the cor-
rect offset in time. When using an expression, such as “cycle/2”,
to compute delays, you must make sure that integer operations do
not truncate a fractional part.

For example, the clock generated in Sample 5-3 produces a period
of 14 ns because of truncation. If the precision is not sufficient, the
delay values are rounded up or down, creating jitter on the edge
location. For example, the clock generated in Sample 5-4 produces
a period of 16 ns because of rounding. Only the signal generated in
Sample 5-5 produces a 50 percent duty-cycle clock signal with a
precise 15 ns period because the timescale offers the necessary pre-
cision for a 7.5 ns half-period.
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Sample 5-3.
Truncation
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;

reg clk;
parameter cycle = 15;
always
begin

#(cycle/2); // Integer division
clk = 1’b0;
#(cycle/2); // Integer division
clk = 1’b1;

end
endmodule

Sample 5-4.
Rounding
errors in stim-
ulus genera-
tion

‘timescale 1ns/1ns
module testbench;

reg clk;
parameter cycle = 15;
always
begin

#(cycle/2.0); // Real division
clk = 1’b0;
#(cycle/2.0); // Real division
clk = 1’b1;

end
endmodule

Sample 5-5.
Proper preci-
sion in stimu-
lus generation

‘timescale 1ns/100ps
module testbench;

reg clk;
parameter cycle = 15;
always
begin

#(cycle/2.0);
clk = 1’b0;
#(cycle/2.0);
clk = 1’b1;

end
endmodule
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Generating a Complex Waveform

Avoid generating
only a subset of
possible complex
waveforms.

A more complex waveform, with variations in the edge-to-edge
timing relationships, requires more effort to model properly. Care
must be taken not to overconstrain the waveform generation or to
limit it to a subset of its possible variations. For example, if you
generate the waveform illustrated in Figure 5-3 using the code in
Sample 5-6, you generate only one of the many possible waveforms
that meet the specification.

Sample 5-6.
Improperly
generating a
complex
waveform

process
begin

S < = ’0’; wait for (5 ns + 7 ns) / 2;
S <= ’1’; wait for (3 ns + 5 ns) / 2;

end process;

Use a random
number generator
to model uncer-
tainty.

To properly generate the complex waveform as specified, it is nec-
essary to model the uncertainty of the edge locations within the
minimum and maximum delay range. This can be easily accom-
plished by randomly generating a delay within the valid range. Ver-
ilog has a built-in system task to generate 32-bit random values
called $random. VHDL does not have a built-in random function,
but public-domain packages of varying complexity are available.1

The code in Sample 5-7 properly generates a non-deterministic
complex waveform.

Sample 5-7.
Properly gen-
erating a com-
plex waveform

process
begin

S <= ’0’ ;
wait for 5 ns + 2 ns * rnd_pkg.random;
S <= ’1’ ;
wait for 3 ns + 2 ns * rnd_pkg.random;

end process;

1. References to random number generation and linear-feedback shift reg-
ister packages can be found in the resources section of:

http://janick.bergeron.com/wtb
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A linear random
distribution may
not yield enough
interesting values.

To generate waveforms that are likely to stress the design under
verification, it may be necessary to make sure that there are many
instances of absolute minimum and absolute maximum values.
With the linear random distribution produced by common random
number generators, this is almost impossible to guarantee. You
have to modify the waveform generator to issue more edges at the
extremes of the valid range than would otherwise be produced by a
purely linear random delay generation. In Sample 5-8, a function is
used to skew the random distribution with 30 percent minimum
value, 30 percent maximum value, and 40 percent random linear
distribution within the valid range.

Sample 5-8.
Skewing the
linear random
distribution

process
function skewed_dist return real is

variable distribute: real;
begin

distribute := rnd_pkg.random;
if distribute < 0.3 then

return 0.0;
elsif distribute < 0.6 then

return 1.0;
else

return rnd_pkg.random;
end if;

end skewed_dist;
begin

S <= ’0 ’ ;
wait for 5 ns + 2 ns * skewed_dist;
S < = ’1’;
wait for 3 ns + 2 ns * skewed_dist;

end process;

Generating Synchronized Waveforms

Most waveforms
are not indepen-
dent.

Stimuli for a design are never composed of a single signal. Multiple
signals must be properly generated with respect to each other to
properly stimulate the design under verification. When generating
interrelated waveforms, you must be careful not to create race con-
ditions and to properly align edges both in real time and in delta
time.

Synchronized
waveforms must
be properly mod-
eled.

The first signal to be generated after the clock signal is the hard-
ware reset signal. These two signals must be properly synchronized
to correctly reset the design. The generation of the reset signal
should also reflect its synchronization with the clock signal. For
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example, consider the specification for a reset signal shown in
Figure 5-4. The code in Sample 5-9 shows how such a waveform is
frequently generated.

Sample 5-9.
Improperly
generating a
synchronized
waveform

always
begin

#50 clk = 1'b0;
#50 clk = 1'b1;

end

initial
begin

rst = 1’b0;
#150 rst = 1’b1;
#200 rst = 1’b0;

end

Race conditions
can be easily cre-
ated between syn-
chronized signals.

There are two problems with the way these two waveforms are gen-
erated in Sample 5-9. The first problem is functional: there is a race

condition between the clk and rst signals.2 At simulation time 150,
and again later at simulation time 350, both registers are assigned at
the same timestep. Because the blocking assignment is used for
both assignments, one of them is assigned first. A block sensitive to
the falling edge of clk may execute before or after rst is assigned.
From the perspective of that block, the specification shown in
Figure 5-4 could appear to be violated. The race condition can be
eliminated by using non-blocking assignments, as shown in Sample
5-10. Both clk and rst signals are assigned between timesteps, when
no blocks are executing. If the design under verification uses the
falling edge of clk as the active edge, rst is already - and reliably -
assigned.

2. I did not bring up race conditions in the section titled "Read/
Write Race Conditions" on page 141 just to conveniently forget
about them here. Just to keep you on your toes, you’ll see them
appear throughout this book.
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Sample 5-10.
Race-free gen-
eration of a
synchronized
waveform

always
begin

#50 clk <= 1’b0;
#50 clk <= 1’b1;

end

initial
begin

rst = 1’b0;
#150 rst <= 1’b1;
#200 rst <= 1’b0;

end

Lack of maintain-
ability can intro-
duce functional
errors.

The second problem, which is just as serious as the first one, is
maintainability of the description. You could argue that the first
problem is more serious, since it is functional. The entire simula-
tion can produce the wrong result under certain conditions. Main-
tainability has no such functional impact. Or has it? What if you
made a change as simple as changing the phase or frequency of the
clock. How would you know to also change the generation of the
reset signal to match the new clock waveform?

Conditions in real
life are different
than within the
confines of this
book.

In the context of Sample 5-10, with Figure 5-4 nearby, you would
probably adjust the generation of the rst signal. But outside this
book, in the real world, these two blocks could be separated by hun-
dreds of lines, or even be in different files. The specification is usu-
ally a document one inch thick, printed on both sides. The timing
diagram shown in Figure 5-4 could be buried in an anonymous
appendix, while the pressing requirements of changing the clock
frequency or phase was urgently stated in an email message. And
you were busy debugging this other testbench when you received
that pesky email message! Would you know to change the genera-
tion of the reset signal as well? I know I would not.

Model the syn-
chronization
within the genera-
tion.

Waiting for an apparently arbitrary delay can move out-of-sync
with respect to the delay of the clock generation. A much better
way of modeling synchronized waveforms is to include the syn-
chronization in the generation of the dependent signals, as shown in
Sample 5-11. The proper way to synchronize the rst signal with the
clk signal is for the generator to wait for the significant synchroniz-
ing event, whenever it may occur. The timing or phase of the clock
generator can now be modified, without affecting the proper gener-
ation of the rst waveform. From the perspective of a design, sensi-
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tive to the falling edge of clk, rst is reliably assigned one delta-cycle
after the clock edge.

Sample 5-11.
Proper genera-
tion of a syn-
chronized
waveform

always
begin

#50 clk <= 1’b0;
#50 clk <= 1’b1;

end

initial
begin

rst = 1’b0;
wait (clk !== 1'bx);
@ (negedge clk);
rst <= 1’b1;
@ (negedge clk);
@ (negedge clk);
rst <= 1’b0;

end

Synchronized
waveforms may be
generated from a
single block.

The maintainability argument can be taken one step further.
Remember the section “Parallel vs. Sequential” on page 132? The
sequence of the rst and clk waveforms is deterministic and can be
modeled using a single sequential statement block, as shown in
Sample 5-12. The synchronized portion of the rst and clk wave-
forms is generated first, then the remaining free-running clk wave-
form is generated. This generator differs from the one in Sample 5-
11: from the perspective of a design sensitive to the falling edge of
clk, rst has already been assigned.

initial
begin

// Apply reset for first 2 clock cycles
rst = 1’b0;
#50 clk <= 1’b0;
repeat (2) #50 clk <= ~clk;
rst <= 1’b1;
repeat (4) #50 clk <= ~clk;
rst <= 1’b0;

// Generate only the clock afterward
forever #50 clk <= ~clk;

end

Sample 5-12.
Sequential
generation of a
synchronized
waveform
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Delta delays are
functionally equiv-
alent to real
delays.

In the specification shown in Figure 5-4, the transition of rst is
aligned with a transition on clk. The various ways of generating
these two signals determined the sequence of these transitions,
whether they occurred at the same delta cycle, in different delta
cycles, or if their ordering was deterministic. Although delta-cycle
delays are considered zero-delays by the simulator, functionally
they have the same effect as real delays.

The next two sections, “Aligning Waveforms in Delta-Time” and
“Generating Synchronous Data Waveforms” discuss how signals
can be properly aligned or delayed to prevent unintentional func-
tional delays.

Aligning Waveforms in Delta-Time

Derived waveforms, such as the one shown in Figure 5-5, are
apparently easy to generate. A simple process, sensitive to the
proper edge of the original signal as shown in Sample 5-13, and
voila! Even the waveform viewer shows that it is right!

Sample  5-13.
Improperly
generating a
derived wave-
form

clk2_gen: process(clk)
begin

if clk = ’1’ then
clk2 <= not clk2;

end if;
end process clk2_gen;

Watch for delta
delays in derived
waveforms.

The problem is not visually apparent. Because of the simulation
cycle (See “The Simulation Cycle” on page 129), there is a delta
cycle between the rising edge of the base clock signal, and the tran-
sition on the derived clock signal, as shown in Figure 5-6. Any data
transferred from the base clock domain to the derived clock domain
goes through this additional delta cycle delay. In a zero-delay simu-
lation, such as a behavioral or RTL model, this additional delta-
cycle delay can have the same effect as an entire clock cycle delay.
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To maintain the relationship between the base and derived signals,
their respective edges must be aligned in delta time. The only way
to perform this task is to re-derive the base signal, as shown in Sam-
ple 5-14 and illustrated in Figure 5-7. The base signal is never used
by other processes. Instead, they must use the derived base signal.

derived_gen: process(clk)
begin

clk1 <= clk;
if clk = ’1’ then

clk2 <= not clk2;
end if;

end process derived_gen;

Sample 5-14.
Properly gen-
erating a
derived wave-
form

Generating Synchronous Data Waveforms

There is a race
condition between
the clock and data
signal.

Sample 5-10, Sample 5-11, and Sample 5-15 show how you could
generate a zero-delay synchronous data waveform. In Sample 5-11
and Sample 5-15, it is identical to the way flip-flops are inferred in
an RTL model. As illustrated in Figure 5-8, there is a delay between
the edge on the clock and the transition on data, but it is a single
delta cycle. In terms of simulation time, there is no delay. For RTL
models, this infinitesimal clock-to-Q delay is sufficient to properly
model the behavior of synchronous circuits. However, this assumes
that all clock edges are aligned in delta time (see “Aligning Wave-
forms in Delta-Time” on page 164). If you are generating both
clock and data signals from the outside of the model of the design
under verification, you have no way of ensuring that the total num-
ber of delta-cycle delays between the clock and the data is main-
tained, or at least be in favor of the data signal!
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Sample 5-15.
Zero-delay
generation of
synchronous
data

sync_data_gen: process(clk)
begin

if clk = ’0’ then
data <= ...;

end if;
end process sync_data_gen;

The clock may be
delayed more than
the data.

For many possible reasons, the clock signal may be delayed by
more delta cycles than its corresponding data signal. These delays
could be introduced by using different I/O pad models for the clock
and data pins. They could also be introduced by the clock distribu-
tion network, which does not exist on the data signal. If the clock
signal is delayed more than the data signal, even in zero-time as
shown in Figure 5-9, the effect is the same as removing an entire
clock cycle from the data path.

Interface specifications never specify zero-delay values. A physical
interface always has a real delay between the active edge of a clock
signal and its synchronous data. When generating synchronous
data, always provide a real delay between the active edge and the
transition on the data signal, as shown in Sample 5-16 and Sample
5-17.

Sample 5-16.
Non-zero-
delay genera-
tion of syn-
chronous data

sync_data_gen: process(clk)
begin

if clk = ’0’ then
data <= ... after 1 ns;

end if;
end process sync_data_gen;
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initial
begin

// Apply reset for first 2 clock cycles
rst = 1’b0;
#50 clk <= 1’b0;
repeat (2) #50 clk <= ~clk;
rst <= #1 1’b1;
repeat (4) #50 clk <= ~clk;
rst <= #1 1’b0;

// Generate only the clock afterward
forever #50 clk <= ~clk;

end

Sample 5-17.
Sequential
generation of a
delayed syn-
chronized data
waveform

Encapsulating Waveform Generation

The generation of
waveforms may
need to be
repeated during a
simulation.

There is a problem with the way the rst waveform is generated in
Sample 5-17. What if it were necessary to reset the device under
verification multiple times during the execution of a testbench?
One example would be to execute multiple testcases in a single
simulation. Another one is the “hardware reset” testcase which ver-
ifies that the reset operates properly. In that respect, the code in
Sample 5-11 is closer to an appropriate solution. The only thing that
needs to be changed is the use of the initial block. The initial block
runs only once and is eliminated from the simulation once com-
pleted. There is no way to have it execute again during a simula-
tion.

Encapsulate wave-
form generation in
a subprogram.

The proper mechanism to encapsulate statements that you may
need to repeat during a simulation is to use a task or a procedure as
shown in Sample 5-18. To repeat the waveform, simply call the
subprogram. To maintain the behavior of using an initial block to
automatically reset the device under verification at the beginning of
the simulation, simply call the task in an initial block. Pop quiz:
what is missing from the hw_reset task in Sample 5-18? The answer

can be found in this footnote.3

A subprogram can
be used to properly
apply vectors.

Another example of a synchronized waveform whose generation
can be encapsulated is the application of input vector data. As illus-

3. The task hw_reset contains delay control statements. It should contain a
semaphore to detect concurrent activation. You can read more about this
issue in “Non-Reentrant Tasks” on page 151.
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always
begin

#50 clk <= 1’b0;
#50 clk <= 1’b1;

end

task hw_reset;
begin

rst = 1’b0;
wait (clk !== 1’bx);
@ (negedge clk);
rst <= 1’b1;
@ (negedge clk);
@ (negedge clk);
rst <= 1’b0;

end
endtask
initial hw_reset;

Sample 5-18.
Encapsulating
the generation
of a synchro-
nized wave-
form

trated in Figure 5-10, vector data must be applied with a proper
setup and hold time - but no more - to meet the input timing con-
straints. Instead of repeating the synchronization for each vector, a
subprogram can be used for synchronization with the input clock. It
would also apply the vector data received as input argument. The
code in Sample 5-19 shows the implementation and use of a task
applying input vectors according to the specification in Figure 5-
10. Notice how the input is set to unknowns after the specified hold
time to stress the timing of the interface. Leaving the input to a con-
stant value would not detect cases where the device under verifica-
tion does not meet the maximum hold requirement.
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task apply_vector;
input [...] vector;

begin
inputs <= vector;
@(posedge clk);
#(Thold);
inputs <= ...’bx;
#(cycle - Thold - Tsetup);

end
endtask

initial
begin

hw_reset;
apply_vector(...);
apply_vector(...);

end

Sample 5-19.
Encapsulating
the applica-
tion of input
data vectors

Abstracting Waveform Generation

Vectors are diffi-
cult to write and
maintain.

Using synchronous test vectors to verify a design is rather cumber-
some. They are hard to interpret and difficult to correctly specify.
For example, using vectors to verify a synchronously resetable D
flip-flop with a 2-to-l multiplexer on the input, as shown in
Figure 5-11, could be stimulated using the vectors shown in Sample
5-20.

Use subprograms
to encapsulate
operations.

A synchronous reset

Load from input d0

Load from input d1

It would be easier if the operation accomplished by the vectors
were abstracted. The device under verification can only perform
three things:
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Sample 5-20.
Test vectors
for 2-to-l
input sync
reset D flip-
flop

initial
begin

// Vector: rst, d0, d1, sel
apply_vector(4’b1110);
apply_vector(4’b0100);
apply_vector(4’b1111);
apply_vector(4’b0011);
apply_vector(4’b0010);
apply_vector(4’b0011);
apply_vector(4’b1111);

end

Instead of providing vectors to repeatedly perform these operations,
why not provide subprograms that perform these operations? All
that will be left is to call the subprograms in the appropriate order,
with the appropriate data.

Try to apply the
worst possible
combination of
inputs.

The subprogram to perform the synchronous reset is very simple. It
needs to assert the rst input, then wait for the active edge of the
clock. But what about the other inputs? You could decide to leave
them unchanged, but is that the worst possible case? What if the
reset was not functional and the device loaded one of the inputs and
that input was set to ‘0’ ? It would be impossible to differentiate the
wrong behavior from the correct one. To create the worst possible
condition, both d0 and d1 inputs must be set to ‘1’. The sel input
can be set randomly, since either input selection should be function-
ally identical. An implementation of the sync_reset task is shown in
Sample 5-21.

Sample 5-21.
Abstracting
the sync reset
operation

task sync_reset;
begin

rst <= 1’b1;
d0 <= 1’b1;
d1 <= 1’b1;
sel <= $random;
@ (posedge clk);
#(Thold);
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask
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Pass input values
as arguments to
the subprogram.

The second operation this design can perform is to load input d0.
The task to perform this operation is shown in Sample 5-22. Unlike
resetting the design, loading data can have different input values: it
can load either a ‘1’ or a ‘0’. The value of the input to load is passed
as an argument to the task. The worst condition is created when the
other input is set to the complement of the input value on d0. If the
device is not functioning properly and is loading from the wrong
input, then the result will be clearly wrong.

Sample 5-22.
Abstracting
the load d0
operation

task load_d0;
input data;

begin
rst <= 1’b0;
d0 <= data;
d1 <= ~data;
sel <= 1’b0;
@ (posedge clk);
#(Thold);
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

Stimulus gener-
ated with
abstracted opera-
tions is easier to
write and main-
tain.

The last operation this design can perform is to load input d1. The
task abstracting the operation to load from input d1 is similar to the
one shown in Sample 5-22. Once operation abstractions are avail-
able, providing the proper stimulus to the design under verification
is easy to write and understand. Compare the code in Sample 5-23
with the code of Sample 5-20. If the polarity of the rst input were
changed, which verification approach would be easiest to modify?

Sample 5-23.
Verifying the
design using
operation
abstractions

initial
begin

sync_reset;
load_d0(1’b1);
sync_reset;
load_d1(1’b1);
load_d0(1’b0);
load_d1(1’b1);
sync_reset;

end
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VERIFYING THE OUTPUT

Generating stimulus is only half of the job. Actually, it is more like
30 percent of the job. The other part, verifying that the output is as
expected, is much more time-consuming and error-prone. There are
various ways the output can be checked against expectations. They
have varying degrees of applicability and repeatability.

Visual Inspection of Response

Results can be
printed.

The most obvious method for verifying the output of a simulation is
to visually inspect the results. The visual display can be an ASCII
printout of the input and output values at specific points in time, as
shown in Sample 5-24.

Sample 5-24.
ASCII view of
simulation
results

r s
sddeqq

Time t01l b

0100 1110xx
0105 111001
0200 010001
0205 010010
0300 111110
0305 111101
0400 001101
0405 001110
0500 001010
0505 001010
0600 001110
0605 001110
0700 111110
0705 111101

Producing Simulation Results

To print simulation
results, you must
model the signal
sampling.

The specific points in time that are significant for a particular
design or testbench are always different. Which signals are signifi-
cant is also different and may change as the simulation progresses.
If you know which time points and signals are significant for deter-
mining the correctness of the simulation results, you have to be able
to model that knowledge. Producing the proper simulation results
involves modeling the behavior of the signal sampling.
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Verifying the Output

Many sampling
techniques can be
used.

There are many sampling techniques, each as valid as the other. The
correct sampling technique depends on your needs and on what
makes the simulation results significant. Just as you have to decide
which input sequence is relevant for the functionality you are trying
to verify, you must also decide on the output sampling that is rele-
vant for determining the success or failure of the function under
verification.

You can sample at
regular intervals.

The simplest sampling technique is to sample the relevant signals at
a regular interval. The interval can be an absolute delay value, as
illustrated in Sample 5-25, or a reference signal such as the clock,
as illustrated in Sample 5-26.

Sample 5-25.
Sampling at a
delay interval

parameter INTERVAL = 10;
always
begin

#(INTERVAL);
$write(...);

end

Sample 5-26.
Sampling
based on a ref-
erence signal

process (clk)
variable L: line;

begin
if clk’event and clk = ’0’ then

write(L, ...);
writeline(output, L);

end if;
end process;

You can sample
based on a signal
changing value.

Another popular sampling technique is to sample a set of signals
whenever one of them changes. This is used to reduce the amount
of data produced during a simulation when signals do not change at
a constant interval.

To sample a set of signals, simply make a process or always block
sensitive to the signals whose changes are significant, as shown in
Sample 5-27. The set of signals displayed and monitored can be dif-
ferent. Verilog has a built-in task, called $monitor, to perform this
sampling when the set of display and monitored signals are identi-
cal.

An example of using the $monitor task is shown in Sample 5-28. Its
behavior is different from the VHDL sampling process shown in
Sample 5-27: changes in values of signals rst, d0, d1, sel, q, and qb
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cause the display of simulation results, whereas only changes in q
and qb trigger the sampling in the VHDL example. Note that Ver-
ilog simulations are limited to a single active $monitor task. Any
subsequent call to $monitor replaces the previous monitor.

process (q, qb)
variable L: line;

begin
write(L, rst & d0 & d1 & sel & q & qb) ;
writeline(output, L) ;

end process;

Sample 5-27.
Sampling
based on sig-
nal changes

initial
begin

$monitor("...", rst, d0, d1, sel, q, qb);
end

Sample 5-28.
Sampling
using the
$monitor task

Minimizing Sampling

To improve simu-
lation perfor-
mance, minimize
sampling.

The use of an output device on a computer slows down the execu-
tion of any program. Therefore, the production of simulation output
reduces the performance of the simulation. To maximize the speed
of a simulation, minimize the amount of simulation output pro-
duced during its execution.

In Verilog, an active $monitor task can be turned on and off by
using the $monitoron and $monitoroff tasks, respectively. If you are
using an explicit sampling always block or are using VHDL, you
should include sampling minimization techniques in your model, as
illustrated in Sample 5-29. A very efficient way of minimizing sam-
pling is to have the stimulus turn on the sampling when an interest-
ing section of the testcase is entered, as shown in Sample 5-30.

Visual Inspection of Waveforms

Results are better
viewed when plot-
ted over time.

Waveform displays usually provide a more intuitive visual repre-
sentation of simulation results. Figure 5-12 shows the same infor-
mation as Sample 5-24, but using a waveform view. The waveform
view has the advantage of providing a continuous display of many
values over the entire simulation time, not just at specific time
points as in a text view. Therefore, you need not specify or model a
particular sampling technique. The signals are continuously sam-
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Sample 5-29.
Minimizing
sampling

process
begin

wait until <interesting_condition>;
sampling: loop

wait on q, qb;
write(l, rst & d0 & d1 & sel & q & qb);
writeline(output, l);
exit sampling

when not <interesting_condition>;
end loop sampling;

end process;

initial
begin

$monitor("...", rst, d0, d1, sel, q, qb);
$monitoroff;
sync_reset;
load_d0(1’b1);
sync_reset;
$monitoron;
load_d1(1’b1);
load_d0(1’b0);
load_d1(1’b1);
sync_reset;
$monitoroff;

end

Sample 5-30.
Controlling
the sampling
from the stim-
ulus

pled, usually into an efficient database format. Sampling for wave-
forms must be turned on explicitly. It is a tool-dependent process
that is different for each language and each tool.

Minimize the
number and dura-
tion of sampled
signals.

The default behavior is to sample all signals during the entire simu-
lation. The waveform sampling process consumes a significant por-
tion of the simulation resources. Reducing the number of signals
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sampled, or the duration of the sampling, increases the simulation
performance.

SELF-CHECKING TESTBENCHES

This section introduces a reliable and reproduceable technique for
output verification: testbenches that verify themselves. I discuss the
pros and cons of popular vector-based implementation techniques. I
show how to verify the simulation results at run-time by modelling
the expected response at the same time as the stimulus.

Visual inspection
is not acceptable.

The model of the D flip-flop with a 2-to-l input mux being verified
has a functional error. Can you identify it using either views of the
simulation results in Sample 5-24 or Figure 5-12? How long did it

take to diagnose the problem?4

This example was for a very simple design, over a very short period
of time, and for a very small number of signals. Imagine visually
inspecting simulation results spanning hundreds of thousands of
clock cycles, and involving hundreds of input and output signals.
Then imagine repeating this visual inspection for every testbench,
and every simulation of every testbench. The probability that you
will miss identifying an error is equal to one. You must automate
the process of comparing the simulation results against the
expected outputs.

Input and Output Vectors

Specify the
expected output
values for each
clock cycle.

The first step in automating output verification is to include the
expected output with the input stimulus for every clock cycle. The
vector application task in Sample 5-19 can be easily modified to
include the comparison of the output signals with the specified out-
put vector, as shown in Sample 5-31. The testcase becomes a series
of input/output test vectors, as shown in Sample 5-32.

Test vectors
require synchro-
nous interfaces.

The main problem with input and output test vectors (other than the
fact that they are very difficult to specify, maintain, and debug), is
that they require perfectly synchronous interfaces. If the design
under verification contains interfaces in different clock domains,

4. The logic value on input d0 is ignored and a ‘1’ is always loaded.
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Sample 5-31.
Application of
input and veri-
fication of out-
put data vec-
tors

task apply_vector;
input [...] in_data;
input [...] out_data;

begin
inputs <= in_data;
@(posedge clk);
fork

begin
#(Thold);
inputs <= ...’bx;

end
begin

#(Td);
if (outputs !== out_data) ...;

end
#(cycle - Thold - Tsetup);

join
end
endtask

initial
begin

// In: rst, d0, d1, sel
// Out: q, qb
apply_vector(4’b1110, 2’b00)
apply_vector(4’b0100, 2’b10)
apply_vector(4’b1111, 2’b00)
apply_vector(4’b0011, 2’b10)
apply_vector(4’b0010, 2’b01)
apply_vector(4’b0011, 2’b10)
apply_vector(4’b1111, 2’b00)

end

Sample 5-32.
Input/output
test vectors for
2-to-l input
sync reset D
flip-flop

each requires its own test vector stream. If any interface contains
asynchronous signals, they have to be either externally synchro-
nized before vectors are applied, or treated as synchronous signals,
therefore under-constraining the verification.

Golden Vectors

A set of reference
simulation results
can be used.

The next step toward automation of the output verification is the
use of golden vectors. It is a simple extension of the manufacturing
test process where devices are physically subjected to a series of
qualifying test vectors. A set of reference output results, determined

Writing Testbenches: Functional Verification of HDL Models 177

...



Stimulus and Response

to be correct, are kept in a file or database. The simulation outputs
are captured in a similar format during a simulation. They are then
compared against the reference results. Golden vectors have an
advantage over input/output vectors because the expected output
values need not be specified in advance.

Text files can be
compared using

diff.

If the simulation results are kept in ASCII files, the simplest com-
parison process involves using the UNIX diff utility. The diff output
for the simulation results shown in Sample 5-24 is shown in Sample
5-33. You can appreciate how difficult the subsequent task of diag-
nosing the functional error will be.

Sample 5-33.
diff output of
comparing
ASCII view of
simulation
results

14c2
>0505 001010
>0600 001110

<0505 001001
<0600 001110

Waveforms can be
compared by a
specialized tool.

Waveform comparators can also be used. They are tools similar to
waveform viewers and are usually built into one. They compare
two sets of waveforms then highlight the differences on a graphical
display. The display of a waveform comparator might look some-
thing like the results illustrated in Figure 5-13. Identifying the prob-
lem is easier since you have access to the entire history of the
simulation in a single view.
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Golden vectors
must still be visu-
ally inspected.

Golden vectors do
not adapt to
changes.

The main problem with golden simulation results is that they need
to be visually inspected to be determined as valid. This self-check-
ing technique only reduces the number of times a set of simulation
responses must be visually verified, not the need for visual inspec-
tion. The result from each testbench must still be manually con-
firmed as good.

Another problem: reference simulation results do not adapt to mod-
ifications in the design under verification that may only affect the
timing of the result, without affecting its functional correctness. For
example, an extra register may be added in the datapath of a design
to help meet timing constraints. All that was added was a pipeline
delay. The functionality was not modified. Only the latency was
increased. If that latency is irrelevant to the functional correctness
of the overall system, the reference vectors must be updated to
reflect that change.

Golden vectors
require a signifi-
cant maintenance
effort.

Reference simulation results must be visually inspected for every
testcase, and modified or regenerated whenever a change is made to
the design, each time requiring visual inspection. Using reference
vectors is a high-maintenance, low-efficiency self-checking strat-
egy. Verification vectors should be used only when a design must
be 100 percent backward compatible with an existing device, signal
for signal, clock cycle for clock cycle. In those circumstances, the
reference vectors never change and never require visual inspection
as they are golden by definition.

Separate the refer-
ence vectors along
clock domains.

Reference simulation results also work best with synchronous inter-
faces. If you have multiple interfaces in separate clock domains, it
is necessary to generate reference results for each domain in a sepa-
rate file. If a single file is used, the asynchronous relationship
between the clock domains may result in the samples from different
domains being written in a different order. The ordering difference
is not functionally relevant, but would be flagged as an error by the
comparison tool.

Run-Time Result Verification

Comparing simulation results against a reference set of vectors or
waveforms is a post-processing process. It is possible to verify the
correctness of the simulation results at runtime, in parallel with the
stimulus generation.
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You can use a ref-
erence model.

Using a reference model is a simple extension of the golden vector
technique. As illustrated in Figure 5-14, the reference model and
the design under verification are subjected to the same stimulus and
their output is constantly monitored and compared for discrepan-
cies.

In reality, a refer-
ence model never
works.

The reality of reference models is different. They rarely exist.
When they do, they are in a language that cannot be easily inte-
grated with either VHDL or Verilog. When they can be integrated,
they produce output with a different timing or accuracy, making the
output comparison impractical. When all of these obstacles are
overcome, they are often a burden on the simulation performance.
Using reference simulation results, as described in the previous sec-
tion, is probably a better alternative.

You can model the
expected response.

If you know what you are looking for when visually inspecting sim-
ulation results, you should be able to describe it also. It should be
part of the testcase specification. If the expected response can be
described, it can be modeled. If it can be modeled, it can be
included in the testbench. By including the expected response in the
testbench, it is able to determine automatically whether the testcase
succeeded or failed.

Focus on opera-
tions instead of
input and output
vectors.

In “Abstracting Waveform Generation” on page 169, subprograms
were used to apply stimulus to the design. These subprograms
abstracted the vectors into atomic operations that could be per-
formed on the design. Why not include the verification of the oper-
ation’s output as part of the subprogram? Instead of simply
applying inputs, then leaving the output verification to a separate
process, integrate both the stimulus and response checking into
complete operations. Performing the verification becomes a matter
of verifying that operations, individually and in sequence, are per-
formed appropriately.

For example, the task shown in Sample 5-21 can include the verifi-
cation that the flip-flop was properly reset as shown in Sample 5-
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34. Similarly, the task used to apply the stimulus to load data from
the d0 input shown in Sample 5-22 can be modified to include the
verification of the output, as shown in Sample 5-35. The testcase
shown in Sample 5-23 now becomes entirely self-checking.

task sync_reset;
begin

rst <= 1’b1;
d0 <= 1’b1;
d1 <= 1’b1;
sel <= $random;
@ (posedge clk);
#(Thold);
if (q !== 1’b0 || qb !== 1’b1) ...
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

Sample 5-34.
Verifying the
sync reset
operation

Sample 5-35.
Verifying the
load d0 opera-
tion

task load_d0;
input data;

begin
rst <= 1’b0;
d0 <= data;
d1 <= ~data;
sel <= 1’b0;
@ (posedge clk);
#(Thold);
if (q !== data || qb !== ~data) ...
{rst, d0, d1, sel} <= 4’bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

Make sure the out-
put is properly ver-
ified.

The problem with output verification is that you can’t identify a
functional discrepancy if you are not looking at it. Using an if state-
ment to verify the output in the middle of a stimulus process only
looks at the output value for a brief instant. That may be acceptable,
but it does not say anything about the stability of that output. For
example, the tasks in Sample 5-34 and Sample 5-35 only check the
value of the output at a single point. Figure 5-15 shows the com-
plete specification for the flip-flop. The verification sampling point
is shown as well.
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Make sure you
verify the output
over the entire sig-
nificant time
period.

To properly and completely verify the functionality of the design, it
is necessary to verify that the output is stable, except for the short
period after the rising edge of the clock. That could be easily veri-
fied using a static timing analysis tool and a set of suitable con-
straints to verify against. If you want to perform the verification in
Verilog or VHDL, the stability of the output cannot be easily veri-
fied in the same subprogram that applies the input. The input fol-
lows a deterministic data and timing sequence, whereas monitoring
stability requires that the testbench code be ready to react to any
unexpected changes. Instead, it is better to use a separate monitor
process, executing in parallel with the stimulus. The stimulus sub-
program can still check the value. The stability monitor, as shown
in Sample 5-36, simply verifies that the output remains stable,
whatever its value. In VHDL, the 'stable attribute was designed for
this type of application, as shown in Sample 5-37. The stability of
the output signal can be verified in the stimulus procedure, but it
requires prior knowledge of the clock period to perform the timing
check.

Sample 5-36.
Verifying the
stability of
flip-flop out-
puts

initial
begin

// wait for the first clock edge
@ (posedge clk);
forever begin

// Ignore changes for Td after clock edge
#(Td);
// Watch for a change before the next clk
fork: stability_mon

@ (q or qb) $write("...");
@ (posedge clk) disable stability_mon;

join
end

end
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Sample 5-37.
Verifying the
load d0 opera-
tion and out-
put stability

procedure load_d0(data: std_logic) is
begin

rst <= ’0’;
d0 <= data;
d1 <= not data;
sel <= ’0’;
wait until clk = ’1’;
assert q’stable(cycle - Td) and

qb’stable(cycle - Td);
wait for Thold;
rst <= ’X’;
d0 <= ’X’;
d1 <= ’X’;
sel <= ’X’ ;
assert q = data and qb = not data;
wait for cycle - Thold - Tsetup;

end load_d0;

COMPLEX STIMULUS

This section introduces more complex stimulus generation scenar-
ios through the use of bus-functional models. I start with non-deter-
ministic stimulus, where the stimulus or its timing depends on
answers from the device under verification. I also show how to
avoid wasting precious simulation cycles by getting caught in dead-
lock conditions. I explain how to generate asynchronous stimulus
and more complex protocols such as CPU cycles. Finally, I show
how to write configurable bus-functional models.

Generating inputs
may require coop-
erating with the
design.

Feedback Between Stimulus and Design

Without feedback,
verification can be
under-constrained.

Figure 5-16 shows the specification for a simple bus arbiter. If you
were to verify the design of the arbiter using test vectors applied at
every clock cycle, as described in “Input and Output Vectors” on
page 176, you would have to assume a specific delay between the
assertion of the req signal and the assertion of the grt signal. Any
delay value between one and five clock cycles would be function-
ally correct, but the only reliable choice is a delay of five cycles.
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Similarly, a delay of three clock cycles would have to be made for
the release portion of the verification. These choices, however,
severely under-constrain the verification. If you want to stress the
arbiter by issuing requests as fast as possible, you would want to
know when the request was granted and released, so it could be
reapplied as quickly as possible.

Stimulus genera-
tion can wait for
feedback before
proceeding.

If, instead of using input and output test vectors, you are using
encapsulated operations to verify the design, you can modify the
operation to wait for feedback from the design under verification
before proceeding. You should also include any timing and func-
tional verification in the feedback monitoring to ensure that the
design responds in an appropriate manner. Sample 5-38 shows the
bus_request operation procedure. It samples the grt signal at every
clock cycle, and immediately returns once it detects that the bus
was granted. With a similarly implemented bus_release procedure,
a testcase that stresses the arbiter under maximum load can be eas-
ily written, as shown in Sample 5-39.

Sample 5-38.
Verifying the
bus request
operation

procedure bus_request is
variable cycle_count: integer := 0;

begin
req <= ’1’;
wait until clk = ’1’;
while grt = ’0’ loop

wait until clk = ’1’;
cycle_count := cycle_count + 1;

end loop;
assert 1 <= cycle_count and cycle_count <= 5;

end bus_request;

Recovering from Deadlocks

A deadlock may
prevent the
testcase from run-
ning to comple-
tion.

There is a risk inherent to using feedback in generating stimulus:
the stimulus now depends on the proper operation of the design
under verification to complete. If the design does not provide the
feedback as expected, the stimulus generation may be halted, wait-
ing for a condition that will never occur. For example, consider the
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Sample 5-39.
Stressing the
bus arbiter.

test_sequence: process
procedure bus_request ...
procedure bus_release ...

begin
for I in 1 to 10 loop

bus_request;
bus_release;

end loop;
assert false severity failure;

end process test_sequence;

bus_request procedure in Sample 5-38. What happens if the grt sig-
nal is never asserted? The procedure remains stuck in the while
loop and never returns.

A deadlocked sim-
ulation appears to
be running cor-
rectly.

If this were to occur, the simulation would still be running, merrily
going around and around the while loop. The simulation time would
advance at each tick of the clock. The CPU usage of your worksta-
tion would show near 100 percent usage. The only symptom that
something is wrong would be that no messages are produced on the
simulation’s output log and the simulation runs for much longer
than usual. If you are watching the simulation run and expect regu-
lar messages to be produced during its execution, you would
quickly recognize that something is wrong and manually interrupt
it.

A deadlocked sim-
ulation wastes
regression runs.

But what if there is no one watching the simulation, such as during
a regression run? Regressions are large scale simulation runs where
all available testcases are executed. They are used to verify that the
functionality of the design under verification is still correct after
modifications. Because of the large number of testcases involved in
a regression, the process is automated to run unattended, usually
overnight and on many computers. If a design modification creates
a deadlock situation, all testcases scheduled to execute subse-
quently will never run, as the deadlocked testcase never terminates.
The opportunity of detecting other problems in the regression run is
wasted. It will be necessary to wait for another 24-hour period
before knowing if the new version of the design meets its functional
specification.

Eliminate the pos-
sibility of dead-
lock conditions.

When generating stimulus, you must make sure that there is no pos-
sibility of a deadlock condition. You must assume that the feedback
condition you are waiting for may never occur. If the feedback con-
dition fails to happen, you must then take appropriate action. It
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could include terminating the testcase, or jumping to the next por-
tion of the testcase that does not depend on the current operation, or
attempting to repeat the operation after some delay. Sample 5-38
was modified as shown in Sample 5-40 to avoid the deadlock con-
dition created if the arbiter failed and the grt signal was never
asserted.

Sample 5-40.
Avoiding
deadlock in
the bus request
operation

procedure bus_request is
variable cycle_count: integer := 0;

begin
reg <= ’1’ ;
wait until clk = ’1’ ;
while grt = ’0’ loop

wait until clk = ’1’;
cycle_count := cycle_count + 1;
assert cycle_count < 500

report "Arbiter is not working"
severity failure;

end loop;
assert 1 <= cycle_count and cycle_count <= 5;

end bus_request;

Sample 5-41.
Returning sta-
tus in the bus
request opera-
tion

procedure bus_request(good: out boolean) is
variable cycle_count: integer := 0;

begin
good := true;
req <= ’1’;
wait until clk = ’1’;
while grt = ’0’ loop

wait until clk = ’1’;
cycle_count := cycle_count + 1;
if cycle_count > 500 then

good := false;
return;

end if;
end loop;
assert 1 <= cycle_count and cycle_count <= 5;

end bus_request;

Operation subpro-
grams could return
status.

If a failure of the feedback condition is detected, terminating the
simulation on the spot, as shown in Sample 5-40, is easy to imple-
ment in each operation subprogram. If you want more flexibility in
handling a non-fatal error, you might want to let the testcase handle
the error recovery, instead of handling it inside the operation sub-
program. The subprogram must provide an indication of the status
of the operation’s completion back to the testcase. Sample 5-41
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shows the bus_request procedure that includes a good status flag
indicating whether the bus was granted or not. The testcase is then
free to attempt other bus request operations until it succeeds, as
shown in Sample 5-42. Notice how the testcase takes care of avoid-
ing its own deadlock condition if the bus request operation never
succeeds.

testcase: process
variable granted : boolean;
variable attempts: integer := 0;

begin

attempts := 0;
loop

bus_request(granted);
exit when granted;
attempts := attempts + 1;
assert attempts < 5

report "Bus was never granted"
severity failure;

end loop;

end process testcase;

Sample 5-42.
Handling fail-
ures in the
bus_request
procedure

Asynchronous Interfaces

Test vectors under-
constrain asyn-
chronous
interfaces.

Test vectors are inherently synchronous. The inputs are all applied
at the same time. The outputs are all verified at the same time. And
this process is repeated at regular intervals. Many interfaces,
although implemented using finite state machines and edge-trig-
gered flip-flops, are specified in an asynchronous fashion. The
implementer has arbitrarily chosen a clock to streamline the physi-
cal implementation of the interface. If that clock is not part of the
specification, it should not be part of the verification. For example,
Figure 5-17 shows an asynchronous specification for a bus arbiter.
Given a suitable clock frequency, the synchronous specification
shown in Figure 5-16 would be a suitable implementation.
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Verify the syn-
chronous imple-
mentation against
the asynchronous
specification.

Even though a clock may be present in the implementation, if it is
not part of the specification, you cannot use it to generate stimulus
nor to verify the response. You would be verifying against a partic-
ular implementation, not the specification. For example, a VME
bus is asynchronous. The verification of a VME interface cannot
make use of the clock used to implement that interface. If a clock is
present, and the timing constraints make reference to clock edges,
then you must use it to generate stimulus and verify response. For
example, a PCI bus is synchronous. A verification of a PCI inter-
face must use the PCI system clock to verify any implementation.

Behavioral code
does not require a
clock like RTL
code.

Testbenches are written using behavioral code. Behavioral models
do not require a clock. Clocks are artifices of the implementation
methodology and are required only for RTL code. The bus request
phase of the asynchronous interface specified in Figure 5-17 can be
verified asynchronously with the bus_request procedure shown in
Sample 5-43 or Sample 5-44. Notice how neither model of the bus
request operation uses a clock for timing control. Also, notice how
the Verilog version, in Sample 5-44, uses the definitely non-synthe-
sizeable fork/join statement to wait for the rising edge of grt for a
maximum of 60 time units.

procedure bus_request(good: out boolean) is
begin

req <= ’1’;
wait until grt = ’1’ for 60 ns;
good := grt = ’1’;

end bus_request;

Sample 5-43.
Verifying the
asynchronous
bus request
operation in
VHDL

Sample 5-44.
Verifying the
asynchronous
bus request
operation in
Verilog

task bus_request;
output good;

begin
req = 1’b1;
fork: wait_for_grt

#60 disable wait_for_grt;
@ (posedge grt) disable wait_for_grt;

join
good = (grt == 1’b1);

end
endtask

Consider all possi-
ble failure modes.

There is one problem with the models of the bus request operation
in Sample 5-43 and Sample 5-44. What if the arbiter was function-

188 Writing Testbenches: Functional Verification of HDL Models



Complex Stimulus

ally incorrect and left the grt signal always asserted? Both models
would never see a rising edge on the grt signal. They would eventu-
ally exhaust their maximum waiting period then detect grt as
asserted, indicating a successful completion. To detect this possible
failure mode, the bus request operation must verify that the grt sig-
nal is not asserted prior to asserting the req signal, as shown in
Sample 5-45.

task bus_request;
output good;

begin: bus_reguest_task
if (grt == 1’b1) begin

good = 1’b0;
disable bus_request_task;

end
req = 1’b1;
fork: wait_for_grt

#60 disable wait_for_grt;
@ (posedge grt) disable wait_for_grt;

join
good = (grt == 1’b1);

end
endtask

Sample 5-45.
Verifying all
failure modes
in the asyn-
chronous bus
request opera-
tion

Were you paying
attention?

Pop quiz: The first disable statement in Sample 5-45 aborts the
bus_request task and returns control to the calling block of the
statement. Why does it disable the begin/end block inside the task

and not the task itself?5 And what is missing from all those task

implementations?6

CPU Operations

Encapsulated
operations are also
known as bus-
functional models.

Operations encapsulated using tasks or procedures can be very
complex. The examples shown earlier were very simple, and dealt
with only a few signals. Real life interfaces are more complex. But
they can be encapsulated just as easily. These operations may even

5.

6.

For the answer see “Output Arguments on Disabled Tasks” on
page 150.

They all include timing control statements. They should have a sema-
phore to detect concurrent activation. See “Non-Reentrant Tasks” on
page 151.
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return values to be verified against expected values or modify the
stimulus sequence.

Test vectors “hard
code” a number of
wait states.

Figure 5-18 shows the specification for the read cycle for an Intel
386SX processor bus. Being a synchronous interface, it could be
verified using test vectors. However, you would have to assume a
specific number of wait cycles to sample the read data at the right
time.

Bus models can
adapt to a differ-
ent number of wait
states.

With behavioral models of the operation, you need not enforce a
particular number of wait states and adapt to any valid bus timing.
A model of the read operation can be found in Sample 5-46. The
wait states are introduced by the fourth wait statement. How many

failure modes are currently ignored by this model?7

Test vectors can-
not perform read-
modify-write oper-
ations.

In test vectors, the read value would have been specified as an
expected output value. If that value had been different from the one
specified, an error would have been detected. But what if you do
not know the entire value that will be read? All you want is to mod-
ify the configuration of some slave device by reading its current
configuration, modifying some bits, then writing the new configu-
ration. This simple process is impossible to accomplish with test
vectors blindly applied from a file to the inputs at every clock cycle.
In behavioral testbenches, you can use the value returned during a
read cycle, manipulate it, then use it in another operation. Sample
5-47 shows a portion of a testcase where the read_cycle procedure

7. Two: if clk = ’1’ and phi = ’2’ are never true and if ready is
never asserted.
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Sample 5-46.
Model for the
read cycle
operation

procedure read_cycle (
radd : in std_logic_vector(0 to 23);
rdat : out std_logic_vector(0 to 31);

signal clk : in std_logic;
signal phi : in one_or_two;
signal addr : out std_logic_vector(0 to 23);
signal ads : out std_logic;
signal rw : out std_logic;
signal ready: in std_logic;
signal data : inout std_logic_vector(0 to 31);

is
begin

wait on clk until clk = ’1’ and phi = 2;
addr <= radd after rnd_pkg.random * 4 ns;
ads <= ’0’ after rnd_pkg.random * 4 ns;
rw <= ’0’ after rnd_pkg.random * 4 ns;
wait until clk = ’1’;
wait until clk = ’1’;
ads <= ’1’ after rnd_pkg.random * 4 ns;
wait on clk until clk = ’1’ and phi = 2 and

ready = ’0’;
assert ready’stable(19 ns) and

data’stable(19 ns);
rdat := data;
wait for 4 ns;
assert ready = ’1’ and data = (others => ’Z’);

end read_cycle;

shown in Sample 5-46 and its corresponding write_cycle procedure
are used to perform a read-modify-write operation.

Sample 5-47.
Performing a
read-modify-
write opera-
tion

test_procedure: process
constant cfg_reg: std_logic_vector(0 to 23)

:= "0000000000000001100010110";
variable tmp: std_logic_vector(31 downto 0);

begin

i386sx_pkg.read_cycle(cfg_reg, tmp, ...);
tmp(13 downto 9) := "01101";
i386sx_pkg.write_cycle(cfg_reg, tmp, ...);

end process test_procedure;
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Configurable Operations

Interfaces can
have configurable
elements.

An interface specification may contain configuration options. For
example, the assertion level for a particular control signal may be
configurable to either high or low. Each option has a small impact
on the operation of the interface. Taken individually, you could cre-
ate a different task or procedure for each configuration. The prob-
lem would be relegated to the testcase in deciding which flavor of
the operation to invoke. You would also have to maintain several
nearly-identical models.

Simple config-
urable elements
become complex
when grouped.

Taken together, the number of possible configurations explodes fac-

torially.8 It would be impractical to provide a different procedure or
task for each possible configuration. It is much easier to include
configurability in the model of the operation, and make the current
configuration an additional parameter. An RS-232 interface, shown
in Figure 5-19, is the perfect example of a highly configurable
operation. Not only is the polarity of the parity bit configurable, but
also its presence, as well as the number of data bits transmitted.
And to top it all, because the interface is asynchronous, the duration
of each pulse is also configurable. Assuming eight possible baud
rates, five possible parities, seven or eight data bits, and one or two
stop bits, there are 160 possible combinations of these four config-
urable parameters.

Write a config-
urable operation
model.

Instead of writing 160 flavors of the same operation, it is much eas-
ier to model the configurablity itself, as shown in Sample 5-48. The
configuration parameter is assumed to be a record containing a field
for each of the four parameters. Since Verilog does not directly sup-
port record types, refer to “Records” on page 105 for the implemen-

8. Exponential growth follows a curve. Factorial growth follows a n!
curve, where n! = 1 x 2 x 3 x 4 x ... x (n-2) x (n-1) x n.
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tation details. What important safety measure is missing from the

task in Sample 5-48?9

Sample 5-48.
Model for a
configurable
operation

‘define sec * 1000000000 // timescale dependent!
task rs232_tx;

input [7:0] data;
input ‘rs232_cfg_typ cfg;

time duration;
integer i;

begin
duration = (1 ‘sec) / cfg‘baud_rate;
tx = 1’b1;
#(duration);
for (i = cfg‘n_bits; i >= 0; i = i-1) begin

tx = data[i];
#(duration);

end
if (cfg‘parity != ‘none) begin

if (cfg‘n_bits == 7) data[7] = 1’b0;
case (cfg‘parity)
‘odd : tx = ~^data;
‘even : tx = ^data;
‘mark : tx = 1'b1;
‘space: tx = 1'b0;
endcase
#(duration);

end
tx = 1’b0;
repeat (cfg‘n_stops) #(duration);

end
endtask

COMPLEX RESPONSE

Output verification
must be auto-
mated.

We have already established that visual inspection is not a viable
option for verifying even a simple response. Complex responses are
definitely not verifiable using visual inspection of waveforms. The
process for verifying the output response must be automated.

9. The task contains timing control statements. It should contain a sema-
phore to detect concurrent activation. See “Non-Reentrant Tasks” on
page 151.
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Verifying response is usually not as simple as checking the outputs
after each stimulus operation. In this section, I describe how com-
plex monitors are implemented using bus-functional models. I
show how to manage separate control threads to make a testbench
independent of the latency or delay within a design. I explain how
to design a series of output monitors to handle non-deterministic
responses as well as bi-directional interfaces.

What is a Complex Response?

Latency and out-
put protocols cre-
ate complex
responses.

I define a complex response as something that cannot be verified in
the same process that generates the stimulus. A complex response
situation could be created simply because the validity of the output
cannot be verified at a single point in time. It could also be created
by a long (and potentially variable) delay between the stimulus and
the corresponding response. These types of responses cannot be
verified as part of the stimulus generation because the input
sequence would be interrupted while it waits for the corresponding
output value to appear. Interrupting the input sequence would pre-
vent stressing the design at the fastest possible input rate. Holding
the input sequence may even prevent the output from appearing or
violate the input protocol. A complex response must be verified
autonomously from the stimulus generation.

A simple design
can have a com-
plex response.

A Universal Asynchronous Receiver Transmitter (UART) is a per-
fect example of a simple design with a complex response. And not
only because the output operation is configurable. Figure 5-20
shows the block diagram of the transmit path. Because the RS-232
protocol is so much slower than today’s processor interfaces, wait-
ing for the output corresponding to the last CPU write cycle would
introduce huge gaps in the input stimulus, as shown in Figure 5-21.
The design would definitely not be verified under maximum input
stress conditions.
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To stress the input of the design under maximum data rate condi-
tion, the testcase must decouple the input generation from the out-
put verification. The stimulus generation part would issue write
cycles as fast as it could, as long as the design can accept the data to
be transmitted. It would stop generating write cycles only when the
FIFO was full and the CPU interface signals that it can no longer
accept data. The output would be verified in parallel, checking that
the words that were sent to the design via the CPU interface were
properly received via the serial interface. Figure 5-22 shows the
timing of checking the output independently from generating the
input. Gaps in the input sequence are created by the design’s own
inability to sustain the input rate, not by a limitation of the verifica-
tion procedure.

Handling Unknown or Variable Latency

Test vectors can-
not deal with vari-
able latency.

When using test vectors, you have to assume a specific delay
between the input and its corresponding output. The delay is
expressed in terms of the number of clock cycles it takes for the
input value to be processed into its output value. This delay is
known as the latency of the design. Latency is usually a by-product
of the architecture of the design and is a side-effect of the pipelining
required to meet the register-to-register timing constraints. The spe-
cific latency of a design is normally known only toward the very
end of the RTL design process. A specific latency is rarely a design
requirement. If a specific latency is not a requirement, why enforce
one in the verification?
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Verify only the
characteristics that
define functional
correctness.

In the UART design from Figure 5-20, latency is introduced by the
CPU interface, the FIFO and the serial interface. Externally, it
translates into the internal delay shown in Figure 5-21 and
Figure 5-22. The latency of the UART design is functionally irrele-
vant. The functional correctness of the design is solely determined
by the data being transmitted, unmodified, in the same order in
which it was received by the CPU interface. Those are the only cri-
teria the testbench should be verifying. Any other limitations
imposed by the testbench would either limit the freedom of choice
for the RTL designer in implementing the design, or turn into a
maintenance problem for you, the testbench designer.

Stimulus and
response are
implemented using
different execu-
tion threads.

Verification of the output independently from the stimulus genera-
tion requires that each be implemented in separate execution
threads. Each must execute independently from the other, i.e., in
separate parallel constructs (processes in VHDL, always or initial
blocks and fork/join statements in Verilog). These execution threads
need to be synchronized at appropriate points. Synchronization is
required to notify the response checking thread that the stimulus
generation thread is entering a different phase of the test sequence.
It is also required when either thread has completed its duty for this
portion of the test sequence and the other thread can move on to the
next phase.

event sync;
initial
begin: stimulus

-> sync;

end

initial
begin: response

@ (sync);

end

Sample 5-49.
Using a named
event in Ver-
ilog

Synchronize
threads using fork/
join or named
events in Verilog
or signal activity
in VHDL.

In Verilog, implicit synchronization occurs when using the fork/join
statement. Explicit synchronization is implemented using the
named event, as illustrated in Sample 5-49. In VHDL, synchroniza-
tion is implemented using a toggling signal, as shown in Sample 5-
50. The actual value of the boolean signal is irrelevant. The infor-
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mation is in the timing of the value-change. Alternatively, the
'transaction signal attribute can be used to synchronize a process
with the assignment of a value to a signal, as shown in Sample 5-
51. Pop quiz: why use the 'transaction attribute and not simply wait

for the event on the signal caused by the new value?10

Sample 5-50.
Using a tog-
gling boolean
in VHDL

architecture test of bench is
signal sync: boolean;

begin
stimulus: process
begin

sync <= not sync;

end process stimulus;

response: process
begin

wait on sync;

end process response;
end test;

architecture test of bench is
signal expect: integer;

begin
stimulus: process
begin

expect <= ...;

end process stimulus;

response: process
begin

wait on expect’transaction;

end process response;
end test;

Sample 5-51.
Using the
'transaction
attribute in
VHDL

10. Because the assignment of the same value, twice in a row, will not cause
an event on the signal. To synchronize to the assignment of any value
on a signal, you must be sensitive to any assignment, even of values that
do not cause an event. That’s what the 'transaction attribute identifies.
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Figure 5-23 shows the execution threads for the verification of the
UART transmit path. It also shows the synchronization points when
the testcase switches from loading a new configuration in the
UART to actively transmitting data, and vice-versa.

The Verilog implementation of the execution threads shown in
Figure 5-23 is detailed in Sample 5-52.

initial
begin

... // Init simulation

fork: config_phase
begin

... // Config
disable config_phase

end
begin

... // Check output remains idle
end

join

fork: data_phase
begin

... // Write data to send via CPU i/f
end
begin

... // Check data sent serially
end

join

... // Terminate simulation
end

Sample 5-52.
Implementing
execution
threads in Ver-
ilog

Controlling execu-
tion threads is sim-
plified by using
the fork/join state-
ment.

The implementation in VHDL is a little more complex. Since
VHDL lacks the fork/join statement, individual processes must be
used. A process must be selected as the “master” process. The mas-
ter process controls the synchronization of the various execution
threads in the testcase. The master process can be a separate process
whose sole function is to control the execution of the testcase. It
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could also be one of the execution threads, usually one of the stimu-
lus generation threads. An emulation of the fork/join statement, as
shown in “Fork/Join Statement” on page 134, could be used. In
Sample 5-53, a simple synchronization scheme using a different
signal for each synchronization point is used.

Sample 5-53.
Implementing
execution
threads in
VHDL

architecture test of bench is
signal sync1, syn2, sync3, done: boolean;

begin
stimulus: process
begin

... -- Init simulation
sync1 <= not sync1;
... loop

... -- Config via CPU i/f
sync2 <= not sync2;
... -- Write data to send via CPU i/f;
-- Wait for data to be received
wait on sync3;

end loop;
done <= true;
wait;

end process stimulus;

response: process
begin

-- Wait until init is complete
wait on sync1;
loop

-- Check output is idle while config
wait until Tx /= ’0’ or

sync2’event or done;
if done then

-- Terminate simulation
assert FALSE severity FAILURE;

end if;
assert Tx = ’0’ . . . ;
... -- Verify data sent serially
sync3 <= not sync3;

end loop;
end process response;

end test;

Abstracting Output Operations

Output operations
can be encapsu-
lated.

Earlier in this chapter, we encapsulated input operations to abstract
the stimulus generation from individual signals and waveforms to
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generating sequences of operations. A similar abstraction can be
used for verifying the output. The repetitiveness of output signals is
taken care of and verified inside the subprograms. The output veri-
fication thread simply passes the expected output value to the mon-
itor subprogram.

Arguments include
expected value and
configuration
parameters.

The input operations takes as argument the specific value to use to
generate the stimulus. Conversely, the output operations, encapsu-
lated using tasks in Verilog, or procedures in VHDL, take as argu-
men the value expected to be produced by the design. If the format
or protocol of the output operation is configurable, its implementa-
tion should be configurable as well.

A perfect example is the operation to verify the serial output in a
UART transmit path, shown in Figure 5-20. It is as highly config-
urable as its input counterpart, detailed in Sample 5-48. The differ-
ence is that it compares the specified value with the one received,
and compares the received parity against its expected value based
on the received data and the configuration parameters. An imple-
mentation of the RS-232 receiver operation is detailed in Sample 5-
54. It assumes that the configuration is specified using a user-

Sample 5-54.
Implementa-
tion of the RS-
232 serial
receive opera-
tion

subtype byte is std_logic_vector(7 downto 0) ;
procedure recv(signal rx : in std_logic;

expect: in byte;
config: in rs232_cfg_typ)

is
variable period : time;
variable actual: byte := (others => ’0’);

begin
period := 1 sec / config.baud_rate;
wait until rx = ’1’; -- Wait for start bit
wait for period / 2; -- Sample mid-pulse
for I in config.n_bits downto 0 loop

wait for period;
actual (I) := rx; -- 7-8 data bits

end loop;
assert actual = expect; -- Compare
-- Parity bit?
if (config.parity /= no_parity) then

wait for period;
assert rx = parity(actual, config.parity);

end
wait for period; -- Stop bit
assert rx = ’0’;

end recv;
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defined record type. A function to compute the parity of an array of
bits, based on a configurable parity value, is also assumed to exist.
This parity function could use the xor_reduce function available in
Synopsys’s std_logic_misc package.

Consider all possi-
ble failure modes.

The procedure shown in Sample 5-54 has some potential problems
and limitations. What if the output being monitored is dead and the
start bit is never received? This procedure will hang forever. It may
be a good idea to provide a maximum delay to wait for the start bit
via an additional argument, as shown in Sample 5-55, or to compute
a sensible maximum delay based on the baud rate. Notice how a
default argument value is used in the procedure definition to avoid
forcing the user to specify a value when it is not relevant, as shown
in Sample 5-56, or to avoid modifying existing code that was writ-
ten before the additional argument was added.

procedure recv(signal rx : in std_logic;
expect : in byte;
config : in rs232_cfg_typ:
timeout: in time

:= TIME'high)
is

begin

wait until rx = ’1’ for timeout;
assert rx = ’1’;

end recv;

Sample 5-55.
Providing an
optional time-
out for the RS-
232 serial
receive opera-
tion

process
begin

recv(rx, "01010101", cfg_9600_8N1, 100 ms);
recv(rx, "10101010", cfg_9600_8N1);

end process;

Sample 5-56.
Using the RS-
232 serial
receive opera-
tion

Do not arbitrarily
constrain the oper-
ation.

The width of pulses is not verified in the implementation of the RS-
232 receive operation in Sample 5-54. Should it? If you assume that
the procedure is used in a controlled, 100 percent digital environ-
ment, then verifying the pulse width might make sense. This proce-
dure could also be used in system-level verification, where the
serial signal was digitized from a noisy analog transmission line as
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illustrated in Figure 5-24. In that environment, the shape of the
pulse, although unambiguously carrying valid data, most likely
does not meet the rigid requirements of a clean waveform for a spe-
cific baud rate. Just as in real life, where modems fail to communi-
cate properly if their baud rates are not compatible, an improper
waveform shape is detected as invalid data being transmitted.

Generic Output Monitors

Verifying the value
in the output moni-
tor is too restric-
tive.

The output verification operation, as encapsulated in Sample 5-54,
has a very limited application. It can be only used to verify that the
output value matches a predefined expected value. Can you imag-

Sample 5-57.
Generic RS-
232 serial
receive opera-
tion

subtype byte is std_logic_vector(7 downto 0);
procedure recv(signal rx : in std_logic;

actual: out byte;
config: in rs232_cfg_typ)

is
variable period: time;
variable data : byte;

begin
period := 1 sec / config.baud_rate;
wait until rx = ’1’; -- Wait for start bit
wait for period / 2; -- Sample mid-pulse
data(7) := '0'; -- Handle 7 data bits
for I in config.n_bits downto 0 loop

wait for period;
data(I) := rx; -- 7-8 data bits

end loop;
-- Parity bit?
if (config.parity /= no_parity) then

wait for period;
assert rx = parity(data, config.parity);

end
wait for period; -- Stop bit
assert rx = ’0’;
actual := data;

end recv;
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ine other possible uses? What if the output value can be any value
within a predetermined set or range? What if the output value is to
be ignored until a specific sequence of output values is seen? What
if the output value, once verified, needs to be fed back to the stimu-
lus generation? The usage possibilities are endless. It is not possi-
ble, a priori, to determine all of them nor to provide a single
interface that satisfies all of their needs.

Separate monitor-
ing from value
verification.

The most flexible implementation for an output operation monitor
is to simply return to the caller whatever output value was just
received. It will be up to a “higher authority” to determine if this
value is correct or not. The RS-232 receiver was modified in Sam-
ple 5-57 to return the byte received without verifying its correct-
ness. The parity, being independent of the correctness of the value
and fully contained within the RS-232 procotol, can still be verified
in the procedure.

Monitoring Multiple Possible Operations

The next opera-
tion on an output
interface may not
be predictable.

You may be in a situation where more than one type of operation
can happen on an output interface. Each would be valid and you
cannot predict which specific operation will come next. An exam-
ple would be a processor that executes instructions out of order.
You cannot predict (without detailed knowledge of the processor
architecture) whether a read or a write cycle will appear next on the
data memory interface. The functional validity is determined by the
proper access sequence to related data locations.

Sample 5-58.
Processor test
program

load A, R0
load B, R1
add R0, R1, R2
sto R2, X
load C, R3
add R0, R3, R4
sto R4, Y

Verify the
sequence of
related operations.

For example, consider the testcase composed of the instructions in
Sample 5-58. It has many possible execution orders. From the per-
spective of the data memory, the execution is valid if the conditions
listed below are true.

1.

2.

Location A is read before location X and Y are written.

Location B is read before location X is written.
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3.

4.

5.

Location C is read before location Y is written.

Location X must be written with the value A+B.

Location Y must be written with the value A+C.

These are the sufficient and necessary conditions for a proper exe-
cution of the test program. Verifying for a particular order of the
individual cycle overconstrains the testcase.

Write an operation
“dispatcher” task
or procedure.

How do you write an encapsulated output monitor when you do not
know what kind of operation comes next? You must first write a
monitor that identifies the next cycle after it has started. It verifies
the preamble to all operations on the output interface until it
becomes unique to a specific operation. It then returns any informa-
tion collected so far and identifies, to the testbench, which cycle is
currently underway. It is up to the testbench to then call the appro-
priate task or procedure to complete the verification of the opera-
tion.

Sample 5-59 shows the skeleton of a monitor task that identifies
whether the next operation for a CPU is a read or a write cycle.
Since the address has already been sampled by the time the decision
of the type of cycle was made, it is returned along with the current
cycle type. Sample 5-60 shows how this operation identification
task is used by the testbench to determine the next course of action.

Sample 5-59.
Monitoring
many possible
output opera-
tions

parameter READ_CYCLE = 0,
WRITE_CYCLE = 1;

time last_addr;
task next_cycle_is;

output cycle_kind;
output [23:0] address;

begin
@ (negedge ale);
address = addr;
cycle_kind =

(rw == 1’b1) ? READ_CYCLE : WRITE_CYCLE;
#(Tahold);
if ($time - last_addr < Tahold + Tasetup)

$write("Setup/Hold time viol, on addr\n");
end
endtask

always @ (addr) last_addr = $time;
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Sample 5-60.
Handling
many possible
output opera-
tions

initial
begin: test_procedure

reg cycle_kind;
reg [23:0] addr;

next_cycle_is(cycle_kind, addr);
case (cycle_kind)
READ_CYCLE: read_cycle(addr);
WRITE_CYCLE: write_cycle(addr);
endcase

end

In this case, we assume the existence of two tasks, one for each pos-
sible operation, which completes the monitoring of the remainder
of the cycle currently under way.

Monitoring Bi-Directional Interfaces

Output interfaces
may need to reply
with “input” data.

We have already seen that input operations sometimes have to mon-
itor some signals from the design under verification. The same is
true for output monitor. Sometimes, they have to provide data back
as an answer to an “output” operation. This blurs the line between
stimulus and response. Isn’t a stimulus generation subprogram that
verifies the control or feedback signals from the design also doing
response checking? Isn’t a monitor subprogram that replies with
new data back to the design also doing stimulus generation?

Generation and
monitoring per-
tains to the ability
to initiate an oper-
ation.

The terms generator and monitor become meaningless if they are
attached to the direction of the signals being generated or moni-
tored. They regain their meaning if you attach them to the initiation
of operations. If a procedure or a task initiates the operation, it is a
stimulus generator. If the procedure or task sits there and waits for
an operation to be initiated by the design, then it is an output moni-
tor. The latter also includes ancilliary tasks to complete a cycle cur-
rently underway, as discussed in “Monitoring Multiple Possible
Operations” on page 203.

Bridges have bi-
directional output
interfaces.

The downstream master interface on a bus bridge is the perfect
example of a bi-directional “output” interface. The bridge is the
design under verification. An example, illustrated in Figure 5-25, is
a bridge between a proprietary on-chip bus and a PCI interface. The
cycles are initiated on the on-chip bus (upstream). If the address
falls within the bridge’s address space, it translates the cycle onto
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the PCI bus (downstream). This bridge allows master devices on
the on-chip bus to transparently access slave devices on the PCI
bus.

Using a memory to
test a CPU inter-
face can mask cer-
tain classes of
problems.

To verify this bridge, you would need an on-chip bus cycle genera-
tor and a PCI bus cycle monitor, as illustrated in Figure 5-26. Many
would be tempted to use a model of a memory (which, for PCI, are
readily available from model suppliers), instead of a PCI monitor.
The verification would be accomplished by writing a pattern in the
memory then reading it back. Using a memory would not catch sev-
eral types of problems masked by the readback operations.

For example, what if the bridge designer misreads the PCI specifi-
cation document and implements the address bus using little endian
instead of big endian? During the write cycle, address
0xDEADBEEF on the on-chip bus is translated to the physical
address 0xEFBEADDE on the PCI bus, writing the data in the
wrong memory location. The read cycle, used to verify that the
write cycle is correct, also translates address 0XDEADBEEF to
0xEFBEADDE and reads the data from the same, but invalid loca-
tion. The testbench does not have the necessary visibility to detect
the error.

Use a monitor that
detects the PCI
cycles and notifies
the testbench.

Using a generic PCI monitor to verify the output detects errors that
would be masked by using a write-readback process. The PCI mon-
itor task or procedure would watch the bus until it determined the
type of cycle being initiated by the bridge. To ease implementation,
this task or procedure usually continues to monitor the bus while
the cycles remain identical (i.e. for the entire address phase).
Assuming that the bridge’s implementation is limited to generating
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Assuming that the bridge’s implementation is limited to generating
PCI memory read and write cycles, the monitor task or procedure
would then return, identifying the cycle as a memory read or write
and the address being read or written. The skeleton for a PCI bus
monitor is shown in Sample 5-61.

Sample 5-61.
Monitoring
many possible
PCI cycles

parameter MEM_RD = 0,
MEM_WR = 1;

task next_pci_cycle_is;
output cycle_kind;
ouptut [31:0] address;

begin
// Wait for the start of the cycle
@ (posedge pci_clk);
while (frame_n !== 1'b0) @ (posedge pci_clk);
// Sample command and address
case (cbe_n)
4’b0110: cycle_kind = MEM_RD;
4’b0111: cycle_kind = MEM_WR;
default: $write("Unexpected cycle type!\n");
endcase
address = ad;

end
endtask

You must be able
to verify different
possible answers
by the bus monitor.

The really interesting part comes next. In PCI, read and write cycles
can handle arbitrary length bursts of multiple data values in a single
cycle. A read cycle can read any number of consecutive bytes and a
write cycle can write any number of consecutive bytes. The PCI
master is under control of the length of the burst, but the number of
bytes involved in a cycle is not specified in the preamble. Data must
be read or written by the slave for as long as the master keeps read-
ing or writing them.

In a VHDL procedure, implementing a monitor for the write cycle,
you could use an access value to an array of bytes to return all of
the data values that were written during a burst. The instance of the
array object would be dynamically allocated with the proper con-
straints according to the number of bytes read. An example is
shown in Sample 5-62. But what about read cycles where the test-
bench cannot know, a priori, how many bytes will be read? And
what about Verilog which does not support arrays of bytes on inter-
faces, let alone unconstrained arrays?
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Sample 5-62.
Monitoring
burst write
cycles in
VHDL

subtype byte is std_logic_vector(7 downto 0);
type byte_array_typ is array(natural range <>)

of byte;
type burst_data_typ is access byte_array_typ;

procedure next_pci_cycle_is(...);

procedure pci_mem_write_cycle(
-- PCI bus interface as signal class formals
signal pci_clk: in std_locic;

-- Pointer to data values written during cycle
variable data_wr: out burst_data_typ);

A monitor can be
composed of sev-
eral tasks or proce-
dures that must be
appropriately
called by the test-
bench.

The PCI bus monitor has been implemented by slicing the PCI
cycles into at least two procedures: one to handle the generic pre-
amble and detect the type of cycle under way, the other intended to
handle the remainder of each cycle.

The solution to our dilemma is to slice the implementation of the
PCI bus monitor even further: use a procedure to handle each data
transfer and one to handle the cycle termination.

The data transfer procedure or task would have an input or output
argument for the data read or written, and an output argument to
indicate whether to continue with more data transfers or terminate
the cycle. Figure 5-27 illustrates how each procedure is sequenced,
under the control of the testbench, to form a complete PCI cycle. A
similar slicing strategy would be used in creating a PCI bus genera-
tor. The only exception being that the generator is now under the
control of the initiation of the cycle and its duration.

Provide the con-
trols at the proper
level of granular-
ity.

Slicing the implementation of the PCI cycle at the data transfer
level offers an additional opportunity. In PCI, both master and slave
can throttle the transfer rate by asserting the irdy_n and trdy_n sig-
nals, respectively, when they are ready to complete a transfer.
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A procedure or a task implementing a single data transfer can have
an additional parameter specifying the number of clock cycles to
wait before asserting the trdy_n signal. Another could be used to
specify whether to force one of the target termination exception. It
can also report that a master-initiated exception occured during this
data transfer, such as a timeout, a system error, or a parity error.

The testbench would then be free to “generate” any number of pos-
sible answers to a PCI cycle. With the tasks outlined in Sample 5-
61 and Sample 5-63, the possibilities become endless! One of these
possibilities is shown in Sample 5-64.

Sample 5-63.
PCI data trans-
fer and termi-
nation tasks

// Target terminations
parameter NORMAL = 0,

RETRY = 1,
DISCONNECT = 2,
ABORT = 3;

// Output status
parameter TERMINATE = 0,

CONTINUE = 1,
INITIATOR_ABORT = 2,
PARITY_ERROR = 3,
SYS_ERROR = 4;

task pci_data_rd_xfer;
input [31:0] rd_data;
input [ 7:0] delay;
input [ 1:0] termination;
output [  2:0] status;

endtask

task pci_data_wr_xfer;
output [31:0] wr_data;
input [ 7:0] delay;
input [ 1:0] termination;
output [ 2:0] status;

endtask

task pci_end_cycle;
output [2:0] status;

endtask
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Sample 5-64.
Monitoring a
complete PCI
cycle

initial
begin: test_procedure

fork
begin: on_chip_side

// Generate a long read cycle on the
// On-Chip bus side

end
begin: pci_side

reg kind;
reg [31:0] addr;
integer delay;
integer ok;

// Expect a read cycle on the PCI side
// at the proper address
next_pci_cycle_is(kind, addr);
if (kind != MEM_RD) ...
if (addr !=...) ...

// Send back 5 random data words
// with increasing delays in readiness
// then force a target abort on the 6th.
delay = 0;
repeat (5) begin

pci_data_rd_xfer($random, delay,
NORMAL, ok);

if (ok !== CONTINUE) ...
delay = delay + 1;

end
pci_data_rd_xfer($random, 0, ABORT, ok);

end
join

end

Using a monitor
simplifies the
testcase.

Using the generic PCI bus monitor also shortens the testcase com-
pared to using a memory. With the monitor, you have direct access
to all of the bus values. It is not necessary to write into the memory
for the entire range of address and data values, creating interesting
test patterns that highlight potential errors. With a monitor, only a
few addresses and data values are sufficient to verify that the bridge
properly translates them. It is also extremely difficult to control the
answers provided by the memory to test how the bridge reacts to
bus exceptions. These exception conditions become easy to setup
with a generic monitor designed to create them.
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PREDICTING THE OUTPUT

The unstated assumption in implementing self-checking test-
benches is that you have detailed knowledge of the output to be
expected. Knowing exactly which output to expect and how it can
be verified to determine functional correctness is the most crucial
step in verification. In some cases, such as RAMs or ROMs, the
response is easy to determine. In others, such as a video compressor
or a speech synthesizer, the response is much more difficult to
define. This section examines various families of designs and show
how the expected response could be determined and communicated
to the output monitors.

Data Formatters

The expected out-
put equals the
input.

There is a class of designs where the input information is not trans-
formed, but simply reformated. Examples include UARTs, bridges,
and FIFOs. They have the simplest output prediction process. Since
the information is not modified, predicting the output is a simple
matter of knowing the sequence of input values.

Forwarding one
value at a time
under-constrains
the design.

Passing data values, one at a time, from the stimulus generator to
the response monitor, as illustrated in Figure 5-28, is usually not
appropriate. This limits the data rate to one every input and output
cycle and may not stress the design under worse conditions. Pipe-
lined designs cannot be verified using this stategy: input must be
continuously supplied while their corresponding response has not
yet appeared on the output.

A short data
sequence can be
implemented in a
global array.

If the input sequence is short and predetermined, using a global data
sequence table is the simplest approach. Both the input generator
and output monitor use the global table. The input generator applies
each value in sequence. The output monitor compares each output
value against the sequence of values in the global table. Figure 5-29
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illustrates the flow of information while Sample 5-65 shows an
implementation in VHDL.

Sample 5-65.
Implementa-
tion of a glo-
bal data
sequence table

architecture test of bench is
type std_lv_ary_typ is array(natural range <>)

of std_logic_vector(7 downto 0);
constant walking_ones: std_lv_ary_typ(1 to 8)

:= ("10000000",
"01000000",
"00100000",
"00010000",
"00001000",
"00000100",
"00000010",
"00000001");

begin
DUV: ...

stimulus: process
begin

for I in walking_ones'range loop
apply(walking_ones(I), ...);

end loop;
wait;

end process stimulus;

response: process
begin

for I in walking_ones'range loop
expect(walking_ones(I), ...);

end loop;
assert false severity failure;

end process response;
end test;
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Long data
sequence can use a
FIFO between the
generator and
monitor.

Often the input sequence is long or computed on-the-fly. It is not
practical for hardcoding in a global constant. A FIFO can be used to
forward expected values from the stimulus generator to the output
monitor. The input generator puts each value in sequence in one end
of the FIFO. The output monitor compares each output value
against the sequence of values dequeued from the other end of the
FIFO. This strategy is a simple extension of the concept of forward-

Sample 5-66.
Implementa-
tion using a
FIFO to for-
ward data val-
ues

task put_fifo;

endtask

function [7:0] get_fifo;

endfunction

initial
begin: stimulus

reg [7:0] data;

repeat (...) begin
data = ...;
put_fifo(data);
apply(data);

end
end

initial
begin: response

reg [7:0] data;

repeat (...) begin
data = get_fifo(0);
expect(data);

end
$finish;

end
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ing a single value at a time. It is illustrated in Figure 5-30. Notice
how the architecture of the testbench is identical to the one illus-
trated in Figure 5-28. The code in Sample 5-66 shows the imple-
mentation structure in Verilog of a testbench using a FIFO. The
implementation of the FIFO itself is left as an exercise to the reader.

The stimulus and
response pro-
cesses can read the
same data file.

Sometimes, the data sequence is externally generated and supplied
to the testbench using a data file. A file can be read, concurrently,
by more than one process. Thus, the stimulus generator and
response monitor can both read the file, using it in a fashion similar
to a global array. The code in Sample 5-67 illustrates how this strat-
egy could be implemented in VHDL. The filename is assumed to be

Sample 5-67.
Implementa-
tion using an
external data
file

entity bench is
generic (datafile: string);

end bench;

architecture test of bench is
begin

DUV: ...

stimulus: process
file infile : text is in datafile;
variable L : line;
variable dat: std_logic_vector(7 downto 0);

begin
while not endfile(infile) loop

readline(infile, L);
read(L, dat);
apply(dat, ...);

end loop;
wait;

end process stimulus;

response: process
file infile : text is in datafile;
variable L : line;
variable dat: std_logic_vector(7 downto 0);

begin
while not endfile(infile) loop

readline(infile, L);
read(L, dat);
expect(dat, ...);

end loop;
assert false severity failure;

end process response;
end test;
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passed to the testbench via the command line using a generic of
type string.

Packet Processors

Packets have
untouched data
fields.

This family of designs uses some of the input information for pro-
cessing, sometimes transforming it. But it leaves portions of the
input untouched and forwards it, intact, all the way through the
design to an output. Examples abound in the datacom industry.
They include Ethernet hubs, IP routers, ATM switches, and SONET
framers.

Use the untouched
fields to encode
the expected tran-
formation.

The portion of the data input that passes, untouched, through the
design under verification can be put to good use. It is often called
payload and the term packet or frame is often used to describe the
unit of data processed by the design. You must first determine,
through a proper testcase, that the payload information is indeed not
modified by the design. Subsequently, it can be used to describe the
expected output for this packet. For each packet received, the out-
put monitor uses the information in the payload to determine if it
was appropriately processed.

This simplifies the
testbench control
structure.

Figure 5-31 shows the structure of a testbench for a four-input and
four-output packet router. Notice how the output monitors are com-
pletely autonomous. This type of design usually lends itself to the
simplest testbench control structures, assuming that the output
monitors are sufficiently intelligent. The control of this type of test-
bench is simple because all the processing (stimulus and generation
of expected response) is performed in a single location: the stimu-
lus generator. Some minor orchestration between the generators
may be required in some testcases when it is necessary to synchro-
nize traffic patterns to create interesting scenarios.
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Include all neces-
sary information in
the payload to
determine func-
tional correctness.

The payload must contain all necessary information to determine if
a particular packet came out of the appropriate output, and with the
appropriate transformation of its control information.

For example, assume the success criteria is that the packets for a
given input stream be received in the proper order by the proper
output port. The payload should contain a unique stream identifier,
a sequence number, and an output port identifier, as shown in
Figure 5-32.

The output monitor needs to verify that the output identifier
matches its own identifer. It also needs to verify that the sequence
number is equal to the previously-received sequence number in that
stream plus one, as outlined in Sample 5-68. The Verilog records
are assumed to be implemented using the technique shown in
“Records” on page 105.

Sample 5-68.
Implementa-
tion using pay-
load informa-
tion to
determine
functional cor-
rectness

always
begin: monitor

reg ‘packet_typ pkt;

receive_packet(pkt);
// Packet is for this port?
if (pkt‘out_port_id !== my_id) ... ;
// Packet in correct sequence?
if (last_seq[pkt‘strm_id] + 1

!=  pkt‘seq_num) ...;
// Reset sequence number
last_seq[pkt‘strm_id] = pkt‘seq_num;

end

Complex Transformations

The last family of designs processes and transforms the input data
completely and thoroughly. The expected output can be only deter-
mined by reproducing the transformation using alternative means.
This includes reversing the process where you determine which
input sequence to provide in order to produce a desired output.
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Use a truly alterna-
tive computation
method.

When reproducing the transformation, to determine which output
value to expect, as illustrated in Figure 5-33, you must use a differ-
ent implementation of the transformation algorithm. For example,
you can use a reference C model. For a DSP implementation, you
could use floating-point expressions and the predefined real data
types to duplicate the processing that is performed using fixed-
point operators and data representation in the design.

Use a different
programming
model for the out-
put monitor.

If you are providing an input sequence to produce a specific output
pattern, use a different programming model for the output monitor.
The programming model for the design was chosen to ease imple-
mentation - or even to make it possible. Having almost no con-
straints in behavioral HDL models, you can choose a programming
model that is more natural, to express the expected output. Using a
different programming model also forces your mind to work in a
different way when specifying the input and output, creating an
alternative verification path.

Example: a wave-
form generator.

For example, you could be verifying a design that generates arbi-
trary digital waveforms. The input could specify, for each clock
cycle, the position of up to three rising or falling edges within the
clock period. Each transition is specified using two parameters. A
level bit indicates the final logic level after the transition and a 10-
bit offset value indicates the position of the transitions within the 10
ns clock period, with a resolution of 9.7 ps (or 10 ns / 1024).
Assuming that the waveform in Figure 5-34 represents an interest-
ing testcase, Figure 5-35 shows how it is sliced to create the input
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sequence and Sample 5-69 shows how the stimulus could be gener-
ated.

Sample 5-69.
Generating the
input for the
waveform
generator

initial
begin: stimulus

repeat (10) begin
apply(1’b0, $realtobits(0.0),

1’b1, $realtobits(1.0) ,
1’b0, $realtobits(9.0)) ;

apply(1’b1, $realtobits(0.0),
1’b0, $realtobits(1.0),
1’b1, $realtobits(9.0));

end
end

Choose a different
but reliable way of
representing the
output.

How should the output be represented? If we use a slicing method
similar to the input’s, it would not provide for an alternative pro-
gramming model. Furthermore, the implementation could miss
transitions or events between slices. The output waveform has no
relationship with the clock. Trying to specify the expected output
using clock-based slices would simply over-constrain the test. The
validity of the output waveform is entirely contained in the relative
position of the edges. So why not specify the expected output using

Sample 5-70.
Monitoring the
generated
waveform

monitor: process
begin

wait until wave = ’1’;
for I in 1 to 10 loop

wait on wave;
assert wave’delayed’last_event = 8 ns;
wait on wave;
assert wave’delayed’last_event = 1 ns;
wait on wave;
assert wave’delayed’last_event = 1 ns;

end loop;
assert false severity failure;

end process monitor;
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an edge-to-edge specification? Assuming that the output is initial-
ized to a level of ‘0’, an implementation of the output monitor is
shown in Sample 5-70.

The 'delayed
attribute must be
used to look before
the wait statement.

The 'delayed signal attribute must be used, otherwise 'last_event
always returns 0 since the signal wave just had an event to resume
the execution of the previous wait statement. The 'delayed attribute
delays the wave signal by one delta cycle. The delayed wave signals
looks to the 'last_event attribute as if it were before the execution of
the wait statement. Notice how this monitor simply waits for the
first rising edge of the output monitor to anchor its edge-to-edge
relationships. This makes the monitor completely independent of
the latency and intrinsic delays in the design.

Do not enforce
unnecessary preci-
sion.

There is one problem with the verification of the delay between
edges in Sample 5-70. Each delay is compared to a precise value.
However, the design has a resolution of 9.7 ps. Each delay is valid
if it falls in the range of the ideal delay value plus or minus the res-
olution, as shown in Sample 5-71.

Sample 5-71.
Handling
uncertainty in
the generated
waveform

monitor: process
function near(val, ref: in time)

return boolean is
constant resolution: time := 9700 fs;

begin
return ref - resolution <= val and

val <= ref + resolution;
end near;

begin
wait until wave = ’1’;
for I in 1 to 10 loop

wait on wave;
assert near(wave’delayed’last_event, 8 ns);
wait on wave;
assert near(wave’delayed’last_event, 1 ns);
wait on wave;
assert near(wave’delayed’last_event, 1 ns) ;

end loop;
assert false severity failure;

end process monitor;

SUMMARY

In this chapter, I have described how to use bus-functional models
to generate stimulus and monitor response. The bus-functional

Writing Testbenches: Functional Verification of HDL Models 219



Stimulus and Response

models were used to translate between high-level data representa-
tions and physical implementation levels. They also abstracted the
interface operations, removing the testcases from the detailed
implementation of each physical interface. Some of these bus-func-
tional models can be very complex, depending on feed-back from
the device under verification to operate properly or having to sup-
ply handshake information back to the device.

This chapter, after highlighting the problems with visual inpection,
also described how to make each individual testbench completely
self-checking. The expected response must be embedded in the test-
bench at the same time as the stimulus. Various strategies for deter-
mining the expected response and communicating it to the output
monitors have been presented.
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TESTBENCHES

CHAPTER 6

A testbench need not be a monolithic block. Although Figure 1-1
shows the testbench as a big thing that surrounds the design under
verification, it need not be implemented that way. The design is
also shown in a single block and it is surely not implemented as a
single unit. Why should the testbench by any different?

In Chapter 5, we focused on the generation and monitoring of the
low-level signals going into and coming out of the device under
verification. I showed how to abstract them into operations using
bus-functional models. Each were implemented using a procedure
or a task. The emphasis was on the stimulus and response of inter-
faces and the need for managing separate execution threads. If you
prefer a bottom-up approach to writing testbenches, I suggest you
start with the previous chapter.

This chapter concentrates on implementing the many testbenches
that were identified in your verification plan. I show how to best
structure the stimulus generators and response monitors to mini-
mize maintenance, facilitate implementing a large number of test-
benches, and promote the reusability of verification components.

The previous
chapter was
about low-level
testbench com-
ponents.

This chapter
focuses on the
structure of the
testbench.

REUSABLE VERIFICATION COMPONENTS

This section describes how to plan the architecture of testbenches.
The goal is to maximize the amount of verification code reused
across testbenches to minimize the development effort. The test-
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module testbench;

reg rst, d0, d1, sel, clk;
wire q, qb;

muxed_ff duv(d0, d1, sel, q, qb, clk, rst);

parameter cycle = 100,
Tsetup = 15,
Thold = 5;

always
begin

#(cycle/2) clk = 1’b0;
#(cycle/2) clk = 1’bl;

end

task sync_reset;

endtask

task load_d0;
input data;

begin
rst <= 1’b0;
d0 <= data;
dl <= ~data;
sel <= 1’b0;
@ (posedge clk);
#(Thold);
if (q !== data || qb !== ~data) ...
{rst, d0, d1, sel} <= 4'bxxxx;
#(cycle - Thold - Tsetup);

end
endtask

task load_d1;

endtask

initial
begin: test_sequence

sync_reset;
load_d0(1’b1);

$finish;
end
endmodule

Sample 6-1.
Implementing
the muxed
flip-flop test-
bench in Ver-
ilog
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architecture test of bench is
signal rst, d0, d1, sel, q, qb: std_logic;
signal clk: std_logic := ’0’;
component muxed_ff

end component;
constant cycle : time := 100 ns;
constant Tsetup: time := 15 ns;
constant Thold : time := 5 ns;

begin
duv: muxed_ff port map(d0, d1, sel, q, qb,

clk, rst);

clock_generator: clk <= not clk after cycle/2;

test_procedure: process
procedure sync_reset is

end sync_reset;

procedure load_d0(data: in std_logic) is
begin

rst <= ’0’ ;
d0 <= data;
d1 <= not data;
sel <= ’0’ ;
wait until clk = ’1’;
wait for Thold;
assert q == data and qb = not data;
rst <= ’X’;
d0 <= ’X’;
d1 <= ’X’;
sel <= ’X’;
wait for cycle - Thold - Tsetup;

end load_d0;

procedure load_d1(data: in std_logic) is

end load_d1;
begin

sync_reset;
load_d0(’1’);

assert FALSE severity FAILURE;
end process test_procedure;

end test;

Sample 6-2.
Implementing
the muxed
flip-flop test-
bench in
VHDL
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All of the testbenches have to interface, through an instantiation, to
the same design under verification. It is safe to assume that they all
require the use of the same bus-functional models used to generate
stimulus and to monitor response. These bus-functional models
could be reused by all testbenches implemented for this design. If
the interfaces being exercised or monitored by these bus-functional
models have common interfaces found on other designs, they could
even be reused by all testbenches for these other designs.

Instead of a monolithic block, the testbenches should be structured
with a low-level layer of reusable bus-functional models. This low-
level layer is common to all testbenches for the design under verifi-
cation and called the test harness. Each testcase would be imple-
mented on top of these bus-functional models, as illustrated in
Figure 6-1. The testcase and the harness together form a testbench.

Use a low-level
layer of reusable
bus models.

The bus-func-
tional models can
be used by many
testbenches.

With the suprograms located in the testbench module or process,
they can be used by the initial and always blocks or processes
implementing the testcase. The subprograms are simple to imple-
ment because the signals going to the device under verification can
be driven directly through assignments to globally visible signals.
Similarly, the outputs coming out of the device can be directly sam-
pled as they too are globally visible.

Global access to
signals declared at
the module or
architecture level
was allowed.

Bus-functional
models were
assumed to be in
the same process
or module as the
testbench.

In the previous chapter, stimulus generation and response checking
were performed by abstracting operations using procedures or
tasks. It was implied that these subprograms were implemented in
the same process or module as the test sequence using them. Sam-
ple 6-1 shows where the task load_d0, first introduced in Sample 5-
22, would have to be implemented in a Verilog testbench. Sample
6-2 shows the equivalent VHDL implementation.

benches are divided into two major components: the reusable test
harness, and the testcase-specific code.
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Insert reusable
mid-level utility
routines as
required.

Many testbenches share some common functionality or need for
interaction with the device under verification. Once the low-level
features are verified, the repetitive nature of communicating with
the device under verification can also be abstracted into higher-
level utility routines. For example, low-level read and write opera-
tions to send and receive individual bytes can be encapsulated by
utility routines to send and receive fixed-length packets. These, in
turn, can be encapsulated in a higher-level utility routine to
exchange variable-length messages with guaranteed error-free
delivery.

The testcase can
operate at the
required level of
abstraction.

A testcase verifying the low-level read and write operations would
interface directly with the low-level bus-functional model, as
shown in Figure 6-1. But once these basic operations are demon-
strated to function properly, testbenches dealing with higher-level
functions can use the higher-level utility routines, as shown in
Figure 6-2.

Procedural Interface

Define a proce-
dural interface to
the bus-functional
model and utility
routines.

For these verification components to be reusable by many test-
benches, you must define a procedural interface independent of
their detailed implementation. A procedural interface simply means
that all the functionality of these components is accessed through
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procedures or tasks, never through global variables or signals. It is
similar to providing tasks or procedures to encapsulate operations.
This gives flexibility in implementing or modifying the bus-func-
tional models and utility routines without affecting the testcases
that use them.

Provide flexibility
through thin lay-
ers.

The verification components need to be flexible enough to provide
the required functionality for all testbenches that use them. It is bet-
ter to provide this flexibility by layering utility routines on top of
general purpose lower-level routines and bus-functional models.
This approach creates layers of procedural interfaces. The low-level
layer provides detailed control whereas the higher-level provides
greater abstraction. Do not attempt to implement all functionality in
a single level. It would unduly complicate the implementation of
the bus-functional models and increase the risk of introducing a
functional failure.

Preserve the pro-
cedural interfaces.

By stimulating and monitoring a design through procedural inter-
faces, it removes the testcase from knowing the low-level details of
the physical interfaces on the design. If the procedural interface is
well-designed and can support different physical implementations,
the physical interface of a design can be modified without having to
modify any testbenches.

For example, a processor interface could be changed from a VME
bus to a X86 bus. All that needs to be modified is the implementa-
tion of the CPU bus-functional model. If the procedural interface to
the CPU bus-functional model is not modified, none of the test-
benches need to be modified.

Another example would be changing a data transmission protocol
from parallel to serial. As long as the testcases can still send bytes,
they need not be aware of the change. Once you have defined a pro-
cedural interface, document it and hesitate to change it.

Development Process

Introduce flexibil-
ity as required.

When developing the low-level bus-functional models and the util-
ity routines, do not attempt to write the ultimate verification com-
ponent that includes every possible configuration option and
operating mode. Use the verification plan to determine the func-
tionality that is ultimately required. Architect the implementation of
the verification component to provide this functionality, but imple-
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Move the testcase
control into a
higher-level of
hierarchy.

The implementation of reusable verification components in Verilog
is relatively simple. Leave the portions of the testbench that are the
same for all testbenches in the level of hierarchy immediately sur-
rounding the design under verification and move the control struc-
ture unique to each testcase into a higher level of hierarchy.

Creating another
testcase simply
requires changing
the control block.

In Sample 6-1, the entire testbench is implemented in a single level
of hierarchy. If you were to write another testcase for the muxed
flip-flop design using the same bus-functional models, you would
have to replicate everything, except for the initial block that con-
trols the testcase. The different testcases would be implemented by
providing different control blocks. Everything else would remain
the same. But replication is not reuse. It creates additional physical
copies that have to be maintained. If you had to write fifty test-
benches, you would have to maintain fifty copies of the same bus-
functional models.

This section evolves an implementation of the test harness and test-
bench architecture. Starting with a monolithic testbench, the imple-
mentation is refined into layers of bus-functional models, utility
packages, and testcases, with well-defined procedural interfaces.
The goal is to obtain a flexible implemention strategy promoting
the reusability of verification components. This strategy can be
used in most Verilog-based verification projects.

VERILOG IMPLEMENTATION

This incremental approach minimizes your development effort: you
won’t develop functionality that turns out not to be needed. You
also minimize your debugging effort, as you are building on func-
tionality that has already been verified and debugged with actual
testbenches. This approach also allows the development of the veri-
fication infrastructure to parallel the development of the test-
benches, removing it from the critical path.

Incremental devel-
opment maxi-
mizes the
verification effi-
ciency.

ment incrementally. Start with the basic functions that are required
by the basic testbenches. As testbenches progress toward exercising
more complex functions, develop the required supporting functions
by adding configurability to the bus-functional models or creating
utility routines. As the verification infrastructure grows, the proce-
dural interfaces are maintained to avoid breaking testbenches
already completed.

Verilog Implementation
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Instead of invoking the bus-functional models directly, they are
invoked using a hierarchical name. The level of hierarchy contain-
ing the reusable verification components, called the test harness,
provides the procedural interface to the design under verification.

Figure 6-3 illustrates the difference in testbench structure. Figure 6-
3(a) shows the original, non-reusable structure, while Figure 6-3(b)
shows the same testbench using the reusable test harness structure.
Sample 6-3 shows the implementation of the testcase shown earlier
in Sample 6-1, using a reusable test harness. Notice how the tasks
are now invoked using a hierarchical name.

The test harness
includes every-
thing needed to
operate the design.

The test harness should be self-contained and provide all signals
necessary to properly operate the design under verification. In addi-
tion to all the low-level bus-functional models, it should include the
clock and reset generators. The reset generator should be encapsu-
lated in a task. This lets testcases trigger the reset operation at will,
if required.

Packaging Bus-Functional Models

Bus-functional
models can be
reused between
harnesses.

The structure shown in Figure 6-3 lets the test harness be reused
between many testcases on the same design under verification. But
it does not help the reusability of bus-functional models between
test harnesses for different designs.
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All the tasks providing a complete bus-functional model for a given
interface should be packaged to make them easy to reuse between
test harnesses. For example, all of the tasks encapsulating the oper-

module testcase;

harness th();

initial
begin: test_sequence

th.sync_reset;
th.load_d0(1’b1);

$finish;
end
endmodule

module harness;

reg rst, d0, d1, sel, clk;
wire q, qb;

muxed_ff duv(d0, d1, sel, q, qb, clk, rst);

parameter cycle = 100,
Tsetup = 15,
Thold = 5;

always
begin

#(cycle/2) clk = 1’b0;
#(cycle/2) = 1’b1;

end

task sync_reset;

endtask

task load_d0;
input data;

begin

end
endtask

task load_d1;

endtask
endmodule

Sample 6-3.
Using a reus-
able test har-
ness in Verilog

Verilog Implementation
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ations of a PCI bus should be packaged into a single PCI bus-func-
tional model package to facilitate their reuse. Some of these tasks
have been shown in Sample 5-61 and Sample 5-63.

Package a bus-
functional model
in its own level of
hierarchy.

We made the test harness reusable by isolating it from its testcases
in its own level of hierarchy. The testcases using the test harness
simply have to instantiate it and use its procedural interface through
hierarchical calls to use it. A similar strategy can be used to make
bus-functional models reusable. All of the tasks encapsulating the
operations are located in a module, creating a self-contained bus-
functional model. For more details, see “Encapsulating Useful Sub-
programs” on page 94.

The signals driven or monitored by the tasks are passed to the bus-
functional model through pins. The bus-functional model is instan-
tiated in the test harness and its pins are properly connected to the
design under verification. The tasks in the bus-functional model
provide its procedural interface. They are called by the testcase
using hierarchical names through the test harness.

The procedural
interface is
accessed hierarchi-
cally and the phys-
ical interface is
accessed through
pins.
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Figure 6-4(b) shows a functionally equivalent harness using a prop-
erly packaged bus-functional model. Sample 6-4 shows the skele-
ton Verilog code implementing an Intel 386SX bus-functional
model, while Sample 6-5 and Sample 6-6 show how it can be used
by the test harness and testcase, respectively.

module i386sx(clk, addr, ads, rw, ready, data);
input clk;
output [23:0] addr;
output ads ;
output rw;
input ready;
inout [15:0] data;

reg [23:0] addr;

reg [15:0] data_o;
assign data = data_o;

initial
begin

ads = 1’b1;
data_o = 16’hZZZZ;

end

task read;

endtask

task write;

endtask
endraodule

Sample 6-4.
Packaged bus-
functional
model for a
i386SX

Utility Packages

Mid-level utility
routines are pack-
aged in separate
modules.

The utility routines that provide additional levels of abstraction to
the testcases are also composed of a series of tasks and functions.
They can be encapsulated in separate modules, using hierarchical
names to access the lower-level procedural interfaces. The utility
routines they provide would also be called using a hierarchical
name.

Utility packages
are never instanti-
ated.

Because there is no wire or register connectivity involved between
a utility package and the lower-level procedural interfaces, they
need not be instantiated. They form additional simulation top-level
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modules, running in parallel with the testbench and the design
under verification. They can access the tasks and functions in the
test harness using absolute hierarchical names.

module harness;

reg clk;
wire [23:0] addr;

wire [15:0] data;

i386sx cpu(clk, addr, ads, rw, ready, data);
design dut(clk, addr, ads, rw, ready, data, ...);

always
begin

#50 clk = 1’b0;
#50 clk = 1’b1;

end

task reset
begin

disable cpu.read;
disable cpu.write;

end
endtask

endmodule

module testcase;

harness th();

initial
begin: test_procedure

reg [15:0] val;

th.reset;
th.cpu.read(24’h00_FFFF, val);
val[0] = 1’b1;
th.cpu.write(24’h00_FFFF, val);

end
endmodule

Sample 6-6.
Testcase using
the packaged
i386SX bus-
functional
model

Sample 6-5.
Test harness
using the
packaged
i386SX bus-
functional
model

Architecting Testbenches
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Their own functions and tasks are also called using absolute hierar-
chical names. Sample 6-7 shows the implementation of a simple
utility routine to send a fixed-length 64-byte packet, 16 bits at a
time, via the i386SX bus using the Intel 386SX bus-functional
model shown in Sample 6-4 and used in the test harness shown in
Sample 6-5. Notice how an absolute hierarchical name is used to
access the write task in the CPU bus-functional model in the har-
ness in the testcase.

module packet;

task send;
input [64*8:1] pkt;
reg [ 15:0] word;
integer i;

begin
for ( i = 0 ; i < 3 2 ; i = i + 1) begin

word = pkt[16:1];
testcase.th.cpu.write(24’hl0_0000 + i,

word);
pkt = pkt >> 16;

end
end
endmodule

Sample 6-7.
Utility pack-
age on test
harness using
packaged
i386SX bus-
functional
model

The harness is not
intantiated either.

If the test harness is instantiated by the top-level testcase module, as
shown in Sample 6-6, the name of the testcase module is part of any
absolute hierarchical name. You can standardize on using a single
predefined module name for all testcase modules and restrict them
to a single level of hierarchy, with the test harness instantiated
under a predefined instance name.

A better alternative is to leave the test harness uninstantiated, form-
ing its own simulation top-level module. The testcases would sim-
ply use absolute hierarchical names instead of the relative
hierarchical names to access tasks and functions in the test harness.

Sample 6-8 shows the testcase previously shown in Sample 6-6, but
using absolute hierarchical names into an uninstantiated test har-
ness. It also uses the packaged utility routine modified in Sample 6-
9 to use the uninstantiated test harness. Figure 6-5 shows the struc-
ture of the simulation model, with the multiple top-levels.
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Sample 6-9.
Utility pack-
age on unin-
stantiated test
harness

module testcase;

initial
begin: test_procedure

reg [15:0] val;
reg [64:8:1] msg;

harness.reset;
harness.cpu.read(24’h00_FFFF, val);
val[0] = 1’b1;
harness.cpu.write(24’h00_FFFF, val);

packet.send(msg);
end
endmodule

module packet;

task send;
input [64*8:1] pkt;
reg [15:0] word;
integer i;

begin
for (i = 0; i < 32; i = i + 1) begin

word = pkt[16:1];
harness.cpu.write(24’h10_0000 + i, word);
pkt = pkt » 16;

end
end
endmodule

Sample 6-8.
Testcase using
uninstantiated
test harness

Architecting Testbenches
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Additional top-
levels are added to
the command line.

It is very easy to create a Verilog simulation with multiple top-level
modules. They are included in the simulation by simply adding
their filename or module name to the simulation command. If you
are using a simulator that compiles and elaborates the simulation
structure in a single command, such as Verilog-XL or VCS, simply
specify the additional filenames that compose the other top-levels.
Assuming that the files involved in creating the structure shown in
Figure 6-5, are named testcase.v, packet.v, harness.v, i386sx.v, and
design.v, the command to use with Verilog-XL to simulate them
would be:

% verilog testcase.v packet.v harness.v \
i386sx.v design.v

For a simulation tool with separate compilation and elaboration
phases, such as ModelSim, all of the required top-level modules
must be identified to the simulation command:

% vlog testcase.v packet.v harness.v \
i386sx.v design.v

% vsim testcase packet harness

As shown in Sample 6-10, the simulator displays the names of all
the top-level modules in the simulation, and simulates them seam-
lessly, as one big model.

Sample 6-10.
Simulator dis-
playing top-
level modules

The top-level modules are:
harness
testcase
packet

Simulation begins ...

Instantiating utility
packages is too
restrictive.

You might be tempted to require that all packages be instantiated
one on top of each other. Lower-level utility package would instan-
tiate the test harness, and higher-level packages would instantiate
the lower-level packages. The structure of the testbench would thus
follow the structure of the packages and only relative hierarchical
names would be used. Unfortunately, the reverse would be occur-
ing: the packages would be forced into following the structure of
the testbench.
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Follow a logical
structure.

Requiring that every utility package be instantiated restricts their
structure to a single hierarchical line. The test harness encapsulates
the design and its surrounding bus-functional models into a single
module. From that point on, only one module can be layered on top
of it. It is not possible to create a tree in the hierarchy where all the
branches terminate in the test harness.

Figure 6-6(a) shows the only possible structure allowed by instanti-
ating all packages according to their abstraction layer. It is impossi-
ble to create the logical structure shown in Figure 6-6(b). The latter
can be implemented using uninstantiated packages and absolute
hierarchical names.

Avoid cross-refer-
ences in utility
routines.

Because the utility packages are implemented in uninstantiated
modules, they create a flat structure of globally visible procedural
interfaces. The models do not enforce that they are used in a strictly
layered fashion. It is possible - and tempting - to write utility pack-
ages that cross-reference themselves.

Sample 6-11 illustrates an example of cross-references, where
packages use routines from each other. Cross-references make two
packages inter-dependent. It is not possible to debug and verify one
separately from the other. It also makes the packages more difficult
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This section evolves an implementation of the test harness and test-
bench architecture. Starting with a monolithic testbench, the imple-
mentation is refined into client/server bus-functional models,
access and utility packages, and testcases. The goal is to obtain a
flexible implemention strategy promoting the reusability of verifi-
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module syslog;

task note;
input [80*8:1] msg;

$write("NOTE: %0s\n", msg);
endtask

task terminate;
begin

$write("Simulation terminated normally\n";
watchdog.shutdown;
$finish;

end
endtask

endmodule

module watchdog;
task shutdown;
begin

syslog.note("Watchdog shutting down...");

end
endtask
endmodule

Sample 6-11.
Packages with
cross-refer-
ences

When designing utility packages, stick to a strict set of layers.
Packages can access utility routines in lower layers or within them-
selves, but never in a sibling package at the same level of abstrac-
tion. If a need for cross-references arises, question your design of
the package set, or consider merging both packages into a single
one.

to reuse as they might have to be decoupled to be fitted into a dif-
ferent simulation environment.

VHDL Implementation
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cation components. This strategy can be used in most VHDL-based
verification projects.

Creating another
testcase simply
requires changing
the control block.

In Sample 6-2, the entire testbench is implemented in a single level
of hierarchy. If you were to write another testcase for the muxed
flip-flop design using the same bus-functional models, you would
have to replicate everything, except for the body of the process that
controls the testcase. The different testcases would be implemented
by providing different sequential statements. Everything else would
remain the same, including the procedures in the process declara-
tive region. But replication is not reuse. It creates additional physi-
cal copies that have to be maintained. If you had to write fifty
testbenches, you would have to maintain fifty copies of the same
bus-functional models.

Packaging Bus-Functional Procedures

Bus-functional
models can be
located in a pack-
age to be reused.

One of the first steps to reducing the maintenance requirement is to
move the bus-functional procedures from the process declarative
regions to a package. These procedures can be used outside of the
package by each testbench that requires them.

Sample 6-12.
Bus-func-
tional proce-
dures for an
i386SX
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package i386sx is

subtype add_typ is std_logic_vector(23 downto 0);
subtype dat_typ is std_logic_vector(15 downto 0);

procedure read( raddr: in add_typ;
rdata: out dat_typ;

signal clk : in std_logic;
signal addr : out add_type;
signal ads  : out std_logic;
signal rw   : out std_logic;
signal ready : in std_logic;
signal data : inout dat_typ);

procedure write( waddr: in add_typ;
wdata: in dat_typ;

signal clk : in std_logic;
signal addr : out add_type;
signal ads : out std_logic;
signal rw : out std_logic;
signal ready : in std_logic;
signal data : inout dat_typ);

end i386sx;
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They require sig-
nal-class argu-
ments.

However, bus-functional procedures, once moved into a package,
require that all driven and monitored signals be passed as signal-
class arguments (see “Encapsulating Bus-Functional Models” on
page 97 and Sample 4-16 on page 98). Sample 6-12 shows the
package declaration of bus-functional model procedures for the
Intel 386SX processor. Notice how all the signals for the processor
bus are required as signal-class arguments in each procedure.

Bus-functional
model procedures
are cumbersome to
use.

Sample 6-13 shows a process using the procedures declared in the
package shown in Sample 6-12. They are very cumbersome to use
as all the signals involved in the transaction must be passed to the
bus-functional procedure. Furthermore, there would still be a lot of
duplication across multiple testbenches. Each would have to
declare all interface signals, instantiate the component for the
design under verification, and properly connect the ports of the
component to the interface signals. With today’s ASIC and FPGA
packages, the number of interface signals that need to be declared,
then mapped, can easily number in the hundreds. If the interface of
the design were to change, even minimally, all testbenches would
need to be modified.

Sample 6-13.
Using bus-
functional pro-
cedures

use work.i386sx.all;
architecture test of bench is

signal clk : std_logic;
signal addr : add_type;
signal ads : std_logic;
signal rw : std_logic;
signal ready: std_logic;
signal data : dat_typ;

begin

duv: design port map (..., clk, addr, ads,
rw, ready, data, ...);

testcase: process
variable data: dat_typ;

begin

read(some_address, data,
clk, addr, ads, rw, ready, data);

write(some_other_address, some_data,
clk, addr, ads, rw, ready, data);

end process testcase;
end test;
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Use an intermedi-
ate level of hierar-
chy to encapsulate
the test harness.

Figure 6-7(a) illustrates the structure of the testbench shown in
Sample 6-13. The read and write procedures are shown in their
invocation context, not their declaration context. Whether you use
bus-functional procedures declared in the process declarative
region, or in a package, the testbench structure remains the same.
This is because the signal drivers are associated with the calling
process.

Figure 6-7(b) illustrates how the same testbench can be structured
to take advantage of the replicated functionality in multiple test-
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Declaration of the component

Declaration of the interface signals

Instantiation of the design under verification

Mapping of interface signals to the ports of the design

Mapping of interface signals to the signal-class arguments of
bus-functional procedures.

To reduce the amount of duplicated information from testbench to
testbench, you must factor out their common elements into a single
structure that they will share. The common elements in all test-
benches for a single design are:

The test harness
contains declara-
tions and function-
ality common to
all testbenches.

Creating a Test Harness

Architecting Testbenches
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benches. The replicated functionality is located in a lower-level
architecture, called a test harness. The testcase drives the design
under verification by instructing processes in the test harness to
perform various operations.

A process in the
harness owns the
bus-functional
procedures.

Because the signals that interface to the design under verification
are local to the test harness, the bus-functional procedures must be
called by a local process. The bus-functional procedures use the
drivers associated with that local process. The testcase control pro-
cess must instruct the local process, through control signals, to per-
form the appropriate cycle and return any relevant information.

This local process is often call a server process, while the testbench
control process is called a client process. The control signals have
to be visible to both the client and server processes, located in a dif-
ferent architecture. This can be accomplished in two ways:

Passing them as ports on the test harness entity

Making them global signals in a package.

Sample 6-14.
Client/server
control pack-
age

package i386sx is

type do_typ is (read, write);

subtype add_typ is std_logic_vector(15 downto 0) ;
subtype dat_typ is std_logic_vector(15 downto 0) ;

type to_srv_typ is record
do : do_typ ;
addr: add_type;
data: dat_typ;

end record;

type frm_srv_typ is record
data: dat_typ;

end record;

signal to_srv : to_srv_typ;
signal frm_srv: frm_srv_typ;

end i386sx;

Since a package is required to contain their type definitions, the lat-
ter does not require additional library units. Furthermore, using glo-
bal signals eliminates the need for each testbench architecture to
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Records are used
to implement the
control signals.

User-defined record types are used for the client/server control sig-
nals. Even if the record contains a single element, such as the
frm_srv_typ record in Sample 6-14. A record is used to minimize
maintenance if the control protocol between the client and the
server needs to be modified. Fields can be removed, added or mod-
ified without affecting the type declaration of the control signals

Use 'transaction to
synchronize opera-
tions.

Notice how the server process is sensitive to transactions on the
to_srv control signal. This way, it is triggered after every assign-
ment to the control signal, whether they are the same or not. Had
the process been sensitive to events on to_srv, the second of two
consecutive identical operations, as shown in Sample 6-16, would
be missed.

use work.i386sx.all;
architecture test of bench is

signal clk : std_logic;
signal addr : add_type;
signal ads : std_logic;
signal rw : std_logic;
signal ready: std_logic;
signal data : dat_typ);

begin

duv: design port map ( , clk, addr, ads,
rw, ready, data, );

i386sx_server: process
variable data: dat_typ;

begin
wait on to_srv’transaction;
if to_srv.do = read then

read(to_srv.addr, data,
clk, addr, ads, rw, ready, data);

elsif to_srv.do = write then
write(to_srv.addr, to_srv.data,

clk, addr, ads, rw, ready, data);
end if;
frm_srv.data <= data;

end process i386sx_server;
end test;

Sample 6-15.
Server pro-
cess in test
harness

declare them, then mapping them to the ports of the test harness.
Sample 6-14 shows an implementation of the client/server control
package for controlling the i386SX bus-functional procedures. The
server process is in the test harness shown in Sample 6-15.
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use work.i386sx.all;
architecture test of bench is
begin

i386sx_client: process
variable data: dat_typ;

begin

-- Perform a read
to_srv.do <= read;
to_srv.addr <= ...;
wait on frm_srv'transaction;
data := frm_srv.data;

-- Perform a write
to_srv.do <= write;
to_srv.addr <= ...;
to_srv.data <= ...;
wait on frm_srv'transaction;

end process i386sx_client;
end test;

Sample 6-17.
Client process
controlling the
server in test
harness

Sample 6-17 shows a client process accessing the services provided
by the i386SX server process in the test harness shown in Sample
6-15. Notice how the client process waits for a transaction on the
return signal to detect the end of the operation. This behavior
detects the end of an operation that produces the same result as the
previous one. If the client process had been sensitive to events on
the return frm_srv signal, the end of the operation could have been
detected only if it produced a different result from the previous one.

The client must
properly operate
(he control signals
to the server pro-
cess.

Abstracting the Client/Server Protocol

themselves, minimizing the impact on clients and server processes
using them.

Sample 6-16.
Performing
two identical
operations
back-to-back

VHDL Implementation

to_srv <= (do => write,
addr => (others => ’1’),
data => (others => ’0.’));

wait on frm_srv.data’transaction;
to_srv <= (do => write,

addr => (others => ’1’),
data => (others => ’0’));

...

...

...
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Encapsulate the
client/server oper-
ations in proce-
dures.

Defining a communication procotol on signals between the client
and the server processes does not seem to accomplish anything.
Instead of having to deal with a physical interface documented in
the design specification, we have to deal with an arbitrary protocol
with no specification. Just as the operation on the physical interface
can be encapsulated, the operations between the client and server
can also be encapsulated in procedures. This encapsulation removes
the client process from knowing the details of the protocol with the
server. The protocol can be modified without affecting the testcases
using it through the procedures encapsulating the operations.

Sample 6-18.
Client/server
access pack-
age

package i386sx is

type do_typ is (read, write);

subtype add_typ is std_logic_vector(15 downto 0);
subtype dat_typ is std_logic_vector (15 downto 0);

type to_srv_typ is record
do : do_typ;
addr: add_type;
data: dat_typ;

end record;

type frm_srv is record
data: dat_typ;

end record;

procedure read( addr : in add_typ;
data : out dat_typ;

signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ);

procedure write( addr : in add_typ;
data : in dat_typ;

signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ);

signal to_srv : to_srv_typ;
signal frm_srv: frm_srv_typ;

end i386sx;

Put the server
access procedure
in the control
package.

The server access procedures should be located in the package con-
taining the type definition and signal declarations. Their implemen-
tation is closely tied to these control signals and should be located
with them. Sample 6-18 shows how the read and write access pro-
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Second, no matter how many signals are involved in the physical
interface, you need only pass two signals to the bus-functional
access procedures. the testcases are completely removed from the
physical interface of the design under verification. Pins can be
added or removed and polarities can be modified without affecting
the existing testcases.

Testbenches are
now removed from
the physical
details.

First, the testcase need not declare all of the interface signals to the
design under verification, nor instantiate and connect the design.
These signals can number in the high hundreds, so a significant
amount of work duplication has been eliminated.

The testcase must still pass signals to and from the bus-functional
access procedures. So, what has been gained from the starting point
shown in Sample 6-13? The answer is: a lot.

use work.i386sx.all;
architecture test of bench is
begin

i386sx_client: process
variable data: dat_typ;

begin

-- Perform a read
read(..., data, to_srv, frm_srv);

-- Perform a write
write(..., ..., to_srv, frm_srv);

end process i386sx_client;
end test;

Sample 6-19.
Client process
using server
access proce-
dures

The client processes are now free from knowing the details of the
protocol between the client and the server. To perform an operation,
they simply need to use the appropriate access procedure. The pair
of control signals to and from the server must be passed to the
access procedure to be properly driven and monitored. Sample 6-19
shows how the client process, originally shown in Sample 6-17, is
now oblivious to the client/server procotol.

Client processes
use the server
access procedures.

cedures would be added to the package previously shown in Sam-
ple 6-14.

VHDL Implementation
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The identifier collision problem can be eliminated by using quali-
fied names when using access procedures. Sample 6-20 shows a
testbench using qualified names to access the read procedure out of
the i386sx package. Notice how the use statement for the package
does not specify “.all” to make all of the identifiers it contains visi-
ble.

In a test harness for a real design, there may be a dozen server pro-
cesses, each with their own access package and procedures. A real-
life client process, creating a complex testcase, uses all of them. It
may be difficult to ensure that all identifiers are unique across all
access packages. In fact, making identifier uniqueness a require-
ment would place an undue burden on the authoring and reusability
of these packages.

Use qualified
names for access
procedures.

Inserting a resolution function between the client and the server
also introduces an additional level of complexity. It can make
debugging the client/server protocol and the testcases that use it
more tedious. It also makes it possible to have separate processes
drive the control signal to the server process. Because that signal is
now resolved, no error would be generated because of the multiple
driver. Without proper interlocking of the parallel requests to the
server, this would create a situation similar to Verilog’s non-reen-
trant tasks.

But the risks out-
weigh the benefits.

If you want to simplify the usage of the access procedures and the
syntax of the client processes, a single resolved control signal can
be used between the client and server processes. Instead of having
to pass two signals to every server access procedures, only one sig-
nal needs to be passed. The price is additional development effort
for the server access package - but since it is done only once for the
entire design, it may be worth it.

You could use a
single resolved
control signal.

Using two control signals, one to send control information and syn-
chronization to the server, and vice-versa is the simplest solution.
The alternative is to use a single signal, where both client and
server processes each have a driver. A resolution function would be
required, including a mechanism for differentiating between the
value driven from the server and the one driven from the client.

Use separate unre-
solved to and from
control signals.

Managing Control Signals
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Sample 6-20.
Client process
using quali-
fied identifiers

use work.i386sx;
architecture test of bench is
begin

i386sx_client: process
variable data: i386sx.dat_typ;

begin

-- Perform a read
i386sx.read(..., data, i386sx.to_srv,

i386sx.frm_srv);

end i386sx_client;
end test;

Multiple Server Instances

Provide an array of
control signals for
multiple instances
of the same server
processes.

Designs often have multiple instances of identical interfaces. For
example, a packet switch design would have multiple packet input
and output ports, all using the same physical protocol. Each can be
stimulated or monitored using separate server processes using the
same bus-functional procedures. The clients needs to have a way to
identify which server process instance they want to operate on to
perform operations on the proper interface on the design.

Using an array of control signals, one pair for each server, meets
this requirement. Sample 6-21 shows the access package containing
an array of control signals, while Sample 6-22 shows one instance
of a server process.

Sample  6-21.
Array of cli-
ent/server con-
trol signals for
multiple serv-
ers

package i386sx is

type to_srv_ary_typ is array(integer range <>)
of to_srv_typ;

type frm_srv_ary_typ is array(integer range <>)
of frm_srv_typ;

signal to_srv : to_srv_ary_typ (0 to 7);
signal frm_srv : frm_srv_ary_typ(0 to 7);

end i386sx;
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use work.rs232.all;
architecture test of bench is

signal tx: std_logic_vector(0 to 7);

begin

duv: design port map(tx0 => tx(0),
tx1 => tx(1), ...);

servers: for I in tx’range generate
process

variable data: dat_typ;
begin

wait on to_srv(I)’transaction;
receive(data,tx(I));
frm_srv(I).rdat <= data;

end process;
end generate servers;

end test;

Sample 6-23.
Generating
multiple
instances of a
server process

If the physical signals for the multiple instances of a port are prop-
erly declared using arrays, a far-generate statement can be used to
automatically replicate the server process. Sample 6-23 illustrates
this.

You may be able to
use the far-gener-
ate statement.

use work.i386SX.all;
architecture test of bench is

begin

i386sx_server: process
variable data: dat_typ;

begin
wait on to_srv(3)’ transaction;
if to_srv(3).do = read then

read(to_srv(3).addr, data, ...);
elsif to_srv(3).do = write then

write(to_srv(3).addr, to_srv(3).wdat,
...);

end if;
frm_srv(3).rdat <= (others => ’X’);

end process i386sx_server;
end test;

Sample 6-22.
One instance
of server pro-
cess using an
array of con-
trol signals

Architecting Testbenches
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If you are discouraged by the amount of work required to imple-
ment a VHDL test harness and access packages, remember that it
will be the most leveraged verification code. It will be used by all
testbenches so investing in implementing a test harness that is easy
to use returns the additional effort many times. Testbench genera-
tion tools, such as Quickbench by Chronology, can automate the
generation of the test harness from a graphical specification of the
timing diagrams describing the interface operations.

Testbench genera-
tion tools can help
in creating the test
harness and access
packages.

Utility Packages

The utility routines that provide additional levels of abstraction to
the testcases are also composed of a series of procedures. They can
be encapsulated in separate packages using the lower-level access
packages. Sample 6-24 shows the implementation of a simple util-
ity routine to send a fixed-length 64-byte packet, 16 bits at a time,
via thei386SX bus using the Intel 386SX access package shown in
Sample 6-18. Sample 6-25 shows a testcase using the utility pack-
age defined in Sample 6-24.

Utility routines are
packaged in sepa-
rately.

Sample 6-24.
Utility pack-
age using
i386SX bus-
functional
model access
package

use work.i386sx.all;
package packet is

type packet_typ is array(integer range <>)
of std_logic_vector(15 downto 0);

procedure send( pkt : in packet_typ;
signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ);

end packet;

package body packet is

procedure send( pkt : in packet_typ;
signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ)

is
begin

for I in pkt’range loop
write(..., pkt(I), to_srv, frm_srv);

end loop;
end send;
end packet;
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Protocols may
require more data
than is relevant for
the testcase.

Imagine a protocol on a physical interface that requires data to be
continuously flowing. This procotol would obviously include a
“data not valid” indication.

Autonomous Stimulus

The packaged bus-functional models can now contain processes
and always or initial blocks. These concurrent behavioral descrip-
tions can perform a variety of tasks such as safety checks, data gen-
eration, or collecting responses for later retrieval. Instead of
requiring constant attention by the testcase control process, these
packaged bus-functional models could instead be configured to
autonomously generate data according to configurable parameters.
They could also be configured to monitor output response, looking
for unusual patterns or specific data, and notifying the testbenches
only when exceptions occur.

Packaged bus-
functional models
create an opportu-
nity.

Once the bus-functional procedures are moved in a module or con-
trolled by an entity/architecture independent from the testcase, it
creates an opportunity to move the tedious housekeeping tasks
associated with using these bus-functional models along with them.

This section explains how properly packaged bus-functional mod-
els can become active entities. They can remove the testcase from
the tedious task of generating background or random data, or per-
forming detailed response checking.

AUTONOMOUS GENERATION AND MONITORING

use work.i386sx;
use work.packet;
architecture test of bench is
begin

testcase: process
variable pkt: packet_typ(0 to 31);

begin

-- Send a packet on i386 i/f
packet.send(pkt, i386SX.to_srv,

i386SX.frm_srv);

end process testcase;
end test;

Sample 6-25.
Testcase using
utility proce-
dure

Architecting Testbenches
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Sample 6-26 shows an implementation of a blocking send_cell pro-
cedure in Verilog, while Sample 6-27 and Sample 6-28 show a non-
blocking implementation in VHDL. Both blocking or non-blocking

It could also provide blocking or non-blocking implementations. In
a blocking implementation, the send_cell procedure would return
only when the cell was transmitted. In a non-blocking implementa-
tion, the send_cell procedure would return immediately, queueing
the cell for future transmission.

The send_cell procedure, contrary to previous implementations,
would not immediately cause a cell to be sent on the physical inter-
face and return once it has been transmitted. Instead, it would syn-
chronize with the process transmitting dummy cells to have the
relevant cell inserted in the data stream at the appropriate point.

The access proce-
dures would inter-
face with a
transmission pro-
cess.

Figure 6-8 shows such an interface, where ATM cells are constantly
flowing, aligned with a cell boundary marker. If this interface were
to be stimulated using procedures only, the testcase would have to
implement a control structure to continuously call the send_cell
procedure not to violate the protocol. Most of the time, an invalid or
predefined cell would be sent. But under further control by the
testcase, a valid cell, relevant to the testcase, would be appropri-
ately inserted. This control structure will likely have to be repeated
in all testbenches generating input for that interface.

Autonomous Generation and Monitoring
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package body atm_gen is

procedure send_ce11( cell: in atm_cell;
signal to_srv : out to_srv_typ;
signal frm_srv: in frm_srv_typ)

is
to_srv.cell <= cell;
wait on frm_srv’transaction;

end send_cell;

end atm_gen;

Sample 6-27.
Non-blocking
access proce-
dure

module atm_src(...);

task xmit_cell;
input [...] cell;

begin

end
endtask

reg blocked;
task send_cell;

input [...] cell;
begin

blocked = 1’bl;
wait blocked === 1’b0;

end
endtask

reg [...] dummy_cell;
always
begin

if (blocked === 1’bl) begin
xmit_cell(send_cell.cell);
blocked = 1’b0;

end else begin
xmit_cell(dummy_cell);

end
end
endmodule

Sample 6-26.
Blocking
access proce-
dure in bus-
functional
model

implementations could be provided and selected using an additional
argument to the procedure.

Architecting Testbenches
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Sample 6-29 shows the implementation of the i386SX bus-func-
tional model from Sample 6-4 modified to randomly generate read
and write cycles at random intervals within a specified address

It is a small step from automatically repeating the same stimulus to
generating random stimulus. Instead of applying invalid or pre-
defined data values or sequences, the packaged bus model can con-
tain an algorithm to generate random data, in a random sequence, at
random intervals.

The content of
generated data can
be random.

Random Stimulus

use work.atm_gen.all;
architecture test of bench is

subtype queue_idx is integer range 0 to 99;
type atm_cell_array is array(queue_idx)

of atm_cell;
signal cell_queue: atm_cell_array;
signal tail : queue_idx;

begin

non_block_srv: process
begin

wait on to_srv’transaction;
cell_queue(tail) <= to_srv.cell;
tail <= (tail + 1) rem cell_queue’length;
frm_srv.done <= not frm_srv.done;

end process non_block_srv;

apply_cell: process
variable head: queue_idx;

begin
if head = tail then

wait until head /= tail;
end if;

head := (head + 1) rem cell_queue’length;
end process apply_cell;

end test;

Sample 6-28.
Server pro-
cesses sup-
porting non-
blocking
access proce-
dure

Autonomous Generation and Monitoring
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range. The always block could be easily modified to be interrupted
by requests from the testcase to issue a specific read or write cycle
on demand.

Sample 6-29.
Bus-func-
tional model
for a i386SX
generating
random cycles

module i386sx(...);

task read;

endtask

task write;

endtask

always
begin: random_generator

reg [23:0] addr;
reg [15:0] data;

// Random interval (0-255)
#($random » 24);

// Random even address
addr[23:21] = 3’b000;
addr[20: 1] = $random;
addr[ 0] = 1’b0;

// Random read or write
if ($random % 2) begin

// Write random data
write(addr, $random);

end else begin
// Read from random address
read(addr, data);

end
end
endmodule

Autonomous gen-
erators can help
compute the
expected response.

If the autonomous generators are given enough information, they
may be able to help in the output verification. For example, the
strategy used to verify the packet router illustrated in Figure 5-31
requires that a description of the destination be written in the pay-
load of each packet using the format illustrated in Figure 5-32. The
header and filler information could be randomly generated, but the
description of the expected destination is a function of the ran-
domly generated header.
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In Chapter 5, we differentiated between a generator and a monitor
based on who is in control of the timing. If the testbench controls
when and if an operation occurs, then a generator is used. If the
design under verification controls the timing and if an operation

Monitors must
always be listen-
ing.

Autonomous Monitoring

If the design is supposed to detect errors in the interface protocol,
you must be able to generate errors to ensure that they are properly
detected. An autonomous stimulus generator could randomly gen-
erate errors. It could also have a procedural interface to inject spe-
cific errors at specific points in time. Sample 6-31 shows the
generator from Sample 6-30 modified to corrupt the CRC on one
percent of the packets. To make sure they are properly dropped, the
sequence number is not incremented for corrupted packets.

Generators can be
configured to
inject errors.

Injecting Errors

always
begin: monitor

reg ‘packet_typ pkt;

// Generate the header
pkt‘src_addr = my_id;
pkt‘dst_addr = $random;
// Which port does this packet goes to?
pkt‘out_port_id = rt_table[pkt‘dst_addr];
// Next in a random stream
pkt‘strm_id = {$random, my_id};
pkt‘seq_num = seq_num[pkt‘strm_id];
// Fill the payload
pkt‘filler = $random;
pkt‘crc = computer_crc(pkt);
// Send the packet
send_pkt(pkt);

seq_num[pkt‘strm_id] =
seq_num[pkt‘strm_id] + 1;

end

Sample 6-30.
Random gen-
erator helping
to verify out-
put

Similarly, the CRC is computed based on the randomly generated
payload and the destination descriptor. Sample 6-30 shows how
such a generator could be implemented. The procedural interface
(not shown) would be used to start and stop the generator, as well as
filling the routing information in rt_table.

Autonomous Generation and Monitoring
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Usage errors can
be detected.

The role of a testbench is to detect as many errors as possible. Even
from within the testbench itself. As the author of the test harness,
your responsibility is not only to detect errors coming from the

Figure 6-9 illustrates the timing of the behavior required by the test-
bench. The monitoring bus-functional procedures must be continu-
ously called, with zero-delay between the time they return and the
time they are called back. If there are gaps between invocation of
the monitoring procedures, as shown in Figure 6-10, some valid
output may be missed.

occurs, then a monitor is used. In the latter situation, the testbench
must be continuously listening to potential operations. Otherwise,
activity on the output signals can be missed.

always
begin: monitor

pkt‘crc = computer_crc(pkt);

// Randomly corrupt the CRC for 1% of cells
if ($random %100 == 0) begin

pkt‘seq_num = $random;
pkt‘crc = pkt‘crc ^ (l<<($random % 8));

end else begin
seq_num[pkt‘strm_id] =

seq_num[pkt‘strm_id] + 1;
end

// Send the packet
send_pkt(pkt);

end

Sample 6-31.
Randomly
injecting
errors

Architecting Testbenches
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The testcase then is free to introduce delays between the calls to the
procedure that retrieves the next response. This procedure returns
immediately if a previously received response is available in the
queue. It may also block waiting for the next response if the queue
is empty. A non-blocking option may be provided, along with a
mechanism for reporting that no responses were available. Sample
6-33 shows how the server process for an RS-232 monitor returns
responses from a queue implemented using an array. Sample 6-34
shows how the actual monitoring is performed in another process

Having to continuously call the output monitoring procedures can
be cumbersome for the testcase. If the exact timing of output opera-
tions is not significant, only their relative order and data carried, the
response can be autonomously monitored at all times. The data car-
ried by each operation and an optional description of the operation
are queued for later reception by the testcase.

Response can be
collected for later
retrieval.

process
begin

loop
-- Wait for testcase or serial Tx
wait on to_srv’transaction, Tx;
exit when not Tx’event;
assert FALSE

report "Missed activity on Tx"
severity ERROR;

end loop;
-- Wait for the serial Tx to start
wait on Tx;

end process;

Sample 6-32.
Detecting
usage errors in
a RS-232
monitor.

An autonomous output monitor can verify that the monitoring pro-
cedures are properly used. If activity is noticed on the output inter-
face and the testcase is not actively listening, an error is reported.
Sample 6-32 shows how an RS-232 monitor can be modified to
detect if a serial transmission is started by the design before the
testcase is ready to receive it.

design under verification, but also to detect errors coming from the
testcase. If an unexpected output operation goes unnoticed because
the testcase was busy checking the response from the previous
cycle, it creates a crack that a bad design can slip through.

Autonomous Generation and Monitoring
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that then puts the received data into the queue. Queues can be
implemented using lists, as shown in “Lists” on page 115.

Sample 6-33.
Server pro-
cess in an
autonomous
RS-232 moni-
tor.

process
begin

wait on to_srv’transaction;
-- Is queue empty?
if pop = push then

wait on push;
end if;
frm_srv.data <= queue(pop);
pop <= (pop + 1) rem queue’length;

end process;

process
begin

wait until Tx = ’1’;

— Is the queue full?
assert (push+1) rem queue’length /= pop;
queue(push) <= data;
push <= (push + 1) rem queue’length;

end process;

Sample 6-34.
Monitor pro-
cess in an
autonomous
RS-232 moni-
tor.

Autonomous Error Detection

In “Packet Processors” on page 215, I described a verification strat-
egy where the data sent through a design carried the information
necessary to determine if the response was correct. Autonomous
monitors can use this information to detect functional errors. Sam-
ple 5-68 shows an example of a self-checking autonomous monitor.
The procedural interface of these monitors could provide configu-
ration options to define the signature to look for in the received data
stream.

Data may contain
a description of the
expected response.

INPUT AND OUTPUT PATHS

Each testcase must provide different stimulus and expect different
responses. These differences are created by configuring the test har-
ness in various ways and in providing difference data sequences.
This section describes how data can be obtained from external files.
It also shows how to properly configure reusable verification com-
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VHDL is capable of reading any text file, albeit in a very primitive
fashion, using the general-purpose routines in the textio package. In
Verilog, you can only read files of binary or hexadecimal values
into a memory, using the $readmemb and $readmemh system tasks
respectively. This requires that the external data representation first
be compiled into binary or hexadecimal values before being read
into a Verilog testbench. The testbench then interprets the numeric
codes back into data or instructions.

Verilog and VHDL
have file-input
capabilities.

A testcase can be implemented to read data to be applied to, or be
expected from, the design under verification from external files.
The external files can provide software instructions, a sequence of
packets, video images, or sampled data from a previous design. It is
a common strategy when the expected response is provided by an
external C model, such as is illustrated in Figure 6-11. Programma-
ble testbenches have an advantage: they do not need to be recom-
piled to execute a new testcase. When compilation or initialization
times become critical factors, such as when SDF back-annotation is
involved (see “SDF Back-Annotation” on page 305), they offer a
technical solution to minimizing the number of time a model is
compiled or initialized.

Testbenches can
be programmed
through external
files.

Throughout this chapter, there is no mention of the source of data
applied as stimulus to the design under verification. Neither is there
any mention of the source of expected response for the monitors. In
most cases, the stimulus data and the expected response are speci-
fied in the verification plan and are hardcoded in the testcase. From
the testcase, they are applied or received using bus-functional mod-
els in the test harness.

Data was assumed
to be hardcoded in
each testcase.

Programmable Testbenches

ponents and how to ensure that simulation results are not clobbered
by using unique output file names.

Input and Output Paths
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Verilog’s built-in file input tasks read the entire file into a memory.
If the file contains large amount of sequential data, a large memory
is required, consuming a significant portion of the available com-
puting resources. Using a PLI function to read data in a sequential
fashion is a better strategy. Only the required information is kept in
memory during the simulation, improving performance. A link to
an implementation of a scanf-like PLI task can be found in the
resources section of:

http://janick.bergeron.com/wtb

Configuration Files

Configuration
should be con-
trolled by the
testcase.

With the flexibility that packaged bus-functional models offer, they
also offer the possibility of making testbenches difficult to under-
stand or manage. Each bus-functional model should be self-con-
tained, controlled through its procedural interface only. The
functionality and implications of a testcase can be understood only
by examining the top-level testcase control description. All of the
non-default configuration settings originate from that single point.

Avoid using exter-
nal configuration
files.

The more files required to make a testcase complete, the more com-
plicated the management task to reproduce a particular configura-
tion. The complexity of file management grows exponentially with
the number of files. External files should only be used for large data
sequences, either for stimulus or comparison. Short files containing
configuration information should be eliminated in favor of specify-
ing the configuration in the testcase itself. Sample 6-35 shows an
example of improper configuration using an external file. The ran-
dom number generator should be seeded by the testcase control,
using the task shown in Sample 6-36.

initial
begin: init_seed

integer seed[0:0];

$readmemh("seed.in", seed);
$random(seed[0]);

end

Sample 6-35.
Improper con-
figuration
using an exter-
nal file.
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This problem is typically encountered when generating waveform
trace files. By default, the trace information goes to a file with a

There is another problem with using hardcoded pathnames. If mul-
tiple simulations must be run concurrently, a hardcoded filename
creates collisions between two simulations. Each simulation tries to
produce output to the same file, or read data from the same file.
Each simulation must be able to run without conflicting with each
other. Therefore, the filenames used for each testcase must be
unique.

Make sure filena-
mes are unique.

Concurrent Simulations

Sample 6-38.
User-speci-
fied filename
in Verilog

task data_from_file;
input [8*32:1] name;

$readmemh(name, mem);
endtask

Sample 6-37.
User-speci-
fied filename
in VHDL.

procedure data_from_file(name: in string) is
file fp: text is in name;

begin

end data_from_file;

If you must use a file for reading input stimulus or data to compare
against, do not hardcode the name of the file that must be used to
provide this information in the bus-functional model. If a hard-
coded pathname is used, it is not obvious, from the testcase control,
that a file is used. If a filename must be specified through a proce-
dural interface, it is immediately apparent that a file is used to exe-
cute a testcase. Sample 6-37 shows how a filename can be specified
through a procedural interface in VHDL using the string type. The
same flexibility can be provided in Verilog by simply allocating 8
bits per characters in a task input argument. Sample 6-38 shows an
example and the section titled “Output File Management” on
page 309 has more details.

Make filenames
configurable.

task seed;
input [31:0] init;

$random(init);
endtask

Sample 6-36.
Configuration
using a proce-
dural inter-
face.

Input and Output Paths
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generic name, such as verilog.dump for VCD dump files. To guar-
antee that each testcase uses a different file, provide a user-speci-
fied filename that includes the name of the testcase. Sample 6-39
shows how a string parameter containing the testcase name in Ver-
ilog can be concatenated to a string literal to create a full filename.
In VHDL, the concatenation operator would be used between two
string expressions, as shown in Sample 6-40.

parameter testcase = "...";

initial
begin

$dumpfile({testcase, ".dump"});
$dumpvars;

end

Sample 6-39.
Generating
unique filena-
mes in Ver-
ilog.

architecture test of bench is
constant testcase: string = "...";

begin
process
begin

read_from_file(testcase & ".dat");

end process;
end test;

Sample 6-40.
Generating
unique filena-
mes in VHDL.

Compile-Time Configuration

Avoid using com-
pile-time configu-
ration of bus-
functional models.

When a language offers a preprocessor, it is often used as the mech-
anism for configuring source code. A different configuration
requires a recompilation of the source code using a different header
file. With most Verilog simulators always recompiling the source
code before each simulation, it is a technique that appears efficient
and is easy to use. This technique should be discouraged to mini-
mize the compilation requirements in compiled simulators or lan-
guages. It also makes managing a testcase more complicated as an
additional file, separate from the testcase control, must be managed
and kept up-to-date. Furthermore, it may be impossible to ensure
the uniqueness of the header file name for each testcase configured
by the preprocessor. Using compile-time configuration may make it
impossible to run concurrent compiled simulations.
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Mostcompile-time
configurations are
not modified for a
specific testcase.

To minimize the number of files used in a testbench, a single com-
pile-time configuration file is usually used. It contains the defini-
tions for all configurable preprocessor symbols in the test harness.
The majority of them have identical values from testcase to
testcase, with only a few taking different testcase-specific values.
Instead, providing a default value for the configuration parameters
that do not need a specific value for a given testcase would avoid
the needless duplication of information. Sample 6-41 shows an
example of configuring the maximum time-out value of a watchdog
timer using an external header file (shown in Sample 6-42) which
defines the appropriate preprocessor definitions. Sample 6-43
shows how to provide the same configurability through a proce-
dural interface. A sensible default value is provided that can be
used by most testcases, requiring no specific configuration instruc-
tions.

Sample 6-41.
Compile-time
configuration.

module watchdog;
‘include "defs.vh"

integer count;
initial count = 0;
always @ (posedge clk)
begin

count = count + 1;
if (count > ‘TIMEOUT) ...

end
endmodule

‘define TIMEOUT 1000000
‘define CLK_PERIOD 100
‘define MAX_LENGTH 500
‘define DUMPFILE "testcase.dump"

Sample 6-42.
Compile-time
configuration
definition.

Plan your configu-
ration mechanism.

If different configurations must be verified with similar stimulus
and response, consider architecting your testcase to facilitate its
configuration from within the testbench. The next section should
provides some useful techniques.

VERIFYING CONFIGURABLE DESIGNS

This section describes how to verify two kinds of design config-
urability: soft and hard.
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The second kind of configurability is hard configuration. It is so
fundamental to the functional nature of the design, that it cannot be
modified during normal operations. For example, whether a PCI
interface operates at 33 or 66 MHz is a hard configuration. So is the
width and depth of a FIFO, or the number of master devices on an
on-chip bus. Hard configuration parameters are constant for the
duration of the simulation and often affect the testbench as well as
the design under verification. A testbench must be properly
designed to support hard configuration in a reproduceable fashion.

Hard configuration
cannot be changed
once simulation
starts.

There are two kinds of design configurability. The first is soft con-
figurability. A soft configuration is performed through a program-
mable interface and can be changed during the operation of the
design. Examples of soft configurations include the offsets for the
almost-full and almost-empty flags on a FIFO, the baud rate of a
UART, or the routing table in a packet router. Because it can be
modified during the normal operation of a design, soft configura-
tion parameters are usually verified by changing them in a testcase.
Soft configuration is implicitely covered by the verification pro-
cess.

Soft configuration
can be changed by
a testcase.

module watchdog;

integer count, max;
initial
begin

count = 0;
max = 32’h7FFF_FFFF;

end

task timeout;
input [31:0] val;

max = val;
endtask

always @ (posedge clk)
begin

count = count + 1;
if (count > max) ...

end
endmodule

Sample 6-43.
Equivalent
procedural
configuration.
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Sample 6-44 shows the interface of a memory model with config-
urable numbers of address and data bits. To use this model in a
board or system under verification, the AWIDTH and DWIDTH
parameters must be properly configured. Sample 6-45 shows both
methods available in Verilog (I prefer the first one because it is self-
documenting and robust to changes in parameter declarations.)
Sample 6-46 shows how to map generics in VHDL. Notice how the
configurability of the system-level model is propagated to the
memory model.

In VHDL, this is accomplished using the generic map construct in
an instantiation or configuration statement. In Verilog, it is done
using the defparam statement or the #() construct in an instantiation
statement.

Generics and
parameters are part
of a component
interface.

If a testbench component is configurable using generics or parame-
ters, they become part of its interface. Whenever a configurable
component is used, the value of the generics or parameters must be
specified, if they must differ from their default values.

Parameters and
generics can con-
figure almost any-
thing.

Generics and parameters were designed to create configurable
models. They offer the capability to configure almost any declara-
tion in a VHDL or Verilog testbench. You can use them to define
the width of a data value, the length of an array, or the period of the
clock signal. In VHDL, they can even be used to determine the
number of instantiated devices using a generate statement. Wher-
ever a constant literal value is used in a testbench, it can be replaced
with a reference to a generic or a parameter.

If a design can be made configurable, so can a testbench. The con-
figuration of the testbench must be consistent with the configura-
tion of the design. Using a configuration technique similar to the
one used by the design can help ensure this consistency. Using
generics or parameters to configure the testbench and the design
allows the configuration defined at the top-level to be propagated
down the hierarchy, from the testcase control, through the test har-
ness, and into the design under verification.

Configure the test-
bench to match the
design.

Configurable Testbenches
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Each configurable testbench component has generics and parame-
ters, defined by the higher-level module or architecture that instan-
tiates them. Eventually, the top-level of the testbench is reached.
The top-level module or entity in a design has no pins or ports, but

Top-level mod-
ules and entities
can have generics
or parameters.

Top Level Generics and Parameters

entity system is
generic (ASIZE: natural := 10;

DSIZE: natural := 16) ;
port (...);

end system;

use work.blocks.all;
architecture version1 of system is
signal data: std_logic_vector(DSIZE-1 downto 0) ;
signal addr: std_logic_vector(ASIZE-1 downto 0);
signal rw, cs: std_logic;

begin
M0: memory generic map (DWIDTH => DSIZE,

AWIDTH => ASIZE)
port map (data, addr, rw, cs);

end version1;

Sample 6-46.
Using a con-
figurable
model in
VHDL.

module system(...)
parameter ASIZE = 10,

DSIZE = 16;
wire [DSIZE-1:0] data;
reg [ASIZE-1: 0] addr;
reg rw, cs0, cs1;

memory m0(data, addr, rw, cs0) ;
defparam m0.AWIDTH = ASIZE,

m0.DWIDTH = DSIZE;
memory #(DSIZE, ASIZE) m1(data, addr, rw, cs1);
endmodule

Sample 6-45.
Using a con-
figurable
model in Ver-
ilog.

Sample 6-44.
Configurable
memory
model.

module memory(data, addr, rw, cs);
parameter DWIDTH = 1,

AWIDTH = 1;
inout [DWIDTH-1:0] data;
input [AWIDTH-1:0] addr;
input rw;
input cs;

endmodule
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Use an additional
level of hierarchy
and configuration
unit in VHDL.

In VHDL, the configuration unit does not allow setting top-level
generics. To be able to set them, an additional level of hierarchy
must be added. As Sample 6-49 shows, it is very simple and not
specific to any testbenches since no ports or signals need to be

module fifo_tb_config_0;
defparam fifo_tb.WIDTH = 32,

fifo_tb.DEPTH = 16;
endmodule

Sample 6-48.
Configuration
module for
FIFO test-
bench.

Use a defparam
module in Verilog.

In Verilog, the top-level parameters can be set using a defparam
statement and absolute hierarchical names. A configuration would
be a module containing only a defparam statement, simulated as an
additional top-level module. Sample 6-48 shows how the testbench
shown in Sample 6-47 can be configured using a configuration
module.

By definition, the top-level is not instantiated anywhere. It is the
very top level of the simulation. How can its parameters or generics
be set? Some simulation tools allow the setting of top-level gener-
ics or parameters via the command line. However, a command line
cannot be archived. How then can a specific configuration be repro-
duced later or by someone else? Wrapping the command line into a
script is one solution. But it may not be portable to a different simu-
lator that does not offer setting top-level parameters or generics via
the command line.

Top-level generics
or parameters need
to be defined.

module fifo_tb;
parameter WIDTH = 1,

DEPTH = 1;

endmodule

Sample 6-47.
Configurable
top-level of a
FIFO test-
bench.

For example, Sample 6-47 shows the top-level module declaration
for a testbench to verify a FIFO with a configurable width and
depth. Notice how the module does not have any pins, but does
have parameters.

it can have parameters or generics. The top-level of a testbench can
be configured using the same mechanisms as the lower-level com-
ponents.

Verifying Configurable Designs
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This chapter focused on the implementation of testbenches for a
device under verification. It described an architecture that promotes
reusing verification components. The portion of the testbenches
that is common between all testcases is structured into a test har-
ness. Each testcase is then implemented on top of the test harness,
using a procedural interface to apply stimulus to and monitor
response from the device under verification. Although external data
files can be used, the configuration of bus-functional models by
each testcases should be limited to using the available procedural
interfaces.

SUMMARY

configuration conf_0 of config is
for toplevel

for tb use entity work.fifo_tb(a)
port map(WIDTH = 32,

DEPTH = 16);
end for;

end for;
end conf_0;

Sample 6-50.
Configuration
unit for FIFO
testbench.

Sample 6-49.
Additional
level of hierar-
chy to set top-
level generics.

entity config is
end config;
architecture toplevel of config is

component testbench
end component;

begin
tb: testbench;

end toplevel;

mapped. The configuration unit can then be used to configure the
generics of the testbench top-level, as shown in Sample 6-50.
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