LV

Chap 5

Stimulus and Response

I';k&_‘ —nﬁigg

T $REE B
e 2 «.%;z
EDA B B i]

| TR

N

5
it
pe

N

Overview

W%
R

Simple Stimulus

Verifying the Output
Self-Checking Testbenches
Complex Stimulus
Complex Response
Predicting the Output
Summary

T IR 3 (\
o Tt AR B AR KT e dIARE R T L

N

Simple Stimulus
Verifying the Output
Self-Checking Testbenches
Complex Stimulus
Complex Response
Predicting the Output
Summary

=

i
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

5
it

N

Generating a Simple Waveform

L

reg clk;
parameter cycle=10;
always

begin
#(cycle/2),
clk=1"b0:
#(cycle/2); * 50% duty-cycle
clk=1’b1; clock
end

N T IR 3 (\
LEFa R ERET T IR TR S o IE TR

N

always
begin
#50 clk=1"b0;
#50 clk=1"b1;
end
initial
begin
rst=1"b0;
#150 rst=1’b1;
#200 rst=1’b0;
end

=
it
A

%

=
p

Generating Synchronized Waveform

* there Is a race condition
between clk and rst
signals

* how to solve it?

KTIUEN
TA A AT B F AR KT e DA Bl

tEE’

N

always
begin
#50 clk <= 1"bh0;
#50 clk <= 1'b1;
end
initial
begin
rst=1"b0;
#150 rst <= 1'b1;
#200 rst <= 1’b0;
end

=
it
A

%

=
p

Solve the Race Condition

* use the non-blocking
assignment

TR AT RS

FTIURR %

FARE) FT e SEDABE %

@

Non-Zero Delay Generation of
Synchronous Data

L

N

initial

begin
rst=1’b0;
#50 clk<=1’b0;
repeat (2) #50 clk<= ~clk;
rst<= #1 1’b1;
repeat (4) #50 clk<= ~clk;
rst<=#1 1’b0;

end

//What if it were necessary to reset the device under verification multiple
times during the execution of a testbench ?

, T IR 3 (\
3o oS AR R, KT e ADARE il T

=
it
A

%

=
p

Encapsulating the Generation of a
Synchronized Waveform

L

N

always
begin
#50 clk <=1'bh0;
#50 clk <=1"b1;
end

task hw_reset;

begin
rst =1’b0;
wait (clk 1==1"bx);
@(negedge clk);
rst<=1’bl;
@(negedge clk);
@(negedge clk);
rst<=1"b0;

end

endtask;

initial hw_reset;

KT IR %
B A Az ARMT RS J AR KT e DA %l

=
it
A

%

=
p

@

Abstracting Waveform Generation

N

Using synchronous test vectors to verify a design is
rather cumbersome .

-> hard to interpret and difficult to correctly specify.

1 .Try to apply the worst possible combination of
INnputs .

2 .Pass input values as arguments to the
subprogram .

3 .Stimulus generated with abstracted
operations is easier to write and maintain .

FTIER R
SHEF O RY A TR A AHT RS AR KT e AEDAT R %l

=

it
45
=)

o)

N

Simple Stimulus

Verifying the Output
Self-Checking Testbenches
Complex Stimulus
Complex Response
Predicting the Output
Summary

=

i
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Sampling Using the $monitor task

N

Initial
begin

$monitor(*...”,rst,d0,d1,sel,q,gb);
end

*change In values of signals
rst,d0,d1,...cause the display
of simulation results.

=

it
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Visual Inspection of Waveforms

N

However , waveform displays usually provide a
more intuitive visual representation of
simulation results

It Is a tool-dependent process that is different
for each language and each tool

LLE (\
FELETL L E Tt AR B AR KT e dIARE R T L

N

Simple Stimulus
Verifying the Output

Self-Checking Testbenches
Complex Stimulus
Complex Response
Predicting the Output
Summary

=

it
45
=)

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Self-Checking Testbenches

N

A reliable and reproduceable technique for
output verification : testbench that verify
themselves

We must automate the process of comparing
the simulation results against the expected
output

T IR 3 (\
FELEFL R ERET T IR TR S o IE TR

Automating Output Verification

N

Step 1: include the expected output with the input
stimulus for every clock cycle

Step2 : golden vectors(a set of reference simulation
results)

— If the simulation results are kept in ASCII files ,the
simplest comparison process involes using UNIX aiff
utility.

--must still be visually inspected

--do not adapt to change

--require a significant maintenance effort

Fo7 SR (\
FELEFL R ERET T IR TR S o IE TR

Run-Time Result Verification

N

Using a reference model (a extension of golden vector)

however , in reality, a reference model rarely exist.

Reference
model
. Output
St'mu“.]s Comparator
generation _
Design under

Verification

T IR 3 (\
F Tt AR B AR KT e dIARE R T L

=
i
A

%

=
p

Model the Expected Response

N

Include the verification of the operation’s
output as part of the subprogram .

Integrate both the stimulus and response
checking into complete operations .

T IR 3 (\
FELEFL R ERET T IR TR S o IE TR

N

Simple Stimulus

Verifying the Output

Self-Checking Testbenches
Complex Stimulus

Complex Response

Predicting the Output

Summary

=

i
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Complex Stimulus

N

More complex stimulus generation scenarios through
the use of bus-functional models .

If the interface being driven contains handshaking or
flow-control signals ,the generation of the stimulus
requires cooperation with the design under
verification .

, FT VTR 3
R A TS U AR B R AR KT it HEDATE %l

=
it
A

%

=
p

o)

Feedback between stimulus and design

L

N

Without feedback , verification can be
under constrained .

Wait for feedback before proceeding

=

it
45
=)

FT IR % (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

N

=
it

Wait for feedback

procedure bus_request is
variable cycle count : integer=0;

begin
req<=°1’;
wait until clk="1";
while grt="0" loop

wait until clk=*1’;
cycle count := cycle count +1;
end loop ;
assert 1<=cycle _count and cycle count<=5;
end bus_request;
// a example of verifying the bus request operation
// deadlock !

TR E

oA TAE A AR TR AR KT eyt HEDAT R Sl !EE)

J

4%

=4
I

5

N

it

R

procedure bus_request is
variable cycle_count : integer=0;
begin
req<=°1";
wait until clk=1";
while grt="0" loop
wait until clk=°1";
cycle count := cycle count +1;
assert cycle count<500
report “Arbiter is not working”
severity failure;
end loop ;

assert 1<=cycle_count and cycle_count<=b5;

end bus_request;

1% RY A

TS A

s

£

f

“h
v

By

%

Wait for feedback & Avoid deadlock

FT N 3
FARE) FT e SEDABE %

o)

5

it

N

R

Asynchronous Interfaces

//Many interfaces , although implemented using FSM and

/] edge-trigered flip-flops , are specified in asynchronous fashion .

task bus_request;
output good,;

begin
reg=1’b1l;
fork :wait_for_grt
#60 disable wait_for_grt;
@(posedge grt) disable wait for_ grt;
join
good=(grt==1’b1);
end
endtask
//verifying the asynchronous bus request operation
ERN R S TR A MM TR L AR ?;:?&5@;*5%5@32?2%

o)

N

5

Simple Stimulus

Verifying the Output

Self-Checking Testbenches

Complex Stimulus
Complex Response

Predicting the Output

Summary

T IR 3 (\
FLEFL L WA Tt AR B AR KT e dIARE R T L

Complex Response

N

Def : something that cannot be verified in the same
process that generate the stimulus .

=> definitely not verifiable using visual
Inspection of waveforms .

Latency and output protocols create complex
responses .

, S
iR A Tdg A AT F MR %7 e HEDABE %l

=
it
A

%

=
p

o)

Complex Response

N

* Universal Asynchronous Receiver Transmitter (UART)

Because the RS-232 protocol is slow , waiting for the output
corresponding to the last CPU write cycle would introduce huge
gaps in the input stimulus.

FIFO

¢ HEEN RS-232 | | -
i/f Tx X

A simple design can have a complex response .

T IR 3 (\
3o oS AR R, KT e ADARE il T

=
it
A

%

=
p

Handling Unknown or Variable Latency

L

N

Stimulus and response could be implemented in different
execution threads

event sync;
initial
begin : stimulus

> sync;

en.c.i

initial

begin: response
é(sync);

end o7 s 2 (\
E Tt AR B AR KT e dIARE R T L

FEL R

R

Abstracting Output Operation

N

The output operations ,encapsulated using fasks In
verilog, take as argument the value expected to be
produced by the design.

The most flexible implementation for a output operation
monitor is to simply return to the caller whatever
output value was just received.

--Separate monitoring from value verification

FT VTR 3
FEAEF) Ew A TS U AR B R AR KT it HEDATE %l

o)

=

Monitoring Multiple Possible Operations

it

N

L

R

load A,RO

load B,R1

add RO,R1,R2

sto R2,X

load C,R3 * many possible execution orders
add RO,R3,R4

sto R4,Y

How to write an encapsulated output monitor ?

Write an operation “dispatcher” task or procedure .

TR %
1k RE R A AT R R AR KT e HEDAT e Wl

o)

N

5

Simple Stimulus

Verifying the Output

Self-Checking Testbenches

Complex Stimulus

Complex Response
Predicting the Output

Summary

T IR 3 (\
FLEFL L WA Tt AR B AR KT e dIARE R T L

Predicting the Output

N

When implementing self — checking
testbenches , we should have detailed
knowledge of the output to be expected.

Knowing exactly which output to expect and
how it can be verified to determine functional
correctness is the most crucial step in

verification .

LLE (\
FELETL L E Tt AR B AR KT e dIARE R T L

=
it

N

Predicting the Output

There Is a class of design where the input
Information is not transformed , but simply
reformatted .

One Data
Value
Stimulus Data Response
generator formatter Monitor
TR 3
LEF K R4 TS AT RY AR) Ky e FEDABE %l

tEE’

N

5

Predicting the Output

If the Input sequence Is short and pre-
determined , using a global data sequence
table is the simplest approach.

Data
Sequence
Stimulus Data Response
Generator Formatter Monitor

, LLE (\
SELED RS] Tt AR B AR KT e dIARE R T L

5

N

Predicting the Output

FIFO
Stimulus Data Response
Generator Formatter Monitor
FT IR E
ExfTaa B T AT B KSR KT e SEDATE %Yl

Long data sequence can use a FIFO between

the generator and monitor

@

N

5
it

Predicting the Output

Some design processes and transforms the
Input data completely and thoroughly.

Alternative
Transmogrifier
Stimulus Data Response
Generator Transmogrifier Monitor

i T IR 3 (\
LEFa R ERET T IR TR S o IE TR

N

Simple Stimulus

Verifying the Output

Self-Checking Testbenches

Complex Stimulus

Complex Response

Predicting the Output
Summary

=

i
45
=)

T IR 3 (\
CEFE EE A TigA TR R AR KT e SIABE af Tl

Summary

N

Using bus-functional models to generate
stimulus and monitor response.

*abstract the interface operations and remove the
testcases from the detailed implementation of each

physical interface.

Make each individual testbench

completely self-checking .

*The expected response must be embedded in the test-bench at
the same time as the stimulus.

FoT IR (\
FELEFL R ERET T IR TR S o IE TR

