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Verification

N

@ A process used to demonstrate the functional
correctness of design.

# Verification consumes about 70% of the
design effort.

#® The methodologies to reduce the verification
time
s Parallelism
= Abstraction
= Automation
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What iIs a Testbench?

N

#Create a pre-determined input
seguence to a design, then optionally
observe the response.

Testbench

Design
—{  Under —
Verification
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Reconvergence Model

N

@ A conceptual representation of the
verification process

Transformation

® ®
—— Verification _—"
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The Human Factor

N
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#The same individual RTL coding
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#® Different individuals |
Inter re— RTL coding
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Equivalence Checking

N

#Compare two models

#®Prove the origin and output are logically
equivalent and the transformation
preserved Its functionality
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RTL or‘ RTL-0or
Netlist *—__Equivalence _— Netlist
Checking
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Model Checking

N

#®Look for generic problems or violation
of user-defined rules about the behavior
or the design

/RTLQOding\‘
RTL or @R
Netlist pterpretation
Model
‘_ Checking
Assertions
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Functional Verification

#Ensure that a design implements
Intended functionality

#Show that a design meets the intent of
Its specification, but it cannot prove it

/Fm__%‘
cation _
“——__ Functional _—"
Verification
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Testbench Generation

N

#®Generate testbenches to either increase
code coverage or to exercise the design
to violate a property

Code Coverage/Proof
A Testbench

jdin Metrics‘ ‘

Code \ y

Testbench Generation
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Functional Verification

Approaches

N

# Black-box

= Without any knowledge of the actual
Implementation of a design

# \White-box

= Has full visibility and controllability of the internal
structure and implementation of the design being
verified

@ Grey-box

= Controls and observes a design entirely through its
top-level interfaces
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Testing vs Verification

#®Testing
= Verify that the design was manufactured
correctly
#Verification
= Ensure that a design meets its functional
tent W Design Manufacturing
igiicoi::i-‘ @ \ctlist @silicon

\_/ \[/
Verification Testing
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Testing vs Verification

N

@ Scan-based testing
= All registers are hooked-up in a long serial chain.

ikl il
alm

# Design for verification
= Addition design effort to simplify verification

= Providing additional software-accessible registers
to control and observe internal locations

= Providing programmable multiplexors to isolate or
by pass functional units
FT IR 3
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Verification and Design reuse

W%
R

#Engineers do not trust that the other
design Is as good as reliable as one
designed by themselves.

#Proper functional verification
demonstrates trustworthiness of a
design.
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The cost of verification

N

@ |s my design functionally correct?

Errors No Errors
Bad Type II
Design (False Positive)
Good Type 1
Design (False Negative)

@ How much is enough?
@ When will | be done?
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J Chapter 2
Verification Tools
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Linting Tools

N

#|dentify common mistakes programmer
made, such as syntax errors

#Similar to spell checkers

#0nly find problems that can be statically
deduced by looking at the code
structure, not problems in the algorithm
or data flow.
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Simulators

N

®An approximation of reality

#®Not static tools ("."Simulation requires
stimulus)

«—— Linting tools are static tools

#®The simulation outputs are validated
externally, against design intents.
#®Co-simulators

= Both simulators are running together,
cooperating to simulate the entire design.
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Simulators

N

#Event-driven simulation

= Outputs change only when an input
changes

= Change In values, called events, drive the
simulation process

#®Cycle-driven simulation
= Has no timing information
= Can only handle synchronous circuits
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Third-Party Models

N

@ It Is cheaper to buy models than write them
yourself.

@ Your models is not as reliable as the one you
buy.
#® Hardware Modeler

= A real physical chip that needs to be simulated is
plugged in it.

N
HDL Simulation Hardware ’.
Models Engine Modeler e
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Waveform Viewers

#Display the changes in signal values
over time

#Used to debug simulations
#Record trace information significantly

reduce the performance of the
simulator
HDL A’[Simulation I Event Waveform}
: Database -
Models Engine Viewer

File
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Code coverage

Instrumented

Original Pre- Model Testbenches
Model processor \ /

Simulation
Engine

l

Coverage Report
Metrics Generator
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Statement Coverage

N

# How much of the total lines of code were executed
#® EX:
V) if (parity == ODD || parity == EVEN) begin

-] tx <= compute_parity(data, parity);
] #(tx_time);
end
Q@) tx <= 1'b0; When
W) #(tx_time); parity!=0ODD &
W] if (stop_bits == 2) begin Parity!=EVEN &
¥ x<=1b0; Stop_bits=2
v #(tx_time);
end

# Statement Coverage = 6/8 = 75%
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Path Coverage

N
\J

# All possible ways you can execute a sequence of
statements
#® EX:
ﬁ i{ (Jarity == dDD || parit}y == EVEN) begin
tx <= compute] parity(data, |parity);
#(tx_time);

W tk 4= 1'b0; Path Coverage=75%

V) #(tk_time); Statement Coverage=100%
ﬁ If (qtop_bits =F 2) begin

v =1'O;

v _tirpe); ‘
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Expression Coverage

# Measure the various ways paths through the code
are executed

® EX:
V) i (prity == ity == FVEN) begin
v X <= Cbmpu’te_parity(d ta, parity);
v #(Ix_time);
gnd
| tk <F 1'bO;
¥ #(tx|time); -
| =500
v i’ (sthp_bits == 2) begin Expression Coverage=50%
v tx<=1'b0:; Statement Coverage=100%
v #(tx_time);
3
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What Does 100 Percent Coverage
Mean?

N

L

#Completeness does not imply

correctness.

#Code coverage lets you know if you are
not done.

#®Some tools can help you reach 100%
coverage.
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Verification Language

W%
R

#\Verification languages can raise the
level of abstraction.

#VHDL and Verilog are simulation
languages, not verification languages.

® Specman from Verisity
VERA from Synopsys
Rave from Chronology
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Revision Control

N

#® Source Control Management Systems
= Files must be centrally managed.
= The history of a file iIs maintained.

# Configuration Management

= Views need not be always composed of the latest
version

= Symbolic tags are attached to specific version of
files

= EX: Submit, Bronze, Silver, Gold, To Layout,
To Synthesis...etc

# Constantly updates their view to appropriate
release.
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Issue Tracking

N

#®|ssues:
= Bugs
= Ambiguities or incompleteness in the spec,
= Architectural decisions and trade-offs
m Errors
= New relevant testcases

#®\What is an issue worth tracking?
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Issue Tracking

N

#The Grapevine System
#®The Post-It System
#®The Procedural System
#Computerized System
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Metrics

#Essential management tools.
#Best observed over time to see trends.

#Historical data should be used to create
a baseline

#®Can help assess the verification effort.
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Metrics

N

5

#®Code-Related Metrics
= Code coverage
= Number of lines of code
= Ratio of lines of code
= Source code changes

#®Quality-Related Metrics
= Number of known outstanding issues

= Number of bugs found during its service
life
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J Chapter 3
The Verification Plan

N
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The Role of the Verification

Plan

N

#® Specifying the verification
= Schedule

= The verification plan is the specification
document for the verification effort.

#®Defining first-time success

s Ensure all essential features are
appropriately verified.
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Levels of Verification

W%
R

#Unit-Level Verification

#®Reuseable Components Verification
#ASIC and FPGA Verification

# System-Level Verification
#®Board-Level Verification
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Verification Strategies

N

# Decide

= Type of testcases (White-box or Black-box)

= Level of abstraction (Cycle level or Device driver
level)

@ Verifying the response
= How to check the response

@® Random Verification
= System-level verification
= Create unexpected conditions or hit corner cases
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From Specification to Features

N

#|dentify features
#| abel each features

#®Features
s Component-level features
= System-level features
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From Features to Testcases

N

@ Prioritize
= Mmust-have
= should-have
= Nice-to-have

@ Group into testcases

= Features should be grouped together and
assigned to the same verification engineer.

@ Design for verification
= Modify the design to aid verification
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From Testcases to
Testbenches

N

#Group into testbenches

= Each group of testcases is divided into
testbenches.

#®Verify testbenches
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