
Altera Corporation 7–1
May 2005 Quartus II Handbook, Volume 4

7. Developing Components
for SOPC Builder

Introduction This chapter describes the design flow to develop a custom SOPC Builder
component. This chapter provides tutorial steps that guide you through
the process of creating a custom component, integrating it into a system,
and downloading it to hardware.

This chapter is divided into the following sections:

■ Component Development Flow (see page 7–3) .
■ Design Example: Pulse-Width Modulator (PWM) Slave (see page 7–8).

This design example demonstrates developing a component with a
single AvalonTM slave interface. In this section, you will start with a
ready-made HDL design, package it into a SOPC Builder
component, and then instantiate it in a system. If you have a
development board, you can download the design to hardware and
see the PWM work.

■ Sharing Components (see page 7–28). This section shows you how to
relocate component files to use them in other systems, or share them
with other designers.

SOPC Builder Components and the Component Editor

SOPC Builder provides a component editor that lets you create and edit
your own SOPC Builder components. By following the procedures
described in this document, you will learn to use the component editor
and turn any custom logic module into an SOPC Builder component.

Once your custom logic is packaged as component, you can instantiate it
in an SOPC Builder system in the same manner as commercially available
SOPC Builder Ready components. You can share your component with
other designers to encourage design reuse.

Typically, a component is comprised of the following:

■ Hardware files: HDL modules that describe the component
hardware

■ Software files: A C-language header file that defines the component
register map, and driver software that allows programs to control the
component

■ Component description file (class.ptf): This file defines the structure
of the component, and provides SOPC Builder the information it
needs to integrate the component into a system. The component

qii54007-5.0.0

7–2 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Introduction

editor generates this file automatically based on the hardware &
software files you provide, and the parameters you specify in the
component editor GUI.

After you create the hardware and software files that describe the
component, you use the component editor to package those file into an
SOPC Builder component. You can also use the component editor later to
re-edit the component, if you ever update the hardware or software files.

Assumptions About the Reader

This chapter assumes that you are familiar with the following:

■ Building systems with SOPC Builder. For details, see the Introduction
to SOPC Builder and Tour of the SOPC Builder User Interface chapters
in Volume 4 of the Quartus II Handbook.

■ SOPC Builder components. For details, see the SOPC Builder
Components chapter in Volume 4 of the Quartus II Handbook.

■ Basic concepts of the Avalon interface. You do not need extensive
knowledge of the Avalon interface, such as transfer types or signal
timing, to use the design example(s) provided with this chapter.
However, to create your own custom components, you need a fuller
understanding of the Avalon interface. For details, see the Avalon
Interface Specification.

Hardware and Software Requirements

To use the design example(s) in this chapter, you must have the following:

■ Design files for the example design – A hyperlink to the design files
appears next to this chapter on the SOPC Builder literature page.
Visit www.altera.com/sopcbuilder.

■ Quartus® II Software version 4.2 or higher – Both Quartus II Web
Edition and the fully licensed version will work with the example
design.

■ Nios® II development kit version 1.1 or higher – Both the evaluation
edition and the fully licensed version will work with the example
design.

■ Nios development board and an Altera® USB-BlasterΤΜ download
cable (Optional) – You can use any of the following
Nios development boards:
● Stratix® II Edition
● Stratix Edition
● Stratix Professional Edition
● CycloneΤΜ Edition

Altera Corporation 7–3
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

If you do not have a development board, you can follow the hardware
development steps, but you will not be able to download the complete
system to a working board.

f You can download the Quartus II Web Edition software and the Nios II
Development Kit, Evaluation Edition for free from the Altera Download
Center at www.altera.com.

1 Before you begin, you must install the Quartus® II software and
Nios II development tools.

Component
Development
Flow

This section provides an overview of the development process for SOPC
Builder components, covering both the hardware and software aspects.
This section focuses on the design flow for components with a single
Avalon slave interface. However, these steps are easily extrapolated to
components with a master port, or multiple master and slave ports.

Typical Design Steps

A typical development sequence for a slave component includes the
following steps, not necessarily in this order:

1. Specify the hardware functionality.

2. If a microprocessor will be used to control the component, specify
the application program interface (API) to access and control the
hardware.

3. Based on the hardware and software requirements, define an
Avalon interface that provides:

a. Appropriate control mechanisms

b. Adequate throughput performance

4. Write HDL that describes the hardware in either Verilog or VHDL.

5. Test the component hardware alone to verify correct operation.

6. Write a C header file that defines the hardware-level register map
for software.

7. Use the component editor to package the initial hardware and
software files into a component.

7–4 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Component Development Flow

8. Instantiate the component into a simple SOPC Builder system
module.

9. Test register-level accesses to the component using a
microprocessor, such as the Nios II processor. You can perform
verification in hardware, or on an HDL simulator such as
ModelSim.

10. If a microprocessor will be used to control the component, write
driver software.

11. Iteratively improve the component design, based on in-system
behavior of the component:

a. Make hardware improvements and adjustments.

b. Make software improvements and adjustments.

c. Incorporate hardware and software changes into the
component using the component editor.

12. Build a complete SOPC Builder system incorporating one or more
instances of the component.

13. Perform system-level verification. Make further iterative
improvements, if necessary.

14. Finalize the component and distribute it for design reuse.

The design process for a master component is similar, except for software
development aspects.

Hardware Design

As with any logic design process, the development of SOPC Builder
component hardware begins after the specification phase. Coding the
HDL is an iterative process, as you write and verify the HDL logic against
the specification.

The architecture of a typical component consists of the following
functional blocks:

■ Task Logic - The task logic implements the component's fundamental
function. The task logic is design dependent.

Altera Corporation 7–5
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

■ Register File - The register file provides a path for communicating
signals from inside the task logic to the outside world, and vice versa.
The register file maps internal nodes to addressable offsets that can
be read or written by the Avalon interface.

■ Avalon Interface - The Avalon interface provides a standard Avalon
front-end to the register file. The interface uses any Avalon signal
types necessary to access the register file and support the transfer
types required by the task logic. The following factors affect the
Avalon interface:
● How wide is the data to be transferred?
● What is the throughput requirement for the data transfers?
● Is this interface primarily for control or for data? That is, do

transfers tend to be sporadic, or come in continuous bursts?
● Is the hardware relatively fast or slow compared to other

components that will be in a system?

Figure 7–1 shows a block diagram of a typical component with one
Avalon slave port.

Figure 7–1. Typical Component with One Avalon Slave Port

Software Design

If your intent is for a microprocessor to control your component, then you
must provide software files that define the software view of the
component. At a minimum, you must define the register map for each

Status Register

Other Registers

Data Register3

Data Register2

Data Register1

Control Register2

Control Register1

Register File

Avalon
Slave

Interface

Application-
Specific
Interface
Signals Avalon

Slave
Port

Signals
Task
Logic

Component Hardware

7–6 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Component Development Flow

slave port that is accessible to a processor. The component editor lets you
package a C header file with the component to define the software view
of the hardware.

Typically, the header file declares macros to read and write each register
in the component, relative to a symbolic base address assigned to the
component. The following example shows an excerpt from the register
map for an Altera-provided UART component for the Nios II processor.

Example: Register Map for a Component

#include <io.h>
#define IOADDR_ALTERA_AVALON_TIMER_STATUS(base) __IO_CALC_ADDRESS_NATIVE(base, 0)
#define IORD_ALTERA_AVALON_TIMER_STATUS(base) IORD(base, 0)
#define IOWR_ALTERA_AVALON_TIMER_STATUS(base, data) IOWR(base, 0, data)

#define ALTERA_AVALON_TIMER_STATUS_TO_MSK (0x1)
#define ALTERA_AVALON_TIMER_STATUS_TO_OFST (0)
#define ALTERA_AVALON_TIMER_STATUS_RUN_MSK (0x2)
#define ALTERA_AVALON_TIMER_STATUS_RUN_OFST (1)

#define IOADDR_ALTERA_AVALON_TIMER_CONTROL(base) __IO_CALC_ADDRESS_NATIVE(base, 1)
#define IORD_ALTERA_AVALON_TIMER_CONTROL(base) IORD(base, 1)
#define IOWR_ALTERA_AVALON_TIMER_CONTROL(base, data) IOWR(base, 1, data)

#define ALTERA_AVALON_TIMER_CONTROL_ITO_MSK (0x1)
#define ALTERA_AVALON_TIMER_CONTROL_ITO_OFST (0)
#define ALTERA_AVALON_TIMER_CONTROL_CONT_MSK (0x2)
#define ALTERA_AVALON_TIMER_CONTROL_CONT_OFST (1)
#define ALTERA_AVALON_TIMER_CONTROL_START_MSK (0x4)
#define ALTERA_AVALON_TIMER_CONTROL_START_OFST (2)
#define ALTERA_AVALON_TIMER_CONTROL_STOP_MSK (0x8)
#define ALTERA_AVALON_TIMER_CONTROL_STOP_OFST (3)

Software drivers abstract hardware details of the component so that
software can access the component at a high level. The driver functions
provide the software an API to access the hardware. The software
requirements vary according to the needs of the component. The most
common types of routines initialize the hardware, read data, and write
data.

Driver software is dependent on the target processor. The component
editor lets you easily package software drivers for the hardware
abstraction layer (HAL) used by the Nios II processor development tools.
To provide drivers for other processors, you must accommodate the
needs of the development tools for the target processor.

Altera Corporation 7–7
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

f For details on writing drivers for the Nios II HAL, see the Nios II Software
Developer's Handbook. It is instructive to look at the software files
provided for other ready-made components. The Nios II development
kit provides many components you can use as reference. See <Nios II kit
path>/components/.

Verifying the Component

You can verify the component in incremental stages, as you complete
more and more of the design. Typically, you first verify the hardware logic
as a unit (which might comprise multiple smaller stages of verification),
and later you verify the component in a system.

Unit Verification

To test the task logic block alone, you use your preferred verification
method(s), such as behavioral or register transfer level (RTL) simulation
tools. Similarly, you can verify all component logic, including the register
file and the Avalon interface(s), using your preferred verification tools.

After you package the HDL files into a component using the component
editor, the Nios II development kit offers an easy-to-use method to
simulate read and write transactions to the component. Using the Nios II
processor's robust simulation environment, you can write C code for the
Nios II processor that initiates read and write transfers to your
component. The results can be verified either on the ModelSim simulator
or on hardware, such as a Nios development board.

f See AN351: Simulating Nios II Embedded Processor Designs for more
information.

System-Level Verification

After you package the HDL files into a component using the component
editor, you can instantiate the component in a system, and verify the
functionality of the overall system module.

SOPC Builder provides support for system-level verification for RTL
simulators such as ModelSim. While SOPC Builder produces a testbench
for system-level verification, the capability of the simulation environment
is largely dependent on the components included in the system.

7–8 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

1 During the verification phase, including a Nios II processor in
the system can be useful to get the benefits of the Nios II
simulation environment. Even if your component has no
relationship to the Nios II processor, the auto-generated
ModelSim simulation environment provides an easy-to-use
base that you can build upon to verify other logic in the system.

Design Example:
Pulse-Width
Modulator Slave

This section uses a pulse-width modulator (PWM) design example to
demonstrate the steps to create a component and instantiate it in a
system. This component has a single Avalon slave port.

In this section, you will perform the following steps:

1. Install the design files.

2. Review the example design specifications.

3. Package the design files into an SOPC Builder component.

4. Instantiate the component in hardware.

5. Compile the hardware design in the Quartus II software, and
download the design to a target board.

6. Exercise the hardware using Nios II software.

Install the Design Files

Before you proceed, you must install the Nios II development tools and
download the PWM example design from the Altera web site. The
hardware design used in this chapter is based on the standard hardware
example design included with the Nios II development kit.

w Do not use spaces in any directory path names when installing
the design files. If the path contains spaces, SOPC Builder might
not be able to access the files.

Perform the following steps to setup the design environment:

1. Unzip the contents of the PWM zip file to a directory on your
computer. This document will refer to this directory as the <PWM
design files> directory.

2. On your host computer file system, locate the following directory:

Altera Corporation 7–9
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

<Nios II kit path>/examples/<verilog or vhdl>/<board
version>/standard

Each development board has a VHDL and Verilog version of the
design. You can use either one. Table 7–1 shows the names of the
directories for the available Nios development boards.

For demonstration purposes, the figures in this chapter show the
case of the Verilog design on the Nios Development Board, Cyclone
Edition.

3. Copy the standard directory to a new location. By copying the
design files, you avoid corrupting the original design. This
document will refer to the newly-created directory as the
<Quartus II project> directory.

Review the Example Design Specifications

This section discusses the design specifications for the provided PWM
example design, giving details on each of the following topics:

■ PWM Design Files
■ Functional Specification
■ PWM Task Logic
■ Register File
■ Avalon Interface
■ Software API

In a typical design flow, it is the designer's responsibility to specify the
behavior of the component.

Table 7–1. Design File Directories

Nios Development Board Tutorial Directory

Stratix II Edition niosII_stratixII_2s60_es

Stratix Edition niosII_stratix_1s10 or niosII_stratix_1s10_es

Stratix Professional
Edition

niosII_stratix_1s40

Cyclone Edition niosII_cyclone_1c20

7–10 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

PWM Design Files

Table 7–2 lists the contents provided in the <PWM design files> directory.

Functional Specification

A PWM component outputs a square wave with modulated duty cycle. A
basic pulse-width waveform is shown in Figure 7–2.

Figure 7–2. Basic Pulse-Width Modulation Waveform

The PWM component is specified and created as follows:

Table 7–2. PWM Design Files Directory

File Name Description

/pwm_hw Contains HDL files describing the component hardware.

pwm_task_logic.v Contains the core of the PWM functionality.

pwm_register_file.v Contains logic for reading and writing PWM registers.

pwm_avalon_interface.v Instantiates task logic and register file, and provides an
Avalon slave interface. This file contains the top-level
module.

/pwm_sw Contains C files describing the software interface to the
component.

/inc Contains header files defining low-level hardware interface.

avalon_slave_pwm_regs.h Defines macros to access registers in the PWM component.

/HAL Contains HAL driver files for the Nios II processor.

/inc Contains HAL driver include files.

altera_avalon_pwm_routines.h Declares function prototypes for accessing the PWM.

/src Contains HAL driver source code files.

altera_avalon_pwm_routines.c Defines functions for accessing the PWM.

/test_software Contains an example program to test the component
hardware & software.

hello_altera_avalon_pwm.c main() initializes the PWM hardware, and uses the PWM
to blink an LED.

clk

pwm_out

pwm_duty_cycle = 7

pwm_clock_divide = 10 (+1)

Altera Corporation 7–11
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

■ The task logic operates synchronously to a single clock.
■ The task logic uses 32-bit counters to provide a suitable range of

PWM periods and duty cycles.
■ A host processor is responsible for setting the PWM period value and

duty-cycle value. This requirement implies the need for a read/write
interface to control logic.

■ Register elements are defined to hold the PWM period value and
duty-cycle value.

■ The host processor can halt the PWM output by using an enable
control bit.

PWM Task Logic

The PWM task logic has the following characteristics:

■ The PWM task logic consists of an input clock (clk), an output signal
(pwm_out), an enable bit, a 32-bit modulo-n counter, and a 32-bit
comparator circuit.

■ clk drives the 32-bit modulo-n counter to establish the period of the
pwm_out signal.

■ The comparator compares the current value of the modulo-n counter
to the duty-cycle value and determines the output of pwm_out.

■ When the current count value is less than or equal to the duty-cycle
value, pwm_out drives logic value 0; otherwise, it drives logic value
1.

7–12 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

The task-logic structure is shown in Figure 7–3.

Figure 7–3. PWM Task Logic Structure

Register File

The register file provides access to the enable bit, the modulo-n value and
the duty cycle value, shown in Figure 7–3. The design maps each register
to a unique offset in the Avalon slave port address space.

Each register has read and write access, which means that software can
read back values previously written into the registers. This is an arbitrary
design choice that provides software convenience at the expense of
hardware resources. You could equally design the registers to be write-
only, which would conserve on-chip logic resources, but make it
impossible for software to read back the register values.

Up Counter
Enable
Control
Register

Clock Enable

Master Clock

Modulo-n Counter

 Modulo-n
Value Register

 Duty Cycle
Value Register

=

< =

Reset
 Avalon

Slave Port
 Signals

PWM
Output

Altera Corporation 7–13
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

The register file and offset mapping is shown in Table 7–3. To support
three registers, two bits of address encoding are necessary. This gives rise
to the fourth register which is reserved.

To read or write the registers requires only one clock cycle, which affects
the wait-states for the Avalon interface.

Avalon Interface

The Avalon interface for the PWM component requires a single slave port
using a small set of Avalon signals to handle simple read and write
transfers to the registers. The component's Avalon slave port has the
following characteristics:

■ It is synchronous to the Avalon slave port clock.
■ It is readable and writeable.
■ It has zero wait states for reading and writing, because the registers

are able to respond to transfers within one clock cycle.
■ It has no setup or hold restrictions for reading and writing.
■ Read latency is not required, because all transfers can complete in

one clock cycle. Read latency would not improve performance.
■ It uses native address alignment, because the slave port is connected

to registers rather than a memory device.

Table 7–3. Register File & Address Mapping

Register Name Offset Access Description

clock_divide 00 Read / Write The number of clock cycles counted during one cycle
of the PWM output.

duty_cycle 01 Read / Write The number of clock cycles in which the PWM output
will be low.

enable 10 Read / Write Enables/disables the PWM output. Setting bit 0 to 1
enables the PWM.

Reserved 11 -

7–14 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

Table 7–4 lists the Avalon signals types required to implement these
transfer properties. The table also lists the names of each signal as defined
in the HDL design file.

f For details on the behavior of Avalon signals and Avalon transfers, see
the Avalon Interface Specification.

Software API

The PWM example design provides both a header file that defines the
register map, and driver software for the Nios II processor. See Table 7–2
on page 7–10 for a description of the individual files. The driver functions
are listed in Table 7–5.

Table 7–4. PWM Signal Names & Avalon Signal Types

Signal Name in HDL Avalon Signal
Type Bit-Width Direction Notes

clk clk 1 input Clock that synchronizes data
transfers and task logic

resetn reset_n 1 input Reset signal; active low.

avalon_chip_select chipselect 1 input Chip-select signal

address address 2 input 2-bit address; only three
encodings are used.

write write 1 input Write enable signal

write_data writedata 32 input 32-bit write-data value

read read 1 input Read enable signal

read_data readdata 32 output 32-bit read-data value

Table 7–5. PWM Driver Functions (1)

Function Prototype Description

altera_avalon_pwm_init(); Initializes the PWM hardware

altera_avalon_pwm_enable(); Activates the PWM output

altera_avalon_pwm_disable(); Deactivates the PWM output

altera_avalon_pwm_change_duty_cycle(); Deactivates the PWM output

Note for Table 7–5:
(1) Each function takes a parameter that specifies the base address of a specific instance of the PWM component.

Altera Corporation 7–15
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

Package the Design Files into an SOPC Builder Component

In this section, you will use the SOPC Builder component editor to
package the design files into an SOPC Builder component. You will
perform the following operations:

1. Open the Quartus II project and start the component editor.

2. Configure the settings on each tab of the component editor.

3. Save the Component.

Open the Quartus II Project & Start the Component Editor

To open SOPC Builder from the Quartus II software, you must have a
Quartus II project open. Perform the following steps:

1. Start the Quartus II software.

2. Open the project standard.qpf in the <Quartus II project> directory.

3. Choose SOPC Builder (Tools menu). The SOPC Builder GUI
appears, displaying a ready-made example design containing a
Nios II processor and several components in the table of active
components.

4. Choose New Component (File menu). The component editor GUI
appears, displaying the Introduction tab.

HDL Files Tab

In this section you will associate the HDL files with the component using
the HDL Files tab. Perform the following steps:

1. Click the HDL Files tab.

1 Each tab in the component editor GUI provides on-screen
information that describes how to use each tab. Click the
triangle at the top-left of each tab to view these instructions.

2. Click Add HDL File.

3. Browse to the <PWM design files>/pwm_hw directory. There are
three Verilog HDL (.v) files in this directory.

4. Select all three HDL files in this directory and click Open. Use the
control key to select multiple files.

7–16 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

You will return to the HDL Files tab. The component editor
immediately analyzes each file to read I/O signal and parameter
information from the file.

5. Ensure that both the Simulation and Synthesis boxes are turned on
for all files. This indicates that each file is appropriate for both
simulation and synthesis design flows.

6. Select pwm_avalon_interfave.v: pwm_avalon_interface in the Top
Level Module list to specify the top-level module.

At this point, the component editor GUI displays error messages. Ignore
these messages for now, because you will fix them in later steps.
Figure 7–4 shows the state of the HDL Files tab.

Figure 7–4. HDL Files Tab

Altera Corporation 7–17
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

Signals Tab

For every I/O signal present on the top-level HDL module, you must
map the signal name to a valid Avalon signal type using the Signals tab.
The component editor automatically fills in signal details that it finds in
the top-level HDL source file. If a signal is named the same as a
recognized Avalon signal type (such as write or address), then the
component editor automatically assigns the signal's type. If the
component editor cannot determine the signal type, it assigns it to type
export.

Perform the following steps to define the component I/O signals:

1. Click the Signals tab. All of the I/O signals in the top level HDL
module pwm_avalon_interface appear automatically.

2. Assign the Signal Type settings for all signals, as show in
Figure 7–5. To change a value, click the Signal Type cell to display a
drop-down list, and select a new signal type from the list.

After you correctly assign each signal name to a signal type, the error
messages should disappear.

Figure 7–5. Assigning Signal Names to Signal Types

1 You assign type export to the signal pwm_out, because it is
not an Avalon signal. It is intended to be an output of the
SOPC Builder system.

7–18 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

Interfaces Tab

The Interfaces tab lets you configure the properties of all Avalon
interfaces on the component. In this case there is only one Avalon
interface, as specified in the section “Avalon Interface” on page 7–13.
Perform the following steps to configure the Avalon slave port:

1. Click the Interfaces tab. The component editor displays a default
Avalon slave port that it created automatically, based on the top-
level I/O signals in the component design.

2. Type control_slave in the Name field to rename the slave port.
This name appears in the SOPC Builder GUI when you instantiate
the component in SOPC Builder.

3. Change the settings for the control_slave interface as listed in
Table 7–6 below. Figure 7–6 on page 7–19 shows the Interfaces tab
with the correct settings.

Table 7–6. Control Slave Interface Settings

Setting Value Description

Slave addressing Registers This setting is appropriate for slave ports
used to access address-mapped registers

Read Wait 0 This setting means that the slave port
responds to read requests in a single clock
cycle (i.e, it does not need read waitstates.)

Write Wait 0 This setting means that the slave port
captures write requests in a single clock
cycle (i.e., it does not need write
waitstates.)

Altera Corporation 7–19
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

Figure 7–6. Configuring the Interface Properties

Software Files (SW Files) Tab

The SW Files tab lets you associate software files with the component,
and specify their usage. This component example design provides both a
header file that defines the registers and driver software for the Nios II
processor. For a description of each file, see Table 7–2 on page 7–10.

Perform the following steps to import the software files into the
component:

1. Click the SW Files tab.

2. Click Add SW File. The Open dialog appears.

7–20 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

3. Browse to the directory <PWM design files>/pwm_sw/inc.

4. Select the file altera_avalon_pwm_regs.h and click Open.

5. Click the Type cell for altera_avalon_pwm_regs.h to change the file
type. A drop-down list appears.

6. Select type Registers (inc/).

7. Repeat steps 2 to 6 to add the file <PWM design
files>/pwm_sw/HAL/inc/altera_avalon_pwm_routines.h and set its
type to HAL (HAL/inc/).

8. Repeat steps 2 to 6 to add the file <PWM design
files>/pwm_sw/HAL/src/altera_avalon_pwm_routines.c and set its
type to HAL (HAL/src/).

Figure 7–7 shows the SW Files tab with the correct settings.

Figure 7–7. Software Files (SW Files) Tab

Component Wizard Tab

This tab lets you control how SOPC Builder presents the component to a
user. Perform the following steps to configure the user presentation of the
component:

1. Click the Component Wizard tab.

2. For this example, do not change the default settings for Component
Name, Component Version, and Component Group.

These settings affect how SOPC Builder identifies the component
and displays it in the list of available components. The component
editor creates a default name for the component, based on the name
of the top-level design module.

3. Under Parameters, in the Tooltip cell for the parameter
clock_divide_reg_init, type the following:

Initial PWM Period After Reset

Altera Corporation 7–21
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

4. In the Tooltip cell for clock_cycle_reg_init, type:

Initial Duty Cycle After Reset

5. Click Preview the Wizard to preview how the component wizard
will appear when instantiated from within SOPC Builder.

6. Close the preview window when you are done.

Save the Component

Perform the following steps to save the component and exit the
component editor:

1. Click Finish. A dialog appears describing the files that will be
created for the component.

2. Click Yes to save the files. The component editor saves the files to a
subdirectory under <Quartus II project>. The component editor
closes, and you return to the main SOPC Builder GUI.

3. Locate the new component pwm_avalon_interface in the list of
available components under the User Logic group.

You are ready to instantiate the component into an SOPC Builder system.

Instantiate the Component in Hardware

At this point, the new component is ready to instantiate in an SOPC
Builder system. The usage of a component is design dependent, based on
the needs of the system. The remaining steps for this design example
show one possible way to instantiate and test the component. However,
there is an unlimited number of ways this component can be used in a
system.

In this section you will add the new PWM component to a system,
recompile the hardware design, and configure the FPGA. This section
includes the following steps:

1. Add a PWM component to the SOPC Builder system and regenerate
the system.

2. Modify the Quartus II design to connect the PWM output to an
FPGA pin.

3. Compile the Quartus II design and configure the FPGA with the
new hardware image.

7–22 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

Add a PWM Component to the SOPC Builder System

Perform the following steps to setup SOPC Builder's component search
path:

1. In the SOPC Builder GUI, choose SOPC Builder Setup (File menu).

2. Under Component/Kit Library Search Path, enter the path to the
<Quartus II project> directory. If there are pre-existing paths, use
"+" to separate the path names.

3. Click OK.

1 The steps above make the component's software files visible to
the Nios II IDE in later steps. These steps are necessary for the
Quartus II software v4.2 and the Nios II IDE v1.1. Future
releases will eliminate the need for these steps.

Perform the following steps to add a PWM component to the SOPC
Builder system:

1. On the SOPC Builder System Contents tab, select the new
component pwm_avalon_interface under the User Logic group in
the list of available components, and click Add. The configuration
wizard for the PWM component appears.

If you want to, you can modify the parameters in the configuration
GUI. The parameters affect the reset state of the PWM control
registers, but have no affect on the outcome of the steps in this
chapter.

2. Click Finish. You return to the SOPC Builder System Contents tab,
and the component pwm_avalon_interface_0 appears in the table
of active components.

3. Right-click pwm_avalon_interface_0 and choose Rename.

4. Type z_pwm_0 for the component name and press Enter. (This name
is unusual, but it minimizes effort later when you update the
Quartus II design in section “Modify the Quartus II Design to Use
the PWM Output” on page 7–23.

w You must name the component exactly as directed, or else later
steps in this chapter will fail.

5. Click Generate to start generating the system.

Altera Corporation 7–23
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

6. After system generation completes successfully, exit SOPC Builder
and return to the Quartus II software.

Modify the Quartus II Design to Use the PWM Output

At this point, you have created an SOPC Builder system that uses the
PWM component. Now you must update the Quartus II project to use the
PWM output.

The file standard.bdf is the top-level Block Design File (BDF) for the
Quartus II project. The BDF contains a symbol for the SOPC Builder
system module, named std_<FPGA>, where <FPGA> refers to the FPGA
on the target development board.

In the previous steps you added a PWM component which produces an
additional output from the system module. Now you need to update the
symbol for the system module, and connect the PWM output to an FPGA
pin.

1 To complete this section, you must be familiar with the
Quartus II Block Editor.

1. In the Quartus II software, open the file standard.bdf.

2. Right-click the symbol std_<FPGA> in the BDF and choose Update
Symbol or Block. The Update Symbol or Block dialog appears.

3. Select Selected Symbol(s) or Block(s).

4. Click OK to close the dialog. The symbol std_<FPGA> in the BDF is
updated, and it now has an additional output port named
pwm_out_from_the_z_pwm_0.

1 SOPC Builder creates unique names for all I/O ports on the
system module, by combining the signal name in the component
design file with the instance name of the component in the
system module.

5. Delete the symbol for pins LEDG[7..0] which are connected to
port out_port_from_the_led_pio[7..0] on the system
module.

These pins connect to LEDs on the development board. This example
design uses one of the LEDs to display the output of the PWM.

6. Create a new output pin named LEDG[0].

7–24 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

7. Connect the new pin LEDG[0] to pwm_out_from_the_z_pwm_0
on std_<FPGA>.

The hardware design is now ready to compile.

Compile the Hardware Design and Download to the Target Board

Perform the following steps to compile the hardware design and
download it to the target board.

1. Chose Save (File menu) to save changes to the BDF.

2. Choose Start Compilation (Processing menu) to start compiling the
hardware design. The compilation begins.

If you performed all prior steps correctly, the Quartus II compilation will
finish successfully after several minutes, and generate a new FPGA
configuration file for the project.

1 You can only perform the remaining steps in this chapter if you
have a development board.

Perform the following steps to download the hardware design to the
board:

1. Connect your host computer to the development board using an
Altera download cable, such as the USB Blaster, and apply power to
the board.

2. Choose Programmer (Tools menu) to open the Quartus II
Programmer.

3. Use the Programmer window to download the following FPGA
configuration file to the board: <Quartus II project>/standard.sof.

At this point, you have completed all the steps to create a hardware
design and download it to hardware.

Exercise the Hardware Using Nios II Software

The PWM example design is based on the Nios II processor. You must
execute software on the Nios II processor to exercise the PWM hardware.
The example design files provide a C test program that pulses an LED by
gradually modulating the PWM duty cycle. This test program accesses
the hardware both by using the register map declarations directly, and by
calling the driver functions.

Altera Corporation 7–25
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

In this section you will perform the following steps:

1. Start the Nios II IDE and create a new Nios II IDE project.

2. Build and run the C test program.

3. View the results.

To complete this section, you must have performed all prior steps, and
successfully configured the target board with the hardware design.

Start the Nios II IDE & Create a New IDE Project

Perform the following steps to start the Nios II IDE and create a new IDE
project:

1. Start the Nios II IDE.

2. Choose New > C/C++ Application (File menu) to start a new
project. The first page of the New Project wizard appears.

3. Under Select Project Template, select Blank Project.

4. In the Name field type hello_pwm.

5. Ensure that Use Default Location is turned on.

6. Click Browse under Select Target Hardware. The Select Target
Hardware dialog box appears.

7. Browse to the <Quartus II project> directory.

8. Select the file std_<FPGA>.ptf.

9. Click Open to return to the New Project wizard. The SOPC Builder
System and the CPU fields are now specified, as shown in
Figure 7–8 on page 7–26.

10. Click Finish.

7–26 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Design Example: Pulse-Width Modulator Slave

Figure 7–8. New Project Wizard

After the IDE successfully creates the new project, the C/C++ Projects
view will contain two new projects, hello_pwm and hello_pwm_syslib,
in addition to Nios II Device Drivers, as shown in Figure 7–9.

Figure 7–9. New Projects in the C/C++ Projects View

Altera Corporation 7–27
May 2005 Quartus II Handbook, Volume 4

Developing Components for SOPC Builder

Compile the Software Project and Run on the Target Board

In this section you will compile the C test program provided with the
PWM design files, and then download it to the target board.

First, perform the following steps to associate the C source file with the
new C/C++ project.

1. In your computer's file system, copy the file <PWM design
files>/pwm_sw/test_software/hello_altera_avalon_pwm.c to the
directory <Quartus II project>/software/hello_pwm/.

2. In the Nios II IDE C/C++ Projects view, right-click hello_pwm and
choose Refresh. This forces the IDE to recognize the new file in the
project directory.

The project is now ready to compile and run. Perform the following steps:

1. Right-click hello_pwm and choose Build Project to compile the
program. The first time you build the project, it can take a few
minutes for the compilation to finish.

2. After compilation completes, select hello_pwm in the C/C++
Projects view.

3. Choose Run (Run menu). The Run dialog appears.

4. Under Configurations select Nios II Hardware, and click New. A
new run/debug configuration named hello_pwm Nios II HW
configuration appears.

5. If the Run button (in the bottom right of the Run dialog) is
deactivated, perform the following steps:

a. Click the Target Connection tab.

b. Click Refresh next to the JTAG cable list.

c. From the JTAG cable list, select the download cable you want
to use.

d. Click Refresh next to the JTAG device list.

6. Click Run.

7. View the results:

7–28 Altera Corporation
Quartus II Handbook, Volume 4 May 2005

Sharing Components

a. The Console view in the IDE displays messages similar to the
following:

Hello from the PWM test program.
The starting values in the PWM registers are:
Period = 0
Duty cycle = 0
Notice the pulsing LED on the development board.

b. LED0 on the development board repeatedly pulses on and off.

Congratulations! You have finished all steps for the PWM design
example.

Sharing
Components

When you create a component using the component editor, SOPC Builder
automatically saves the component in the current Quartus II project
directory. To promote design reuse, you can use the component in
different projects, and you can share your component with other
designers.

Perform the following steps to share a component:

1. In your computer's file system, move the component directory to a
central location, outside any particular Quartus II project's directory.
For example, you could create a directory
c:\my_component_library to store your custom components.

w The directory path name cannot contain spaces. If the path
contains spaces, SOPC Builder might not be able to access the
files.

2. In SOPC Builder, choose SOPC Builder Setup (File menu). The
SOPC Builder Setup dialog appears, which lets you specify where
SOPC Builder searches for component files.

3. Under Component/Kit Library Search Path, add the path to the
enclosing directory of the component directory. For example, for a
component directory
c:\my_component_library\pwm_avalon_interface\, add the path
c:\my_component_library. If there are pre-existing paths, use "+" to
separate the path names.

4. Click OK.

	7. Developing Components for SOPC Builder
	Introduction
	SOPC Builder Components and the Component Editor
	Assumptions About the Reader
	Hardware and Software Requirements

	Component Development Flow
	Typical Design Steps
	Hardware Design
	Software Design
	Example: Register Map for a Component

	Verifying the Component
	Unit Verification
	System-Level Verification

	Design Example: Pulse-Width Modulator Slave
	Install the Design Files
	Review the Example Design Specifications
	PWM Design Files
	Functional Specification
	PWM Task Logic
	Register File
	Avalon Interface
	Software API

	Package the Design Files into an SOPC Builder Component
	Open the Quartus II Project & Start the Component Editor
	HDL Files Tab
	Signals Tab
	Interfaces Tab
	Software Files (SW Files) Tab
	Component Wizard Tab
	Save the Component

	Instantiate the Component in Hardware
	Add a PWM Component to the SOPC Builder System
	Modify the Quartus II Design to Use the PWM Output
	Compile the Hardware Design and Download to the Target Board

	Exercise the Hardware Using Nios II Software
	Start the Nios II IDE & Create a New IDE Project
	Compile the Software Project and Run on the Target Board

	Sharing Components

