
ArmCore-A20 ハードウェア 仕様書

株式会社日昇テクノロジー

http://www.csun.co.jp

info@csun.co.jp 🖊

作成日 2014/7/1

copyright@2014

• 修正履歴

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2014/7/1

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることがあります。 最新版は弊社ホームページからご参照ください。「http://www.esun.co.jp」

※ (株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に 禁じられています。

目次

5
5
5
5
7
8
8
9
9
10
10
12
12
14
15
21
21
21
23
23
24
24
24
25
27
28
29
29
30
32
33
34
36
37
38
39
39
40
41
41

低価格、高品質が不可能?

日息テクノロジーから可能にする

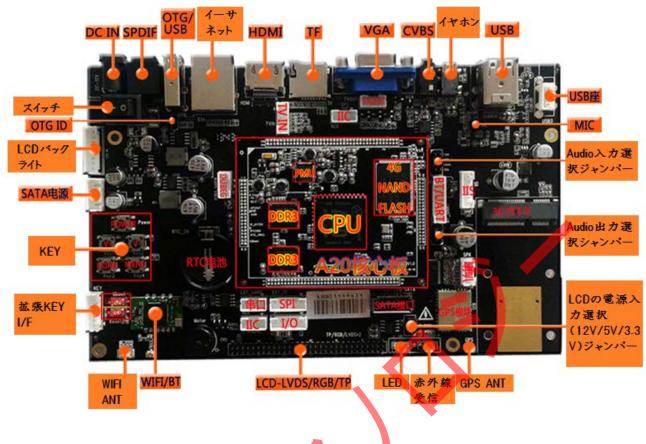
	2 Bluetooth	
4. 4.	3 3G	42
4. 4.	4 赤外線リモコン	43
4. 4.	5 イーサネット	44
4. 4.	6 シリアルポート	44
4. 4.	7 IIC	46
4. 4.	8 SPI	47
4.5 他	1の機能モジュール	40
4. 5.	1 ボタン	40
4. 5.	2 モーター	51
4. 5.	3 LED	51
4. 5.	4 Gsensor	52
4. 5.	5 拡張 IO	53
4. 5.	6 IIS	53
	電気性能	

第一章 製品紹介

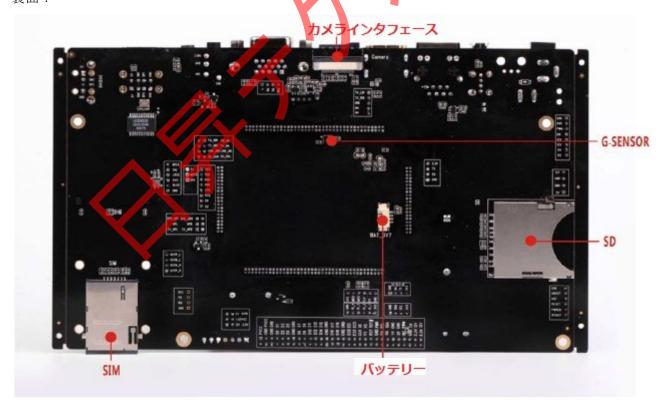
1.1 概要

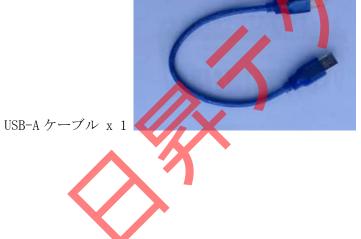
ArmCore-A20はALLWINNER TECH社のA20コアボードを搭載して、インタフェースが多くて、マルチメディアのデコード、LCDドライバ、イーサネット、HDMI、WIFI、3G、カメラ、Bluetooth、GPS、重力センサーなどの多種なデバイスをサポートする。主流の各種のビデオや写真フォーマットのデコード、HDMI/VGAビデオ出力、ダブル8桁のLVDSドライバをサポートし、各種のTFT LCDデイスプレイなどもサポートする。これによって、開発周期短期化やシステム設計をスリム化させ、HDネットワークプレーヤーボックス、動画広告機及びフーレム広告機などの開発に適合する。

1.2 特徴


- ◆ 高い集積度。USB/LVDS/イーサネット/HDMI/WIFIを一体化にさせるので、システム設計をスリムさせる。 かつ、SDカードもサポートする。
- ◆ PCI-E 3Gモジュールを内蔵。広告機のリモートメンテナンスに適合し、人件費を大幅に削減する。
- ◆ 豊富な拡張インタフェース。四つのUSBインタフェース (二つピンタイプ、二つ標準USBインタフェース)、 二つの拡張できるシリアルポート。
- ◆ 高解像度。最大1080 p までのデコードと各種のLVDS/RGB信号LCDディスプレイをサポートする。
- ◆ 多種な機能。水平と垂直方向のスクリーン再生、画面分割、タイマースイッチ、スクロール字幕、USB データ導入などの機能をサポートする。
- ◆ 管理の便利性。使いやすいプレイリスト作成ツールによって広告の再生管理とコントロールを便利にする。再生ログで再生状況を便利に把握できる。

1.3 外観及びインタフェース


正面


1.4 付属品

12V/2A 電源アダプタ x 1

HDMI-A ケーブル x 1

ホームページ:http://www.csun.co.jp メール:info@csun.co.jp

第二章 基本機能

2.1 主なハードウェア仕様

主なハードウエア仕様

CPU

メモリ

内蔵ストレージ

デコード解像度

操作システム

プレーモード

ネット

ビデオプレー

画像フォーマット

USB2.0インタフェース

シリアルポート

イーサネット

SDカード

SATAインタフェース

LVDS/RGB 出力

HDMI 出力

VGA 出力

ビデオ・オディオ出力

RTC リアルタイムクロック

システムアップグレード

ALLWINNER A20, 周波数1.0一1.5GHz

1G

NAND FLASH 4G

最大1080 p

andorid 4.X

循環、タイミングなどのモード

3G、イーサネット、wifi、Bluetooth、無線

wmv, avi, flv, rm, rmvb, mpeg, ts, mp4など

BMP, JPEG, PNG, GIF

OTG 一つ、USB HOST 二つ、UBS ソケット一つ

シリアルソケット二つ

一つ、10M/100M イーサネット

SD カード、TF カードをサポートする

内蔵 SATA ハードディスクをサポート

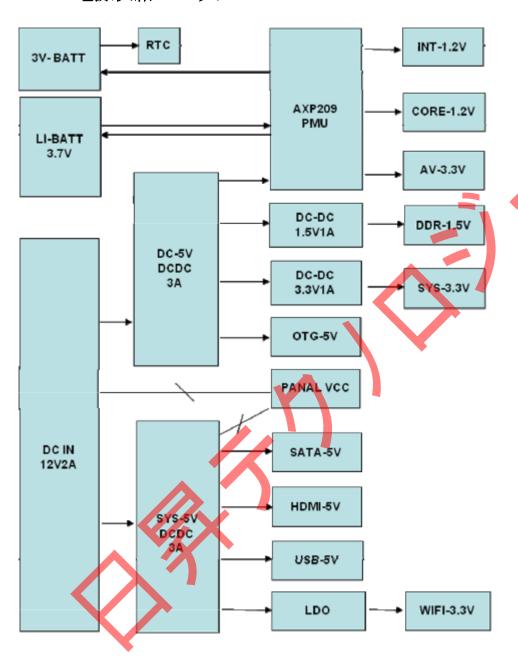
一つ、50/60Hz LCDスクリーンをドライバできる

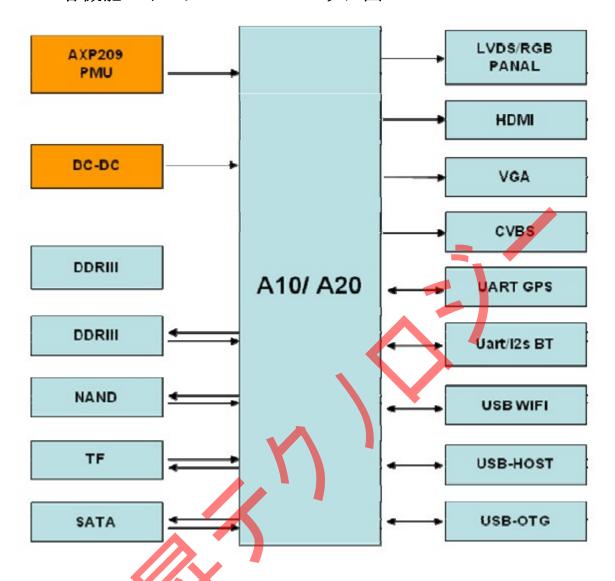
一つ、1080 p 出力をサポートする

サポートする

CVBS ビデオ出力、左右チャンネル音声出力

サポートする


USB アップグレード、ネットワークアップグレード


2.2 主な機能ブロック

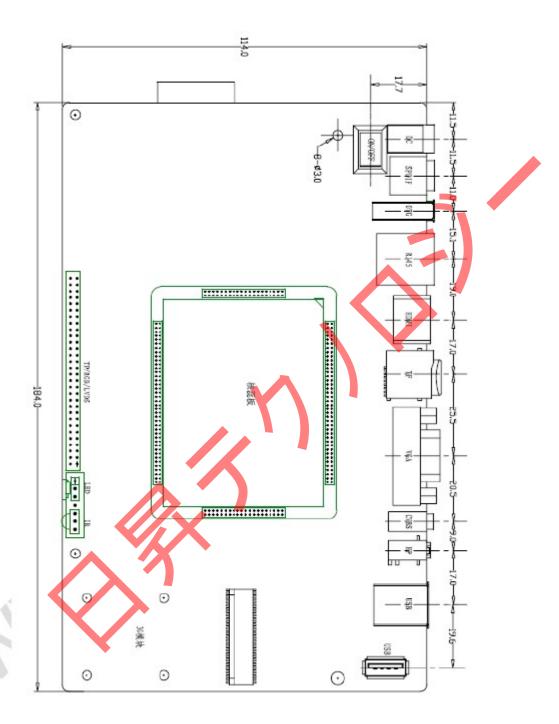
2.2.1 電源供給ブロック

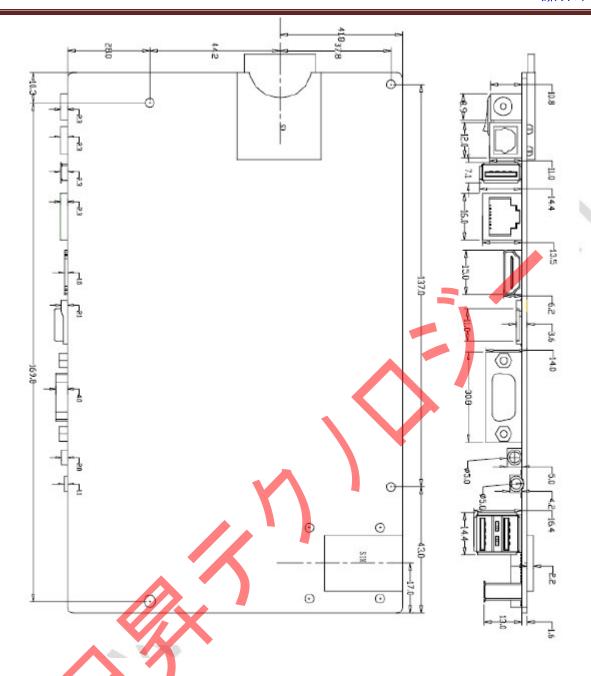
2.2.2 各機能のインタフェースブロック図

2.3 ボード搭載機能と拡張機能リスト

NO.	機能 HDMI	説明 HDMI 出力
2	VGA	VGA 出力
3	CVBS	CVBS 出力
4	YPbPr	YPbPr 出力
5	RGB/LVDS	RGB 出力、LVDS デュアル出力
6	OTG	HOST として U デイスクなどデバイスを接続する。 又は Device として PC と接続する。
7	イーサネット	100M イーサネット
8	TF/SD	TF/SD カード
9	Camera	500万解像度 Camera をサポート
10	USB Host	uデイスク、マウス、カメラなどのデバイスを接続 する

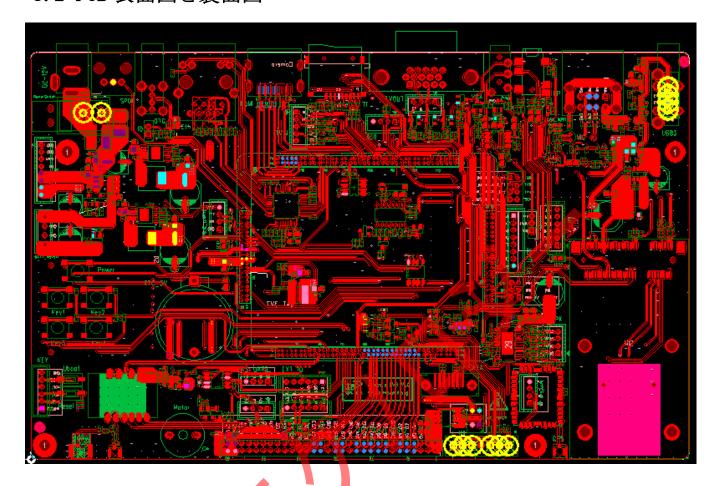
低価格、高品質が不可能?

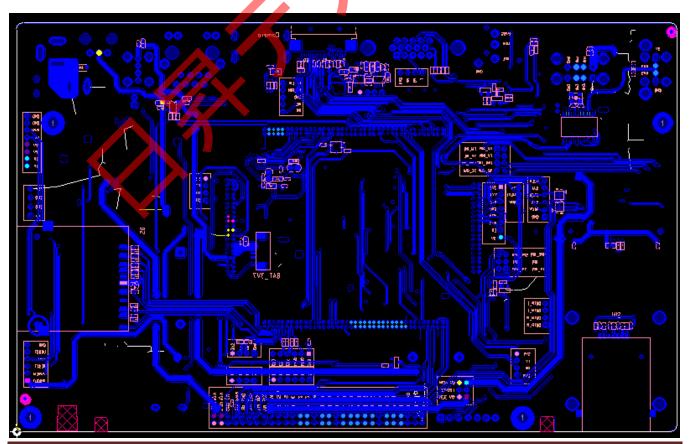

11	3G	WCDMA, EVDO, TD‐SCDMA モジュールをサポート	
12	MIC	MIC 入力ができる	
13	Speaker	10W 8オームのデュアルスピーカー出力	
14	UART	2つのシリアルポート	
15	IIC	2つの IIC	
16	SPI	1つ SPI	
17	拡張 I0	4つの I0	
18	GPS	内蔵 GPS モジュール	
19	SATA	SATA デイスク	
20	IR/LED	赤外線リモコン、LED など	
21	Motor	振動モーター又はブザー	
22	WIFI/BT	内蔵 WIFI+BT	
23	ボタン	複数のキー	
24	拡張 ROM	内蔵 IIC ROM と SPI Flash	
25	Gsensor	内蔵	
26	TVin	二つの TVin 入力	



第三章 PCB 寸法とインタフェースのレイアウト

3.1 PCB 寸法


pcb: 4層ボード


サイズ: 185*114mm、厚さ 1.6mm

ネジ穴の規格: Φ3mm*4

3.2 PCB 表面図と裏面図

3.3 インタフェースのパラメータ説明

◆ バッテリー入力インタフェース

NO.	定義	プロパティ	説明
1	VBAT	入力	3.7V 入力
2	VBAT	入力	3.77 入力
3	GND	アース線	アース線
4	GND	アース線	アース線

◆ BAT1 RTC バッテリインタフェース

NO.	定義	プロパティ	説明
1	RTC	入力	3V 入力
2	GND	アース線	アース線

◆ リモート受信インターフェス

NO.	定義	プロパティ	説明
1	IR	入力	リモート信号入力
2	GND	アース線	アース線
3	VCC	電源	3.3V 出力

◆ 動作表示灯

NO.	定義	プロパティ	説明
1	LED_R	赤ランプ	待機画面
2	VCC	電源	3.3V 出力
3	LED_B	ブルーランプ	動作表示灯

◆ LVDS/RGB インタフェース

雷源

NO.	定義	プロパティ	説明
1	GND	アース線	アース線
2	GND	アース線	アース線
3	PWM	出力	バックライト制御
4	BL	出力	バックライト enable
5	12 v	電源	電源出力
6	12 v	電源	電源出力
7	5 v	電源	電源出力
8	5 v	電源	電源出力

◆ データ

NO.	定義	プロパティ	説明
1			LCD デイスプレイ電源出力、J15を利用
2	PVCC	電源出力	して+5V/+12V が
3			選択できる。
4	CMD	マーラ館	CND
5	GND	アース線	$\overline{ ext{GND}}$

6			
7	RX00-/B1	出力	PixelO Negative Data(Odd)/B1
8	RXOO+/BO	出力	PixelO Positive Data(Odd)/BO
9	RX01-/B3	出力	Pixell Negative Data(Odd)/B3
10	RXO1+/B2	出力	Pixel1 Positive Data(Odd)/B2
11	RXO2-/B5	出力	Pixel2 Negative Data(Odd)/B5
12	RX02+/B4	出力	Pixel2 Positive Data(Odd)/B4
13	GND	アース線	GND
14	GND	アース線	GND
15	RXOC-/B7	出力	Negative Sampling Clock(Odd)/B7
16	RXOC+/B6	出力	Positive Sampling Clock(Odd/B6
17	RXO3-/G1	出力	Pixel3 Negative Data(Odd)/G1
18	RXO3+/G0	出力	Pixel3 Positive Data(Odd)/G0
19	RXE0-/G3	出力	Pixelo Negative Data(Even)/G3
20	RXE0+/G2	出力	Pixelo Positive Da <mark>ta</mark> (Even)/G2
21	RXE1-/G5	出力	Pixell Negative Dat <mark>a</mark> (Even)/G5
22	RXE1+/G4	出力	Pixell Positive Data(Even)/G4
23	RXE2-/G7	出力	Pixel2 Negative Data(Even)/G7
24	RXE2+/G6	出力	Pixel2 Positive Data(Even)/G6
25	GND	アース線	アース線
26	GND	アース線	アース線
27	RXEC-/R1	出力	Negative Sampling Clock(Odd)/R1
28	RXEC+/R0	出力	Positive Sampling Clock(Odd/RO
29	RXE3-/R3	出力	Pixel3 Negative Data(Even)/R3
30	RXE3+/R2	出力	Pixel3 Positive Data(Even)/R2
31	GND	アース線	GND
32	GND	アース線	GND
33	R5	出力	R5
34	R4	出力	R4
35	R7	出力	R7
36	R6	出力	R6
37	DE	出力	DE
38	CLK	出力	CLOCK
39	HS	出力	Hsync
40	VS	出力	Vsync
41	RST#	出力	スクリーンリセット
42	TP_RST#	出力	静電スクリーンリセット
43	PWR	出力	スクリーン電源 enable
44	GND	アース線	GND
45	I2C_SCL	入力	静電スクリーンⅡC SCL
46	YM	入力	抵抗スクリーン YM
47	I2C_SDA	入力	静電スクリーン I2C_SDA
48	XM	入力	抵抗スクリーン XM
49	GND	アース線	GND
50	YP	入力	抵抗スクリーン YP

低価格、高品質が不可能?

			HOIV X F-F	-0.5-10
51	GND	アース線	GND	
52	XP	入力	抵抗スクリーン XP	
53	PWM	出力	バックライト明度調節 PWM	
54	TP_INT	入力	静電スクリーン割り込み	
55	BL_EN	出力	バックライト enable	
56	GND	アース線	GND	
57	12V	電源	12V電源	
58	3V3	電源	3.3V電源	
59	12V	電源	12V 電源	
60	3V3	電源	3.3Ⅴ電源	
◆ SATA ハー	ドディスクインタフ	フェース		
電源				
NO.	定義	プロパティ	説明	
1	VCC	出力	5V出力	
2	GND	アース線	GND	
3	GND	アース線	GND	
4	VCC	出力	12V出力	
データ				
NO.	定義	プロパティ	説明	
1	GND	アース線	アース線	
2	TXP-SATA	入出力	データ伝送+	
3	TXN-SATA	入出力	データ伝送-	
4	GND	アース線	アース線	
5	RXN-SATA	入出力	データ読み出す+	
6	RXP-SATA	入出力	データ読み出す-	
7	GND	アース線	アース線	
	ペート*3	X		
NO.	定義	プロパティ	説明	
1	VCC	電源	3.3 V 出力	
2	UART-TX	入出力	TX	
3	UART-RX	入出力	RX	
4	GND	アース線	アース線	
◆ 0TG*1				
NO.	定義	プロパティ	説明	
1	VCC	電源	5V出力	
2	DM	入出力	DM	
3	DP	入出力	DP	
4	GND	アース線	アース線	
♦ USB*2				
NO.	定義	プロパティ	説明	

低価格、高品質が不可能?

				日昇アグノロシーなら可能にする
1	VCC	電源	5V出力	
2	DM	入出力	DM	
3	DP	入出力	DP	
4	GND	アース線	アース線	
Ⅱ C*2				
NO.	定義	プロパティ	説明	
1	VCC	電源	3.3V出力	
2	SCK	入出力	12C クロック	
3	SDA	入出力	12Cデータ	
4	GND	アース線	アース線	•
オディオ~	インタフェース 1			
NO.	定義	プロパティ	説明	
1	OUTP_L	出力	オディオ出力左+	
2	OUTN_L	アース線	オディオ出力左-	
3	OUTN_R	アース線	オディオ出力右一	
4	OUTP_R	出力	オディオ出力右+	
SPI				
NO.	定義	プロパティ	説明	
1	VCC	電源	3.3V出力	
2	SPI_MISO	入力	データ入力	
3	SPI_MOSI	出力	データ出力	
4	CLK	出力	クロック	
5	CS	出力	チップセレクタ	
6	GND	アース線	アース線	
TVIN				
NO.	定義	プロパティ	説明	
1	IN1	入力	チャネル1	
2	INO	入力	チャネル 0	
3	GND	アース線	アース線	
4	AR	入力	オディオ出力右	
5	AL	入力	オディオ出力左	
TVOUT				
NO.	定義	プロパティ	説明	
1	Y	出力	Y	
2	pb	出力	pb	
3	pr	出力	pr	
4	GND	アース線	アース線	
IIS				
NO.	定義	プロパティ	説明	
	- 			

低価格、高品質が不可能?

			ロ外アグノロシーで	パラリ酸にする
1	12S_MCLK	出力	12S_MCLK	
2	12_DAI	入力	12_DAI	
3	12S_LRCK	出力	12S_LRCK	
4	12S_DA0	出力	12S_DAO	
5	12S_BCLK	出力	12S_BCLK	
6	GND	アース線	アース線	
拡張 I0				
NO.	定義	プロパティ	説明	
1	VCC	出力	3.3 V 出力	
2	101	出入力	101	
3	102	出入力	102	
4	103	出入力	103	
5	104	出入力	104	
6	GND	アース線	アース線	
ボタンイン	/タフェース			
NO.	定義	プロパティ	説明	
1	VCC	出力	5℃出力	
2	PWREN	入力	POWER ボタン	
3	RESET	入力	リセットボタン	
4	ADC	入力 _	AD ボタン	
5	UBOOT	入力	アップグレートボタン	
6	GND	アース線	アース線	
カメライン	/タフェース			
NO.	定義	プロパティ	説明	
1	NC	NC	NC	
2	GND	アース線	アース線	
3	SDA	出入力	12Cデータ	
4	VDD	電源	2. 8V	
5	SCK	出入力	12Cクロック	
6	RST	出力	リセット	
7	VSYNC	出力	VSYNC	
8	STB	出力	待機	
9	HSYNC	出力	HSYNC	
10	VDD	電源	1.8 v	
11	VDD	電源	2. 8 v	
12	D7	出力	データ D7	
13	XCLK	出力	XCLK	
14	D6	出力	データ D6	
15	GND	アース線	アース線	
16	D5	出力	データ D5	
17	PCLK	出力	PCLK	
18	D4	出力	データ D4	

低価格、高品質が不可能?

日見テクノロジーから可能にする

19	DO	出力	データ D0
20	D3	出力	データ D3
21	D1	出力	データ D1
22	D3	出力	データ D2
23	NC	NC	NC
24	SW	出力	スイッチ切り替え

◆ 他の標準インタフェースと機能

ストレージイ	SD/TF カード
ンタフェース	OTG, USB*2
イーサネット	RJ45インタ
インタフェース	フェース
HDMI インタフ	標準インタ
ェース	フェース
イヤホンイン	標準インタ
タフェース	フェイース
CVBS	標準インタ
CVDS	フェイース
VGA インタフェ	標準インタ
ース	フェイース
3 Gインタフ	PCI-E 標準イ
9 9 1 . , ,	ンタフェイー
ェース	ス

最大32Gまで、データを保存する

HOST インタフェース、データストレージ、データ導入、USB マウスとキーボード、カメラ、タッチ画面などをサポートする

100M 有線ネット

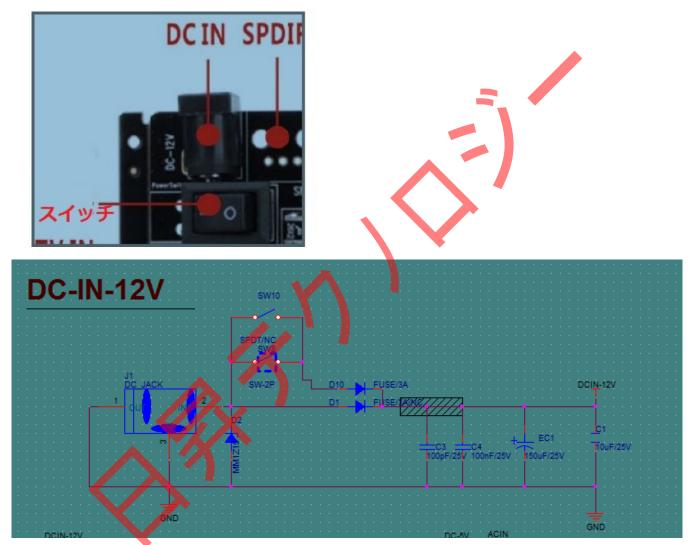
最大1080 Pまでの HDMI データが出力できる

3.5mm 標準インタフェース

3.5mm 標準インタフェース

VGA 画像の出力をサポートする

各種の PCI-E3G モジュールが使用できる

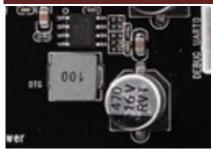


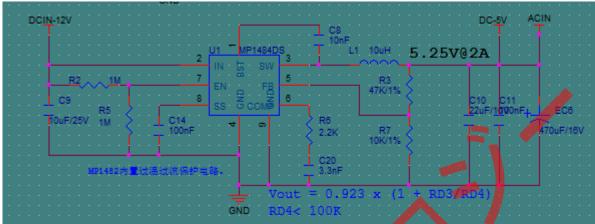
第四章 ハードウェア機能説明

4.1 電源

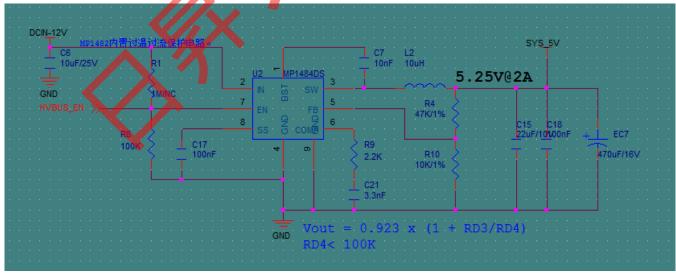
4.1.1 電源入力

本開発ボードは12V/2Aの直流電源アダプタを使用して給電する。電源アダプタのソケットDC INの仕様はD6.0、d2.0である。

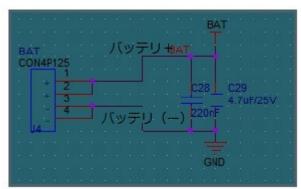

この回路図は二つのスイッチを対応できる。またスイッチ台座が無くでも、直接にDCを挿して起動できる。


4.1.2 5V 給電システム

12V電源アダプタにより給電する。J1ソケットから入力して、最大2A電流を給電できる。12V直流電流が一つのDCDCチップMP1484Dを通じて5V@3Aを出力し、コアボードPMU ACIN 5Vに使用する。



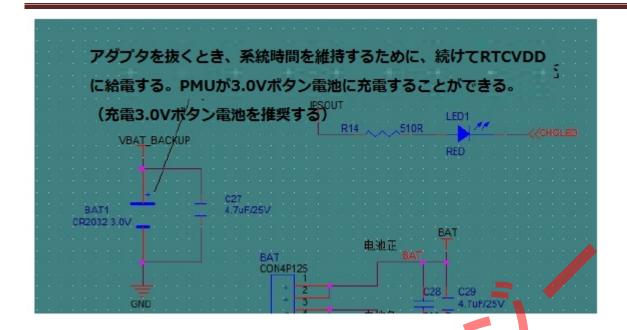
もう一つのDCDCチップMP1484Dを通じて、5V@3Aを出力し、EVB外部デバイスに使用する。



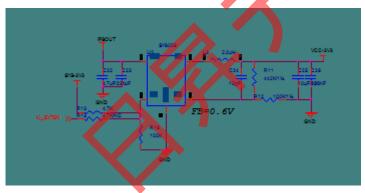
4.1.3 バッテリー給電

3.7Vバッテリーインタフェースがあり、コアボードが安定に動作するために給電する。(電源が大幅に変動し、電源が落ちることを予防する為である。)

NO.	定義	プロパティ
1	VBAT	入力
2	VBAT	入力
3	GND	アース線
4	GND	アース線


4.1.4 RTC 予備給電

12V電源アダプタが給電停止になって、バッテリが挿していない場合に、RTCにはRTC予備バッテリで3V電力を維持する。



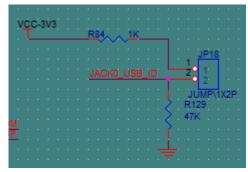
NO.	定義	プロパティ	説明
1	RTC	入力	3.70 入力
2	GND	アース線	アース線

4.1.5 外部デバイス給電

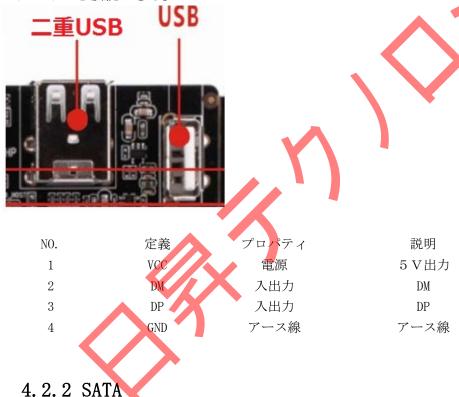
外部デバイスの3.3Vの給電はコアボードと独立して、一つのSY8008 DCDC組合で外部デバイスに(例え ばTF) 電源を提供する。(1A電流が提供できる。)

4.2 メモリデバイス

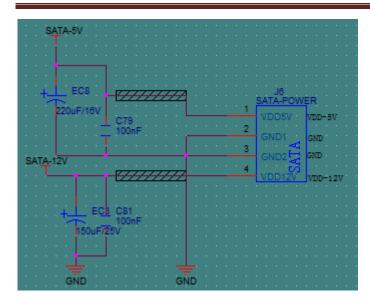
4.2.1 USB インタフェース


1、USB OTG

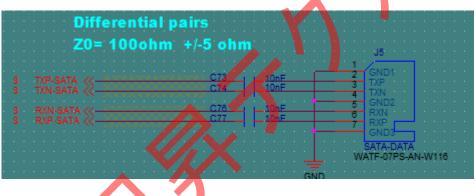
OTGインタフェースは標準なA型インタフェースで、A2O CPUのUSBOインタフェースと対応する。USB IDを経 由してジャンプーし、IDジャンパがない場合に、汎用HOSTインタフェースとして使える。IDがジャンパする 場合に、コンピュータに接続し、USBデバイスとしてファームウェアを書き込み、ADBデバッグに使える。



2, USB HOST


汎用USB HOSTインタフェースはA20のオリジナルのusb1インタフェースがHubを通じて拡張されたもの。開発ボードのUSB HOST 5Vは5V@3Aの電力が提供できるので、3Gモジュール、USBマウス、モバイルハードデイスク、USBタッチスクリーン、USB NFC、USBカードリーダー、USBカメラ、USBスキャナ、USBマイクなどのデバイスを接続できる。

開発ボードはSATAの12V電源、5V電源インタフェース、SATAデータインタフェースがあり、SATAハードディスクなどのデバイスをサポートする。下図はPCB上の位置とインタフェース定義である。



SATA PWR台座定義

NO.	定義	プロパティ
1	VCC	電源
2	GND	アース線
3	GND	アース線
4	VCC	出力

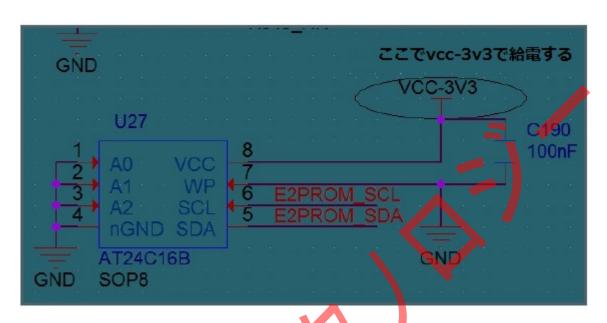
SATAのデータインタフェース

SATA インタフェース

説明 5 V出力 GND GND 12 V出力

SATA DATA 台座定義

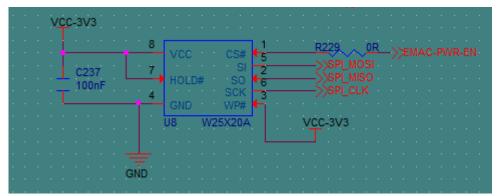
NO.	定義	プロパティ	説明
1	GND	アース線	アース線
2	TXP-SATA	出入力	データ伝送+
3	TXP-SATA	出入力	データ伝送-
4	GND	アース線	アース線
5	RXN-SATA	出入力	データ読み出す+
6	RXP-SATA	出入力	データ読み出す-
7	GND	アース線	アース線



SATAに関する詳細情報はA20のデータシートをご参考ください。

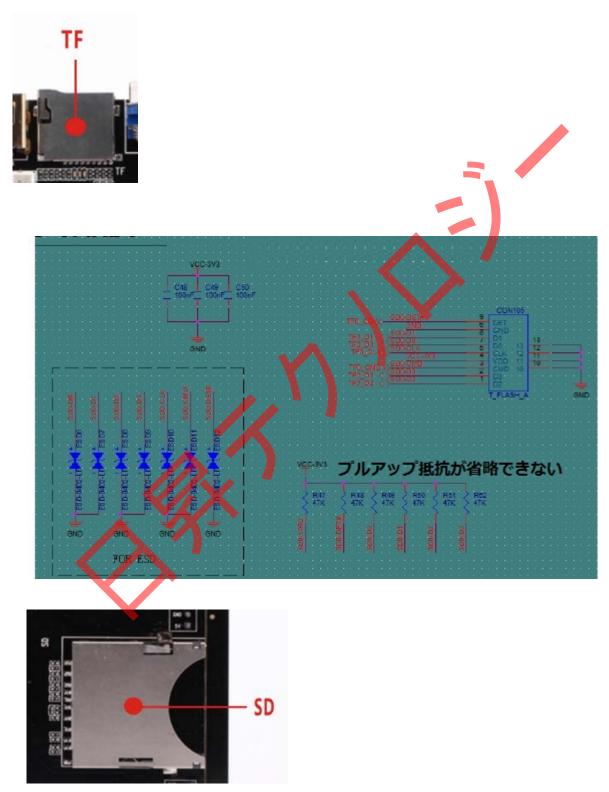
4. 2. 3 EXT-ROM

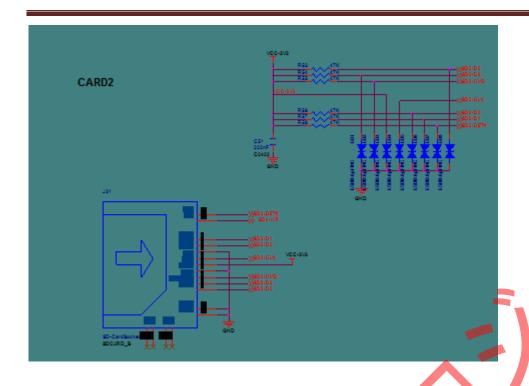
1, IIC ROM


AT24C16B IIC デバイスを採用して外部メモリとしてユーザーのデータを保存する。

2, SPI ROM

W25X20C SPI Flash デバイスを採用して外部メモリとしてユーザーのデータを保存する。

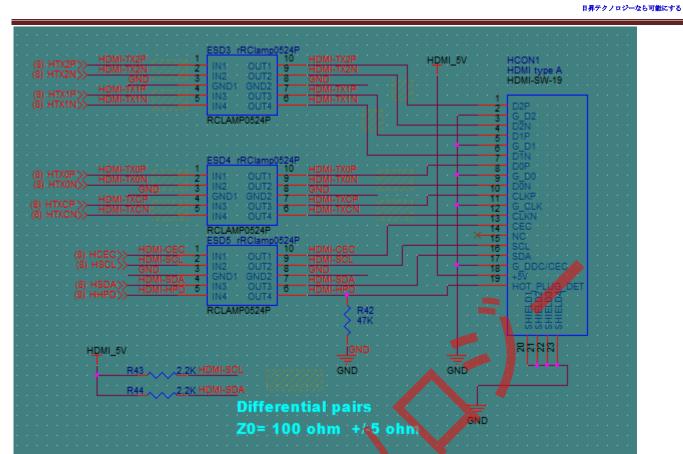




4. 2. 4 TF

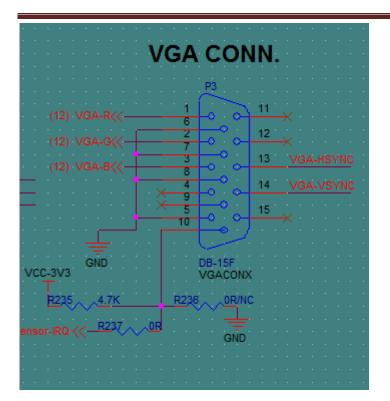
開発ボードは二つのTF/SDカードインタフェースがあり、A20のSDCインタフェースを使用する。特性は以下の通りに:TFカード読み書き、SecureDigital memory (up to SD3.0)を対応できる。最大32Gカードストレージをサポートする。3.3V電圧、カード検測 (割り込みIO)を提供する。

4.3 ビデオ・オディオデバイス


開発ボードは display_param.cfg ファイルを修正することによって、多種類の表示デバイスを設定する (LVDS, VGA, YPBPR, HDMI, CVBS)。その中に、HDMI と TVOUT(CVBS)は固定な標準出力インターフェース が必要である。現時点のソフトウェアは同時に1種類の出力しかサポートしない。

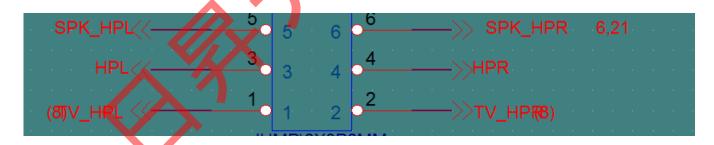
4.3.1 HDMI

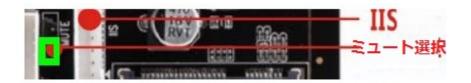
HDMI (エイチ-ディー-エム-アイ) とは High-Definition Multimedia Interface (高精細度マルチメディアインターフェース) の略で、映像・音声をデジタル信号で伝送する通信インタフェースの標準規格である。最大のデータ伝送スピードは50bps で、かつ伝送する前にデジタル/アナログ或いはアナログ/デジタルを転換する必要がない。本ボードの HDMI は1080出力をサポートする。



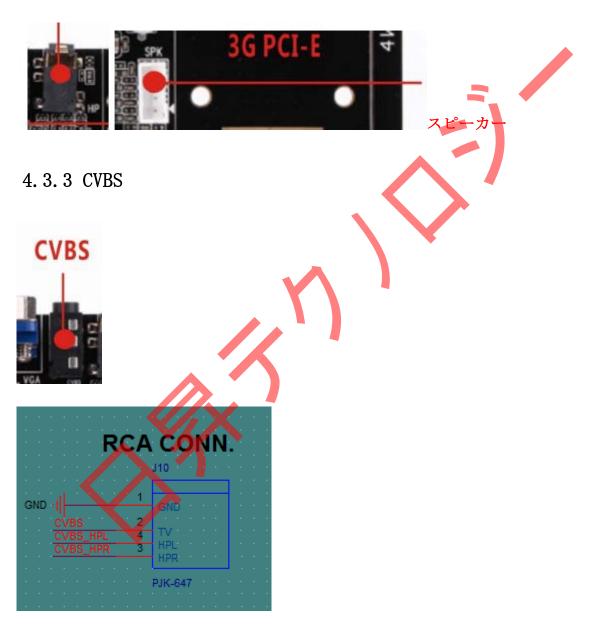
4.3.2 VGA

Video Graphics Array (ビデオ グラフィックス アレイ、VGA) は、IBM から1987年に発表した表示回路規格である。カラーモニター領域には大幅に使われている。代表的な表示モードに 640x480 ピクセル・16色がある。

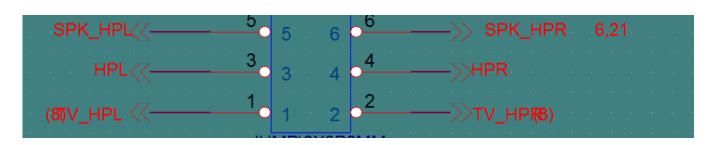



音声は「音声出力選択」ジャンパーと「ミュート選択」ジャンパの設定で、イヤホンから出力する。

「音声出力選択」: 3/5pin ショート、4/6pin ショート

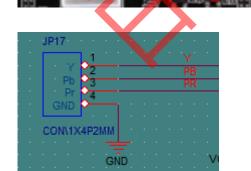

「ミュート選択」: 1/2pin ショート

イヤホン



音声は「音声出力選択」、「ミュート選択」のジャンプ設定を選択し、イヤホン又はスピーカーで出力する。

「音声出力選択」: 3/1pin ショート、4/2pin ショート

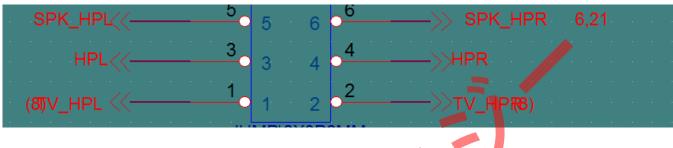


「ミュート選択」: 3/2pin ショート

4.3.4 YPbPr

NO.	定義	プロパティ	説明
1	Y	出力	Y
2	Pb	出力	Pb
3	Pr	出力	Pr

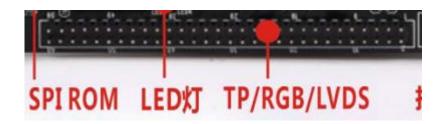
低価格、高品質が不可能で

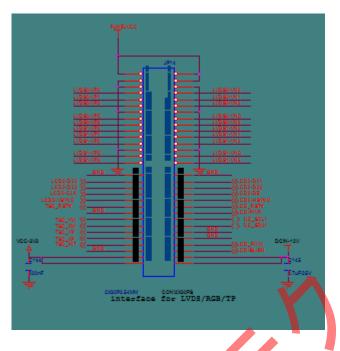

日昇テクノロジーなら可能にする


4 GND アース線 アース線

音声は「音声出力選択」、「ミュート選択」を選択し、イヤホン又はスピーカーで出力する。

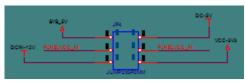
「音声出力選択」: 3/5pin ショート、4/6 pin ショート



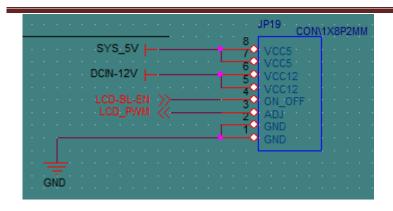

4. 3. 5 RGB/LVDS

開発ボード正面の下側に一つの2*30PIN、2.0MM 間隔のソケットがあり、LVDS と RGB 信号を引き出し、4線抵抗式のタッチスクリーンインタフェース信号と I2C 信号を提供する(静電スクリーンを接続するに使

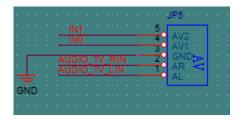
用される)。



ユーザーはインタフェースの定義に基づき、給電ジャンプ選択を加えて、相応な LVDS と LCD スクリーン を点灯する。注意:「スクリーン電源選択」のシルクに基づき、正しい電圧を選ぶ必要。現在、 スクリーンの電圧一般的に3.3v,5v,12v 三つ種類がある。違う電圧を選んだ場合、点灯できない、又は電圧が高すぎてスクリーンの部品を損傷する恐れがある。



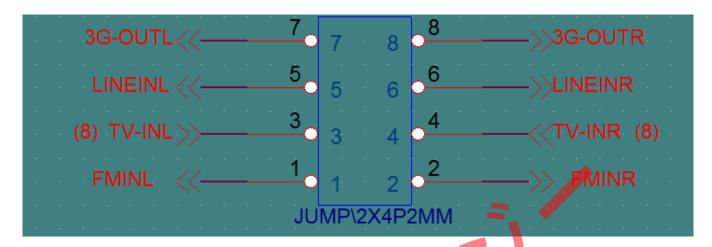
大きいサイズの LVDS スクリーンに対して、バックライト制御用のインタフェースを提供:


台座の配列:

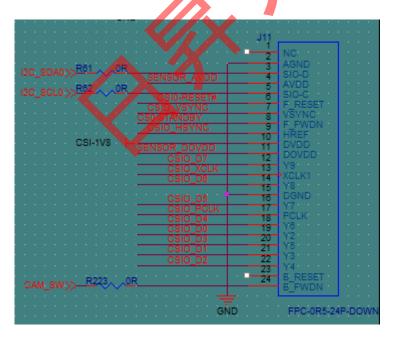
NO.	定義	プロパティ	説明
1	GND	アース線	アース線
2	GND	アース線	アース線
3	PWM	出力	バックライト明度調節
4	BL	出力	バックライト enable
5	12V	電源	電源出力
6	12V	電源	電源出力
7	5V	電源	電源出力
8	5V	電源	電源出力

4.3.6 AV 入力

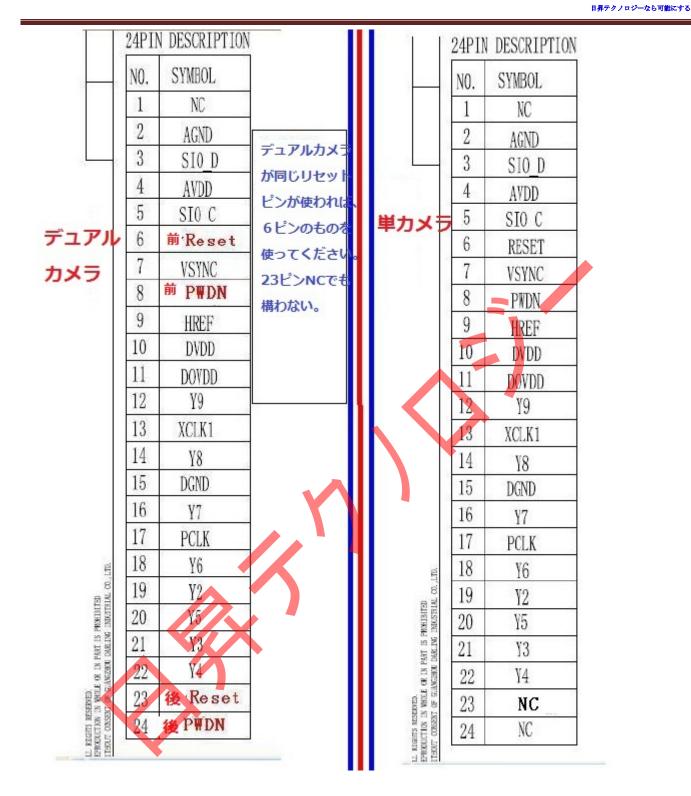
本ボードはTVin入力をサポートする。


声は「音声出力選択」」のジャンプ設定によって入力する。

「音声出力選択」: 3/5pin ショート、4/6 pin ショート。



4.3.7 カメラ


200万 - 500万解像度のカメラ、usb インタフェースカメラをサポートする。

カメラインタフェース

4.3.8 イヤホン

3.5mm イヤホンインタフェースはスピーカー出力と共用する。DC 結合を採用し、内蔵24-bit DAC、48K、44.1K シリーズサンプリング周波数サポートする。192K、96K サンプリング周波数の CODEC もサポートする。

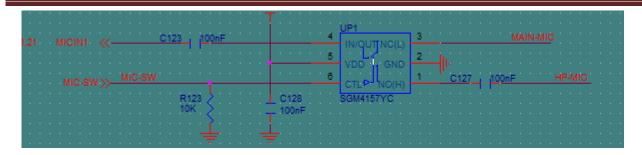
4段 IPHONE 版のイヤホン MIC 入力をサポートする。

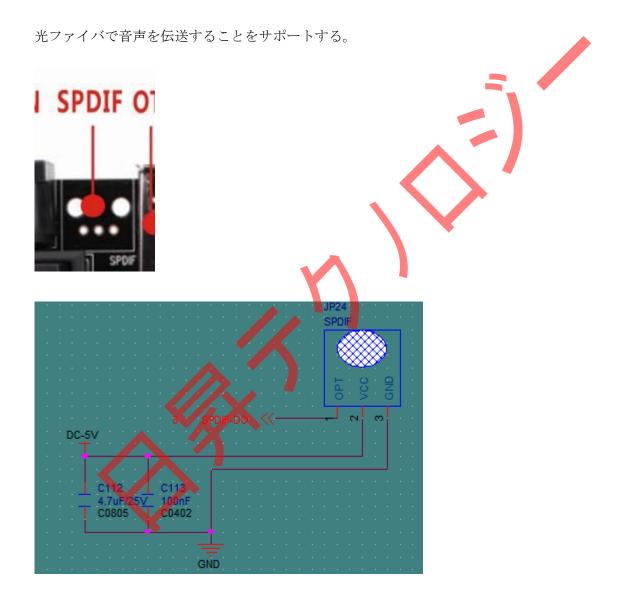
4.3.9 スピーカー

10W、8オームのスピーカーをサポートする。

4.3.10 MIC 入力

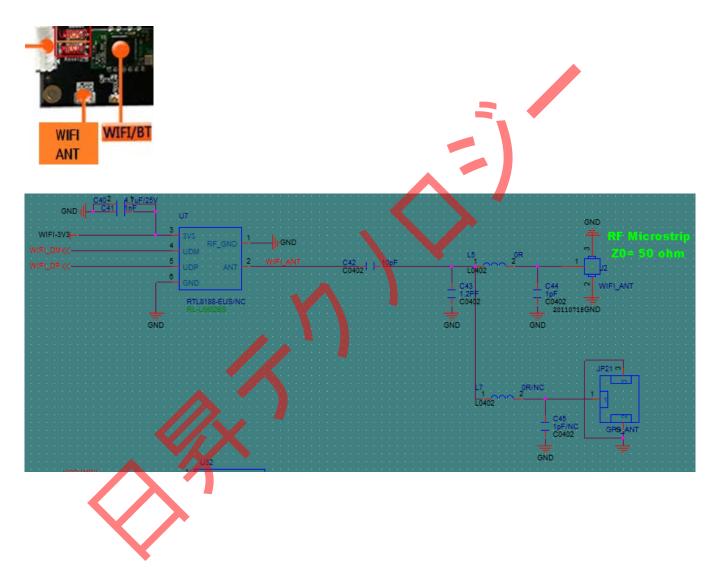
外付け MIC とイヤホン MIC 入力をサポートする。

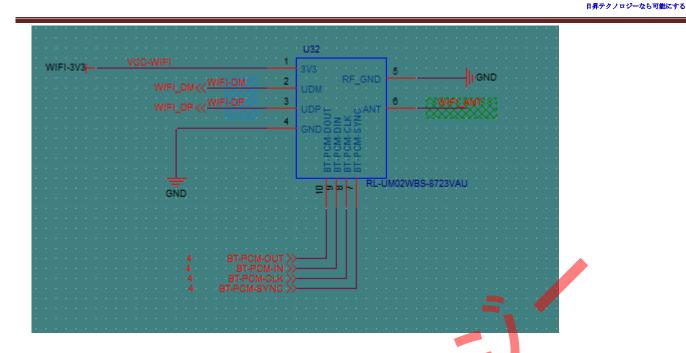

外付け MIC



この二つの MIC 入力はソフトウエア切替スイッチを利用して MIC を選択する。

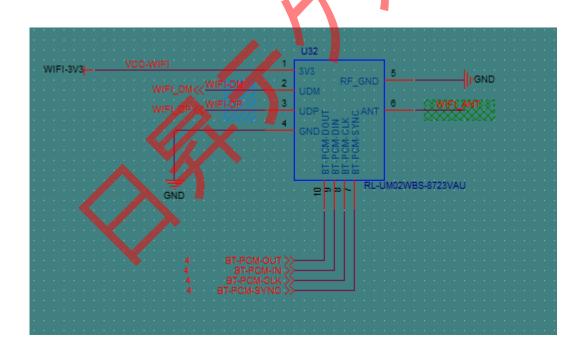
4. 3. 11 SPDIF



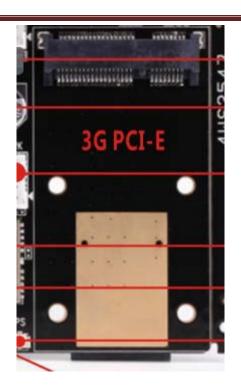

4.4 通信デバイス

4.4.1 WIFI

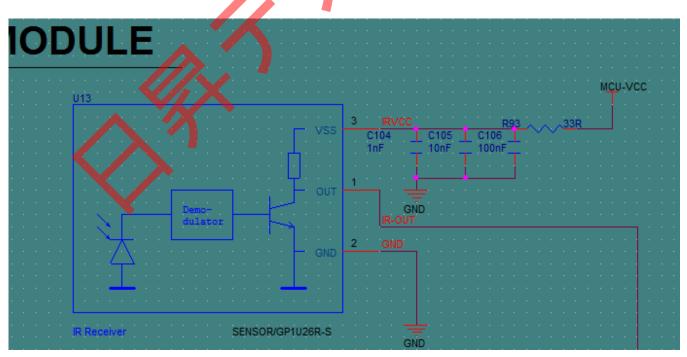
A20 の USB2は Realtek8188/Realtek8723ソリューションの WIFI モジュールに使われている。WIFI モジュールは b/g/n をサポートする。開発ボードには小型のセラミックアンテナをついていて、外部アンテナも拡張できる。



4.4.2 Bluetooth


A20 の USB2は Realtek8723ソリューションの BT モジュールに使われている。開発ボード上は WIFI と同時に小型のセラミックアンテナを使う。

4.4.3 3G


本ボードに搭載している PCI - E 台座は WCDMA, EVDO, TDSCDMA 及び GSM デバイスをサポートする。 詳細は A20 3G リストをご参考ください。

4.4.4 赤外線リモコン

NO.

定義

プロパティ

説明

1

IR

入力

リモコン信号入力

2

GND

アース線

アース線


VCC

電源

3.3V 出力

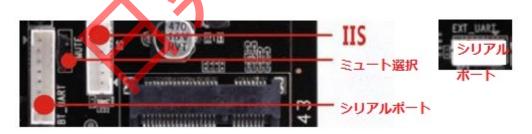
4.4.5 イーサネット

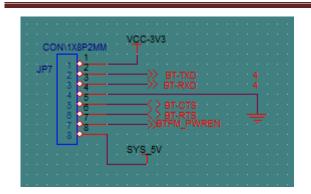
100M Realtek8201CP チップを採用して、安定なネットを提供する。

4.4.6 シリアルポート

デバッグシリアルポートは、A20の UARTOインタフェースを利用する。RS232インタフェースを通じて

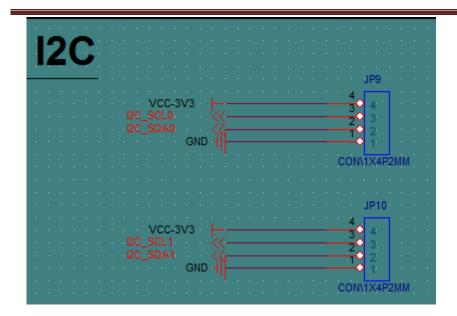
PC と接続する。




GPS モジュールのシリアルポートは A20の UART5インタフェースに接続する。開発ボードには GPS モジュ ールの半田付けのスペースがあり、G591(JRC 会社)モジュール、TDQ - GP → 20(時利信)GPS モジュー ルをサポートする。使用しない場合は、シリアルポートの台座に変更できる。

外部デバイスを接続するために、二つの UART インタフェースも提供する。

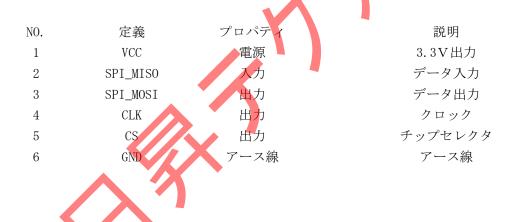
注意:以上のシリアルポートは0V-3.3VのTTLレベルである。接続するインタフェースのレベルが3.3Vより高い場合に(例えばPCシリアルポートを接続するとき)、分離回路が必要である(必要であればRS232変換ボードを利用する)。でなければ、コアボードを損傷する恐れがあります。


4.4.7 IIC

二つの IIC インタフェースがあり、コアボードがホストデバイスとして通信する。

NO.	定義	プロパティ	説明
1	VCC	電源	3.3V 出力
2	SCK	入出力	12C クロック
3	SDA	入出力	12C データ
4	GND	アース線	アース線

4.4.8 SPI


一つの SPI インタフェースがあり、コアボードがホストデバイスとして通信する。

R229

0R

4.5 他の機能モジュール

4.5.1 ボタン

上図の通りに、POWER ボタン(ソフトスイッチボタン)、リセットボタン、UBOOT, ADCO ボタン。

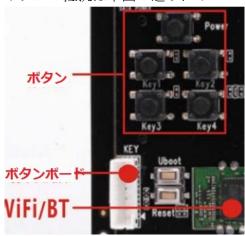
4.5.1.1 POWER ボタン

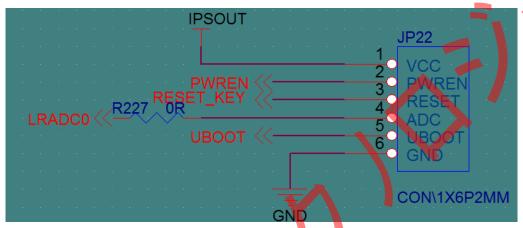
開発ボードは電源ソフトスイッチボタンがあり、PMUのPOWON信号に繋いでいる。デフォルトの場合に、6秒長押すと全てのPMU電源出力(RTC電源LD01を除く)を終了させる。PMUがこのボタンの押す時間を識別できて、かつCPUにIQRを伝送する。従って、ユーザーが「長時間押す」と「短時間押す」のアプリを定義できる。詳細はAXP209 Datesheet をご参照ください。

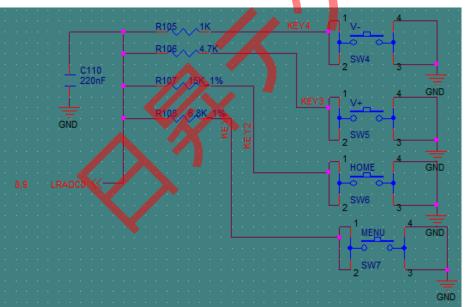
4.5.1.2 UBOOT ボタン

開発ボードにUBOOT ボタンがあり、システム起動選択又はアップグレードに利用する。システムに電源を入れる、又はリセットする時に、まずUBOOT ボタンが押されているかどうかを確認し、もしボタンが押されてない場合、SD/MMC カード (U26) からシステムを起動する。失敗になったら、NAND Flash からシステムを起動する。NAND Flash 起動が失敗になると、USBO からファームウェアをダウンロードする。UBOOT ボタンが押されていれば、システムは全ての起動流れを省略し、直接 USBO からファームウェアをダウンロードする。

4.5.1.3 リセットボタン


開発ボードには一つのリセットボタンがあり、開発ボードのリセット動作を行う。

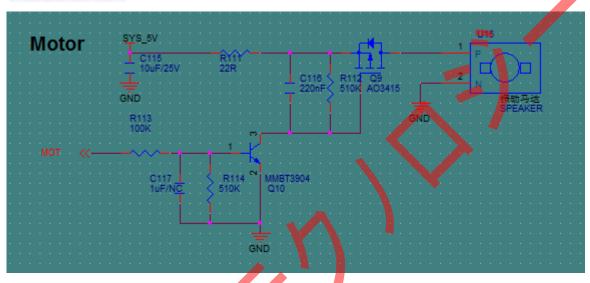

4.5.1.4 AD ボタン


ADC ボタンセットは ALLWINNER の A20 の ADC 0 インタフェースを利用する。一般的は Android に使われる V+、V - 、Back、MENU である。

ボタンの抵抗は下図の通りに:

NO.	定義	プロパティ	説明
1	VCC	出力	5V出力
2	PWREN	入力	POWER ボタン
3	RESET	入力	リセットボタン
4	ADC	入力	AD ボタン
5	UBOOT	入力	アップグレートボタン

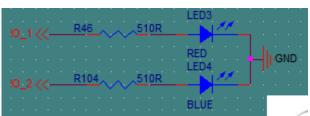
GND


アース線

アース線

4.5.2 モーター

このインタフェースは振動モーター又はブザーに接続する。

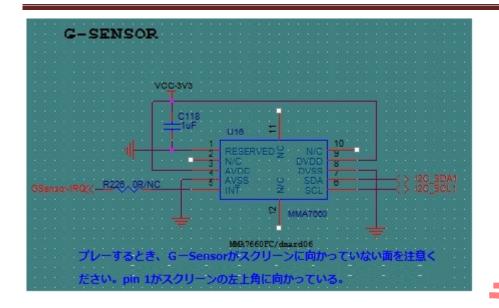


4.5.3 LED

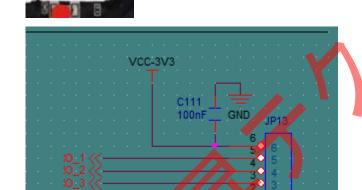
IOインタフェースで制御できる。High レベルで有効。

MCU_VCC 2 1 LED_R R21 510R 1 LED_R R21 510R 2 1 LED_R R21 510R 2 1 LED_R R21 510R 1 MMBT3904 MMBT3904 1、POWER-LED R25 10K 1 POWER-LED R25 100K 1 POWER-LED R25 100K

NO.定義プロパティ説明1LED_R赤ランプ待受画面2VCC電源3.3V 出力3LED_Rブルーランプ動作表示灯


4.5.4 Gsensor

場合は一回点滅する。

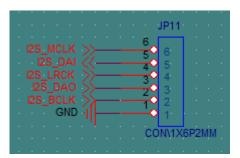

MMA7660 IC を採用する

4.5.5 拡張 IO

NO.	定義	プロパティ
1	VCC	出力
2	I01	出入力
3	102	出入力
4	103	出入力
5	I04	出入力
6	GND	アース線

3.3V出力
I01
I02
103
I04
アース線

説明


4.5.6 IIS

IISインタフェースがあり、外部デバイスを接続する。

第四章 電気性能

項目		最小	代表的	最大
####	電圧	_	12	
電源電圧	リップル	_	_	50mV
電源電流 (HDMI 出力、ほ	動作電流	_	250mA	300mA
かの外部デバ	待機電流	_	32mA	40mA
イスを接続し ていない)	usb 給電電流	_	_	500mA
	動作電流	ディ	· スプレイによってj	造る
電源電流	待機電流	71	// V1 (C& 5 C)	
(LVDS)	usb 給電電流	_	-	500mA
	LCD デイスプ レイ給電電流	_		1A(5V)/2A(12V)
環境	湿度	_	-	80%
然 先	温度	' −20°C	_	70°C